1
|
Kramer BJ, Hem R, Gobler CJ. Elevated CO 2 significantly increases N 2 fixation, growth rates, and alters microcystin, anatoxin, and saxitoxin cell quotas in strains of the bloom-forming cyanobacteria, Dolichospermum. HARMFUL ALGAE 2022; 120:102354. [PMID: 36470609 DOI: 10.1016/j.hal.2022.102354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The effect of rising CO2 levels on cyanobacterial harmful algal blooms (CHABs) is an emerging concern, particularly within eutrophic ecosystems. While elevated pCO2 has been associated with enhanced growth rates of some cyanobacteria, few studies have explored the effect of CO2 and nitrogen availability on diazotrophic (N2-fixing) cyanobacteria that produce cyanotoxins. Here, the effects of elevated CO2 and fixed nitrogen (NO3-) availability on the growth rates, toxin production, and N2 fixation of microcystin, saxitoxin, and anatoxin-a - producing strains of the genus Dolichospermum were quantified. Growth rates of all Dolichospermum spp. were significantly increased by CO2 or both CO2 and NO3- with rates being highest in treatments with the highest levels of CO2 and NO3-for all strains. While NO3- suppressed N2 fixation, diazotrophy significantly increased when NO3--enriched Dolichospermum spp. were supplied with higher CO2 compared to cultures grown under lower CO2 levels. This suggests that diazotrophy will play an increasingly important role in N cycling in CO2-enriched, eutrophic lentic systems. NO3- significantly increased quotas of the N-rich cyanotoxins, microcystin and saxitoxin, at ambient and enriched CO2 levels, respectively. In contrast, elevated CO2 significantly decreased cell quotas of microcystin and saxitoxin, but significantly increased cell quotas of the N-poor cyanotoxin, anatoxin. N2 fixation was significantly negatively and positively correlated with quotas of N-rich and N-poor cyanotoxins, respectively. Findings suggest cellular quotas of N-rich toxins (microcystin and saxitoxin) may be significantly reduced, or cellular quotas of N-poor toxins (anatoxin) may be significantly enhanced, under elevated CO2 conditions during diazotrophic cyanobacterial blooms. Finally, in the future, ecosystems that experience combinations of excessive N loading and CO2 enrichment may become more prone to toxic blooms of Dolichospermum.
Collapse
Affiliation(s)
- Benjamin J Kramer
- School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk Highway, Southampton, NY, United States, 11968
| | - Ronojoy Hem
- School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk Highway, Southampton, NY, United States, 11968
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk Highway, Southampton, NY, United States, 11968.
| |
Collapse
|
2
|
Kramer BJ, Jankowiak JG, Nanjappa D, Harke MJ, Gobler CJ. Nitrogen and phosphorus significantly alter growth, nitrogen fixation, anatoxin-a content, and the transcriptome of the bloom-forming cyanobacterium, Dolichospermum. Front Microbiol 2022; 13:955032. [PMID: 36160233 PMCID: PMC9490380 DOI: 10.3389/fmicb.2022.955032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/19/2022] [Indexed: 11/27/2022] Open
Abstract
While freshwater cyanobacteria are traditionally thought to be limited by the availability of phosphorus (P), fixed nitrogen (N) supply can promote the growth and/or toxin production of some genera. This study characterizes how growth on N2 (control), nitrate (NO3 -), ammonium (NH4 +), and urea as well as P limitation altered the growth, toxin production, N2 fixation, and gene expression of an anatoxin-a (ATX-A) - producing strain of Dolichospermum sp. 54. The transcriptomes of fixed N and P-limited cultures differed significantly from those of fixed N-deplete, P-replete (control) cultures, while the transcriptomes of P-replete cultures amended with either NH4 + or NO3 - were not significantly different relative to those of the control. Growth rates of Dolichospermum (sp. 54) were significantly higher when grown on fixed N relative to without fixed N; growth on NH4 + was also significantly greater than growth on NO3 -. NH4 + and urea significantly lowered N2 fixation and nifD gene transcript abundance relative to the control while cultures amended with NO3 - exhibited N2 fixation and nifD gene transcript abundance that was not different from the control. Cultures grown on NH4 + exhibited the lowest ATX-A content per cell and lower transcript abundance of genes associated ATX-A synthesis (ana), while the abundance of transcripts of several ana genes were highest under fixed N and P - limited conditions. The significant negative correlation between growth rate and cellular anatoxin quota as well as the significantly higher number of transcripts of ana genes in cultures deprived of fixed N and P relative to P-replete cultures amended with NH4 + suggests ATX-A was being actively synthesized under P limitation. Collectively, these findings indicate that management strategies that do not regulate fixed N loading will leave eutrophic water bodies vulnerable to more intense and toxic (due to increased biomass) blooms of Dolichospermum.
Collapse
Affiliation(s)
- Benjamin J. Kramer
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| | | | - Deepak Nanjappa
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| | - Matthew J. Harke
- Gloucester Marine Genomics Institute, Gloucester, MA, United States
| | - Christopher J. Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| |
Collapse
|
3
|
Dreher TW, Davis EW, Mueller RS. Complete genomes derived by directly sequencing freshwater bloom populations emphasize the significance of the genus level ADA clade within the Nostocales. HARMFUL ALGAE 2021; 103:102005. [PMID: 33980445 DOI: 10.1016/j.hal.2021.102005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The genome sequences of 16 Nostocales cyanobacteria have been determined. Most of them are complete or near-complete genome sequences derived by long-read metagenome sequencing of recent harmful algal blooms (HABs) in freshwater lakes without the potential bias of culture isolation. The genomes are all members of the recently recognized ADA clade (Driscoll et al., Harmful Algae, 77:93, 2018), which we argue represents a genus. We identify 10 putative species-level branches within the clade, on the basis of 91-gene phylogenomic and average nucleotide identity analyses. The assembled genomes each correspond to a single morphotype in the original sample, but distinct genomes from different HABs in some cases correspond to similar morphotypes. We present data indicating that the ADA clade is a highly significant component of current cyanobacterial HABs, including members assigned to the prevalent Dolichospermum and Aphanizomenon genera, as well as Cuspidothrix and Anabaena. In general, currently used genus and species names within the ADA clade are not monophyletic. We infer that the morphological characters routinely used in taxonomic assignments are not reliable for discriminating species within the ADA clade. Taxonomic revisions will be needed to create a genus with a single name (we recommend Anabaena) and to adopt species names that do not depend on morphological traits that lack sufficient discrimination and specificity, while recognizing the utility of some easily observable and distinct morphologies.
Collapse
Affiliation(s)
- Theo W Dreher
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331, USA; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA.
| | - Edward W Davis
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA
| | - Ryan S Mueller
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331, USA
| |
Collapse
|
4
|
Jochum M, Moncayo LP, Jo YK. Microalgal cultivation for biofertilization in rice plants using a vertical semi-closed airlift photobioreactor. PLoS One 2018; 13:e0203456. [PMID: 30208074 PMCID: PMC6135494 DOI: 10.1371/journal.pone.0203456] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/21/2018] [Indexed: 11/18/2022] Open
Abstract
Nitrogen (N) is one of the most important limiting factors in conventional rice (Oryza sativa) production, which heavily relies on synthetic fertilizers. In this study, we researched on the development and use of a vertical semi-closed airlift photobioreactor (PBR) for microalgal cultivation and subsequently determined the efficacy of microalgae-based fertilizers to rice plant growth. The PBR system was developed to produce two strains of N2-fixing cyanobacteria (Anabaena sp. UTEX 2576, Nostoc muscorum UTEX 2209S), and a polyculture of Chlorella vulgaris (UTEX 2714) and Scenedesmus dimorphus (UTEX 1237). When these biofertilizers were evaluated for rice under the greenhouse conditions, results showed that the rice plant heights treated with polyculture-based microalgal biomass were similar to or better than the urea treatment. The effects of the inoculation of the N2-fixing cyanobacterial inoculation on seedling growth was not statistically significant. In conclusion, the vertical semi-closed system PBR cultivation method developed in this study proved to be a simple and effective method for cultivating microalgae. Demonstration of the reliable production system for N2-fixing cyanobacteria and chlorophytes at a medium scale could potentially open the future application of microalgal biofertilizers in rice production.
Collapse
Affiliation(s)
- Michael Jochum
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Luis P. Moncayo
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Young-Ki Jo
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
5
|
Legrand B, Lamarque A, Sabart M, Latour D. Characterization of akinetes from cyanobacterial strains and lake sediment: A study of their resistance and toxic potential. HARMFUL ALGAE 2016; 59:42-50. [PMID: 28073505 DOI: 10.1016/j.hal.2016.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Nostocalean cyanobacteria are known to proliferate abundantly in eutrophic aquatic ecosystems, and to produce several cyanotoxins, including anatoxin-a. In this study, we investigated both the resistance and toxic potential of the akinetes (resistant cells), using cyanobacterial cultures and akinetes extracted from the sediment of Lake Aydat (France) sampled in the winter and spring. Intact and lysed akinetes were differentiated using a double control based on the autofluorescence of akinetes and SYTOX-green staining. The percentage of resistant akinetes found in several different abiotic stress conditions was highly variable, depending on the species and also on the sampling season. Thus, the resistance of akinetes and their ability to germinate seems to follow a species-specific process, and akinetes can undergo physiologic changes during the sedimentary phase of the Nostocale life cycle. This study also revealed the first evidence of anatoxin-a genes in akinetes, with anaC and anaF genes detected in akinetes from all cyanobacterial producer cultures. The low number of anaC genes, almost exclusively detected using nested PCR, in the sediment at Lake Aydat suggests a limited but existent past population of toxic Nostocales in this lake. Given the key role of akinetes in the annual cycle and subsequent summer proliferation, it can be interesting to integrate the surveillance of akinetes in the management of lakes exposed to recurrent cyanobacterial blooms.
Collapse
Affiliation(s)
- Benjamin Legrand
- Université Clermont Auvergne, Université Blaise Pascal, LMGE, BP 10448, Clermont-Ferrand F-63000, France; CNRS, UMR 6023, LMGE, BP 80026, Aubiere Cedex F-63171, France; Athos-environnement, 112 Avenue du Brézet, Clermont-Ferrand F-63100, France.
| | - Amélie Lamarque
- Université Clermont Auvergne, Université Blaise Pascal, LMGE, BP 10448, Clermont-Ferrand F-63000, France; CNRS, UMR 6023, LMGE, BP 80026, Aubiere Cedex F-63171, France
| | - Marion Sabart
- Université Clermont Auvergne, Université Blaise Pascal, LMGE, BP 10448, Clermont-Ferrand F-63000, France; CNRS, UMR 6023, LMGE, BP 80026, Aubiere Cedex F-63171, France
| | - Delphine Latour
- Université Clermont Auvergne, Université Blaise Pascal, LMGE, BP 10448, Clermont-Ferrand F-63000, France; CNRS, UMR 6023, LMGE, BP 80026, Aubiere Cedex F-63171, France
| |
Collapse
|
6
|
Simm S, Keller M, Selymesi M, Schleiff E. The composition of the global and feature specific cyanobacterial core-genomes. Front Microbiol 2015; 6:219. [PMID: 25852675 PMCID: PMC4365693 DOI: 10.3389/fmicb.2015.00219] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteria are photosynthetic prokaryotes important for many ecosystems with a high potential for biotechnological usage e.g., in the production of bioactive molecules. Either asks for a deep understanding of the functionality of cyanobacteria and their interaction with the environment. This in part can be inferred from the analysis of their genomes or proteomes. Today, many cyanobacterial genomes have been sequenced and annotated. This information can be used to identify biological pathways present in all cyanobacteria as proteins involved in such processes are encoded by a so called core-genome. However, beside identification of fundamental processes, genes specific for certain cyanobacterial features can be identified by a holistic genome analysis as well. We identified 559 genes that define the core-genome of 58 analyzed cyanobacteria, as well as three genes likely to be signature genes for thermophilic and 57 genes likely to be signature genes for heterocyst-forming cyanobacteria. To get insights into cyanobacterial systems for the interaction with the environment we also inspected the diversity of the outer membrane proteome with focus on β-barrel proteins. We observed that most of the transporting outer membrane β-barrel proteins are not globally conserved in the cyanobacterial phylum. In turn, the occurrence of β-barrel proteins shows high strain specificity. The core set of outer membrane proteins globally conserved in cyanobacteria comprises three proteins only, namely the outer membrane β-barrel assembly protein Omp85, the lipid A transfer protein LptD, and an OprB-type porin. Thus, we conclude that cyanobacteria have developed individual strategies for the interaction with the environment, while other intracellular processes like the regulation of the protein homeostasis are globally conserved.
Collapse
Affiliation(s)
- Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, Germany
| | - Mario Keller
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, Germany
| | - Mario Selymesi
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, Germany ; Cluster of Excellence Frankfurt, Goethe University Frankfurt am Main, Germany ; Center of Membrane Proteomics, Goethe University Frankfurt am Main, Germany ; Buchmann Institute of Molecular Life Sciences, Goethe University Frankfurt am Main, Germany
| |
Collapse
|
7
|
Sinha R, Pearson LA, Davis TW, Muenchhoff J, Pratama R, Jex A, Burford MA, Neilan BA. Comparative genomics of Cylindrospermopsis raciborskii strains with differential toxicities. BMC Genomics 2014; 15:83. [PMID: 24476316 PMCID: PMC3922686 DOI: 10.1186/1471-2164-15-83] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cylindrospermopsis raciborskii is an invasive filamentous freshwater cyanobacterium, some strains of which produce toxins. Sporadic toxicity may be the result of gene deletion events, the horizontal transfer of toxin biosynthesis gene clusters, or other genomic variables, yet the evolutionary drivers for cyanotoxin production remain a mystery. Through examining the genomes of toxic and non-toxic strains of C. raciborskii, we hoped to gain a better understanding of the degree of similarity between these strains of common geographical origin, and what the primary differences between these strains might be. Additionally, we hoped to ascertain why some cyanobacteria possess the cylindrospermopsin biosynthesis (cyr) gene cluster and produce toxin, while others do not. It has been hypothesised that toxicity or lack thereof might confer a selective advantage to cyanobacteria under certain environmental conditions. RESULTS In order to examine the fundamental differences between toxic and non-toxic C. raciborskii strains, we sequenced the genomes of two closely related isolates, CS-506 (CYN+) and CS-509 (CYN-) sourced from different lakes in tropical Queensland, Australia. These genomes were then compared to a third (reference) genome from C. raciborskii CS-505 (CYN+). Genome sizes were similar across all three strains and their G + C contents were almost identical. At least 2,767 genes were shared among all three strains, including the taxonomically important rpoc1, ssuRNA, lsuRNA, cpcA, cpcB, nifB and nifH, which exhibited 99.8-100% nucleotide identity. Strains CS-506 and CS-509 contained at least 176 and 101 strain-specific (or non-homologous) genes, respectively, most of which were associated with DNA repair and modification, nutrient uptake and transport, or adaptive measures such as osmoregulation. However, the only significant genetic difference observed between the two strains was the presence or absence of the cylindrospermopsin biosynthesis gene cluster. Interestingly, we also identified a cryptic secondary metabolite gene cluster in strain CS-509 (CYN-) and a second cryptic cluster common to CS-509 and the reference strain, CS-505 (CYN+). CONCLUSIONS Our results confirm that the most important factor contributing to toxicity in C. raciborskii is the presence or absence of the cyr gene cluster. We did not identify any other distally encoded genes or gene clusters that correlate with CYN production. The fact that the additional genomic differences between toxic and non-toxic strains were primarily associated with stress and adaptation genes suggests that CYN production may be linked to these physiological processes.
Collapse
Affiliation(s)
- Rati Sinha
- School of Biotechnology and Bimolecular Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Leanne A Pearson
- School of Biotechnology and Bimolecular Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Timothy W Davis
- Australian Rivers Institute, Griffith University, 4111 Nathan, Queensland, Australia
| | - Julia Muenchhoff
- School of Biotechnology and Bimolecular Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Ryanbi Pratama
- School of Biotechnology and Bimolecular Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Aaron Jex
- Faculty of Veterinary Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Michele A Burford
- Australian Rivers Institute, Griffith University, 4111 Nathan, Queensland, Australia
| | - Brett A Neilan
- School of Biotechnology and Bimolecular Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| |
Collapse
|
8
|
Wang H, Sivonen K, Rouhiainen L, Fewer DP, Lyra C, Rantala-Ylinen A, Vestola J, Jokela J, Rantasärkkä K, Li Z, Liu B. Genome-derived insights into the biology of the hepatotoxic bloom-forming cyanobacterium Anabaena sp. strain 90. BMC Genomics 2012; 13:613. [PMID: 23148582 PMCID: PMC3542288 DOI: 10.1186/1471-2164-13-613] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/05/2012] [Indexed: 11/15/2022] Open
Abstract
Background Cyanobacteria can form massive toxic blooms in fresh and brackish bodies of water and are frequently responsible for the poisoning of animals and pose a health risk for humans. Anabaena is a genus of filamentous diazotrophic cyanobacteria commonly implicated as a toxin producer in blooms in aquatic ecosystems throughout the world. The biology of bloom-forming cyanobacteria is poorly understood at the genome level. Results Here, we report the complete sequence and comprehensive annotation of the bloom-forming Anabaena sp. strain 90 genome. It comprises two circular chromosomes and three plasmids with a total size of 5.3 Mb, encoding a total of 4,738 genes. The genome is replete with mobile genetic elements. Detailed manual annotation demonstrated that almost 5% of the gene repertoire consists of pseudogenes. A further 5% of the genome is dedicated to the synthesis of small peptides that are the products of both ribosomal and nonribosomal biosynthetic pathways. Inactivation of the hassallidin (an antifungal cyclic peptide) biosynthetic gene cluster through a deletion event and a natural mutation of the buoyancy-permitting gvpG gas vesicle gene were documented. The genome contains a large number of genes encoding restriction-modification systems. Two novel excision elements were found in the nifH gene that is required for nitrogen fixation. Conclusions Genome analysis demonstrated that this strain invests heavily in the production of bioactive compounds and restriction-modification systems. This well-annotated genome provides a platform for future studies on the ecology and biology of these important bloom-forming cyanobacteria.
Collapse
Affiliation(s)
- Hao Wang
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, FIN-00014, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gehringer MM, Adler L, Roberts AA, Moffitt MC, Mihali TK, Mills TJT, Fieker C, Neilan BA. Nodularin, a cyanobacterial toxin, is synthesized in planta by symbiotic Nostoc sp. THE ISME JOURNAL 2012; 6:1834-47. [PMID: 22456448 PMCID: PMC3446798 DOI: 10.1038/ismej.2012.25] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 11/08/2022]
Abstract
The nitrogen-fixing bacterium, Nostoc, is a commonly occurring cyanobacterium often found in symbiotic associations. We investigated the potential of cycad cyanobacterial endosymbionts to synthesize microcystin/nodularin. Endosymbiont DNA was screened for the aminotransferase domain of the toxin biosynthesis gene clusters. Five endosymbionts carrying the gene were screened for bioactivity. Extracts of two isolates inhibited protein phosphatase 2A and were further analyzed using electrospray ionization mass spectrometry (ESI-MS)/MS. Nostoc sp. 'Macrozamia riedlei 65.1' and Nostoc sp. 'Macrozamia serpentina 73.1' both contained nodularin. High performance liquid chromatography (HPLC) HESI-MS/MS analysis confirmed the presence of nodularin at 9.55±2.4 ng μg-1 chlorophyll a in Nostoc sp. 'Macrozamia riedlei 65.1' and 12.5±8.4 ng μg-1 Chl a in Nostoc sp. 'Macrozamia serpentina 73.1' extracts. Further scans indicated the presence of the rare isoform [L-Har(2)] nodularin, which contains L-homoarginine instead of L-arginine. Nodularin was also present at 1.34±0.74 ng ml(-1) (approximately 3 pmol per g plant ww) in the methanol root extracts of M. riedlei MZ65, while the presence of [L-Har(2)] nodularin in the roots of M. serpentina MZ73 was suggested by HPLC HESI-MS/MS analysis. The ndaA-B and ndaF genomic regions were sequenced to confirm the presence of the hybrid polyketide/non-ribosomal gene cluster. A seven amino-acid insertion into the NdaA-C1 domain of N. spumigena NSOR10 protein was observed in all endosymbiont-derived sequences, suggesting the transfer of the nda cluster from N. spumigena to terrestrial Nostoc species. This study demonstrates the synthesis of nodularin and [L-Har(2)] nodularin in a non-Nodularia species and the production of cyanobacterial hepatotoxin by a symbiont in planta.
Collapse
Affiliation(s)
- Michelle M Gehringer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Department of Plant Ecology and Systematics, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Lewis Adler
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, New South Wales, Australia
| | - Alexandra A Roberts
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Michelle C Moffitt
- School of Biomedical and Health Sciences, University of Western Sydney, Sydney, New South Wales, Australia
| | - Troco K Mihali
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Toby J T Mills
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Claus Fieker
- School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. strain 37 and molecular methods to detect potential producers. Appl Environ Microbiol 2011; 77:7271-8. [PMID: 21873484 DOI: 10.1128/aem.06022-11] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacterial mass occurrences are common in fresh and brackish waters. They pose a threat to water users due to toxins frequently produced by the cyanobacterial species present. Anatoxin-a and homoanatoxin-a are neurotoxins synthesized by various cyanobacteria, e.g., Anabaena, Oscillatoria, and Aphanizomenon. The biosynthesis of these toxins and the genes involved in anatoxin production were recently described for Oscillatoria sp. strain PCC 6506 (A. Méjean et al., J. Am. Chem. Soc. 131:7512-7513, 2009). In this study, we identified the anatoxin synthetase gene cluster (anaA to anaG and orf1; 29 kb) in Anabaena sp. strain 37. The gene (81.6% to 89.2%) and amino acid (78.8% to 86.9%) sequences were highly similar to those of Oscillatoria sp. PCC 6506, while the organization of the genes differed. Molecular detection methods for potential anatoxin-a and homoanatoxin-a producers of the genera Anabaena, Aphanizomenon, and Oscillatoria were developed by designing primers to recognize the anaC gene. Anabaena and Oscillatoria anaC genes were specifically identified in several cyanobacterial strains by PCR. Restriction fragment length polymorphism (RFLP) analysis of the anaC amplicons enabled simultaneous identification of three producer genera: Anabaena, Oscillatoria, and Aphanizomenon. The molecular methods developed in this study revealed the presence of both Anabaena and Oscillatoria as potential anatoxin producers in Finnish fresh waters and the Baltic Sea; they could be applied for surveys of these neurotoxin producers in other aquatic environments.
Collapse
|
11
|
Rapid differentiation of phenotypically and genotypically similar Synechococcus elongatus strains by PCR fingerprinting. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0003-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Neurotoxic cyanobacterial toxins. Toxicon 2010; 56:813-28. [DOI: 10.1016/j.toxicon.2009.07.036] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 11/19/2022]
|
13
|
Rouhiainen L, Jokela J, Fewer DP, Urmann M, Sivonen K. Two alternative starter modules for the non-ribosomal biosynthesis of specific anabaenopeptin variants in Anabaena (Cyanobacteria). ACTA ACUST UNITED AC 2010; 17:265-73. [PMID: 20338518 DOI: 10.1016/j.chembiol.2010.01.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 11/25/2022]
Abstract
Anabaenopeptins are a diverse family of cyclic hexapeptide protease inhibitors produced by cyanobacteria that contain a conserved ureido bond and D-Lys moiety. Here we demonstrate that anabaenopeptins are assembled on a nonribosomal peptide synthetase enzyme complex encoded by a 32 kb apt gene cluster in the cyanobacterium Anabaena sp. strain 90. Surprisingly, the gene cluster encoded two alternative starter modules organized in separate bimodular proteins. The starter modules display high substrate specificity for L-Arg/L-Lys and L-Tyr, respectively, and allow the specific biosynthesis of different anabaenopeptin variants. The two starter modules were found also in other Anabaena strains. However, just a single module was present in the anabaenopeptin gene clusters of Nostoc and Nodularia, respectively. The organization of the apt gene cluster in Anabaena represents an exception to the established colinearity rule of linear non-ribosomal peptide synthetases.
Collapse
Affiliation(s)
- Leo Rouhiainen
- Department of Food and Environmental Sciences, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FIN-00014, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
14
|
Lehtimaki J, Moisander P, Sivonen K, Kononen K. Growth, nitrogen fixation, and nodularin production by two baltic sea cyanobacteria. Appl Environ Microbiol 2010; 63:1647-56. [PMID: 16535588 PMCID: PMC1389143 DOI: 10.1128/aem.63.5.1647-1656.1997] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In late summer, nitrogen-fixing cyanobacteria Nodularia spumigena and Aphanizomenon flos-aquae form blooms in the open Baltic Sea. N. spumigena has caused several animal poisonings, but Baltic A. flos-aquae is not known to be toxic. In this laboratory study, performed with batch cultures, the influences of environmental conditions on the biomass and nitrogen fixation rate of N. spumigena and A. flos-aquae were compared and the toxin (nodularin) concentration produced by N. spumigena was measured. Several differences in the biomasses and nitrogen fixation rates of N. spumigena and A. flos-aquae were observed. A. flos-aquae preferred lower irradiances, salinities, and temperatures than N. spumigena. The biomass of both species increased with high phosphate concentrations and with accompanying bacteria and decreased with unnaturally high inorganic nitrogen concentrations. Nodularin concentrations in cells and growth media, as well as nitrogen fixation rates, were generally highest under the conditions that promoted growth. Intracellular nodularin concentrations increased with high temperature, high irradiance, and high phosphate concentration and decreased with low and high salinities and high inorganic nitrogen concentrations. Nodularin concentrations in growth media increased with incubation time, indicating that intracellular nodularin was released when cells lysed. The different responses of A. flos-aquae and N. spumigena to changes in salinity, irradiance, and temperature may explain the different spatial and temporal distribution of these species in the Baltic Sea. According to the results, toxic N. spumigena blooms may be expected in late summer in areas of the Baltic Sea with high phosphorus concentrations and moderate salinity.
Collapse
|
15
|
Berg KA, Lyra C, Sivonen K, Paulin L, Suomalainen S, Tuomi P, Rapala J. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME JOURNAL 2008; 3:314-25. [DOI: 10.1038/ismej.2008.110] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
MALDI-TOF-MS detection of the low molecular weight neurotoxins anatoxin-a and homoanatoxin-a on lyophilized and fresh filaments of axenic Oscillatoria strains. Toxicon 2008; 51:1308-15. [DOI: 10.1016/j.toxicon.2008.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 02/22/2008] [Accepted: 02/25/2008] [Indexed: 11/16/2022]
|
17
|
PCR based fingerprinting of Westiellopsis cultures with short tandemly repeated repetitive (STRR) and highly iterated palindrome (HIP) sequences. Biologia (Bratisl) 2008. [DOI: 10.2478/s11756-008-0065-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
The molecular genetics of cyanobacterial toxicity as a basis for monitoring water quality and public health risk. Curr Opin Biotechnol 2008; 19:281-8. [PMID: 18439816 DOI: 10.1016/j.copbio.2008.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 03/12/2008] [Accepted: 03/12/2008] [Indexed: 11/20/2022]
Abstract
Toxic cyanobacteria pose a significant hazard to human health and the environment. The recent characterisation of cyanotoxin synthetase gene clusters has resulted in an explosion of molecular detection methods for these organisms and their toxins. Conventional polymerase chain reaction (PCR) tests targeting cyanotoxin biosynthesis genes provide a rapid and sensitive means for detecting potentially toxic populations of cyanobacteria in water supplies. The adaptation of these simple PCR tests into quantitative methods has additionally enabled the monitoring of dynamic bloom populations and the identification of particularly problematic species. More recently, DNA microarray technology has been applied to cyanobacterial diagnostics offering a high-throughput option for detecting and differentiating toxic genotypes in complex samples. Together, these molecular methods are proving increasingly important for monitoring water quality.
Collapse
|
19
|
Spoof L, Berg KA, Rapala J, Lahti K, Lepistö L, Metcalf JS, Codd GA, Meriluoto J. First observation of cylindrospermopsin in Anabaena lapponica isolated from the boreal environment (Finland). ENVIRONMENTAL TOXICOLOGY 2006; 21:552-60. [PMID: 17091499 DOI: 10.1002/tox.20216] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The cyanobacterial cytotoxin cylindrospermopsin has been mostly associated with cyanobacteria present in tropical and subtropical regions. Cylindrospermopsin has recently been found in cyanobacterial samples in central and southern Europe but the possible presence of the toxin in northern Europe has been unknown. Fifty-eight field and laboratory culture samples of Finnish cyanobacteria were analyzed by high-performance liquid chromatography combined with UV diode-array detection, multiple reactant monitoring in a triple-quadrupole mass spectrometer (MS), and accurate mass measurements using a time-of-flight MS instrument. Cylindrospermopsin was confirmed by all three techniques in a culture sample of Anabaena lapponica at a concentration of 242 microg cylindrospermopsin per g freeze-dried cyanobacterial material.
Collapse
Affiliation(s)
- Lisa Spoof
- Department of Biochemistry and Pharmacy, Abo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hense I, Beckmann A. Towards a model of cyanobacteria life cycle—effects of growing and resting stages on bloom formation of N2-fixing species. Ecol Modell 2006. [DOI: 10.1016/j.ecolmodel.2005.11.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Lyra C, Laamanen M, Lehtimäki JM, Surakka A, Sivonen K. Benthic cyanobacteria of the genus Nodularia are non-toxic, without gas vacuoles, able to glide and genetically more diverse than planktonic Nodularia. Int J Syst Evol Microbiol 2005; 55:555-568. [PMID: 15774625 DOI: 10.1099/ijs.0.63288-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diversity and ecological features of cyanobacteria of the genus Nodularia from benthic, periphytic and soil habitats are less well known than those of Nodularia from planktonic habitats. Novel benthic Nodularia strains were isolated from the Baltic Sea and their morphology, the presence of gas vacuoles, nodularin production, gliding, 16S rRNA gene sequences, rpoB, rbcLX and ndaF genes, and gvpA-IGS regions were examined, as well as short tandemly repeated repetitive sequence fingerprints. Strains were identified as Nodularia spumigena, Nodularia sphaerocarpa or Nodularia harveyana on the basis of the size and shape of the different types of cells and the presence or absence of gas vacuoles. The planktonic strains of N. spumigena mostly had gas vacuoles and produced nodularin, whereas the benthic strains of N. sphaerocarpa and N. harveyana lacked gas vacuoles and did not produce nodularin (except for strain PCC 7804). The benthic strains were also able to glide on surfaces. In the genetic analyses, the planktonic N. spumigena and benthic N. sphaerocarpa formed monophyletic clusters, but the clusters were very closely related. Benthic strains determined as N. harveyana formed the most diverse and distant group of strains. In addition to phylogenetic analyses, the lack of the gvpA-IGS region and ndaF in N. sphaerocarpa and N. harveyana distinguished these species from the planktonic N. spumigena. Therefore, ndaF can be considered as a potential diagnostic tool for detecting and quantifying Baltic Sea bloom-forming, nodularin-producing N. spumigena strains. The data confirm that only one morphologically and genetically distinct planktonic species of Nodularia, N. spumigena, and at least two benthic species, N. sphaerocarpa and N. harveyana, exist in the Baltic Sea.
Collapse
Affiliation(s)
- Christina Lyra
- Department of Applied Chemistry and Microbiology, PO Box 56, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Maria Laamanen
- Finnish Institute of Marine Research, PO Box 33, FIN-000931, Helsinki, Finland
| | - Jaana M Lehtimäki
- Department of Applied Chemistry and Microbiology, PO Box 56, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Anu Surakka
- Department of Applied Chemistry and Microbiology, PO Box 56, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Kaarina Sivonen
- Department of Applied Chemistry and Microbiology, PO Box 56, FIN-00014, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Crispim CA, Gaylarde CC. Cyanobacteria and biodeterioration of cultural heritage: a review. MICROBIAL ECOLOGY 2005; 49:1-9. [PMID: 15883863 DOI: 10.1007/s00248-003-1052-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 10/09/2003] [Indexed: 05/02/2023]
Abstract
Growing concern for the preservation of cultural heritage has led to a greater interest in the biological attack on these buildings. The importance of cyanobacteria as deteriogens is emphasized and the traditional and more modern molecular methods used to detect these microorganisms are discussed. The development of molecular techniques for the rapid identification of cyanobacteria without need for culture and isolation is fundamental if our knowledge of these communities in biofilms on the surfaces of historic buildings is to be extended.
Collapse
Affiliation(s)
- C A Crispim
- Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | | |
Collapse
|
23
|
Rouhiainen L, Vakkilainen T, Siemer BL, Buikema W, Haselkorn R, Sivonen K. Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Appl Environ Microbiol 2004; 70:686-92. [PMID: 14766543 PMCID: PMC348879 DOI: 10.1128/aem.70.2.686-692.2004] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cluster of microcystin synthetase genes from Anabaena strain 90 was sequenced and characterized. The total size of the region is 55.4 kb, and the genes are organized in three putative operons. The first operon (mcyA-mcyB-mcyC) is transcribed in the opposite direction from the second operon (mcyG-mcyD-mcyJ-mcyE-mcyF-mcyI) and the third operon (mcyH). The genes mcyA, mcyB, and mcyC encode nonribosomal peptide synthetases (NRPS), while mcyD codes for a polyketide synthase (PKS), and mcyG and mcyE are mixed NRPS-PKS genes. The genes mcyJ, mcyF, and mcyI are similar to genes coding for a methyltransferase, an aspartate racemase, and a D-3-phosphoglycerate dehydrogenase, respectively. The region in the first module of mcyB coding for the adenylation domain was found to be 96% identical with the corresponding part of mcyC, suggesting a recent duplication of this fragment and a replacement in mcyB. In Anabaena strain 90, the order of the domains encoded by the genes in the two sets (from mcyG to mcyI and from mcyA to mcyC) is colinear with the hypothetical order of the enzymatic reactions for microcystin biosynthesis. The order of the microcystin synthetase genes in Anabaena strain 90 differs from the arrangement found in two other cyanobacterial species, Microcystis aeruginosa and Planktothrix agardhii. The average sequence match between the microcystin synthetase genes of Anabaena strain 90 and the corresponding genes of the other species is 74%. The identity of the individual proteins varies from 67 to 81%. The genes of microcystin biosynthesis from three major producers of this toxin are now known. This makes it possible to design probes and primers to identify the toxin producers in the environment.
Collapse
Affiliation(s)
- Leo Rouhiainen
- Department of Applied Chemistry and Microbiology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
24
|
Vaitomaa J, Rantala A, Halinen K, Rouhiainen L, Tallberg P, Mokelke L, Sivonen K. Quantitative real-time PCR for determination of microcystin synthetase e copy numbers for microcystis and anabaena in lakes. Appl Environ Microbiol 2004; 69:7289-97. [PMID: 14660378 PMCID: PMC309989 DOI: 10.1128/aem.69.12.7289-7297.2003] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacterial mass occurrences in freshwater lakes are generally formed by Anabaena, Microcystis, and Planktothrix, which may produce cyclic heptapeptide hepatotoxins, microcystins. Thus far, identification of the most potent microcystin producer in a lake has not been possible due to a lack of quantitative methods. The aim of this study was to identify the microcystin-producing genera and to determine the copy numbers of microcystin synthetase gene E (mcyE) in Lake Tuusulanjärvi and Lake Hiidenvesi in Finland by quantitative real-time PCR. The microcystin concentrations and cyanobacterial cell densities of these lakes were also determined. The microcystin concentrations correlated positively with the sum of Microcystis and Anabaena mcyE copy numbers from both Lake Tuusulanjärvi and Lake Hiidenvesi, indicating that mcyE gene copy numbers can be used as surrogates for hepatotoxic Microcystis and ANABAENA: The main microcystin producer in Lake Tuusulanjärvi was Microcystis spp., since average Microcystis mcyE copy numbers were >30 times more abundant than those of ANABAENA: Lake Hiidenvesi seemed to contain both nontoxic and toxic Anabaena as well as toxic Microcystis strains. Identifying the most potent microcystin producer in a lake could be valuable for designing lake restoration strategies, among other uses.
Collapse
Affiliation(s)
- Jaana Vaitomaa
- Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
25
|
Mikalsen B, Boison G, Skulberg OM, Fastner J, Davies W, Gabrielsen TM, Rudi K, Jakobsen KS. Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. J Bacteriol 2003; 185:2774-85. [PMID: 12700256 PMCID: PMC154389 DOI: 10.1128/jb.185.9.2774-2785.2003] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxic Microcystis strains often produce several isoforms of the cyclic hepatotoxin microcystin, and more than 65 isoforms are known. This has been attributed to relaxed substrate specificity of the adenylation domain. Our results show that in addition to this, variability is also caused by genetic variation in the microcystin synthetase genes. Genetic characterization of a region of the adenylation domain in module mcyB1 resulted in identification of two groups of genetic variants in closely related Microcystis strains. Sequence analyses suggested that the genetic variation is due to recombination events between mcyB1 and the corresponding domains in mcyC. Each variant could be correlated to a particular microcystin isoform profile, as identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Among the Microcystis species studied, we found 11 strains containing different variants of the mcyABC gene cluster and 7 strains lacking the genes. Furthermore, there is no concordance between the phylogenies generated with mcyB1, 16S ribosomal DNA, and DNA fingerprinting. Collectively, these results suggest that recombination between imperfect repeats, gene loss, and horizontal gene transfer can explain the distribution and variation within the mcyABC operon.
Collapse
|
26
|
Tillett D, Parker DL, Neilan BA. Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16S rRNA and phycocyanin operon (Phycocyanin Intergenic Spacer) phylogenies. Appl Environ Microbiol 2001; 67:2810-8. [PMID: 11375198 PMCID: PMC92942 DOI: 10.1128/aem.67.6.2810-2818.2001] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relationship between toxigenicity and phylogeny within the cyanobacterial genus Microcystis is unclear. To investigate this issue, we have designed PCR primers for the N-methyltransferase (NMT) domain of the microcystin synthetase gene mcyA and have probed 37 Microcystis sp. cultures as well as several field samples. The NMT region was present in all 18 laboratory strains that gave positive reactions in the protein phosphatase inhibition assay for microcystin but was absent in 17 nontoxic strains. Two other nontoxic strains, one of which had previously been reported to produce microcystin, possessed the NMT region. Detection of NMT-specific DNA in field samples corresponded to periods of toxicity as assessed by protein phosphatase inhibition. The Microcystis strains formed a monophyletic cluster based on 16S rRNA gene sequences but comprised two groups with respect to phycocyanin intergenic spacer (PC-IGS) sequences. Toxic and nontoxic strains appeared to be erratically distributed within the PC-IGS and 16S rRNA trees. Sequence analysis of the NMT domain revealed two coherent groups. The genomic region immediately downstream of the mcyABC cluster in all 20 NMT-positive strains contained an open reading frame of unknown function (uma1) at a conserved distance from mcyC. All nontoxic strains also contained uma1, which is not cotranscribed with mcyABC. The consistent linkage of mcyC to uma1 suggests that mcyC has not been frequently transferred into nontoxic strains via any mechanism involving insertion at random chromosomal locations. These results are discussed with respect to various mechanisms that could explain the patchy distribution of toxigenicity among the various Microcystis clades.
Collapse
Affiliation(s)
- D Tillett
- School of Microbiology and Immunology, The University of New South Wales, Sydney 2052, Australia
| | | | | |
Collapse
|
27
|
Lyra C, Halme T, Torsti AM, Tenkanen T, Sivonen K. Site-specific restriction endonucleases in cyanobacteria. J Appl Microbiol 2000; 89:979-91. [PMID: 11123471 DOI: 10.1046/j.1365-2672.2000.01206.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM Planktic cyanobacteria were screened for endodeoxyribonucleases. Principal component analysis (PCA) was employed to demonstrate a potential relationship between certain enzymes and a group of cyanobacteria. The data were obtained from a data bank and this study. METHODS AND RESULTS Enzymes were partially purified using column chromatography. Anabaena strains contained Asp83/1I (5'-TTCGAA-3'), Asp83/1II (5'-GGCC-3'), Asp90I (5'-ACRYGT-3') and five isoschizomeric enzymes (5'-ATCGAT-3'). Aphanizomenon and Microcystis strains contained ApcTR183I (5'-TGCGCA-3') and Msp199I (5'-CCGG-3'), respectively. Planktothrix strains possessed Psc2I (5'-GAANNNNTTC-3'), Psc27I and Psc28I (5'-TTCGAA-3'). PCA showed that the most common cyanobacterial endonuclease types were AvaII, AvaI and AsuII. CONCLUSIONS All planktic cyanobacteria studied contained restriction endonucleases. The defined restriction endonucleases were isoschizomers of known enzymes. The Nostoc and the Spirulina genera had an association, while the majority of the genera had no association with certain endonuclease type(s). SIGNIFICANCE AND IMPACT OF THE STUDY The defined enzymes in this study and the estimated trend in the endonuclease type distribution allow more efficient avoidance of cyanobacterial restriction barriers.
Collapse
Affiliation(s)
- C Lyra
- Department of Applied Chemistry and Microbiology, Helsinki University, and Finnzymes Oy, Espoo, Finland
| | | | | | | | | |
Collapse
|
28
|
Rouhiainen L, Paulin L, Suomalainen S, Hyytiäinen H, Buikema W, Haselkorn R, Sivonen K. Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90. Mol Microbiol 2000; 37:156-67. [PMID: 10931313 DOI: 10.1046/j.1365-2958.2000.01982.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anabaena strain 90 produces three hepatotoxic heptapeptides (microcystins), two seven-residue depsipeptides called anabaenopeptilide 90A and 90B, and three six-residue peptides called anabaenopeptins. The anabaenopeptilides belong to a group of cyanobacterial depsipeptides that share the structure of a six-amino-acid ring with a side-chain. Despite their similarity to known cyclic peptide toxins, no function has been assigned to the anabaenopeptilides. Degenerate oligonucleotide primers based on the conserved amino acid sequences of other peptide synthetases were used to amplify DNA from Anabaena 90, and the resulting polymerase chain reaction (PCR) products were used to identify a peptide synthetase gene cluster. Four genes encoding putative anabaenopeptilide synthetase domains were characterized. Three genes, apdA, apdB and apdD, contain two, four and one module, respectively, encoding a total of seven modules for activation and peptide bond formation of seven L-amino acids. Modules five and six also carry methyltransferase-like domains. Before the first module, there is a region similar in amino acid sequence to formyltransferases. A fourth gene (apdC), between modules six and seven, is similar in sequence to halogenase genes. Thus, the order of domains is co-linear with the positions of amino acid residues in the finished peptide. A mutant of Anabaena 90 was made by inserting a chloramphenicol resistance gene into the apdA gene. DNA amplification by PCR confirmed the insertion. Mass spectrometry analysis showed that anabaenopeptilides are not made in the mutant strain, but other peptides, such as microcystins and anabaenopeptins, are still produced by the mutant.
Collapse
Affiliation(s)
- L Rouhiainen
- Department of Applied Chemistry and Microbiology and Institute of Biotechnology, PO Box 56, Biocenter Viikki, FIN-00014 Helsinki University, Finland
| | | | | | | | | | | | | |
Collapse
|
29
|
Wilson KM, Schembri MA, Baker PD, Saint CP. Molecular characterization of the toxic cyanobacterium Cylindrospermopsis raciborskii and design of a species-specific PCR. Appl Environ Microbiol 2000; 66:332-8. [PMID: 10618244 PMCID: PMC91826 DOI: 10.1128/aem.66.1.332-338.2000] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cylindrospermopsis raciborskii is a toxic-bloom-forming cyanobacterium that is commonly found in tropical to subtropical climatic regions worldwide, but it is also recognized as a common component of cyanobacterial communities in temperate climates. Genetic profiles of C. raciborskii were examined in 19 cultured isolates originating from geographically diverse regions of Australia and represented by two distinct morphotypes. A 609-bp region of rpoC1, a DNA-dependent RNA polymerase gene, was amplified by PCR from these isolates with cyanobacterium-specific primers. Sequence analysis revealed that all isolates belonged to the same species, including morphotypes with straight or coiled trichomes. Additional rpoC1 gene sequences obtained for a range of cyanobacteria highlighted clustering of C. raciborskii with other heterocyst-producing cyanobacteria (orders Nostocales and Stigonematales). In contrast, randomly amplified polymorphic DNA and short tandemly repeated repetitive sequence profiles revealed a greater level of genetic heterogeneity among C. raciborskii isolates than did rpoC1 gene analysis, and unique band profiles were also found among each of the cyanobacterial genera examined. A PCR test targeting a region of the rpoC1 gene unique to C. raciborskii was developed for the specific identification of C. raciborskii from both purified genomic DNA and environmental samples. The PCR was evaluated with a number of cyanobacterial isolates, but a PCR-positive result was only achieved with C. raciborskii. This method provides an accurate alternative to traditional morphological identification of C. raciborskii.
Collapse
Affiliation(s)
- K M Wilson
- The Cooperative Research Centre for Water Quality and Treatment, Australian Water Quality Centre, SA Water Corporation, Salisbury, South Australia 5108, Australia
| | | | | | | |
Collapse
|
30
|
Construction of an automated DNA detection system for manipulation of Microcystis spp. using specific DNA probe immobilized on magnetic particles. Electrochim Acta 1999. [DOI: 10.1016/s0013-4686(99)00083-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Smith JK, Parry JD, Day JG, Smith RJ. A PCR technique based on the Hip1 interspersed repetitive sequence distinguishes cyanobacterial species and strains. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 10):2791-2801. [PMID: 9802020 DOI: 10.1099/00221287-144-10-2791] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of primers based on the Hip1 sequence as a typing technique for cyanobacteria has been investigated. The discovery of short repetitive sequence structures in bacterial DNA during the last decade has led to the development of PCR-based methods for typing, i.e., distinguishing and identifying, bacterial species and strains. An octameric palindromic sequence known as Hip1 has been shown to be present in the chromosomal DNA of many species of cyanobacteria as a highly repetitious interspersed sequence. PCR primers were constructed that extended the Hip1 sequence at the 3' end by two bases. Five of the 16 possible extended primers were tested. Each of the five primers produced a different set of products when used to prime PCR from cyanobacterial genomic DNA. Each primer produced a distinct set of products for each of the 15 cyanobacterial species tested. The ability of Hip1-based PCR to resolve taxonomic differences was assessed by analysis of independent isolates of Anabaena flos-aquae and Nostoc ellipsosporum obtained from the CCAP (Culture Collection of Algae and Protozoa, IFE, Cumbria, UK). A PCR-based RFLP analysis of products amplified from the 23S-16S rDNA intergenic region was used to characterize the isolates and to compare with the Hip1 typing data. The RFLP and Hip1 typing yielded similar results and both techniques were able to distinguish different strains. On the basis of these results it is suggested that the Hip1 PCR technique may assist in distinguishing cyanobacterial species and strains.
Collapse
Affiliation(s)
- J K Smith
- IENS, Division of Biological Sciences, Lancaster UniversityBailrigg, Lancaster LA1 4YQUK
| | - J D Parry
- IENS, Division of Biological Sciences, Lancaster UniversityBailrigg, Lancaster LA1 4YQUK
| | - J G Day
- Culture Collection of Algae and Protozoa (CCAP), IFE, Windermere LaboratoryThe Ferry House, Far Sawrey, Ambleside, Cumbria LA22 OLPUK
| | - R J Smith
- IENS, Division of Biological Sciences, Lancaster UniversityBailrigg, Lancaster LA1 4YQUK
| |
Collapse
|
32
|
|
33
|
Rasmussen U, Svenning MM. Fingerprinting of cyanobacteria based on PCR with primers derived from short and long tandemly repeated repetitive sequences. Appl Environ Microbiol 1998; 64:265-72. [PMID: 16349487 PMCID: PMC124704 DOI: 10.1128/aem.64.1.265-272.1998] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/1997] [Accepted: 10/29/1997] [Indexed: 11/20/2022] Open
Abstract
The presence of repeated DNA (short tandemly repeated repetitive [STRR] and long tandemly repeated repetitive [LTRR]) sequences in the genome of cyanobacteria was used to generate a fingerprint method for symbiotic and free-living isolates. Primers corresponding to the STRR and LTRR sequences were used in the PCR, resulting in a method which generate specific fingerprints for individual isolates. The method was useful both with purified DNA and with intact cyanobacterial filaments or cells as templates for the PCR. Twenty-three Nostoc isolates from a total of 35 were symbiotic isolates from the angiosperm Gunnera species, including isolates from the same Gunnera species as well as from different species. The results show a genetic similarity among isolates from different Gunnera species as well as a genetic heterogeneity among isolates from the same Gunnera species. Isolates which have been postulated to be closely related or identical revealed similar results by the PCR method, indicating that the technique is useful for clustering of even closely related strains. The method was applied to nonheterocystus cyanobacteria from which a fingerprint pattern was obtained.
Collapse
Affiliation(s)
- U Rasmussen
- Department of Plant Physiology and Microbiology, IBG, University of Tromsö, 9037 Tromsö, Norway
| | | |
Collapse
|
34
|
Vioque A. The RNase P RNA from cyanobacteria: short tandemly repeated repetitive (STRR) sequences are present within the RNase P RNA gene in heterocyst-forming cyanobacteria. Nucleic Acids Res 1997; 25:3471-7. [PMID: 9254706 PMCID: PMC146911 DOI: 10.1093/nar/25.17.3471] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The RNase P RNA gene (rnpB) from 10 cyanobacteria has been characterized. These new RNAs, together with the previously available ones, provide a comprehensive data set of RNase P RNA from diverse cyanobacterial lineages. All heterocystous cyanobacteria, but none of the non-heterocystous strains analyzed, contain short tandemly repeated repetitive (STRR) sequences that increase the length of helix P12. Site-directed mutagenesis experiments indicate that the STRR sequences are not required for catalytic activity in vitro. STRR sequences seem to have recently and independently invaded the RNase P RNA genes in heterocyst-forming cyanobacteria because closely related strains contain unrelated STRR sequences. Most cyanobacteria RNase P RNAs lack the sequence GGU in the loop connecting helices P15 and P16 that has been established to interact with the 3'-end CCA in precursor tRNA substrates in other bacteria. This character is shared with plastid RNase P RNA. Helix P6 is longer than usual in most cyanobacteria as well as in plastid RNase P RNA.
Collapse
Affiliation(s)
- A Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Isla de la Cartuja, Universidad de Sevilla-CSIC, Avenida Americo Vespucio s/n, 41092 Sevilla, Spain.
| |
Collapse
|
35
|
Nübel U, Garcia-Pichel F, Muyzer G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 1997; 63:3327-32. [PMID: 9251225 PMCID: PMC168636 DOI: 10.1128/aem.63.8.3327-3332.1997] [Citation(s) in RCA: 749] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We developed and tested a set of oligonucleotide primers for the specific amplification of 16S rRNA gene segments from cyanobacteria and plastids by PCR. PCR products were recovered from all cultures of cyanobacteria and diatoms that were checked but not from other bacteria and archaea. Gene segments selectively retrieved from cyanobacteria and diatoms in unialgal but nonaxenic cultures and from cyanobionts in lichens could be directly sequenced. In the context of growing sequence databases, this procedure allows rapid and phylogenetically meaningful identification without pure cultures or molecular cloning. We demonstrate the use of this specific PCR in combination with denaturing gradient gel electrophoresis to probe the diversity of oxygenic phototrophic microorganisms in cultures, lichens, and complex microbial communities.
Collapse
Affiliation(s)
- U Nübel
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | |
Collapse
|
36
|
Rapala J, Sivonen K, Lyra C, Niemelä SI. Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl Environ Microbiol 1997; 63:2206-12. [PMID: 9172340 PMCID: PMC168513 DOI: 10.1128/aem.63.6.2206-2212.1997] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cyanobacterial hepatotoxins, microcystins, are specific inhibitors of serine/threonine protein phosphatases and potent tumor promoters. They have caused several poisonings of animals and also pose a health hazard for humans through the use of water for drinking and recreation. Different strains of the same cyanobacterial species may variously be nontoxic, be neurotoxic, or produce several microcystin variants. It is poorly understood how the amount of toxins varies in a single strain. This laboratory study shows the importance of external growth stimuli in regulating the levels and relative proportions of different microcystin variants in two strains of filamentous, nitrogen-fixing Anabaena spp. The concentration of the toxins in the cells increased with phosphorus. High temperatures (25 to 30 degrees C), together with the highest levels of light studied (test range, 2 to 100 mumol m-2 s-1), decreased their amount. Different structural variants of microcystins responded differently to growth stimuli. Variants of microcystin (MCYST)-LR correlated with temperatures below 25 degrees C, and those of MCYST-RR correlated with higher temperatures. Nitrogen added into the growth medium and increasing temperatures increased the proportion of microcystin variants demethylated in amino acid 3. All variants remained mostly intracellular. Time was the most important factor causing the release of the toxins into the growth medium. Time, nitrogen added into the growth medium, and light fluxes above 25 mumol m-2 s-1 significantly increased the concentrations of the dissolved toxins. According to the results, it thus seems that the reduction of phosphorus loads in bodies of water might play a role in preventing the health hazards that toxic cyanobacterial water blooms pose, not only by decreasing the cyanobacteria but also by decreasing their toxin content.
Collapse
Affiliation(s)
- J Rapala
- Department of Applied Chemistry and Microbiology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
37
|
Annila A, Lehtimäki J, Mattila K, Eriksson JE, Sivonen K, Rantala TT, Drakenberg T. Solution structure of nodularin. An inhibitor of serine/threonine-specific protein phosphatases. J Biol Chem 1996; 271:16695-702. [PMID: 8663277 DOI: 10.1074/jbc.271.28.16695] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The three-dimensional solution structure of nodularin was studied by NMR and molecular dynamics simulations. The conformation in water was determined from the distance and dihedral data by distance geometry and refined by iterative relaxation matrix analysis. The cyclic backbone adopts a well defined conformation but the remote parts of the side chains of arginine as well as the amino acid derivative Adda have a large spatial dispersion. For the unusual amino acids the partial charges were calculated and nodularin was subjected to molecular dynamic simulations in water. A good agreement was found between experimental and computational data with hydrogen bonds, solvent accessibility, molecular motion, and conformational exchange. The three-dimensional structure resembles very closely that of microcystin-LR in the chemically equivalent segment. Therefore, it is expected that the binding of both microcystins and nodularins to serine/threonine-specific protein phosphatases is similar on an atomic level.
Collapse
Affiliation(s)
- A Annila
- VTT Chemical Technology, P. O. Box 1401, FIN-02044 VTT, Finland
| | | | | | | | | | | | | |
Collapse
|
38
|
Ramaswamy KS, Endley S, Golden JW. Nitrate reductase activity and heterocyst suppression on nitrate in Anabaena sp. strain PCC 7120 require moeA. J Bacteriol 1996; 178:3893-8. [PMID: 8682795 PMCID: PMC232651 DOI: 10.1128/jb.178.13.3893-3898.1996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mutants of Anabaena sp. strain PCC 7120 that form heterocysts when grown on nitrate-containing media were isolated following nitrosoguanidine mutagenesis. Six independent mutants were isolated, and the characterization of one mutant, strain AMC260, which forms 6 to 8% heterocysts in the presence of nitrate, is presented. A 1.8-kb chromosomal fragment that complemented the AMC260 mutant was sequenced, and a 1.2-kb open reading frame, named moeA, was identified. The deduced amino acid sequence of the predicted Anabaena sp. strain PCC 7120 MoeA polypeptide shows 37% identity to MoeA from Escherichia coli, which is required for the synthesis of molybdopterin cofactor. Molybdopterin is required by various molybdoenzymes, such as nitrate reductase. Interruption of the moeA gene in Anabaena sp. strain PCC 7120 resulted in a strain, AMC364, that showed a phenotype similar to that of AMC260. We show that AMC260 and AMC364 lack methyl viologen-supported nitrate reductase activity. We conclude that the inability of the moeA mutants to metabolize nitrate results in heterocyst formation on nitrate-containing media. Northern (RNA) analysis detected a 1.5-kb moeA transcript in wild-type cells grown in the presence or absence of a combined nitrogen source.
Collapse
Affiliation(s)
- K S Ramaswamy
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | | | | |
Collapse
|