1
|
Kosolapova AO, Antonets KS, Belousov MV, Nizhnikov AA. Biological Functions of Prokaryotic Amyloids in Interspecies Interactions: Facts and Assumptions. Int J Mol Sci 2020; 21:E7240. [PMID: 33008049 PMCID: PMC7582709 DOI: 10.3390/ijms21197240] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Amyloids are fibrillar protein aggregates with an ordered spatial structure called "cross-β". While some amyloids are associated with development of approximately 50 incurable diseases of humans and animals, the others perform various crucial physiological functions. The greatest diversity of amyloids functions is identified within prokaryotic species where they, being the components of the biofilm matrix, function as adhesins, regulate the activity of toxins and virulence factors, and compose extracellular protein layers. Amyloid state is widely used by different pathogenic bacterial species in their interactions with eukaryotic organisms. These amyloids, being functional for bacteria that produce them, are associated with various bacterial infections in humans and animals. Thus, the repertoire of the disease-associated amyloids includes not only dozens of pathological amyloids of mammalian origin but also numerous microbial amyloids. Although the ability of symbiotic microorganisms to produce amyloids has recently been demonstrated, functional roles of prokaryotic amyloids in host-symbiont interactions as well as in the interspecies interactions within the prokaryotic communities remain poorly studied. Here, we summarize the current findings in the field of prokaryotic amyloids, classify different interspecies interactions where these amyloids are involved, and hypothesize about their real occurrence in nature as well as their roles in pathogenesis and symbiosis.
Collapse
Affiliation(s)
- Anastasiia O. Kosolapova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Mikhail V. Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| |
Collapse
|
2
|
Abstract
By analyzing successive lifestyle stages of a model Rhizobium-legume symbiosis using mariner-based transposon insertion sequencing (INSeq), we have defined the genes required for rhizosphere growth, root colonization, bacterial infection, N2-fixing bacteroids, and release from legume (pea) nodules. While only 27 genes are annotated as nif and fix in Rhizobium leguminosarum, we show 603 genetic regions (593 genes, 5 transfer RNAs, and 5 RNA features) are required for the competitive ability to nodulate pea and fix N2 Of these, 146 are common to rhizosphere growth through to bacteroids. This large number of genes, defined as rhizosphere-progressive, highlights how critical successful competition in the rhizosphere is to subsequent infection and nodulation. As expected, there is also a large group (211) specific for nodule bacteria and bacteroid function. Nodule infection and bacteroid formation require genes for motility, cell envelope restructuring, nodulation signaling, N2 fixation, and metabolic adaptation. Metabolic adaptation includes urea, erythritol and aldehyde metabolism, glycogen synthesis, dicarboxylate metabolism, and glutamine synthesis (GlnII). There are 17 separate lifestyle adaptations specific to rhizosphere growth and 23 to root colonization, distinct from infection and nodule formation. These results dramatically highlight the importance of competition at multiple stages of a Rhizobium-legume symbiosis.
Collapse
|
3
|
Taboada H, Meneses N, Dunn MF, Vargas-Lagunas C, Buchs N, Castro-Mondragón JA, Heller M, Encarnación S. Proteins in the periplasmic space and outer membrane vesicles of Rhizobium etli CE3 grown in minimal medium are largely distinct and change with growth phase. MICROBIOLOGY-SGM 2018; 165:638-650. [PMID: 30358529 DOI: 10.1099/mic.0.000720] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rhizobium etli CE3 grown in succinate-ammonium minimal medium (MM) excreted outer membrane vesicles (OMVs) with diameters of 40 to 100 nm. Proteins from the OMVs and the periplasmic space were isolated from 6 and 24 h cultures and identified by proteome analysis. A total of 770 proteins were identified: 73.8 and 21.3 % of these occurred only in the periplasm and OMVs, respectively, and only 4.9 % were found in both locations. The majority of proteins found in either location were present only at 6 or 24 h: in the periplasm and OMVs, only 24 and 9 % of proteins, respectively, were present at both sampling times, indicating a time-dependent differential sorting of proteins into the two compartments. The OMVs contained proteins with physiologically varied roles, including Rhizobium adhering proteins (Rap), polysaccharidases, polysaccharide export proteins, auto-aggregation and adherence proteins, glycosyl transferases, peptidoglycan binding and cross-linking enzymes, potential cell wall-modifying enzymes, porins, multidrug efflux RND family proteins, ABC transporter proteins and heat shock proteins. As expected, proteins with known periplasmic localizations (phosphatases, phosphodiesterases, pyrophosphatases) were found only in the periplasm, along with numerous proteins involved in amino acid and carbohydrate metabolism and transport. Nearly one-quarter of the proteins present in the OMVs were also found in our previous analysis of the R. etli total exproteome of MM-grown cells, indicating that these nanoparticles are an important mechanism for protein excretion in this species.
Collapse
Affiliation(s)
- Hermenegildo Taboada
- 1Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, México
| | - Niurka Meneses
- 1Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, México.,3Faculty of Science, Department of Chemistry and Biochemistry, University of Bern, 3010 Bern, Switzerland.,2Mass Spectrometry and Proteomics Laboratory, Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Michael F Dunn
- 1Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, México
| | - Carmen Vargas-Lagunas
- 1Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, México
| | - Natasha Buchs
- 2Mass Spectrometry and Proteomics Laboratory, Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Jaime A Castro-Mondragón
- 4Aix Marseille University, INSERM, TAGC, Theory and Approaches of Genomic Complexity, UMR_S 1090, Marseille, France
| | - Manfred Heller
- 2Mass Spectrometry and Proteomics Laboratory, Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Sergio Encarnación
- 1Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, México
| |
Collapse
|
4
|
Goolab S, Roth RL, van Heerden H, Crampton MC. Analyzing the molecular mechanism of lipoprotein localization in Brucella. Front Microbiol 2015; 6:1189. [PMID: 26579096 PMCID: PMC4623201 DOI: 10.3389/fmicb.2015.01189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/12/2015] [Indexed: 01/18/2023] Open
Abstract
Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria are well characterized and may be useful to infer a solution to better understand the translocation process in Brucella.
Collapse
Affiliation(s)
- Shivani Goolab
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaPretoria, South Africa
| | - Robyn L. Roth
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaPretoria, South Africa
| | - Michael C. Crampton
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
| |
Collapse
|
5
|
Crook MB, Draper AL, Guillory RJ, Griffitts JS. The Sinorhizobium meliloti essential porin RopA1 is a target for numerous bacteriophages. J Bacteriol 2013; 195:3663-71. [PMID: 23749981 PMCID: PMC3754576 DOI: 10.1128/jb.00480-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/05/2013] [Indexed: 01/21/2023] Open
Abstract
The symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti harbors a gene, SMc02396, which encodes a predicted outer membrane porin that is conserved in many symbiotic and pathogenic bacteria in the order Rhizobiales. Here, this gene (renamed ropA1) is shown to be required for infection by two commonly utilized transducing bacteriophages (ΦM12 and N3). Mapping of S. meliloti mutations conferring resistance to ΦM12, N3, or both phages simultaneously revealed diverse mutations mapping within the ropA1 open reading frame. Subsequent tests determined that RopA1, lipopolysaccharide, or both are required for infection by all of a larger collection of Sinorhizobium-specific phages. Failed attempts to disrupt or delete ropA1 suggest that this gene is essential for viability. Phylogenetic analysis reveals that ropA1 homologs in many Rhizobiales species are often found as two genetically linked copies and that the intraspecies duplicates are always more closely related to each other than to homologs in other species, suggesting multiple independent duplication events.
Collapse
Affiliation(s)
- Matthew B Crook
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | | | | | | |
Collapse
|
6
|
Janczarek M, Kutkowska J, Piersiak T, Skorupska A. Rhizobium leguminosarum bv. trifolii rosR is required for interaction with clover, biofilm formation and adaptation to the environment. BMC Microbiol 2010; 10:284. [PMID: 21070666 PMCID: PMC2996380 DOI: 10.1186/1471-2180-10-284] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 11/11/2010] [Indexed: 12/02/2022] Open
Abstract
Background Rhizobium leguminosarum bv. trifolii is a symbiotic nitrogen-fixing bacterium that elicits nodules on roots of host plants Trifolium spp. Bacterial surface polysaccharides are crucial for establishment of a successful symbiosis with legumes that form indeterminate-type nodules, such as Trifolium, Pisum, Vicia, and Medicago spp. and aid the bacterium in withstanding osmotic and other environmental stresses. Recently, the R. leguminosarum bv. trifolii RosR regulatory protein which controls exopolysaccharide production has been identified and characterized. Results In this work, we extend our earlier studies to the characterization of rosR mutants which exhibit pleiotropic phenotypes. The mutants produce three times less exopolysaccharide than the wild type, and the low-molecular-weight fraction in that polymer is greatly reduced. Mutation in rosR also results in quantitative alterations in the polysaccharide constituent of lipopolysaccharide. The rosR mutants are more sensitive to surface-active detergents, antibiotics of the beta-lactam group and some osmolytes, indicating changes in the bacterial membranes. In addition, the rosR mutants exhibit significant decrease in motility and form a biofilm on plastic surfaces, which differs significantly in depth, architecture, and bacterial viability from that of the wild type. The most striking effect of rosR mutation is the considerably decreased attachment and colonization of root hairs, indicating that the mutation affects the first stage of the invasion process. Infection threads initiate at a drastically reduced rate and frequently abort before they reach the base of root hairs. Although these mutants form nodules on clover, they are unable to fix nitrogen and are outcompeted by the wild type in mixed inoculations, demonstrating that functional rosR is important for competitive nodulation. Conclusions This report demonstrates the significant role RosR regulatory protein plays in bacterial stress adaptation and in the symbiotic relationship between clover and R. leguminosarum bv. trifolii 24.2.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Genetics and Microbiology, University of M Curie-Skłodowska, Lublin, Poland.
| | | | | | | |
Collapse
|
7
|
Battisti JM, Smitherman LS, Sappington KN, Parrow NL, Raghavan R, Minnick MF. Transcriptional regulation of the heme binding protein gene family of Bartonella quintana is accomplished by a novel promoter element and iron response regulator. Infect Immun 2007; 75:4373-85. [PMID: 17576755 PMCID: PMC1951173 DOI: 10.1128/iai.00497-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We previously identified a five-member family of hemin-binding proteins (Hbp's) of Bartonella quintana that bind hemin on the outer surface but share no homology with known bacterial heme receptors. Subsequently, we demonstrated that expression of the hbp family is significantly influenced by oxygen, heme, and temperature conditions encountered by the pathogen in the human host and the body louse vector; e.g., we observed a dramatic (>100-fold) increase in hbpC transcript levels in response to the "louse-like" temperature of 30 degrees C. The goal of the present study was to identify a transcription factor(s) involved in the coordinated and differential regulation of the hbp family. First, we used quantitative real-time PCR (qRT-PCR) to show that the same environmental conditions generate parallels in the transcript profiles of four candidate transcriptional regulators (Irr, Fur, RirA, and BatR) described in the order Rhizobiales, with the greatest overall change in the transcription of irr (a >5-fold decrease) at a "louse-like" temperature, suggesting that Irr may function as an hbpC repressor. Second, a B. quintana strain hyperexpressing Irr was constructed; it exhibits a "bloodstream-like" hbp transcript profile in the absence of an environmental stimulus (i.e., hbpC is repressed and hbpA, hbpD, and hbpE mRNAs are relatively abundant). Furthermore, when this strain is grown at a "louse-like" temperature, an inversion of the transcript profile occurs, where derepression of hbpC and repression of hbpA, hbpD, and hbpE are readily evident, strongly suggesting that Irr and temperature influence hbp family expression. Third, electrophoretic mobility shift analyses show that recombinant Irr binds specifically to the hbpC promoter region at a sequence that is highly conserved in Bartonella hbp genes, which we designated the hbp family box, or "H-box." Fourth, we used the H-box to search the B. quintana genome and discovered a number of intriguing open reading frames, e.g., five members of a six-member family of cohemolysin autotransporters. Finally, qRT-PCR data regarding the effects of Fur and RirA overexpression on the hbp family are provided; they show that Fur's effect on the hbp family is relatively minor but RirA generates a "bloodstream-like" hbp transcript profile in the absence of an environmental stimulus, as observed for the Irr-hyperexpressing strain.
Collapse
Affiliation(s)
- James M Battisti
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | | | | | | | | | | |
Collapse
|
8
|
Laus MC, Logman TJ, Van Brussel AAN, Carlson RW, Azadi P, Gao MY, Kijne JW. Involvement of exo5 in production of surface polysaccharides in Rhizobium leguminosarum and its role in nodulation of Vicia sativa subsp. nigra. J Bacteriol 2004; 186:6617-25. [PMID: 15375143 PMCID: PMC516619 DOI: 10.1128/jb.186.19.6617-6625.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of two exopolysaccharide-deficient mutants of Rhizobium leguminosarum, RBL5808 and RBL5812, revealed independent Tn5 transposon integrations in a single gene, designated exo5. As judged from structural and functional homology, this gene encodes a UDP-glucose dehydrogenase responsible for the oxidation of UDP-glucose to UDP-glucuronic acid. A mutation in exo5 affects all glucuronic acid-containing polysaccharides and, consequently, all galacturonic acid-containing polysaccharides. Exo5-deficient rhizobia do not produce extracellular polysaccharide (EPS) or capsular polysaccharide (CPS), both of which contain glucuronic acid. Carbohydrate composition analysis and nuclear magnetic resonance studies demonstrated that EPS and CPS from the parent strain have very similar structures. Lipopolysaccharide (LPS) molecules produced by the mutant strains are deficient in galacturonic acid, which is normally present in the core and lipid A portions of the LPS. The sensitivity of exo5 mutant rhizobia to hydrophobic compounds shows the involvement of the galacturonic acid residues in the outer membrane structure. Nodulation studies with Vicia sativa subsp. nigra showed that exo5 mutant rhizobia are impaired in successful infection thread colonization. This is caused by strong agglutination of EPS-deficient bacteria in the root hair curl. Root infection could be restored by simultaneous inoculation with a Nod factor-defective strain which retained the ability to produce EPS and CPS. However, in this case colonization of the nodule tissue was impaired.
Collapse
Affiliation(s)
- Marc C Laus
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
9
|
Cloeckaert A, Vizcaíno N, Paquet JY, Bowden RA, Elzer PH. Major outer membrane proteins of Brucella spp.: past, present and future. Vet Microbiol 2002; 90:229-47. [PMID: 12414146 DOI: 10.1016/s0378-1135(02)00211-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The major outer membrane proteins (OMPs) of Brucella spp. were initially identified in the early 1980s and characterised as potential immunogenic and protective antigens. They were classified according to their apparent molecular mass as 36-38 kDa OMPs or group 2 porin proteins and 31-34 and 25-27 kDa OMPs which belong to the group 3 proteins. The genes encoding the group 2 porin proteins were identified in the late 1980s and consist of two genes, omp2a and omp2b, which are closely linked in the Brucella genome, and which share a great degree of identity (>85%). In the 1990s, two genes were identified coding for the group 3 proteins and were named omp25 and omp31. The predicted amino acid sequences of omp25 and omp31 share 34% identity. The recent release of the genome sequence of B. melitensis 16 M has revealed the presence of five additional gene products homologous to Omp25 and Omp31. The use of recombinant protein technology and monoclonal antibodies (MAbs) has shown that the major OMPs appear to be of little relevance as antigens in smooth (S) B. abortus or B. melitensis infections i.e. low or no protective activity in the mouse model of infection and low or no immunogenicity during host infection. However, group 3 proteins, in particular Omp31, appear as immunodominant antigen in the course of rough (R) B. ovis infection in rams and as important protective antigen in the B. ovis mouse model of infection. The major OMP genes display diversity and specific markers have been identified for Brucella species, biovars, and strains, including the recent marine mammal Brucella isolates for which new species names have been proposed. Recently, Omp25 has been shown to be involved in virulence of B. melitensis, B. abortus and B. ovis. Mutants lacking Omp25 are indeed attenuated in animal models of infection, and moreover provide levels of protection similar or better than currently used attenuated vaccine strain B. melitensis Rev.1. Therefore, these mutant strains appear interesting vaccine candidates for the future. The other group 3 proteins identified in the genome merit also further investigation related to the development of new vaccines.
Collapse
Affiliation(s)
- Axel Cloeckaert
- Unité de Pathologie Aviaire et Parasitologie, Institut National de la Recherche Agronomique, 37380 Nouzilly, France.
| | | | | | | | | |
Collapse
|
10
|
Burgess AW, Paquet JY, Letesson JJ, Anderson BE. Isolation, sequencing and expression of Bartonella henselae omp43 and predicted membrane topology of the deduced protein. Microb Pathog 2000; 29:73-80. [PMID: 10906262 DOI: 10.1006/mpat.2000.0366] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The infection of and interaction of human endothelial cells with Bartonella henselae is one of the most interesting aspects of Bartonella -associated disease. The gene encoding the 43 kDa B. henselae outer membrane protein (Omp43) that binds endothelial cells was cloned and sequenced. Sequence analysis revealed an open reading frame of 1206 nucleotides coding for a protein of 402 amino acids. Analysis of the deduced amino acid sequence shows 38% identity over the entire sequence to the Brucella spp. In addition to this Omp2b porin also shows a signal sequence and peptidase cleavage site. Cleavage of the signal peptide results in a mature 380 amino acid polypeptide with a predicted molecular weight of 42 kDa. Omp43 was expressed in Escherichia coli as a fusion protein. Purified recombinant Omp43 at concentrations of 11 and 2.75 microg/ml bound to intact human umbilical vein endothelial cells. Membrane topology analysis predicts that Omp43 exists as a 16 stranded beta barrel protein, similar to that predicted for the Omp2b Brucella abortus porin. Characterization and expression of the gene encoding Omp43 should provide a tool for further investigation of the role of adherence to endothelial cells in the pathogenesis of B. henselae.
Collapse
Affiliation(s)
- A W Burgess
- University of South Florida College of Medicine, Department of Medical Microbiology and Immunology, Tampa 33612, USA.
| | | | | | | |
Collapse
|
11
|
Vizcaíno N, Cloeckaert A, Verger J, Grayon M, Fernández-Lago L. DNA polymorphism in the genus Brucella. Microbes Infect 2000; 2:1089-100. [PMID: 10967289 DOI: 10.1016/s1286-4579(00)01263-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genus Brucella has been described as consisting of six species, three of them including several biovars, which display a high degree of DNA homology by DNA-DNA hybridization. However, DNA polymorphism able to differentiate the six Brucella species and some of their biovars has been shown to exist. This work reviews the DNA variability in the genus Brucella and discusses the relationships between its members according to this genetic variability and a proposal for their evolution based on genetic diversity of the omp2 locus.
Collapse
Affiliation(s)
- N Vizcaíno
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, Avda. Campo Charros/n, 37007, Salamanca, Spain
| | | | | | | | | |
Collapse
|
12
|
Moreno E. Genome evolution within the alpha Proteobacteria: why do some bacteria not possess plasmids and others exhibit more than one different chromosome? FEMS Microbiol Rev 1998; 22:255-75. [PMID: 9862123 DOI: 10.1111/j.1574-6976.1998.tb00370.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Animal intracellular Proteobacteria of the alpha subclass without plasmids and containing one or more chromosomes are phylogenetically entwined with opportunistic, plant-associated, chemoautotrophic and photosynthetic alpha Proteobacteria possessing one or more chromosomes and plasmids. Local variations in open environments, such as soil, water, manure, gut systems and the external surfaces of plants and animals, may have selected alpha Proteobacteria with extensive metabolic alternatives, broad genetic diversity, and more flexible and larger genomes with ability for horizontal gene flux. On the contrary, the constant and isolated animal cellular milieu selected heterotrophic alpha Proteobacteria with smaller genomes without plasmids and reduced genetic diversity as compared to their plant-associated and phototrophic relatives. The characteristics and genome sizes in the extant species suggest that a second chromosome could have evolved from megaplasmids which acquired housekeeping genes. Consequently, the genomes of the animal cell-associated Proteobacteria evolved through reductions of the larger genomes of chemoautotrophic ancestors and became rich in adenosine and thymidine, as compared to the genomes of their ancestors. Genome organisation and phylogenetic ancestor-descendent relationships between extant bacteria of closely related genera and within the same monophyletic genus and species suggest that some strains have undergone transition from two chromosomes to a single replicon. It is proposed that as long as the essential information is correctly expressed, the presence of one or more chromosomes within the same genus or species is the result of contingency. Genetic drift in clonal bacteria, such as animal cell-associated alpha Proteobacteria, would depend almost exclusively on mutation and internal genetic rearrangement processes. Alternatively, genomic variations in reticulate bacteria, such as many intestinal and plant cell-associated Proteobacteria, will depend not only on these processes, but also on their genetic interactions with other bacterial strains. Common pathogenic domains necessary for the invasion and survival in association with cells have been preserved in the chromosomes of the animal and plant-associated alpha Proteobacteria. These pathogenic domains have been maintained by vertical inherence, extensively ameliorated to match the chromosome G + C content and evolved within chromosomes of alpha Proteobacteria.
Collapse
Affiliation(s)
- E Moreno
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica.
| |
Collapse
|
13
|
Roest HP, Mulders IH, Spaink HP, Wijffelman CA, Lugtenberg BJ. A Rhizobium leguminosarum biovar trifolii locus not localized on the sym plasmid hinders effective nodulation on plants of the pea cross-inoculation group. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:938-41. [PMID: 9304865 DOI: 10.1094/mpmi.1997.10.7.938] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Introduction of the Sym plasmid pRL1JI into the cured Rhizobium leguminosarum bv. trifolii strain RCR5 resulted in a strain, designated RBL5523, that was expected to nodulate plants of the pea cross-inoculation group. However, effective nodulation occurred only on Vicia sativa plants, not on V. hirsuta or Pisum sativum. After random Tn5 mutagenesis, a derivative of RBL5523 was isolated that effectively nodulated and fixed nitrogen on P. sativum and V. hirsuta. Characterization of the mutant, RBL5787, indicated the cell surface components, extracellular polysaccharides, lipopolysaccharides, and outer membrane proteins, as well as the pattern of Nod metabolites, were indistinguishable from those of the parental strain. To obtain an indication of the function of the mutated locus, the flanking regions were sequenced and used to perform searches in protein and nonredundant nucleotide data-bases. No significant similarity or homology with any known sequence was detected.
Collapse
Affiliation(s)
- H P Roest
- Leiden University, Institute of Molecular Plant Sciences, Clusius Laboratory, Netherlands
| | | | | | | | | |
Collapse
|
14
|
Cloeckaert A, Verger JM, Grayon M, Vizcaíno N. Molecular and immunological characterization of the major outer membrane proteins of Brucella. FEMS Microbiol Lett 1996; 145:1-8. [PMID: 8931319 DOI: 10.1111/j.1574-6968.1996.tb08547.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The major outer membrane proteins (OMPs) of Brucella spp. were initially identified in the early 1980s by selective extraction techniques and classified according to their apparent molecular mass as 36-38 kDa OMPs or group 2 porin proteins and 31-34 kDa and 25-27 kDa OMPs which belong to the group 3 proteins. Variation in apparent molecular mass is essentially due to association with peptidoglycan subunits of different sizes. Two genes, omp2a and omp2b, which are closely linked in the Brucella genome, and which share a great degree of homology (> 85%), encode the 36 kDa porin proteins, now named Omp2a and Omp2b proteins respectively. Two genes code for the group 3 OMPs and are named omp25 and omp31. The predicted amino acid sequences of omp25 and omp31 share 34% identity. Furthermore, all Brucella major OMPs share amino acid sequence homology with the major OMPs RopA or RopB of Rhizobium leguminosarum, which supports the close genetic relationship of brucellae with members of the alpha-2 subdivision of the class Proteobacteria. Another characteristic common to the major OMPs of R. leguminosarum and Brucella is that they are tightly, probably covalently, associated with the peptidoglycan. The major OMP genes display diversity among Brucella species, biovars and strains allowing their differentiation, and the polymorphic markers identified have brought new insights into the evolutionary development of the genus Brucella, antigenic variability of brucellae, and future prospects in the field of vaccine development.
Collapse
Affiliation(s)
- A Cloeckaert
- Laboratoire de Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, Nouzilly, France.
| | | | | | | |
Collapse
|
15
|
Vizcaíno N, Cloeckaert A, Zygmunt MS, Dubray G. Cloning, nucleotide sequence, and expression of the Brucella melitensis omp31 gene coding for an immunogenic major outer membrane protein. Infect Immun 1996; 64:3744-51. [PMID: 8751924 PMCID: PMC174288 DOI: 10.1128/iai.64.9.3744-3751.1996] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The gene coding for the major outer membrane protein (OMP) of 31 to 34 kDa, now designated Omp31, of Brucella melitensis 16M was cloned and sequenced. A B. melitensis 16M genomic library was constructed in lambda GEM-12 XhoI half-site arms, and recombinant phages expressing omp31 were identified by using the anti-Omp31 monoclonal antibody (MAb) A59/10F09/G10. Subcloning of insert DNA from a positive phage into pGEM-7Zf allowed the selection of a plasmid bearing a 4.4-kb EcoRI fragment that seemed to contain the entire omp31 gene under control of its own promoter. omp31 was localized within a region of the EcoRI insert of approximately 1.1 kb. Sequencing of this region revealed an open reading frame of 720 bp encoding a protein of 240 amino acids and a predicted molecular mass of 25,307 Da. Cleavage of the first 19 amino acids, showing typical features of signal peptides for protein export, leaves a mature protein of 221 amino acids with a predicted molecular mass of 23,412 Da. The predicted amino acid sequence of B. melitensis 16M Omp31 showed 35.2% identity with the RopB OMP of Rhizobium leguminosarum bv. viciae 248 and 34.3% identity with Omp25 of B. abortus 544. As in Brucella spp., Omp31 was located in the outer membrane of recombinant Escherichia coli, but its reported peptidoglycan association in Brucella cells was not detected in E. coli. The ability of Omp31 to form oligomers resistant to sodium dodecyl sulfate denaturation at low temperatures, a characteristic described for several bacterial porins, was observed in both B. melitensis and recombinant E. coli. The epitope recognized by the anti-Omp31 MAb A59/10F09/G10, for which a protective activity has been suggested, has been delimited to a region of 36 amino acids of Omp31 covering the most hydrophilic part of the protein. The availability of recombinant Omp31 and the identification of the antigenic determinant recognized by MAb A59/10F09/G10 will allow the evaluation of their potential protective activity and their potential for the development of subcellular vaccines against brucellosis.
Collapse
Affiliation(s)
- N Vizcaíno
- Laboratoire de Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, Nouzilly, France.
| | | | | | | |
Collapse
|