1
|
Han S, Kim S, Sedlacek CJ, Farooq A, Song C, Lee S, Liu S, Brüggemann N, Rohe L, Kwon M, Rhee SK, Jung MY. Adaptive traits of Nitrosocosmicus clade ammonia-oxidizing archaea. mBio 2024:e0216924. [PMID: 39360821 DOI: 10.1128/mbio.02169-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
Nitrification is a core process in the global nitrogen (N) cycle mediated by ammonia-oxidizing microorganisms, including ammonia-oxidizing archaea (AOA) as a key player. Although much is known about AOA abundance and diversity across environments, the genetic drivers of the ecophysiological adaptations of the AOA are often less clearly defined. This is especially true for AOA within the genus Nitrosocosmicus, which have several unique physiological traits (e.g., high substrate tolerance, low substrate affinity, and large cell size). To better understand what separates the physiology of Nitrosocosmicus AOA, we performed comparative genomics with genomes from 39 cultured AOA, including five Nitrosocosmicus AOA. The absence of a canonical high-affinity type ammonium transporter and typical S-layer structural genes was found to be conserved across all Nitrosocosmicus AOA. In agreement, cryo-electron tomography confirmed the absence of a visible outermost S-layer structure, which has been observed in other AOA. In contrast to other AOA, the cryo-electron tomography highlighted the possibility that Nitrosocosmicus AOA may possess a glycoprotein or glycolipid-based glycocalyx cell covering outer layer. Together, the genomic, physiological, and metabolic properties revealed in this study provide insight into niche adaptation mechanisms and the overall ecophysiology of members of the Nitrosocosmicus clade in various terrestrial ecosystems. IMPORTANCE Nitrification is a vital process within the global biogeochemical nitrogen cycle but plays a significant role in the eutrophication of aquatic ecosystems and the production of the greenhouse gas nitrous oxide (N2O) from industrial agriculture ecosystems. While various types of ammonia-oxidizing microorganisms play a critical role in the N cycle, ammonia-oxidizing archaea (AOA) are often the most abundant nitrifiers in natural environments. Members of the genus Nitrosocosmicus are one of the prevalent AOA groups detected in undisturbed terrestrial ecosystems and have previously been reported to possess a range of physiological characteristics that set their physiology apart from other AOA species. This study provides significant progress in understanding these unique physiological traits and their genetic drivers. Our results highlight how physiological studies based on comparative genomics-driven hypotheses can contribute to understanding the unique niche of Nitrosocosmicus AOA.
Collapse
Affiliation(s)
- Saem Han
- Interdisciplinary Graduate Program in Advance Convergence Technology and Science, Jeju National University, Jeju, South Korea
| | - Seongwook Kim
- Interdisciplinary Graduate Program in Advance Convergence Technology and Science, Jeju National University, Jeju, South Korea
| | - Christopher J Sedlacek
- Division of Microbial Ecology, Centre for Microbiology and Environmental System Science, University of Vienna, Vienna, Austria
- Department of Biology, University of Southern Indiana, Evansville, Indiana, USA
| | - Adeel Farooq
- Department of Biology Education, Jeju National University, Jeju, South Korea
| | - Chihong Song
- Core Research Facility, Pusan National University, Yangsan, South Korea
| | - Sujin Lee
- Core Research Facility, Pusan National University, Yangsan, South Korea
| | - Shurong Liu
- School of Agriculture, Sun Yat-Sen University, Shenzhen, China
| | - Nicolas Brüggemann
- Agrosphäre (IBG-3), Institut für Bio- und Geowissenschaften (IBG), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lena Rohe
- Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany
| | - Miye Kwon
- Biodiversity Research Institute, Jeju Technopark, Jeju, South Korea
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Chungdae-ro,Seowon-Gu, Cheongju, South Korea
| | - Man-Young Jung
- Interdisciplinary Graduate Program in Advance Convergence Technology and Science, Jeju National University, Jeju, South Korea
- Department of Biology Education, Jeju National University, Jeju, South Korea
| |
Collapse
|
2
|
Sukumaran R, Shahina K, Nair AS. RFGR: Repeat Finder for Complete and Assembled Whole Genomes and NGS Reads. Biochem Genet 2024; 62:4157-4173. [PMID: 38212571 DOI: 10.1007/s10528-023-10628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024]
Abstract
Repetitive DNA sequences cause genomic instability and are important genetic markers. Identification of repeats is a critical step in genome annotation and analysis. On the other hand, repeats also pose a technical challenge for genome assembly and alignment programs using NGS data. RFGR is a comprehensive tool that can find exact repetitive sequences in complete genomes and assembled genomes, as well as NGS reads of prokaryotes. For complete genomes, RFGR uses a suffix trees to find seed repeats of repetitive sequences of fixed length with indels. For assembled genomes, RFGR uses a modified Bowtie aligner to find seed repeats of exact repetitive sequences in the contigs/ scaffolds, which are then extended to maximal repeats. The repeats are classified and for repeats near a gene, RFGR reports the gene as well. For the control dataset of E. coli UTI89 and E. coli K12, RFGR reports 35,141 and 49,352 repeats, respectively. For NGS reads, RFGR uses the frequency of the repetitive k-mers to determine FASTQ reads containing repetitive sequences and removes them from the dataset. An E. coli K12 NGS dataset pre-processed using RFGR, on comparison with the original dataset, gives an improved assembly. The N50 value improves by 22.86% with a decrease in size of the assembly graph by nearly 50%. Thus, with RFGR, we achieve a better assembly with reduced computation. RFGR can be improved in terms of the length of the minimum repeat found, extending to find approximate repeats and to be applicable to Eukaryotes as well.
Collapse
Affiliation(s)
- Rashmi Sukumaran
- Department of Computational Biology and Bioinformatics, University of Kerala, Karyavattom, Trivandrum, Kerala, India.
| | - K Shahina
- Department of Computational Biology and Bioinformatics, University of Kerala, Karyavattom, Trivandrum, Kerala, India
| | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Karyavattom, Trivandrum, Kerala, India
| |
Collapse
|
3
|
Kofman C, Willi JA, Karim AS, Jewett MC. Ribosome Pool Engineering Increases Protein Biosynthesis Yields. ACS CENTRAL SCIENCE 2024; 10:871-881. [PMID: 38680563 PMCID: PMC11046459 DOI: 10.1021/acscentsci.3c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024]
Abstract
The biosynthetic capability of the bacterial ribosome motivates efforts to understand and harness sequence-optimized versions for synthetic biology. However, functional differences between natively occurring ribosomal RNA (rRNA) operon sequences remain poorly characterized. Here, we use an in vitro ribosome synthesis and translation platform to measure protein production capabilities of ribosomes derived from all unique combinations of 16S and 23S rRNAs from seven distinct Escherichia coli rRNA operon sequences. We observe that polymorphisms that distinguish native E. coli rRNA operons lead to significant functional changes in the resulting ribosomes, ranging from negligible or low gene expression to matching the protein production activity of the standard rRNA operon B sequence. We go on to generate strains expressing single rRNA operons and show that not only do some purified in vivo expressed homogeneous ribosome pools outperform the wild-type, heterogeneous ribosome pool but also that a crude cell lysate made from the strain expressing only operon A ribosomes shows significant yield increases for a panel of medically and industrially relevant proteins. We anticipate that ribosome pool engineering can be applied as a tool to increase yields across many protein biomanufacturing systems, as well as improve basic understanding of ribosome heterogeneity and evolution.
Collapse
Affiliation(s)
- Camila Kofman
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jessica A. Willi
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Bioengineering, Stanford University, Stanford California 94305, United States
| |
Collapse
|
4
|
Dimitrova-Paternoga L, Kasvandik S, Beckert B, Granneman S, Tenson T, Wilson DN, Paternoga H. Structural basis of ribosomal 30S subunit degradation by RNase R. Nature 2024; 626:1133-1140. [PMID: 38326618 PMCID: PMC10901742 DOI: 10.1038/s41586-024-07027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
Protein synthesis is a major energy-consuming process of the cell that requires the controlled production1-3 and turnover4,5 of ribosomes. Although the past few years have seen major advances in our understanding of ribosome biogenesis, structural insight into the degradation of ribosomes has been lacking. Here we present native structures of two distinct small ribosomal 30S subunit degradation intermediates associated with the 3' to 5' exonuclease ribonuclease R (RNase R). The structures reveal that RNase R binds at first to the 30S platform to facilitate the degradation of the functionally important anti-Shine-Dalgarno sequence and the decoding-site helix 44. RNase R then encounters a roadblock when it reaches the neck region of the 30S subunit, and this is overcome by a major structural rearrangement of the 30S head, involving the loss of ribosomal proteins. RNase R parallels this movement and relocates to the decoding site by using its N-terminal helix-turn-helix domain as an anchor. In vitro degradation assays suggest that head rearrangement poses a major kinetic barrier for RNase R, but also indicate that the enzyme alone is sufficient for complete degradation of 30S subunits. Collectively, our results provide a mechanistic basis for the degradation of 30S mediated by RNase R, and reveal that RNase R targets orphaned 30S subunits using a dynamic mechanism involving an anchored switching of binding sites.
Collapse
Affiliation(s)
| | - Sergo Kasvandik
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Bertrand Beckert
- Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland
| | - Sander Granneman
- Centre for Engineering Biology (SynthSys), University of Edinburgh, Edinburgh, UK
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
5
|
Le VV, Ko SR, Oh HM, Ahn CY. Genomic Insights into Paucibacter aquatile DH15, a Cyanobactericidal Bacterium, and Comparative Genomics of the Genus Paucibacter. J Microbiol Biotechnol 2023; 33:1615-1624. [PMID: 37811910 PMCID: PMC10772561 DOI: 10.4014/jmb.2307.07008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
Microcystis blooms threaten ecosystem function and cause substantial economic losses. Microorganism-based methods, mainly using cyanobactericidal bacteria, are considered one of the most ecologically sound methods to control Microcystis blooms. This study focused on gaining genomic insights into Paucibacter aquatile DH15 that exhibited excellent cyanobactericidal effects against Microcystis. Additionally, a pan-genome analysis of the genus Paucibacter was conducted to enhance our understanding of the ecophysiological significance of this genus. Based on phylogenomic analyses, strain DH15 was classified as a member of the species Paucibacter aquatile. The genome analysis supported that strain DH15 can effectively destroy Microcystis, possibly due to the specific genes involved in the flagellar synthesis, cell wall degradation, and the production of cyanobactericidal compounds. The pan-genome analysis revealed the diversity and adaptability of the genus Paucibacter, highlighting its potential to absorb external genetic elements. Paucibacter species were anticipated to play a vital role in the ecosystem by potentially providing essential nutrients, such as vitamins B7, B12, and heme, to auxotrophic microbial groups. Overall, our findings contribute to understanding the molecular mechanisms underlying the action of cyanobactericidal bacteria against Microcystis and shed light on the ecological significance of the genus Paucibacter.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
6
|
Wattenburger CJ, Buckley DH. Land use alters bacterial growth dynamics in soil. Environ Microbiol 2023; 25:3239-3254. [PMID: 37783513 DOI: 10.1111/1462-2920.16514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Microbial growth and mortality are major determinants of soil carbon cycling. We measured in situ growth dynamics of individual bacterial taxa in cropped and successional soils in response to a resource pulse. We hypothesized that land use imposes selection pressures on growth characteristics. We estimated growth and death for 453 and 73 taxa, respectively. The average generation time was 5.04 ± 6.28 (SD; range 0.7-63.5) days. Lag times were shorter in cultivated than successional soils and resource amendment decreased lag times. Taxa exhibiting the greatest growth response also exhibited the greatest mortality, indicative of boom-and-bust dynamics. We observed a bimodal growth rate distribution, representing fast- and slow-growing clusters. Both clusters grew more rapidly in successional soils, which had more organic matter, than cultivated soils. Resource amendment increased the growth rate of the slower growing but not the faster-growing cluster via a mixture of increased growth rates and species turnover, indicating that competitive dynamics constrain growth rates in situ. These two clusters show that copiotrophic bacteria in soils may be subdivided into different life history groups and that these subgroups respond independently to land use and resource availability.
Collapse
Affiliation(s)
- Cassandra J Wattenburger
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Daniel H Buckley
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
7
|
Shea J, Davis L, Quaye B, Gedeon T. Ribosome Abundance Control in Prokaryotes. Bull Math Biol 2023; 85:119. [PMID: 37861893 DOI: 10.1007/s11538-023-01212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
Cell growth is an essential phenotype of any unicellular organism and it crucially depends on precise control of protein synthesis. We construct a model of the feedback mechanisms that regulate abundance of ribosomes in E. coli, a prototypical prokaryotic organism. Since ribosomes are needed to produce more ribosomes, the model includes a positive feedback loop central to the control of cell growth. Our analysis of the model shows that there can be only two coexisting equilibrium states across all 23 parameters. This precludes the existence of hysteresis, suggesting that the ribosome abundance changes continuously with parameters. These states are related by a transcritical bifurcation, and we provide an analytic formula for parameters that admit either state.
Collapse
Affiliation(s)
- Jacob Shea
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Lisa Davis
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Bright Quaye
- Department of Economics, Washington University, St. Louis, MO, USA
| | - Tomas Gedeon
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
8
|
Lin R, Wu H, Kong X, Ren H, Lu Z. Ribosomal RNA gene operon copy number, a functional trait indicating the hydrocarbon degradation level of bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132100. [PMID: 37523962 DOI: 10.1016/j.jhazmat.2023.132100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The lack of universal indicators for predicting microbial biodegradation potential and assessing remediation effects limits the generalization of bioremediation. The community-level ribosomal RNA gene operon (rrn) copy number, an important functional trait, has the potential to serve as a key indicator of the bioremediation of organic pollutants. A meta-analysis based on 1275 samples from 26 hydrocarbon-related studies revealed a positive relationship between the microbial hydrocarbon biodegradation level and the community-level rrn copy number in soil, seawater and culture. Subsequently, a microcosm experiment was performed to decipher the community-level rrn copy number response mechanism during total petroleum hydrocarbon (TPH) biodegradation. The treatment combining straw with resuscitation-promoting factor (Rpf) exhibited the highest community-level rrn copy number and the most effective biodegradation compared with other treatments, and the initial TPH content (20,000 mg kg-1) was reduced by 67.67% after 77 days of incubation. TPH biodegradation rate was positively correlated with the average community-level rrn copy number (p = 0.001, R2 = 0.5781). Both meta and community analyses showed that rrn copy number may reflect the potential of hydrocarbon degradation and microbial dormancy. Our findings provide insight into the applicability of the community-level rrn copy number to assess bacterial biodegradation for pollution remediation.
Collapse
Affiliation(s)
- Renzhang Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Fan J, El Sayyed H, Pambos OJ, Stracy M, Kyropoulos J, Kapanidis AN. RNA polymerase redistribution supports growth in E. coli strains with a minimal number of rRNA operons. Nucleic Acids Res 2023; 51:8085-8101. [PMID: 37351576 PMCID: PMC10450203 DOI: 10.1093/nar/gkad511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
Bacterial transcription by RNA polymerase (RNAP) is spatially organized. RNAPs transcribing highly expressed genes locate in the nucleoid periphery, and form clusters in rich medium, with several studies linking RNAP clustering and transcription of rRNA (rrn). However, the nature of RNAP clusters and their association with rrn transcription remains unclear. Here we address these questions by using single-molecule tracking to monitor the subcellular distribution of mobile and immobile RNAP in strains with a heavily reduced number of chromosomal rrn operons (Δrrn strains). Strikingly, we find that the fraction of chromosome-associated RNAP (which is mainly engaged in transcription) is robust to deleting five or six of the seven chromosomal rrn operons. Spatial analysis in Δrrn strains showed substantial RNAP redistribution during moderate growth, with clustering increasing at cell endcaps, where the remaining rrn operons reside. These results support a model where RNAPs in Δrrn strains relocate to copies of the remaining rrn operons. In rich medium, Δrrn strains redistribute RNAP to minimize growth defects due to rrn deletions, with very high RNAP densities on rrn genes leading to genomic instability. Our study links RNAP clusters and rrn transcription, and offers insight into how bacteria maintain growth in the presence of only 1-2 rrn operons.
Collapse
Affiliation(s)
- Jun Fan
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Hafez El Sayyed
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin building, University of Oxford, Sherrington Road, Oxford OX1 3QU, UK
| | - Oliver J Pambos
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin building, University of Oxford, Sherrington Road, Oxford OX1 3QU, UK
| | - Mathew Stracy
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jingwen Kyropoulos
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin building, University of Oxford, Sherrington Road, Oxford OX1 3QU, UK
| |
Collapse
|
10
|
Raval PK, Ngan WY, Gallie J, Agashe D. The layered costs and benefits of translational redundancy. eLife 2023; 12:81005. [PMID: 36862572 PMCID: PMC9981150 DOI: 10.7554/elife.81005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/25/2023] [Indexed: 03/03/2023] Open
Abstract
The rate and accuracy of translation hinges upon multiple components - including transfer RNA (tRNA) pools, tRNA modifying enzymes, and rRNA molecules - many of which are redundant in terms of gene copy number or function. It has been hypothesized that the redundancy evolves under selection, driven by its impacts on growth rate. However, we lack empirical measurements of the fitness costs and benefits of redundancy, and we have poor a understanding of how this redundancy is organized across components. We manipulated redundancy in multiple translation components of Escherichia coli by deleting 28 tRNA genes, 3 tRNA modifying systems, and 4 rRNA operons in various combinations. We find that redundancy in tRNA pools is beneficial when nutrients are plentiful and costly under nutrient limitation. This nutrient-dependent cost of redundant tRNA genes stems from upper limits to translation capacity and growth rate, and therefore varies as a function of the maximum growth rate attainable in a given nutrient niche. The loss of redundancy in rRNA genes and tRNA modifying enzymes had similar nutrient-dependent fitness consequences. Importantly, these effects are also contingent upon interactions across translation components, indicating a layered hierarchy from copy number of tRNA and rRNA genes to their expression and downstream processing. Overall, our results indicate both positive and negative selection on redundancy in translation components, depending on a species' evolutionary history with feasts and famines.
Collapse
Affiliation(s)
- Parth K Raval
- National Centre for Biological Sciences (NCBS-TIFR)BengaluruIndia
| | - Wing Yui Ngan
- Max Plank Institute for Evolutionary BiologyPlönGermany
| | - Jenna Gallie
- Max Plank Institute for Evolutionary BiologyPlönGermany
| | - Deepa Agashe
- National Centre for Biological Sciences (NCBS-TIFR)BengaluruIndia
| |
Collapse
|
11
|
Teufel M, Henkel W, Sobetzko P. The role of replication-induced chromosomal copy numbers in spatio-temporal gene regulation and evolutionary chromosome plasticity. Front Microbiol 2023; 14:1119878. [PMID: 37152747 PMCID: PMC10157177 DOI: 10.3389/fmicb.2023.1119878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
For a coherent response to environmental changes, bacterial evolution has formed a complex transcriptional regulatory system comprising classical DNA binding proteins sigma factors and modulation of DNA topology. In this study, we investigate replication-induced gene copy numbers - a regulatory concept that is unlike the others not based on modulation of promoter activity but on replication dynamics. We show that a large fraction of genes are predominantly affected by transient copy numbers and identify cellular functions and central pathways governed by this mechanism in Escherichia coli. Furthermore, we show quantitatively that the previously observed spatio-temporal expression pattern between different growth phases mainly emerges from transient chromosomal copy numbers. We extend the analysis to the plant pathogen Dickeya dadantii and the biotechnologically relevant organism Vibrio natriegens. The analysis reveals a connection between growth phase dependent gene expression and evolutionary gene migration in these species. A further extension to the bacterial kingdom indicates that chromosome evolution is governed by growth rate related transient copy numbers.
Collapse
Affiliation(s)
- Marc Teufel
- Synthetic Microbiology Center Marburg (SYNMIKRO), Philipps Universität Marburg, Marburg, Germany
| | - Werner Henkel
- Transmission Systems Group, Jacobs University Bremen, Bremen, Germany
| | - Patrick Sobetzko
- Synthetic Microbiology Center Marburg (SYNMIKRO), Philipps Universität Marburg, Marburg, Germany
- DynAMic Department, Universitè de Lorraine, INRAE, Nancy, France
- *Correspondence: Patrick Sobetzko
| |
Collapse
|
12
|
Diallo I, Ho J, Lambert M, Benmoussa A, Husseini Z, Lalaouna D, Massé E, Provost P. A tRNA-derived fragment present in E. coli OMVs regulates host cell gene expression and proliferation. PLoS Pathog 2022; 18:e1010827. [PMID: 36108089 PMCID: PMC9514646 DOI: 10.1371/journal.ppat.1010827] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/27/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
RNA-sequencing has led to a spectacular increase in the repertoire of bacterial sRNAs and improved our understanding of their biological functions. Bacterial sRNAs have also been found in outer membrane vesicles (OMVs), raising questions about their potential involvement in bacteria-host relationship, but few studies have documented this issue. Recent RNA-Sequencing analyses of bacterial RNA unveiled the existence of abundant very small RNAs (vsRNAs) shorter than 16 nt. These especially include tRNA fragments (tRFs) that are selectively loaded in OMVs and are predicted to target host mRNAs. Here, in Escherichia coli (E. coli), we report the existence of an abundant vsRNA, Ile-tRF-5X, which is selectively modulated by environmental stress, while remaining unaffected by inhibition of transcription or translation. Ile-tRF-5X is released through OMVs and can be transferred to human HCT116 cells, where it promoted MAP3K4 expression. Our findings provide a novel perspective and paradigm on the existing symbiosis between bacteria and human cells. We previously outlined by RNA-Sequencing (RNA-seq) the existence of abundant very small (<16 nt) bacterial and eukaryote RNA (vsRNA) population with potential regulatory functions. However, it is not exceptional to see vsRNA species removed from the RNA-seq libraries or datasets because being considered as random degradation products. As a proof of concept, we present in this study a 13 nt in length isoleucine tRNA-derived fragment (Ile-tRF-5X) which is selectively modulated by nutritional and thermal stress while remaining unaffected by transcription and translation inhibitions. We also showed that OMVs and their Ile-tRF-5X vsRNAs are delivered into human HCT116 cells and both can promote host cell gene expression and proliferation. Ile-tRF-5X appears to regulate gene silencing properties of miRNAs by competition. Our findings provide a novel perspective and paradigm on the existing symbiosis between hosts and bacteria but also brings a new insight of host-pathogen interactions mediated by tRFs which remain so far poorly characterized in bacteria.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Jeffrey Ho
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Marine Lambert
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Abderrahim Benmoussa
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Zeinab Husseini
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - David Lalaouna
- CRCHUS, RNA Group, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric Massé
- CRCHUS, RNA Group, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Patrick Provost
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- * E-mail:
| |
Collapse
|
13
|
Gong X, Chen TW, Zhang L, Pižl V, Tajovský K, Devetter M. Gut microbiome reflect adaptation of earthworms to cave and surface environments. Anim Microbiome 2022; 4:47. [PMID: 35932082 PMCID: PMC9356433 DOI: 10.1186/s42523-022-00200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Background Caves are special natural laboratories for most biota and the cave communities are unique. Establishing population in cave is accompanied with modifications in adaptability for most animals. To date, little is known about the survival mechanisms of soil animals in cave environments, albeit they play vital roles in most terrestrial ecosystems. Here, we investigated whether and how gut microbes would contribute to the adaptation of earthworms by comparing the gut microbiome of two earthworm species from the surface and caves. Results Two dominant earthworm species inhabited caves, i.e., Allolobophora chlorotica and Aporrectodea rosea. Compared with the counterparts on the surface, A. rosea significantly decreased population in the cave, while A. chlorotica didn’t change. Microbial taxonomic and phylogenetic diversities between the earthworm gut and soil environment were asynchronic with functional diversity, with functional gene diversity been always higher in earthworm gut than in soil, but species richness and phylogenetic diversity lower. In addition, earthworm gut microbiome were characterized by higher rrn operon numbers and lower network complexity than soil microbiota. Conclusions Different fitness of the two earthworm species in cave is likely to coincide with gut microbiota, suggesting interactions between host and gut microbiome are essential for soil animals in adapting to new environments. The functional gene diversity provided by gut microbiome is more important than taxonomic or phylogenetic diversity in regulating host adaptability. A stable and high-efficient gut microbiome, including microbiota and metabolism genes, encoded potential functions required by the animal hosts during the processes of adapting to and establishing in the cave environments. Our study also demonstrates how the applications of microbial functional traits analysis may advance our understanding of animal-microbe interactions that may aid animals to survive in extreme ecosystems. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00200-0.
Collapse
|
14
|
Fleurier S, Dapa T, Tenaillon O, Condon C, Matic I. rRNA operon multiplicity as a bacterial genome stability insurance policy. Nucleic Acids Res 2022; 50:12601-12620. [PMID: 35552441 PMCID: PMC9825170 DOI: 10.1093/nar/gkac332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 01/29/2023] Open
Abstract
Quick growth restart after upon encountering favourable environmental conditions is a major fitness contributor in natural environment. It is widely assumed that the time required to restart growth after nutritional upshift is determined by how long it takes for cells to synthesize enough ribosomes to produce the proteins required to reinitiate growth. Here we show that a reduction in the capacity to synthesize ribosomes by reducing number of ribosomal RNA (rRNA) operons (rrn) causes a longer transition from stationary phase to growth of Escherichia coli primarily due to high mortality rates. Cell death results from DNA replication blockage and massive DNA breakage at the sites of the remaining rrn operons that become overloaded with RNA polymerases (RNAPs). Mortality rates and growth restart duration can be reduced by preventing R-loop formation and improving DNA repair capacity. The same molecular mechanisms determine the duration of the recovery phase after ribosome-damaging stresses, such as antibiotics, exposure to bile salts or high temperature. Our study therefore suggests that a major function of rrn operon multiplicity is to ensure that individual rrn operons are not saturated by RNAPs, which can result in catastrophic chromosome replication failure and cell death during adaptation to environmental fluctuations.
Collapse
Affiliation(s)
- Sebastien Fleurier
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | - Tanja Dapa
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | | | - Ciarán Condon
- Institut de Biologie Physico-Chimique, CNRS UMR8261, Université de Paris, 75005 Paris, France
| | - Ivan Matic
- To whom correspondence should be addressed.
| |
Collapse
|
15
|
Martinez-Gutierrez CA, Aylward FO. Genome size distributions in bacteria and archaea are strongly linked to evolutionary history at broad phylogenetic scales. PLoS Genet 2022; 18:e1010220. [PMID: 35605022 PMCID: PMC9166353 DOI: 10.1371/journal.pgen.1010220] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/03/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022] Open
Abstract
The evolutionary forces that determine genome size in bacteria and archaea have been the subject of intense debate over the last few decades. Although the preferential loss of genes observed in prokaryotes is explained through the deletional bias, factors promoting and preventing the fixation of such gene losses often remain unclear. Importantly, statistical analyses on this topic typically do not consider the potential bias introduced by the shared ancestry of many lineages, which is critical when using species as data points because of the potential dependence on residuals. In this study, we investigated the genome size distributions across a broad diversity of bacteria and archaea to evaluate if this trait is phylogenetically conserved at broad phylogenetic scales. After model fit, Pagel's lambda indicated a strong phylogenetic signal in genome size data, suggesting that the diversification of this trait is influenced by shared evolutionary histories. We used a phylogenetic generalized least-squares analysis (PGLS) to test whether phylogeny influences the predictability of genome size from dN/dS ratios and 16S copy number, two variables that have been previously linked to genome size. These results confirm that failure to account for evolutionary history can lead to biased interpretations of genome size predictors. Overall, our results indicate that although bacteria and archaea can rapidly gain and lose genetic material through gene transfers and deletions, respectively, phylogenetic signal for genome size distributions can still be recovered at broad phylogenetic scales that should be taken into account when inferring the drivers of genome size evolution.
Collapse
Affiliation(s)
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
16
|
Regulatory perturbations of ribosome allocation in bacteria reshape the growth proteome with a trade-off in adaptation capacity. iScience 2022; 25:103879. [PMID: 35243241 PMCID: PMC8866900 DOI: 10.1016/j.isci.2022.103879] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/29/2021] [Accepted: 02/03/2022] [Indexed: 11/20/2022] Open
Abstract
Bacteria regulate their cellular resource allocation to enable fast growth-adaptation to a variety of environmental niches. We studied the ribosomal allocation, growth, and expression profiles of two sets of fast-growing mutants of Escherichia coli K-12 MG1655. Mutants with only three of the seven copies of ribosomal RNA operons grew faster than the wild-type strain in minimal media and show similar phenotype to previously studied fast-growing rpoB mutants. Comparing these two different regulatory perturbations (rRNA promoters or rpoB mutations), we show how they reshape the proteome for growth with a concomitant fitness cost. The fast-growing mutants shared downregulation of hedging functions and upregulated growth functions. They showed longer diauxic shifts and reduced activity of gluconeogenic promoters during glucose-acetate shifts, suggesting reduced availability of the RNA polymerase for expressing hedging proteome. These results show that the regulation of ribosomal allocation underlies the growth/hedging phenotypes obtained from laboratory evolution experiments. Mutants with only three ribosomal operons grow faster than wild-type in minimal medium Faster growth of mutants is achieved by increased ribosome content Fast-growing mutants display reduced hedging expression and adaptation trade-offs
Collapse
|
17
|
Lang M, Krin E, Korlowski C, Sismeiro O, Varet H, Coppée JY, Mazel D, Baharoglu Z. Sleeping ribosomes: Bacterial signaling triggers RaiA mediated persistence to aminoglycosides. iScience 2021; 24:103128. [PMID: 34611612 PMCID: PMC8476650 DOI: 10.1016/j.isci.2021.103128] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Indole is a molecule proposed to be involved in bacterial signaling. We find that indole secretion is induced by sublethal tobramycin concentrations and increases persistence to aminoglycosides in V. cholerae. Indole transcriptomics showed increased expression of raiA, a ribosome associated factor. Deletion of raiA abolishes the appearance of indole dependent persisters to aminoglycosides, although its overexpression leads to 100-fold increase of persisters, and a reduction in lag phase, evocative of increased active 70S ribosome content, confirmed by sucrose gradient analysis. We propose that, under stress conditions, RaiA-bound inactive 70S ribosomes are stored as “sleeping ribosomes”, and are rapidly reactivated upon stress relief. Our results point to an active process of persister formation through ribosome protection during translational stress (e.g., aminoglycoside treatment) and reactivation upon antibiotic removal. Translation is a universal process, and these results could help elucidate a mechanism of persistence formation in a controlled, thus inducible way. Indole is produced under sub-MIC tobramycin stress in V. cholerae and upregulates raiA RaiA is involved in indole-dependent formation of aminoglycoside specific persisters RaiA overexpression allows faster growth restart and increases 70S ribosome content RaiA-bound inactive 70S ribosomes form intact and reactivable sleeping ribosome pools
Collapse
Affiliation(s)
- Manon Lang
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Evelyne Krin
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Chloé Korlowski
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Odile Sismeiro
- Biomics Technological Platform, Center for Technological Resources and Research, Institut Pasteur, 75015 Paris, France
| | - Hugo Varet
- Biomics Technological Platform, Center for Technological Resources and Research, Institut Pasteur, 75015 Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, 75015 Paris, France
| | - Jean-Yves Coppée
- Biomics Technological Platform, Center for Technological Resources and Research, Institut Pasteur, 75015 Paris, France
| | - Didier Mazel
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Corresponding author
| | - Zeynep Baharoglu
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Corresponding author
| |
Collapse
|
18
|
Considerations on the Identity and Diversity of Organisms Affiliated with Sphingobacterium multivorum-Proposal for a New Species, Sphingobacterium paramultivorum. Microorganisms 2021; 9:microorganisms9102057. [PMID: 34683378 PMCID: PMC8540502 DOI: 10.3390/microorganisms9102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Plant biomass offers great potential as a sustainable resource, and microbial consortia are primordial in its bioconversion. The wheat-straw-biodegradative bacterial strain w15 has drawn much attention as a result of its biodegradative potential and superior degradation performance in bacterial-fungal consortia. Strain w15 was originally assigned to the species Sphingobacterium multivorum based on its 16S ribosomal RNA (rRNA) gene sequence. A closer examination of this taxonomic placement revealed that the sequence used has 98.9% identity with the ‘divergent’ 16S rRNA gene sequence of S. multivorum NCTC 11343T, yet lower relatedness with the canonical 16S rRNA sequence. A specific region of the gene, located between positions 186 and 210, was found to be highly variable and determinative for the divergence. To solve the identity of strain w15, genome metrics and analyses of ecophysiological niches were undertaken on a selection of strains assigned to S. multivorum and related species. These analyses separated all strains into three clusters, with strain w15, together with strain BIGb0170, constituting a separate radiation, next to S. multivorum and S. siyangense. Moreover, the strains denoted FDAARGOS 1141 and 1142 were placed inside S. siyangense. We propose the renaming of strains w15 and BIGb0170 as members of the novel species, coined Sphingobacterium paramultivorum.
Collapse
|
19
|
Rees TAV, Raven JA. The maximum growth rate hypothesis is correct for eukaryotic photosynthetic organisms, but not cyanobacteria. THE NEW PHYTOLOGIST 2021; 230:601-611. [PMID: 33449358 PMCID: PMC8048539 DOI: 10.1111/nph.17190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/23/2020] [Indexed: 05/12/2023]
Abstract
The (maximum) growth rate (µmax ) hypothesis predicts that cellular and tissue phosphorus (P) concentrations should increase with increasing growth rate, and RNA should also increase as most of the P is required to make ribosomes. Using published data, we show that though there is a strong positive relationship between the µmax of all photosynthetic organisms and their P content (% dry weight), leading to a relatively constant P productivity, the relationship with RNA content is more complex. In eukaryotes there is a strong positive relationship between µmax and RNA content expressed as % dry weight, and RNA constitutes a relatively constant 25% of total P. In prokaryotes the rRNA operon copy number is the important determinant of the amount of RNA present in the cell. The amount of phospholipid expressed as % dry weight increases with increasing µmax in microalgae. The relative proportions of each of the five major P-containing constituents is remarkably constant, except that the proportion of RNA is greater and phospholipids smaller in prokaryotic than eukaryotic photosynthetic organisms. The effect of temperature differences between studies was minor. The evidence for and against P-containing constituents other than RNA being involved with ribosome synthesis and functioning is discussed.
Collapse
Affiliation(s)
- T. A. V. Rees
- Leigh Marine LaboratoryInstitute of Marine ScienceUniversity of AucklandAuckland1142New Zealand
| | - John A. Raven
- Division of Plant ScienceUniversity of Dundee at the James Hutton InstituteInvergowrie, Dundee,DD2 5DAUK
- Climate Change ClusterFaculty of ScienceUniversity of TechnologySydney, UltimoNSW2007Australia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWA6009Australia
| |
Collapse
|
20
|
Liu Y, Pei T, Du J, Huang H, Deng MR, Zhu H. Comparative genomic analysis of the genus Novosphingobium and the description of two novel species Novosphingobium aerophilum sp. nov. and Novosphingobium jiangmenense sp. nov. Syst Appl Microbiol 2021; 44:126202. [PMID: 33872983 DOI: 10.1016/j.syapm.2021.126202] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022]
Abstract
Members of the genus Novosphingobium are well known for their metabolically versatile and great application potential in pollution elimination. The three novel bacterial strains, designated 4Y4T, 4Y9, and 1Y9AT, were isolated from aquaculture water and characterized by using a polyphasic taxonomic approach. The 16S rRNA gene sequences phylogenetic analysis revealed that the three strains belonged to the genus Novosphingobium. The phylogenomic analysis indicated that the three strains formed two independent and robust branches distinct from all reference strains. The analyses of dDDH values and ANIs between the three strains and their relatives further demonstrated that the three strains represented two different novel genospecies. Comparative genomic analysis of the three isolates and 32 type strains of the genus Novosphingobium showed that the most important central metabolic pathways of these strains appeared to be similar, while specific and specialized metabolic pathways were flexible and variable among these strains. Chemotaxonomic characterization exhibited that the predominant cellular fatty acids were summed feature 8, summed feature 3, and C14:0 2OH; the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidyldimethylethanolamine, phosphatidylglycerol, and sphingoglycolipid; the major respiratory quinone and polyamine were Q-10 and spermidine. The DNA G + C contents were 67.6 and 64.7 %. Based on the genotypic and phenotypic characteristics, strains 4Y4T and 1Y9AT are concluded to represent two novel species of the genus Novosphingobium, for which the names Novosphingobium aerophilum sp. nov. (type strain 4Y4T = GDMCC 1.1828 T = KACC 21946 T) and Novosphingobium jiangmenense sp. nov. (type strain 1Y9AT = GDMCC 1.1936 T = KACC 22085 T) are proposed.
Collapse
Affiliation(s)
- Yang Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, P.R. China
| | - Tao Pei
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, P.R. China
| | - Juan Du
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, P.R. China
| | - Huarui Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, P.R. China
| | - Ming-Rong Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, P.R. China
| | - Honghui Zhu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, P.R. China.
| |
Collapse
|
21
|
Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat Rev Microbiol 2021; 19:347-359. [PMID: 33469168 DOI: 10.1038/s41579-020-00497-1] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 12/27/2022]
Abstract
Plasmids have a key role in bacterial ecology and evolution because they mobilize accessory genes by horizontal gene transfer. However, recent studies have revealed that the evolutionary impact of plasmids goes above and beyond their being mere gene delivery platforms. Plasmids are usually kept at multiple copies per cell, producing islands of polyploidy in the bacterial genome. As a consequence, the evolution of plasmid-encoded genes is governed by a set of rules different from those affecting chromosomal genes, and these rules are shaped by unusual concepts in bacterial genetics, such as genetic dominance, heteroplasmy or segregational drift. In this Review, we discuss recent advances that underscore the importance of plasmids in bacterial ecology and evolution beyond horizontal gene transfer. We focus on new evidence that suggests that plasmids might accelerate bacterial evolution, mainly by promoting the evolution of plasmid-encoded genes, but also by enhancing the adaptation of their host chromosome. Finally, we integrate the most relevant theoretical and empirical studies providing a global understanding of the forces that govern plasmid-mediated evolution in bacteria.
Collapse
|
22
|
Tollerson R, Ibba M. Translational regulation of environmental adaptation in bacteria. J Biol Chem 2020; 295:10434-10445. [PMID: 32518156 DOI: 10.1074/jbc.rev120.012742] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/08/2020] [Indexed: 01/26/2023] Open
Abstract
Bacteria must rapidly respond to both intracellular and environmental changes to survive. One critical mechanism to rapidly detect and adapt to changes in environmental conditions is control of gene expression at the level of protein synthesis. At each of the three major steps of translation-initiation, elongation, and termination-cells use stimuli to tune translation rate and cellular protein concentrations. For example, changes in nutrient concentrations in the cell can lead to translational responses involving mechanisms such as dynamic folding of riboswitches during translation initiation or the synthesis of alarmones, which drastically alter cell physiology. Moreover, the cell can fine-tune the levels of specific protein products using programmed ribosome pausing or inducing frameshifting. Recent studies have improved understanding and revealed greater complexity regarding long-standing paradigms describing key regulatory steps of translation such as start-site selection and the coupling of transcription and translation. In this review, we describe how bacteria regulate their gene expression at the three translational steps and discuss how translation is used to detect and respond to changes in the cellular environment. Finally, we appraise the costs and benefits of regulation at the translational level in bacteria.
Collapse
Affiliation(s)
- Rodney Tollerson
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Michael Ibba
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
23
|
Matsumoto N, Matsutani M, Azuma Y, Kataoka N, Yakushi T, Matsushita K. In vitro thermal adaptation of mesophilic Acetobacter pasteurianus NBRC 3283 generates thermotolerant strains with evolutionary trade-offs. Biosci Biotechnol Biochem 2020; 84:832-841. [DOI: 10.1080/09168451.2019.1703638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT
Thermotolerant strains are critical for low-cost high temperature fermentation. In this study, we carried out the thermal adaptation of A. pasteurianus IFO 3283–32 under acetic acid fermentation conditions using an experimental evolution approach from 37ºC to 40ºC. The adapted strain exhibited an increased growth and acetic acid fermentation ability at high temperatures, however, with the trade-off response of the opposite phenotype at low temperatures. Genome analysis followed by PCR sequencing showed that the most adapted strain had 11 mutations, a single 64-kb large deletion, and a single plasmid loss. Comparative phenotypic analysis showed that at least the large deletion (containing many ribosomal RNAs and tRNAs genes) and a mutation of DNA polymerase (one of the 11 mutations) critically contributed to this thermotolerance. The relationship between the phenotypic changes and the gene mutations are discussed, comparing with another thermally adapted A. pasteurianus strains obtained previously.
Collapse
Affiliation(s)
- Nami Matsumoto
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Minenosuke Matsutani
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yoshinao Azuma
- Biology-oriented Science and Technology, Kinki University, Kinokawa, Japan
| | - Naoya Kataoka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Toshiharu Yakushi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Kazunobu Matsushita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
24
|
Planson AG, Sauveplane V, Dervyn E, Jules M. Bacterial growth physiology and RNA metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194502. [PMID: 32044462 DOI: 10.1016/j.bbagrm.2020.194502] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
Bacteria are sophisticated systems with high capacity and flexibility to adapt to various environmental conditions. Each prokaryote however possesses a defined metabolic network, which sets its overall metabolic capacity, and therefore the maximal growth rate that can be reached. To achieve optimal growth, bacteria adopt various molecular strategies to optimally adjust gene expression and optimize resource allocation according to the nutrient availability. The resulting physiological changes are often accompanied by changes in the growth rate, and by global regulation of gene expression. The growth-rate-dependent variation of the abundances in the cellular machineries, together with condition-specific regulatory mechanisms, affect RNA metabolism and fate and pose a challenge for rational gene expression reengineering of synthetic circuits. This article is part of a Special Issue entitled: RNA and gene control in bacteria, edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Anne-Gaëlle Planson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Vincent Sauveplane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Etienne Dervyn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
25
|
Okie JG, Poret-Peterson AT, Lee ZM, Richter A, Alcaraz LD, Eguiarte LE, Siefert JL, Souza V, Dupont CL, Elser JJ. Genomic adaptations in information processing underpin trophic strategy in a whole-ecosystem nutrient enrichment experiment. eLife 2020; 9:49816. [PMID: 31989922 PMCID: PMC7028357 DOI: 10.7554/elife.49816] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/27/2020] [Indexed: 01/03/2023] Open
Abstract
Several universal genomic traits affect trade-offs in the capacity, cost, and efficiency of the biochemical information processing that underpins metabolism and reproduction. We analyzed the role of these traits in mediating the responses of a planktonic microbial community to nutrient enrichment in an oligotrophic, phosphorus-deficient pond in Cuatro Ciénegas, Mexico. This is one of the first whole-ecosystem experiments to involve replicated metagenomic assessment. Mean bacterial genome size, GC content, total number of tRNA genes, total number of rRNA genes, and codon usage bias in ribosomal protein sequences were all higher in the fertilized treatment, as predicted on the basis of the assumption that oligotrophy favors lower information-processing costs whereas copiotrophy favors higher processing rates. Contrasting changes in trait variances also suggested differences between traits in mediating assembly under copiotrophic versus oligotrophic conditions. Trade-offs in information-processing traits are apparently sufficiently pronounced to play a role in community assembly because the major components of metabolism-information, energy, and nutrient requirements-are fine-tuned to an organism's growth and trophic strategy.
Collapse
Affiliation(s)
- Jordan G Okie
- School of Earth and Space Exploration, Arizona State University, Tempe, United States
| | | | - Zarraz Mp Lee
- School of Life Sciences, Arizona State University, Tempe, United States
| | | | - Luis D Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Janet L Siefert
- Department of Statistics, Rice University, Houston, United States
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - James J Elser
- School of Life Sciences, Arizona State University, Tempe, United States.,Flathead Lake Biological Station, University of Montana, Polson, United States
| |
Collapse
|
26
|
Kurylo CM, Parks MM, Juette MF, Zinshteyn B, Altman RB, Thibado JK, Vincent CT, Blanchard SC. Endogenous rRNA Sequence Variation Can Regulate Stress Response Gene Expression and Phenotype. Cell Rep 2020; 25:236-248.e6. [PMID: 30282032 PMCID: PMC6312700 DOI: 10.1016/j.celrep.2018.08.093] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 11/30/2022] Open
Abstract
Prevailing dogma holds that ribosomes are uniform in composition and function. Here, we show that nutrient limitation-induced stress in E. coli changes the relative expression of rDNA operons to alter the rRNA composition within the actively translating ribosome pool. The most upregulated operon encodes the unique 16S rRNA, rrsH, distinguished by conserved sequence variation within the small ribosomal subunit. rrsH-bearing ribosomes affect the expression of functionally coherent gene sets and alter the levels of the RpoS sigma factor, the master regulator of the general stress response. These impacts are associated with phenotypic changes in antibiotic sensitivity, biofilm formation, and cell motility and are regulated by stress response proteins, RelA and RelE, as well as the metabolic enzyme and virulence-associated protein, AdhE. These findings establish that endogenously encoded, naturally occurring rRNA sequence variation can modulate ribosome function, central aspects of gene expression regulation, and cellular physiology. Most organisms encode multiple, distinct copies of rRNA genes, rendering the composition of the ribosome pool intrinsically heterogeneous. Here, Kurylo et al. show that nutrient limitation in E. coli upregulates the expression of ribosomes bearing conserved sequence variation in 16S rRNA that can regulate gene expression and phenotype.
Collapse
Affiliation(s)
- Chad M Kurylo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Matthew M Parks
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Manuel F Juette
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Boris Zinshteyn
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roger B Altman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jordana K Thibado
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - C Theresa Vincent
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
27
|
Pérez MV, Guerrero LD, Orellana E, Figuerola EL, Erijman L. Time Series Genome-Centric Analysis Unveils Bacterial Response to Operational Disturbance in Activated Sludge. mSystems 2019; 4:e00169-19. [PMID: 31266798 PMCID: PMC6606829 DOI: 10.1128/msystems.00169-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/08/2019] [Indexed: 01/08/2023] Open
Abstract
Understanding ecosystem response to disturbances and identifying the most critical traits for the maintenance of ecosystem functioning are important goals for microbial community ecology. In this study, we used 16S rRNA amplicon sequencing and metagenomics to investigate the assembly of bacterial populations in a full-scale municipal activated sludge wastewater treatment plant over a period of 3 years, including a 9-month period of disturbance characterized by short-term plant shutdowns. Following the reconstruction of 173 metagenome-assembled genomes, we assessed the functional potential, the number of rRNA gene operons, and the in situ growth rate of microorganisms present throughout the time series. Operational disturbances caused a significant decrease in bacteria with a single copy of the rRNA (rrn) operon. Despite moderate differences in resource availability, replication rates were distributed uniformly throughout time, with no differences between disturbed and stable periods. We suggest that the length of the growth lag phase, rather than the growth rate, is the primary driver of selection under disturbed conditions. Thus, the system could maintain its function in the face of disturbance by recruiting bacteria with the capacity to rapidly resume growth under unsteady operating conditions.IMPORTANCE Disturbance is a key determinant of community assembly and dynamics in natural and engineered ecosystems. Microbiome response to disturbance is thought to be influenced by bacterial growth traits and life history strategies. In this time series observational study, the response to disturbance of microbial communities in a full-scale activated sludge wastewater treatment plant was assessed by computing specific cellular traits of genomes retrieved from metagenomes. It was found that the genomes observed in disturbed periods have more copies of the rRNA operon than genomes observed in stable periods, whereas the in situ mean relative growth rates of bacteria present during stable and disturbed periods were indistinguishable. From these intriguing observations, we infer that the length of the lag phase might be a growth trait that affects the microbial response to disturbance. Further exploration of this hypothesis could contribute to better understanding of the adaptive response of microbiomes to unsteady environmental conditions.
Collapse
Affiliation(s)
- María Victoria Pérez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET) Vuelta de Obligado, Buenos Aires, Argentina
- Agua y Saneamientos Argentinos S. A. Tucumán, Buenos Aires, Argentina
| | - Leandro D Guerrero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET) Vuelta de Obligado, Buenos Aires, Argentina
| | - Esteban Orellana
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET) Vuelta de Obligado, Buenos Aires, Argentina
| | - Eva L Figuerola
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET) Vuelta de Obligado, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET) Vuelta de Obligado, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
28
|
Weissman JL, Laljani RMR, Fagan WF, Johnson PLF. Visualization and prediction of CRISPR incidence in microbial trait-space to identify drivers of antiviral immune strategy. ISME JOURNAL 2019; 13:2589-2602. [PMID: 31239539 PMCID: PMC6776019 DOI: 10.1038/s41396-019-0411-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/15/2019] [Accepted: 03/24/2019] [Indexed: 01/21/2023]
Abstract
Bacteria and archaea are locked in a near-constant battle with their viral pathogens. Despite previous mechanistic characterization of numerous prokaryotic defense strategies, the underlying ecological drivers of different strategies remain largely unknown and predicting which species will take which strategies remains a challenge. Here, we focus on the CRISPR immune strategy and develop a phylogenetically-corrected machine learning approach to build a predictive model of CRISPR incidence using data on over 100 traits across over 2600 species. We discover a strong but hitherto-unknown negative interaction between CRISPR and aerobicity, which we hypothesize may result from interference between CRISPR-associated proteins and non-homologous end-joining DNA repair due to oxidative stress. Our predictive model also quantitatively confirms previous observations of an association between CRISPR and temperature. Finally, we contrast the environmental associations of different CRISPR system types (I, II, III) and restriction modification systems, all of which act as intracellular immune systems.
Collapse
Affiliation(s)
- Jake L Weissman
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Rohan M R Laljani
- Department of Biology, University of Maryland, College Park, MD, USA
| | - William F Fagan
- Department of Biology, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
29
|
Guo B, Liu C, Gibson C, Frigon D. Wastewater microbial community structure and functional traits change over short timescales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:779-785. [PMID: 30708293 DOI: 10.1016/j.scitotenv.2019.01.207] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 05/06/2023]
Abstract
Wastewater contains microorganisms coming from various sources, e.g. feces discharges, soil infiltrations and sewer biofilms and sediments. The primary objective of this work was to determine if end-of-pipe wastewater microbial community structures exhibits short-timescale variation, and assess possible microbial origins. To this end, we measured hourly physicochemical characteristics of wastewater influent for 2 days and analyzed the microbial community at 4-h intervals using 16S rRNA gene amplicon sequencing. Results showed large variations in the microbial community composition at phylum and genus levels, i.e. Proteobacteria ranged from 44 to 63% of the total relative abundance and Arcobacter ranged from 11 to 22%. Diurnal patterns were observed in the alpha-diversity, beta-diversity and the prevalence of several taxa. Wastewater physicochemical characteristics explained 61% of the total microbial community variance by Canonical Correspondence Analysis (CCA), with flow rate being the main explanatory variable exhibiting a clear diurnal profile. Comparison with public databases using closed reference OTUs revealed that only 7.3% of the sequences were shared with human gut microbiota and 21.7% with soil microbiota, the majority being from the sewer biofilms and sediments. The functional trait, weighted average ribosomal RNA operon (rrn) copy number per genome, was found to be relatively high in the wastewater microbiota (average 3.6, soil 2.1, and human gut 2.6) and significantly correlated with flow, inferring active microbial enrichments in the sewer. The prevalence of Methylophilaceae, methanol oxidation genes and denitrification genes were related to high influent methanol and NO3- concentration in the influent wastewater. These functional organisms and genes indicate important carbon and nutrient removal related functions in the sewer. Together, the observed temporal patterns of the microbial community and functional traits suggest that high wastewater flow causes greater transport of active sewer microorganisms which are functionally important.
Collapse
Affiliation(s)
- Bing Guo
- Department of Civil Engineering and Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Chenxiao Liu
- Department of Civil Engineering and Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Claire Gibson
- Department of Civil Engineering and Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Dominic Frigon
- Department of Civil Engineering and Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada.
| |
Collapse
|
30
|
Bacterial ribosome heterogeneity: Changes in ribosomal protein composition during transition into stationary growth phase. Biochimie 2019; 156:169-180. [DOI: 10.1016/j.biochi.2018.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
|
31
|
Elongation factor P is required to maintain proteome homeostasis at high growth rate. Proc Natl Acad Sci U S A 2018; 115:11072-11077. [PMID: 30297417 DOI: 10.1073/pnas.1812025115] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Elongation factor P (EF-P) is a universally conserved translation factor that alleviates ribosome pausing at polyproline (PPX) motifs by facilitating peptide bond formation. In the absence of EF-P, PPX peptide bond formation can limit translation rate, leading to pleotropic phenotypes including slowed growth, increased antibiotic sensitivity, and loss of virulence. In this study, we observe that many of these phenotypes are dependent on growth rate. Limiting growth rate suppresses a variety of detrimental phenotypes associated with ribosome pausing at PPX motifs in the absence of EF-P. Polysome levels are also similar to wild-type under slow growth conditions, consistent with global changes in ribosome queuing in cells without EF-P when growth rate is decreased. Inversely, under high protein synthesis demands, we observe that Escherichia coli lacking EF-P have reduced fitness. Our data demonstrate that EF-P-mediated relief of ribosome queuing is required to maintain proteome homeostasis under conditions of high translational demands.
Collapse
|
32
|
Hakobyan A, Liesack W, Glatter T. Crude-MS Strategy for in-Depth Proteome Analysis of the Methane-Oxidizing Methylocystis sp. strain SC2. J Proteome Res 2018; 17:3086-3103. [DOI: 10.1021/acs.jproteome.8b00216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Werner Liesack
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Str. 16, D-35043 Marburg, Germany
| | | |
Collapse
|
33
|
Multiple cis-Acting rDNAs Contribute to Nucleoid Separation and Recruit the Bacterial Condensin Smc-ScpAB. Cell Rep 2018; 21:1347-1360. [PMID: 29091771 DOI: 10.1016/j.celrep.2017.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/01/2017] [Accepted: 10/03/2017] [Indexed: 11/24/2022] Open
Abstract
Condensins load onto DNA to organize chromosomes. Smc-ScpAB clearly loads onto the parS sites bound by Spo0J, but other loading site(s) must operate independently of parS. In this study, we asked where and how Smc-ScpAB normally selects its loading site. Our results suggest that rDNA is also a loading site. A pull-down assay revealed that Smc-ScpAB preferentially loads onto rDNA in the wild-type cell and even in a Δspo0J mutant but not in a Δsmc mutant. Moreover, we showed that deletion mutants of rDNAs cause a defect in nucleoid separation, and at least two rDNAs near oriC are essential for separation. Full-length rDNA, including promoters, is required for loading and nucleoid separation. A synthetic defect by deletions of both rDNA and spo0J resulted in more aberrant nucleoid separation. We propose that a single-stranded segment of DNA that is exposed at highly transcribed rRNA operons would become a target for Smc-ScpAB loading.
Collapse
|
34
|
Mata Martin C, Sun Z, Zhou YN, Jin DJ. Extrachromosomal Nucleolus-Like Compartmentalization by a Plasmid-Borne Ribosomal RNA Operon and Its Role in Nucleoid Compaction. Front Microbiol 2018; 9:1115. [PMID: 29922250 PMCID: PMC5996182 DOI: 10.3389/fmicb.2018.01115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/11/2018] [Indexed: 02/01/2023] Open
Abstract
In the fast-growing Escherichia coli cells, RNA polymerase (RNAP) molecules are concentrated and form foci at clusters of ribosomal RNA (rRNA) operons resembling eukaryotic nucleolus. The bacterial nucleolus-like organization, spatially compartmentalized at the surface of the compact bacterial chromosome (nucleoid), serves as transcription factories for rRNA synthesis and ribosome biogenesis, which influences the organization of the nucleoid. Unlike wild type that has seven rRNA operons in the genome in a mutant that has six (Δ6rrn) rRNA operons deleted in the genome, there are no apparent transcription foci and the nucleoid becomes uncompacted, indicating that formation of RNAP foci requires multiple copies of rRNA operons clustered in space and is critical for nucleoid compaction. It has not been determined, however, whether a multicopy plasmid-borne rRNA operon (prrnB) could substitute the multiple chromosomal rRNA operons for the organization of the bacterial nucleolus-like structure in the mutants of Δ6rrn and Δ7rrn that has all seven rRNA operons deleted in the genome. We hypothesized that extrachromosomal nucleolus-like structures are similarly organized and functional in trans from prrnB in these mutants. In this report, using multicolor images of three-dimensional superresolution Structured Illumination Microscopy (3D-SIM), we determined the distributions of both RNAP and NusB that are a transcription factor involved in rRNA synthesis and ribosome biogenesis, prrnB clustering, and nucleoid structure in these two mutants in response to environmental cues. Our results found that the extrachromosomal nucleolus-like organization tends to be spatially located at the poles of the mutant cells. In addition, formation of RNAP foci at the extrachromosomal nucleolus-like structure condenses the nucleoid, supporting the idea that active transcription at the nucleolus-like organization is a driving force in nucleoid compaction.
Collapse
Affiliation(s)
| | | | | | - Ding Jun Jin
- Transcription Control Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
35
|
Jung MY, Kim SJ, Kim JG, Hong H, Gwak JH, Park SJ, Kim YH, Rhee SK. Comparative genomic analysis of Geosporobacter ferrireducens and its versatility of anaerobic energy metabolism. J Microbiol 2018; 56:365-371. [DOI: 10.1007/s12275-018-7451-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 01/27/2023]
|
36
|
Song HK, Song W, Kim M, Tripathi BM, Kim H, Jablonski P, Adams JM. Bacterial strategies along nutrient and time gradients, revealed by metagenomic analysis of laboratory microcosms. FEMS Microbiol Ecol 2018; 93:4160096. [PMID: 28962015 DOI: 10.1093/femsec/fix114] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/05/2017] [Indexed: 11/13/2022] Open
Abstract
There is considerable interest in the functional basis of ecological strategies amongst bacteria. We used laboratory microcosms based on culturing of elutant from soil to study the effects of varying initial nutrient concentration, and time succession, on the community metagenome. We found a distinct set of nutrient-related or time-related changes in the functional metagenome. For example, a high nutrient (copiotrophic) strategy was associated with greater abundance of genes related to cell division and cell cycle, while a low nutrient (oligotrophic) strategy had greater abundance of genes related to carbohydrate metabolism and virulence, disease and defense. We also found time-related changes in the functional metagenome, revealing a distinct 'r'-related strategy with greater abundance of genes related to regulation and cell signaling, and a 'K' strategy rich in motility and chemotaxis-related genes. These different gene-based strategies may help to explain how so many bacterial OTUs coexist in nature, and the functional principles dominating natural communities. In terms of diversity, both the OTU richness and the richness of species assignment of functional genes showed linear correlations with functional gene richness, supporting the hypothesis that greater taxonomic diversity is associated with greater functional diversity, with possible implications for ecosystem stability.
Collapse
Affiliation(s)
- Ho-Kyung Song
- Department of Biological Sciences, Seoul National University, Gwanak-Gu, Seoul-151, Republic of Korea
| | - Woojin Song
- Seoul Zoo, Seoul Grand Park, 102, Dawgongwongwangjang-ro, Gwancheon-si, Seoul, Korea
| | | | | | - Hyoki Kim
- Celemics Inc., 19F, Bldg. A, BYC High city, 131, Gasandigital 1-ro, Gwumcheon-gu, Seoul, 153-718, Korea
| | - Piotr Jablonski
- Laboratory of Behavioral Ecology and Evolution, Department of Biological Sciences, Seoul National University, Seoul 151-742, South Korea.,Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, Warsaw, Poland
| | - Jonathan M Adams
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| |
Collapse
|
37
|
Zhu M, Dai X. On the intrinsic constraint of bacterial growth rate: M. tuberculosis's view of the protein translation capacity. Crit Rev Microbiol 2018; 44:455-464. [PMID: 29334314 DOI: 10.1080/1040841x.2018.1425672] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In nature, the maximal growth rates vary widely among different bacteria species. Fast-growing bacteria species such as Escherichia coli can have a shortest generation time of 20 min. Slow-growing bacteria species are perhaps best known for Mycobacterium tuberculosis, a human pathogen with a generation time being no less than 16 h. Despite of the significant progress made on understanding the pathogenesis of M. tuberculosis, we know little on the origin of its intriguingly slow growth. From a global view, the intrinsic constraint of the maximal growth rate of bacteria remains to be a fundamental question in microbiology. In this review, we analyze and discuss this issue from the angle of protein translation capacity, which is the major demand for cell growth. Based on quantitative analysis, we propose four parameters: rRNA chain elongation rate, abundance of RNA polymerase engaged in rRNA synthesis, polypeptide chain elongation rate, and active ribosome fraction, which potentially limit the maximal growth rate of bacteria. We further discuss the relation of these parameters with the growth rate for M. tuberculosis as well as other bacterial species. We highlight future comprehensive investigation of these parameters for different bacteria species to understand how bacteria set their own specific growth rates.
Collapse
Affiliation(s)
- Manlu Zhu
- a College of Life Sciences , Central China Normal University , Wuhan , China
| | - Xiongfeng Dai
- a College of Life Sciences , Central China Normal University , Wuhan , China
| |
Collapse
|
38
|
Kim IH, Aryal SK, Aghai DT, Casanova-Torres ÁM, Hillman K, Kozuch MP, Mans EJ, Mauer TJ, Ogier JC, Ensign JC, Gaudriault S, Goodman WG, Goodrich-Blair H, Dillman AR. The insect pathogenic bacterium Xenorhabdus innexi has attenuated virulence in multiple insect model hosts yet encodes a potent mosquitocidal toxin. BMC Genomics 2017; 18:927. [PMID: 29191166 PMCID: PMC5709968 DOI: 10.1186/s12864-017-4311-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Xenorhabdus innexi is a bacterial symbiont of Steinernema scapterisci nematodes, which is a cricket-specialist parasite and together the nematode and bacteria infect and kill crickets. Curiously, X. innexi expresses a potent extracellular mosquitocidal toxin activity in culture supernatants. We sequenced a draft genome of X. innexi and compared it to the genomes of related pathogens to elucidate the nature of specialization. RESULTS Using green fluorescent protein-expressing X. innexi we confirm previous reports using culture-dependent techniques that X. innexi colonizes its nematode host at low levels (~3-8 cells per nematode), relative to other Xenorhabdus-Steinernema associations. We found that compared to the well-characterized entomopathogenic nematode symbiont X. nematophila, X. innexi fails to suppress the insect phenoloxidase immune pathway and is attenuated for virulence and reproduction in the Lepidoptera Galleria mellonella and Manduca sexta, as well as the dipteran Drosophila melanogaster. To assess if, compared to other Xenorhabdus spp., X. innexi has a reduced capacity to synthesize virulence determinants, we obtained and analyzed a draft genome sequence. We found no evidence for several hallmarks of Xenorhabdus spp. toxicity, including Tc and Mcf toxins. Similar to other Xenorhabdus genomes, we found numerous loci predicted to encode non-ribosomal peptide/polyketide synthetases. Anti-SMASH predictions of these loci revealed one, related to the fcl locus that encodes fabclavines and zmn locus that encodes zeamines, as a likely candidate to encode the X. innexi mosquitocidal toxin biosynthetic machinery, which we designated Xlt. In support of this hypothesis, two mutants each with an insertion in an Xlt biosynthesis gene cluster lacked the mosquitocidal compound based on HPLC/MS analysis and neither produced toxin to the levels of the wild type parent. CONCLUSIONS The X. innexi genome will be a valuable resource in identifying loci encoding new metabolites of interest, but also in future comparative studies of nematode-bacterial symbiosis and niche partitioning among bacterial pathogens.
Collapse
Affiliation(s)
- Il-Hwan Kim
- Department of Entomology, University of Wisconsin-Madison, Madison, WI USA
- Present address: Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD USA
| | | | - Dariush T. Aghai
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | | | - Kai Hillman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | - Michael P. Kozuch
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | - Erin J. Mans
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN USA
| | - Terra J. Mauer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN USA
| | | | - Jerald C. Ensign
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | | | - Walter G. Goodman
- Department of Entomology, University of Wisconsin-Madison, Madison, WI USA
| | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN USA
| | - Adler R. Dillman
- Department of Nematology, University of California, Riverside, CA USA
| |
Collapse
|
39
|
Nourdin-Galindo G, Sánchez P, Molina CF, Espinoza-Rojas DA, Oliver C, Ruiz P, Vargas-Chacoff L, Cárcamo JG, Figueroa JE, Mancilla M, Maracaja-Coutinho V, Yañez AJ. Comparative Pan-Genome Analysis of Piscirickettsia salmonis Reveals Genomic Divergences within Genogroups. Front Cell Infect Microbiol 2017; 7:459. [PMID: 29164068 PMCID: PMC5671498 DOI: 10.3389/fcimb.2017.00459] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/16/2017] [Indexed: 11/13/2022] Open
Abstract
Piscirickettsia salmonis is the etiological agent of salmonid rickettsial septicemia, a disease that seriously affects the salmonid industry. Despite efforts to genomically characterize P. salmonis, functional information on the life cycle, pathogenesis mechanisms, diagnosis, treatment, and control of this fish pathogen remain lacking. To address this knowledge gap, the present study conducted an in silico pan-genome analysis of 19 P. salmonis strains from distinct geographic locations and genogroups. Results revealed an expected open pan-genome of 3,463 genes and a core-genome of 1,732 genes. Two marked genogroups were identified, as confirmed by phylogenetic and phylogenomic relationships to the LF-89 and EM-90 reference strains, as well as by assessments of genomic structures. Different structural configurations were found for the six identified copies of the ribosomal operon in the P. salmonis genome, indicating translocation throughout the genetic material. Chromosomal divergences in genomic localization and quantity of genetic cassettes were also found for the Dot/Icm type IVB secretion system. To determine divergences between core-genomes, additional pan-genome descriptions were compiled for the so-termed LF and EM genogroups. Open pan-genomes composed of 2,924 and 2,778 genes and core-genomes composed of 2,170 and 2,228 genes were respectively found for the LF and EM genogroups. The core-genomes were functionally annotated using the Gene Ontology, KEGG, and Virulence Factor databases, revealing the presence of several shared groups of genes related to basic function of intracellular survival and bacterial pathogenesis. Additionally, the specific pan-genomes for the LF and EM genogroups were defined, resulting in the identification of 148 and 273 exclusive proteins, respectively. Notably, specific virulence factors linked to adherence, colonization, invasion factors, and endotoxins were established. The obtained data suggest that these genes could be directly associated with inter-genogroup differences in pathogenesis and host-pathogen interactions, information that could be useful in designing novel strategies for diagnosing and controlling P. salmonis infection.
Collapse
Affiliation(s)
- Guillermo Nourdin-Galindo
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Integrative Bioinformatics, Facultad de Ciencias, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| | - Patricio Sánchez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Cristian F Molina
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,AUSTRAL-omics, Universidad Austral de Chile, Valdivia, Chile
| | - Daniela A Espinoza-Rojas
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Integrative Bioinformatics, Facultad de Ciencias, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| | - Cristian Oliver
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research, Concepción, Chile.,Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Viña del Mar, Chile
| | - Pamela Ruiz
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Luis Vargas-Chacoff
- Facultad de Ciencias, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Juan G Cárcamo
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Jaime E Figueroa
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Marcos Mancilla
- Laboratorio de Diagnóstico y Biotecnología, ADL Diagnostic Chile SpA., Puerto Montt, Chile
| | - Vinicius Maracaja-Coutinho
- Laboratory of Integrative Bioinformatics, Facultad de Ciencias, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile.,Laboratory of Integrative Bioinformatics, Instituto Vandique, João Pessoa, Brazil.,Beagle Bioinformatics, Santiago, Chile
| | - Alejandro J Yañez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research, Concepción, Chile.,AUSTRAL-omics, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
40
|
Highly divergent 16S rRNA sequences in ribosomal operons of Scytonema hyalinum (Cyanobacteria). PLoS One 2017; 12:e0186393. [PMID: 29073157 PMCID: PMC5658200 DOI: 10.1371/journal.pone.0186393] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/29/2017] [Indexed: 11/19/2022] Open
Abstract
A highly divergent 16S rRNA gene was found in one of the five ribosomal operons present in a species complex currently circumscribed as Scytonema hyalinum (Nostocales, Cyanobacteria) using clone libraries. If 16S rRNA sequence macroheterogeneity among ribosomal operons due to insertions, deletions or truncation is excluded, the sequence heterogeneity observed in S. hyalinum was the highest observed in any prokaryotic species thus far (7.3-9.0%). The secondary structure of the 16S rRNA molecules encoded by the two divergent operons was nearly identical, indicating possible functionality. The 23S rRNA gene was examined for a few strains in this complex, and it was also found to be highly divergent from the gene in Type 2 operons (8.7%), and likewise had nearly identical secondary structure between the Type 1 and Type 2 operons. Furthermore, the 16S-23S ITS showed marked differences consistent between operons among numerous strains. Both operons have promoter sequences that satisfy consensus requirements for functional prokaryotic transcription initiation. Horizontal gene transfer from another unknown heterocytous cyanobacterium is considered the most likely explanation for the origin of this molecule, but does not explain the ultimate origin of this sequence, which is very divergent from all 16S rRNA sequences found thus far in cyanobacteria. The divergent sequence is highly conserved among numerous strains of S. hyalinum, suggesting adaptive advantage and selective constraint of the divergent sequence.
Collapse
|
41
|
Niederdorfer R, Besemer K, Battin TJ, Peter H. Ecological strategies and metabolic trade-offs of complex environmental biofilms. NPJ Biofilms Microbiomes 2017; 3:21. [PMID: 28955480 PMCID: PMC5612939 DOI: 10.1038/s41522-017-0029-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 01/29/2023] Open
Abstract
Microorganisms aggregated into matrix-enclosed biofilms dominate microbial life in most natural, engineered, and medical systems. Despite this, the ecological adaptations and metabolic trade-offs of the formation of complex biofilms are currently poorly understood. Here, exploring the dynamics of bacterial ribosomal RNA operon (rrn) copy numbers, we unravel the genomic underpinning of the formation and success of stream biofilms that contain hundreds of bacterial taxa. Experimenting with stream biofilms, we found that nascent biofilms in eutrophic systems had reduced lag phases and higher growth rates, and more taxa with higher rrn copy number than biofilms from oligotrophic systems. Based on these growth-related traits, our findings suggest that biofilm succession was dominated by slow-but-efficient bacteria likely with leaky functions, such as the production of extracellular polymeric substances at the cost of rapid growth. Expanding our experimental findings to biofilms from 140 streams, we found that rrn copy number distribution reflects functional trait allocation and ecological strategies of biofilms to be able to thrive in fluctuating environments. These findings suggest that alternative trade-offs dominating over rate-yield trade-offs contribute to the evolutionary success of stream biofilms. Analyzing natural biofilms containing many types of bacteria yields insights into microbial strategies for success in complex biofilms. The ecological adaptations and metabolic trade-offs involved in the formation of multi-bacterial biofilms in the environment are not well understood. Researchers in Switzerland and Austria, led by Tom Battin and Hannes Peter at the École Polytechnique Fédérale de Lausanne, performed genetic analysis of biofilms sampled from 140 streams. The biofilms contained hundreds of types of bacteria, unlike the mono-bacterial biofilms examined in many laboratory studies. Genetic analysis techniques revealed a diversity of metabolic strategies that allow bacteria to survive within the rich ecology of natural biofilms. Slow-growing but metabolically efficient bacteria that release more extracellular biofilm components thrive better than those adapted for quick growth alone. The findings significantly improve understanding of biofilm ecology in the natural environment.
Collapse
Affiliation(s)
- Robert Niederdorfer
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Limnology and Oceanography, University of Vienna, Vienna, Austria
| | | | - Tom J Battin
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hannes Peter
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
42
|
Sato Y, Fujiwara T, Kimura H. Expression and Function of Different Guanine-Plus-Cytosine Content 16S rRNA Genes in Haloarcula hispanica at Different Temperatures. Front Microbiol 2017; 8:482. [PMID: 28400752 PMCID: PMC5368182 DOI: 10.3389/fmicb.2017.00482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/08/2017] [Indexed: 11/13/2022] Open
Abstract
The halophilic archaeon Haloarcula hispanica harbors three ribosomal RNA (rRNA) operons (rrnA, rrnB, and rrnC) that contain the 16S rRNA genes rrsA, rrsB, and rrsC, respectively. Although rrsB and rrsC (rrsBC) have almost identical sequences, the rrsA and rrsBC sequences differ by 5.4%, and they differ by 2.5% with respect to guanine-plus-cytosine content (PGC). The strong correlation between the typical growth temperatures of archaea and PGC of their 16S rRNA genes suggests that H. hispanica may harbor different 16S rRNA genes having different PGC to maintain rapid growth in a wide range of temperatures. We therefore performed reverse transcription-coupled quantitative PCR to assess expression levels of rrsA (PGC, 58.9%) and rrsBC (PGC, 56.4-56.5%) at various temperatures. The expression ratio of rrsA to rrsBC increased with culture temperature. Mutants with complete deletions of one or two of the three rRNA operons were constructed and their growth rates at different temperatures compared to that of the wild-type. The growth characteristics of the rRNA operon single-mutant strains were indistinguishable from the wild-type. The rRNA operon double-mutant strains maintained the same temperature range as wild-type but displayed reduced growth rates. In particular, the double-mutant strains grew much slower than wild-type at low temperature related to minimum growth temperature of the wild-type. On the other hand, at physiologically high temperatures the wild-type and the double-mutant strain which harbors only rrnA with high-PGCrrsA grew significantly faster than the double-mutant strain which harbors only rrnC with low-PGCrrsC. These findings suggest the importance of 16S rRNAs transcribed from rrsA with high-PGC in maintaining rapid growth of this halophilic archaeon at raised growth temperatures.
Collapse
Affiliation(s)
- Yu Sato
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University Shizuoka, Japan
| | - Taketomo Fujiwara
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka UniversityShizuoka, Japan; Department of Biological Science, Faculty of Science, Shizuoka UniversityShizuoka, Japan
| | - Hiroyuki Kimura
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka UniversityShizuoka, Japan; Department of Geosciences, Faculty of Science, Shizuoka UniversityShizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka UniversityShizuoka, Japan
| |
Collapse
|
43
|
Improvement of identification methods for honeybee specific Lactic Acid Bacteria; future approaches. PLoS One 2017; 12:e0174614. [PMID: 28346815 PMCID: PMC5367889 DOI: 10.1371/journal.pone.0174614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/13/2017] [Indexed: 11/26/2022] Open
Abstract
Honeybees face many parasites and pathogens and consequently rely on a diverse set of individual and group-level defenses to prevent disease. The crop microbiota of Apis mellifera, composed of 13 Lactic Acid Bacterial (LAB) species within the genera Lactobacillus and Bifidobacterium, form a beneficial symbiotic relationship with each other and the honeybee to protect their niche and their host. Possibly playing a vital role in honeybee health, it is important that these honeybee specific Lactic Acid Bacterial (hbs-LAB) symbionts can be correctly identified, isolated and cultured, to further investigate their health promoting properties. We have previously reported successful identification to the strain level by culture-dependent methods and we recently sequenced and annotated the genomes of the 13 hbs-LAB. However, the hitherto applied techniques are unfortunately very time consuming, expensive and not ideal when analyzing a vast quantity of samples. In addition, other researchers have constantly failed to identify the 13 hbs-LAB from honeybee samples by using inadequate media and/or molecular techniques based on 16S rRNA gene sequencing with insufficient discriminatory power. The aim of this study was to develop better and more suitable methods for the identification and cultivation of hbs-LAB. We compared currently used bacterial cultivation media and could for the first time demonstrate a significant variation in the hbs-LAB basic requirements for optimal growth. We also present a new bacterial identification approach based on amplicon sequencing of a region of the 16S rRNA gene using the Illumina platform and an error correction software that can be used to successfully differentiate and rapidly identify the 13 hbs-LAB to the strain level.
Collapse
|
44
|
Takada H, Shimada T, Dey D, Quyyum MZ, Nakano M, Ishiguro A, Yoshida H, Yamamoto K, Sen R, Ishihama A. Differential Regulation of rRNA and tRNA Transcription from the rRNA-tRNA Composite Operon in Escherichia coli. PLoS One 2016; 11:e0163057. [PMID: 28005933 PMCID: PMC5179076 DOI: 10.1371/journal.pone.0163057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/01/2016] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli contains seven rRNA operons, each consisting of the genes for three rRNAs (16S, 23S and 5S rRNA in this order) and one or two tRNA genes in the spacer between 16S and 23S rRNA genes and one or two tRNA genes in the 3’ proximal region. All of these rRNA and tRNA genes are transcribed from two promoters, P1 and P2, into single large precursors that are afterward processed to individual rRNAs and tRNAs by a set of RNases. In the course of Genomic SELEX screening of promoters recognized by RNA polymerase (RNAP) holoenzyme containing RpoD sigma, a strong binding site was identified within 16S rRNA gene in each of all seven rRNA operons. The binding in vitro of RNAP RpoD holoenzyme to an internal promoter, referred to the promoter of riRNA (an internal RNA of the rRNA operon), within each 16S rRNA gene was confirmed by gel shift assay and AFM observation. Using this riRNA promoter within the rrnD operon as a representative, transcription in vitro was detected with use of the purified RpoD holoenzyme, confirming the presence of a constitutive promoter in this region. LacZ reporter assay indicated that this riRNA promoter is functional in vivo. The location of riRNA promoter in vivo as identified using a set of reporter plasmids agrees well with that identified in vitro. Based on transcription profile in vitro and Northern blot analysis in vivo, the majority of transcript initiated from this riRNA promoter was estimated to terminate near the beginning of 23S rRNA gene, indicating that riRNA leads to produce the spacer-coded tRNA. Under starved conditions, transcription of the rRNA operon is markedly repressed to reduce the intracellular level of ribosomes, but the levels of both riRNA and its processed tRNAGlu stayed unaffected, implying that riRNA plays a role in the continued steady-state synthesis of tRNAs from the spacers of rRNA operons. We then propose that the tRNA genes organized within the spacers of rRNA-tRNA composite operons are expressed independent of rRNA synthesis under specific conditions where further synthesis of ribosomes is not needed.
Collapse
Affiliation(s)
- Hiraku Takada
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Tomohiro Shimada
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuda, Yokohama, Japan
| | - Debashish Dey
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | | | - Masahiro Nakano
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Akira Ishiguro
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Hideji Yoshida
- Department of Physics, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Kaneyoshi Yamamoto
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Ranjan Sen
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
- * E-mail:
| |
Collapse
|
45
|
Jung MY, Kim JG, Sinninghe Damsté JS, Rijpstra WIC, Madsen EL, Kim SJ, Hong H, Si OJ, Kerou M, Schleper C, Rhee SK. A hydrophobic ammonia-oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar-contaminated sediment. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:983-992. [PMID: 27700018 DOI: 10.1111/1758-2229.12477] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
A wide diversity of ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota exists and plays a key role in the N cycle in a variety of habitats. In this study, we isolated and characterized an ammonia-oxidizing archaeon, strain MY3, from a coal tar-contaminated sediment. Phylogenetically, strain MY3 falls in clade 'Nitrosocosmicus' of the thaumarchaeotal group I.1b. The cells of strain MY3 are large 'walnut-like' cocci, divide by binary fission along a central cingulum, and form aggregates. Strain MY3 is mesophilic and neutrophilic. An assay of 13 C-bicarbonate incorporation into archaeal membrane lipids indicated that strain MY3 is capable of autotrophy. In contrast to some other AOA, TCA cycle intermediates, i.e. pruvate, oxaloacetate and α-ketoglutarate, did not affect the growth rates and yields of strain MY3. The attachment of cells of strain MY3 to XAD-7 hydrophobic beads and to the adsorbent vermiculite demonstrated the potential of strain MY3 to form biofilms. The cell surface was confirmed to be hydrophobic by the extraction of strain MY3 from an aqueous medium with p-xylene. Our finding of a strong potential for surface attachment by strain MY3 may reflect an adaptation to the selective pressures in hydrophobic terrestrial environments.
Collapse
Affiliation(s)
- Man-Young Jung
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Jong-Geol Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, P.O. Box 59, AB Den Burg, 1790, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, P.O. Box 80.021, Utrecht, 3508, TA, The Netherlands
| | - W Irene C Rijpstra
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, P.O. Box 59, AB Den Burg, 1790, The Netherlands
| | - Eugene L Madsen
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | - So-Jeong Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Heeji Hong
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Ok-Ja Si
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Melina Kerou
- Department of Genetics in Ecology, University of Vienna, Vienna, A-1090, Austria
| | - Christa Schleper
- Department of Genetics in Ecology, University of Vienna, Vienna, A-1090, Austria
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| |
Collapse
|
46
|
rRNA Operon Copy Number Can Explain the Distinct Epidemiology of Hospital-Associated Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2016; 60:7313-7320. [PMID: 27671073 DOI: 10.1128/aac.01613-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/21/2016] [Indexed: 11/20/2022] Open
Abstract
The distinct epidemiology of original hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) and early community-associated MRSA (CA-MRSA) is largely unexplained. S. aureus carries either five or six rRNA operon copies. Evidence is provided for a scenario in which MRSA has adapted to the hospital environment by rRNA operon loss (six to five copies) due to antibiotic pressure. Early CA-MRSA, in contrast, results from wild-type methicillin-susceptible S. aureus (MSSA) that acquired mecA without loss of an rRNA operon. Of the HA-MRSA isolates (n = 77), 67.5% had five rRNA operon copies, compared to 23.2% of the CA-MRSA isolates (n = 69) and 7.7% of MSSA isolates (n = 195) (P < 0.001). In addition, 105 MSSA isolates from cystic fibrosis patients were tested, because these patients are repeatedly treated with antibiotics; 32.4% of these isolates had five rRNA operon copies. For all subsets, a correlation between resistance profile and rRNA copy number was found. Furthermore, we showed that in vitro antibiotic pressure may result in rRNA operon copy loss. We also showed that without antibiotic pressure, S. aureus isolates containing six rRNA copies are more fit than isolates with five copies. We conclude that HA-MRSA and cystic fibrosis isolates most likely have adapted to an environment with high antibiotic pressure by the loss of an rRNA operon copy. This loss has facilitated resistance development, which promoted survival in these niches. However, strain fitness decreased, which explains their lack of success in the community. In contrast, CA-MRSA isolates retained six rRNA operon copies, rendering them fitter and thereby able to survive and spread in the community.
Collapse
|
47
|
Gomes C, Martínez-Puchol S, Palma N, Horna G, Ruiz-Roldán L, Pons MJ, Ruiz J. Macrolide resistance mechanisms in Enterobacteriaceae: Focus on azithromycin. Crit Rev Microbiol 2016; 43:1-30. [DOI: 10.3109/1040841x.2015.1136261] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cláudia Gomes
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| | - Sandra Martínez-Puchol
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| | - Noemí Palma
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| | - Gertrudis Horna
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Maria J Pons
- Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Joaquim Ruiz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| |
Collapse
|
48
|
Roller BRK, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol 2016; 1:16160. [PMID: 27617693 PMCID: PMC5061577 DOI: 10.1038/nmicrobiol.2016.160] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022]
Abstract
The potential for rapid reproduction is a hallmark of microbial life, but microbes in nature must also survive and compete when growth is constrained by resource availability. Successful reproduction requires different strategies when resources are scarce compared to when they are abundant1,2, but a systematic framework for predicting these reproductive strategies in bacteria has not been available. Here we show that the number of ribosomal RNA operons (rrn) in bacterial genomes predicts two important components of reproduction – growth rate and growth efficiency – which are favored under contrasting regimes of resource availability3,4. We find that the maximum reproductive rate of bacteria doubles with a doubling of rrn copy number, while the efficiency of carbon use is inversely related to maximal growth rate and rrn copy number. We also identify a feasible explanation for these patterns: the rate and yield of protein synthesis mirror the overall pattern in maximum growth rate and growth efficiency. Furthermore, comparative analysis of genomes from 1,167 bacterial species reveals that rrn copy number predicts traits associated with resource availability, including chemotaxis and genome streamlining. Genome-wide patterns of orthologous gene content covary with rrn copy number, suggesting convergent evolution in response to resource availability. Our findings indicate that basic cellular processes adapt in contrasting ways to long-term differences in resource availability. They also establish a basis for predicting changes in bacterial community composition in response to resource perturbations using rrn copy number measurements5 or inferences6,7.
Collapse
Affiliation(s)
- Benjamin R K Roller
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | - Steven F Stoddard
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Thomas M Schmidt
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
49
|
Chand Dakal T, Giudici P, Solieri L. Contrasting Patterns of rDNA Homogenization within the Zygosaccharomyces rouxii Species Complex. PLoS One 2016; 11:e0160744. [PMID: 27501051 PMCID: PMC4976873 DOI: 10.1371/journal.pone.0160744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/25/2016] [Indexed: 11/18/2022] Open
Abstract
Arrays of repetitive ribosomal DNA (rDNA) sequences are generally expected to evolve as a coherent family, where repeats within such a family are more similar to each other than to orthologs in related species. The continuous homogenization of repeats within individual genomes is a recombination process termed concerted evolution. Here, we investigated the extent and the direction of concerted evolution in 43 yeast strains of the Zygosaccharomyces rouxii species complex (Z. rouxii, Z. sapae, Z. mellis), by analyzing two portions of the 35S rDNA cistron, namely the D1/D2 domains at the 5’ end of the 26S rRNA gene and the segment including the internal transcribed spacers (ITS) 1 and 2 (ITS regions). We demonstrate that intra-genomic rDNA sequence variation is unusually frequent in this clade and that rDNA arrays in single genomes consist of an intermixing of Z. rouxii, Z. sapae and Z. mellis-like sequences, putatively evolved by reticulate evolutionary events that involved repeated hybridization between lineages. The levels and distribution of sequence polymorphisms vary across rDNA repeats in different individuals, reflecting four patterns of rDNA evolution: I) rDNA repeats that are homogeneous within a genome but are chimeras derived from two parental lineages via recombination: Z. rouxii in the ITS region and Z. sapae in the D1/D2 region; II) intra-genomic rDNA repeats that retain polymorphisms only in ITS regions; III) rDNA repeats that vary only in their D1/D2 domains; IV) heterogeneous rDNA arrays that have both polymorphic ITS and D1/D2 regions. We argue that an ongoing process of homogenization following allodiplodization or incomplete lineage sorting gave rise to divergent evolutionary trajectories in different strains, depending upon temporal, structural and functional constraints. We discuss the consequences of these findings for Zygosaccharomyces species delineation and, more in general, for yeast barcoding.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Paolo Giudici
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
- * E-mail:
| |
Collapse
|
50
|
Heberling T, Davis L, Gedeon J, Morgan C, Gedeon T. A Mechanistic Model for Cooperative Behavior of Co-transcribing RNA Polymerases. PLoS Comput Biol 2016; 12:e1005069. [PMID: 27517607 PMCID: PMC4982667 DOI: 10.1371/journal.pcbi.1005069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/20/2016] [Indexed: 11/19/2022] Open
Abstract
In fast-transcribing prokaryotic genes, such as an rrn gene in Escherichia coli, many RNA polymerases (RNAPs) transcribe the DNA simultaneously. Active elongation of RNAPs is often interrupted by pauses, which has been observed to cause RNAP traffic jams; yet some studies indicate that elongation seems to be faster in the presence of multiple RNAPs than elongation by a single RNAP. We propose that an interaction between RNAPs via the torque produced by RNAP motion on helically twisted DNA can explain this apparent paradox. We have incorporated the torque mechanism into a stochastic model and simulated transcription both with and without torque. Simulation results illustrate that the torque causes shorter pause durations and fewer collisions between polymerases. Our results suggest that the torsional interaction of RNAPs is an important mechanism in maintaining fast transcription times, and that transcription should be viewed as a cooperative group effort by multiple polymerases.
Collapse
Affiliation(s)
- Tamra Heberling
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Lisa Davis
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Jakub Gedeon
- Computer Science Department, Montana State University, Bozeman, Montana, United States of America
| | - Charles Morgan
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Tomáš Gedeon
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|