1
|
Cao TN, Joyet P, Aké FMD, Milohanic E, Deutscher J. Studies of the Listeria monocytogenes Cellobiose Transport Components and Their Impact on Virulence Gene Repression. J Mol Microbiol Biotechnol 2019; 29:10-26. [PMID: 31269503 DOI: 10.1159/000500090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/31/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Many bacteria transport cellobiose via a phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). In Listeria monocytogenes, two pairs of soluble PTS components (EIIACel1/EIIBCel1 and EIIACel2/EIIBCel2) and the permease EIICCel1 were suggested to contribute to cellobiose uptake. Interestingly, utilization of several carbohydrates, including cellobiose, strongly represses virulence gene expression by inhibiting PrfA, the virulence gene activator. RESULTS The LevR-like transcription regulator CelR activates expression of the cellobiose-induced PTS operons celB1-celC1-celA1, celB2-celA2, and the EIIC-encoding monocistronic celC2. Phosphorylation by P∼His-HPr at His550 activates CelR, whereas phosphorylation by P∼EIIBCel1 or P∼EIIBCel2 at His823 inhibits it. Replacement of His823 with Ala or deletion of both celA or celB genes caused constitutive CelR regulon expression. Mutants lacking EIICCel1, CelR or both EIIACel exhibitedslow cellobiose consumption. Deletion of celC1 or celR prevented virulence gene repression by the disaccharide, but not by glucose and fructose. Surprisingly, deletion of both celA genes caused virulence gene repression even during growth on non-repressing carbohydrates. No cellobiose-related phenotype was found for the celC2 mutant. CONCLUSION The two EIIA/BCel pairs are similarly efficient as phosphoryl donors in EIICCel1-catalyzed cellobiose transport and CelR regulation. The permanent virulence gene repression in the celA double mutant further supports a role of PTSCel components in PrfA regulation.
Collapse
Affiliation(s)
- Thanh Nguyen Cao
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Joyet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Eliane Milohanic
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France, .,Centre National de la Recherche Scientifique, UMR8261 Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris, France,
| |
Collapse
|
2
|
A Mannose Family Phosphotransferase System Permease and Associated Enzymes Are Required for Utilization of Fructoselysine and Glucoselysine in Salmonella enterica Serovar Typhimurium. J Bacteriol 2015; 197:2831-9. [PMID: 26100043 DOI: 10.1128/jb.00339-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/14/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Salmonella enteric serovar Typhimurium, a major cause of food-borne illness, is capable of using a variety of carbon and nitrogen sources. Fructoselysine and glucoselysine are Maillard reaction products formed by the reaction of glucose or fructose, respectively, with the ε-amine group of lysine. We report here that S. Typhimurium utilizes fructoselysine and glucoselysine as carbon and nitrogen sources via a mannose family phosphotransferase (PTS) encoded by gfrABCD (glucoselysine/fructoselysine PTS components EIIA, EIIB, EIIC, and EIID; locus numbers STM14_5449 to STM14_5454 in S. Typhimurium 14028s). Genes coding for two predicted deglycases within the gfr operon, gfrE and gfrF, were required for growth with glucoselysine and fructoselysine, respectively. GfrF demonstrated fructoselysine-6-phosphate deglycase activity in a coupled enzyme assay. The biochemical and genetic analyses were consistent with a pathway in which fructoselysine and glucoselysine are phosphorylated at the C-6 position of the sugar by the GfrABCD PTS as they are transported across the membrane. The resulting fructoselysine-6-phosphate and glucoselysine-6-phosphate subsequently are cleaved by GfrF and GfrE to form lysine and glucose-6-phosphate or fructose-6-phosphate. Interestingly, although S. Typhimurium can use lysine derived from fructoselysine or glucoselysine as a sole nitrogen source, it cannot use exogenous lysine as a nitrogen source to support growth. Expression of gfrABCDEF was dependent on the alternative sigma factor RpoN (σ(54)) and an RpoN-dependent LevR-like activator, which we designated GfrR. IMPORTANCE Salmonella physiology has been studied intensively, but there is much we do not know regarding the repertoire of nutrients these bacteria are able to use for growth. This study shows that a previously uncharacterized PTS and associated enzymes function together to transport and catabolize fructoselysine and glucoselysine. Knowledge of the range of nutrients that Salmonella utilizes is important, as it could lead to the development of new strategies for reducing the load of Salmonella in food animals, thereby mitigating its entry into the human food supply.
Collapse
|
3
|
Heravi KM, Wenzel M, Altenbuchner J. Regulation of mtl operon promoter of Bacillus subtilis: requirements of its use in expression vectors. Microb Cell Fact 2011; 10:83. [PMID: 22014119 PMCID: PMC3217849 DOI: 10.1186/1475-2859-10-83] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/20/2011] [Indexed: 11/10/2022] Open
Abstract
Background Several vector systems have been developed to express any gene desired to be studied in Bacillus subtilis. Among them, the transcriptionally regulated promoters involved in carbohydrate utilization are a research priority. Expression systems based on Bacillus promoters for xylose, maltose, and mannose utilization, as well as on the heterologous E. coli lactose promoter, have been successfully constructed. The promoter of the mtlAFD operon for utilization of mannitol is another promising candidate for its use in expression vectors. In this study, we investigated the regulation of the mtl genes in order to identify the elements needed to construct a strong mannitol inducible expression system in B. subtilis. Results Regulation of the promoters of mtlAFD operon (PmtlA) and mtlR (PmtlR) encoding the activator were investigated by fusion to lacZ. Identification of the PmtlA and PmtlR transcription start sites revealed the σA like promoter structures. Also, the operator of PmtlA was determined by shortening, nucleotide exchange, and alignment of PmtlA and PmtlR operator regions. Deletion of the mannitol-specific PTS genes (mtlAF) resulted in PmtlA constitutive expression demonstrating the inhibitory effect of EIICBMtl and EIIAMtl on MtlR in the absence of mannitol. Disruption of mtlD made the cells sensitive to mannitol and glucitol. Both PmtlA and PmtlR were influenced by carbon catabolite repression (CCR). However, a CcpA deficient mutant showed only a slight reduction in PmtlR catabolite repression. Similarly, using PgroE as a constitutive promoter, putative cre sites of PmtlA and PmtlR slightly reduced the promoter activity in the presence of glucose. In contrast, glucose repression of PmtlA and PmtlR was completely abolished in a ΔptsG mutant and significantly reduced in a MtlR (H342D) mutant. Conclusions The mtl operon promoter (PmtlA) is a strong promoter that reached a maximum of 13,000 Miller units with lacZ as a reporter on low copy plasmids. It is tightly regulated by just one copy of the mtlR gene on the chromosome and subject to CCR. CCR can be switched off by mutations in MtlR and the glucose transporter. These properties and the low costs of the inducers, i.e. mannitol and glucitol, make the promoter ideal for designing regulated expression systems.
Collapse
|
4
|
Aké FMD, Joyet P, Deutscher J, Milohanic E. Mutational analysis of glucose transport regulation and glucose-mediated virulence gene repression in Listeria monocytogenes. Mol Microbiol 2011; 81:274-93. [PMID: 21564334 DOI: 10.1111/j.1365-2958.2011.07692.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Listeria monocytogenes transports glucose/mannose via non-PTS permeases and phosphoenolpyruvate:carbohydrate phosphotransferase systems (PTS). Two mannose class PTS are encoded by the constitutively expressed mpoABCD and the inducible manLMN operons. The man operon encodes the main glucose transporter because manL or manM deletion significantly slows glucose utilization, whereas mpoA deletion has no effect. The PTS(Mpo) mainly functions as a constitutively synthesized glucose sensor controlling man operon expression by phosphorylating and interacting with ManR, a LevR-like transcription activator. EIIB(Mpo) plays a dual role in ManR regulation: P~EIIB(Mpo) prevailing in the absence of glucose phosphorylates and thereby inhibits ManR activity, whereas unphosphorylated EIIB(Mpo) prevailing during glucose uptake is needed to render ManR active. In contrast to mpoA, deletion of mpoB therefore strongly inhibits man operon expression and glucose consumption. A ΔptsI (EI) mutant consumes glucose at an even slower rate probably via GlcU-like non-PTS transporters. Interestingly, deletion of ptsI, manL, manM or mpoB causes elevated PrfA-mediated virulence gene expression. The PTS(Man) is the major player in glucose-mediated PrfA inhibition because the ΔmpoA mutant showed normal PrfA activity. The four mutants showing PrfA derepression contain no or only little unphosphorylated EIIAB(Man) (ManL), which probably plays a central role in glucose-mediated PrfA regulation.
Collapse
Affiliation(s)
- Francine M D Aké
- Laboratoire de Microbiologie de l'Alimentation au Service de la Santé, AgroParisTech-INRA UMR1319, 78850 Thiverval-Grignon, France
| | | | | | | |
Collapse
|
5
|
Abstract
The mannose operon of Bacillus subtilis consists of three genes, manP, manA, and yjdF, which are responsible for the transport and utilization of mannose. Upstream and in the same orientation as the mannose operon a regulatory gene, manR, codes for a transcription activator of the mannose operon, as shown in this study. Both mannose operon transcription and manR transcription are inducible by mannose. The presence of mannose resulted in a 4- to 7-fold increase in expression of lacZ from the manP promoter (P(manP)) and in a 3-fold increase in expression of lacZ from the manR promoter (P(manR)). The transcription start sites of manPA-yjdF and manR were determined to be a single A residue and a single G residue, respectively, preceded by -10 and -35 boxes resembling a vegetative sigma(A) promoter structure. Through deletion analysis the target sequences of ManR upstream of P(manP) and P(manR) were identified between bp -80 and -35 with respect to the transcriptional start site of both promoters. Deletion of manP (mannose transporter) resulted in constitutive expression from both the P(manP) and P(manR) promoters, indicating that the phosphotransferase system (PTS) component EII(Man) has a negative effect on regulation of the mannose operon and manR. Moreover, both P(manP) and P(manR) are subject to carbon catabolite repression (CCR). By constructing protein sequence alignments a DNA binding motif at the N-terminal end, two PTS regulation domains (PRDs), and an EIIA- and EIIB-like domain were identified in the ManR sequence, indicating that ManR is a PRD-containing transcription activator. Like findings for other PRD regulators, the phosphoenolpyruvate (PEP)-dependent phosphorylation by the histidine protein HPr via His15 plays an essential role in transcriptional activation of P(manP) and P(manR). Phosphorylation of Ser46 of HPr or of the homologous Crh protein by HPr kinase and formation of a repressor complex with CcpA are parts of the B. subtilis CCR system. Only in the double mutant with an HPr Ser46Ala mutation and a crh knockout mutation was CCR strongly reduced. In contrast, P(manR) and P(manP) were not inducible in a ccpA deletion mutant.
Collapse
|
6
|
Herzberg C, Weidinger LAF, Dörrbecker B, Hübner S, Stülke J, Commichau FM. SPINE: a method for the rapid detection and analysis of protein-protein interactions in vivo. Proteomics 2008; 7:4032-5. [PMID: 17994626 DOI: 10.1002/pmic.200700491] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The detection and analysis of protein-protein interactions is one of the central tasks of proteomics in the postgenomic era. For this purpose, we present a procedure, the Strep-protein interaction experiment (SPINE) that combines the advantages of the Strep-tag protein purification system with those of reversible in vivo protein crosslinking by formaldehyde. Using two Bacillus subtilis regulator proteins, we demonstrate that this method is well suited to isolate protein complexes with high purity and virtually no background. Plasmids allowing the high-level expression of proteins carrying an N- or C-terminal Strep-tag in B. subtilis were constructed.
Collapse
Affiliation(s)
- Christina Herzberg
- Department of General Microbiology, Georg-August-University Göttingen, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Vogl C, Grill S, Schilling O, Stülke J, Mack M, Stolz J. Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum. J Bacteriol 2007; 189:7367-75. [PMID: 17693491 PMCID: PMC2168442 DOI: 10.1128/jb.00590-07] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 08/03/2007] [Indexed: 01/12/2023] Open
Abstract
Riboflavin (vitamin B(2)) is the direct precursor of the flavin cofactors flavin mononucleotide and flavin adenine dinucleotide, essential components of cellular biochemistry. In this work we investigated the unrelated proteins YpaA from Bacillus subtilis and PnuX from Corynebacterium glutamicum for a role in riboflavin uptake. Based on the regulation of the corresponding genes by a riboswitch mechanism, both proteins have been predicted to be involved in flavin metabolism. Moreover, their primary structures suggested that these proteins integrate into the cytoplasmic membrane. We provide experimental evidence that YpaA is a plasma membrane protein with five transmembrane domains and a cytoplasmic C terminus. In B. subtilis, riboflavin uptake was increased when ypaA was overexpressed and abolished when ypaA was deleted. Riboflavin uptake activity and the abundance of the YpaA protein were also increased when riboflavin auxotrophic mutants were grown in limiting amounts of riboflavin. YpaA-mediated riboflavin uptake was sensitive to protonophors and reduced in the absence of glucose, demonstrating that the protein requires metabolic energy for substrate translocation. In addition, we demonstrate that PnuX from C. glutamicum also is a riboflavin transporter. Transport by PnuX was not energy dependent and had high apparent affinity for riboflavin (K(m) 11 microM). Roseoflavin, a toxic riboflavin analog, appears to be a substrate of PnuX and YpaA. We propose to designate the gene names ribU for ypaA and ribM for pnuX to reflect that the encoded proteins function in riboflavin uptake and that the genes have different phylogenetic origins.
Collapse
Affiliation(s)
- Christian Vogl
- Lehrstuhl für Ernährungsphysiologie, Technische Universität München, Am Forum 5, 85350, Freising-Weihenstephan, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
The increasing number of genomic and post-genomic studies on Gram-positive organisms and especially on lactic acid bacteria brings a lot of information on sugar catabolism in these bacteria. Like for many other bacteria, glucose is the most preferred source of carbon and energy for Lactococcus lactis. Other carbon sources can induce their own utilization in the absence of well-metabolized sugar. These processes engage numbers of genes and undergo complex mechanisms of regulation. In this review, we discuss various biochemical and genetic control mechanisms involved in sugar catabolism, like regulation by repressors, activators, antiterminators or carbon catabolite repression control.
Collapse
Affiliation(s)
- Magdalena Kowalczyk
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics PAS, Pawinskiego, Warszawa, Poland.
| | | |
Collapse
|
9
|
Reichenbach B, Breustedt DA, Stülke J, Rak B, Görke B. Genetic dissection of specificity determinants in the interaction of HPr with enzymes II of the bacterial phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli. J Bacteriol 2007; 189:4603-13. [PMID: 17449611 PMCID: PMC1913440 DOI: 10.1128/jb.00236-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The histidine protein (HPr) is the energy-coupling protein of the phosphoenolpyruvate (PEP)-dependent carbohydrate:phosphotransferase system (PTS), which catalyzes sugar transport in many bacteria. In its functions, HPr interacts with a number of evolutionarily unrelated proteins. Mainly, it delivers phosphoryl groups from enzyme I (EI) to the sugar-specific transporters (EIIs). HPr proteins of different bacteria exhibit almost identical structures, and, where known, they use similar surfaces to interact with their target proteins. Here we studied the in vivo effects of the replacement of HPr and EI of Escherichia coli with the homologous proteins from Bacillus subtilis, a gram-positive bacterium. This replacement resulted in severe growth defects on PTS sugars, suggesting that HPr of B. subtilis cannot efficiently phosphorylate the EIIs of E. coli. In contrast, activation of the E. coli BglG regulatory protein by HPr-catalyzed phosphorylation works well with the B. subtilis HPr protein. Random mutations were introduced into B. subtilis HPr, and a screen for improved growth on PTS sugars yielded amino acid changes in positions 12, 16, 17, 20, 24, 27, 47, and 51, located in the interaction surface of HPr. Most of the changes restore intermolecular hydrophobic interactions and salt bridges normally formed by the corresponding residues in E. coli HPr. The residues present at the targeted positions differ between HPrs of gram-positive and -negative bacteria, but within each group they are highly conserved. Therefore, they may constitute a signature motif that determines the specificity of HPr for either gram-negative or -positive EIIs.
Collapse
Affiliation(s)
- Birte Reichenbach
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University, Grisebachstrasse 8, D-37077 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
10
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 998] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
11
|
|
12
|
Arous S, Buchrieser C, Folio P, Glaser P, Namane A, Hébraud M, Héchard Y. Global analysis of gene expression in an rpoN mutant of Listeria monocytogenes. MICROBIOLOGY-SGM 2004; 150:1581-1590. [PMID: 15133119 DOI: 10.1099/mic.0.26860-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The role of the alternative sigma(54) factor, encoded by the rpoN gene, was investigated in Listeria monocytogenes by comparing the global gene expression of the wild-type EGDe strain and an rpoN mutant. Gene expression, using whole-genome macroarrays, and protein content, using two-dimensional gel electrophoresis, were analysed. Seventy-seven genes and nine proteins, whose expression was modulated in the rpoN mutant as compared to the wild-type strain, were identified. Most of the modifications were related to carbohydrate metabolism and in particular to pyruvate metabolism. However, under the conditions studied, only the mptACD operon was shown to be directly controlled by sigma(54). Therefore, the remaining modifications seem to be due to indirect effects. In parallel, an in silico analysis suggests that sigma(54) may directly control the expression of four different phosphotransferase system (PTS) operons, including mptACD. PTS activity is known to have a direct effect on the pyruvate pool and on catabolite regulation. These results suggest that sigma(54) is mainly involved in the control of carbohydrate metabolism in L. monocytogenes via direct regulation of PTS activity, alteration of the pyruvate pool and modulation of carbon catabolite regulation.
Collapse
Affiliation(s)
- Safia Arous
- Equipe de Microbiologie Fondamentale et Appliquée, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - Carmen Buchrieser
- Laboratoire de Génomique des Micro-organismes Pathogènes, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Patrice Folio
- Station de Recherches sur la Viande, Institut National de la Recherche Agronomique de Theix, 63122 Saint-Genes Champanelle, France
| | - Philippe Glaser
- Laboratoire de Génomique des Micro-organismes Pathogènes, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Abdelkader Namane
- Plateforme de protéomique, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Michel Hébraud
- Station de Recherches sur la Viande, Institut National de la Recherche Agronomique de Theix, 63122 Saint-Genes Champanelle, France
| | - Yann Héchard
- Equipe de Microbiologie Fondamentale et Appliquée, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| |
Collapse
|
13
|
The bacterial phosphotransferase system: a perfect link of sugar transport and signal transduction. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/b95776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Schmalisch MH, Bachem S, Stülke J. Control of the Bacillus subtilis Antiterminator Protein GlcT by Phosphorylation. J Biol Chem 2003; 278:51108-15. [PMID: 14527945 DOI: 10.1074/jbc.m309972200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus subtilis transports glucose by the phosphotransferase system (PTS). The genes for this system are encoded in the ptsGHI operon, which is induced by glucose and depends on a termination/antitermination mechanism involving a riboswitch and the RNA-binding antitermination protein GlcT. In the absence of glucose, GlcT is inactive, and a terminator is formed in the leader region of the ptsG mRNA. If glucose is present, GlcT can bind to its RNA target and prevent transcription termination. The GlcT protein is composed of three domains, an N-terminal RNA binding domain and two PTS regulation domains, PTS regulation domain (PRD) I and PRD-II. In this work, we demonstrate that GlcT can be phosphorylated by two PTS proteins, HPr and the glucose-specific enzyme II (EIIGlc). HPr-dependent phosphorylation occurs on PRD-II and has a slight stimulatory effect on GlcT activity. In contrast, EIIGlc phosphorylates the PRD-I of GlcT, and this phosphorylation inactivates GlcT. This latter phosphorylation event links the availability of glucose to the expression of the ptsGHI operon via the phosphorylation state of EIIGlc and GlcT. This is the first in vitro demonstration of a direct phosphorylation of an antiterminator of the BglG family by the corresponding PTS permease.
Collapse
Affiliation(s)
- Matthias H Schmalisch
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nuremberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | | | | |
Collapse
|
15
|
Nothaft H, Parche S, Kamionka A, Titgemeyer F. In vivo analysis of HPr reveals a fructose-specific phosphotransferase system that confers high-affinity uptake in Streptomyces coelicolor. J Bacteriol 2003; 185:929-37. [PMID: 12533468 PMCID: PMC142823 DOI: 10.1128/jb.185.3.929-937.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HPr, the histidine-containing phosphocarrier protein of the bacterial phosphotransferase system (PTS), serves multiple functions in carbohydrate uptake and carbon source regulation in low-G+C-content gram-positive bacteria and in gram-negative bacteria. To assess the role of HPr in the high-G+C-content gram-positive organism Streptomyces coelicolor, the encoding gene, ptsH, was deleted. The ptsH mutant BAP1 was impaired in fructose utilization, while growth on other carbon sources was not affected. Uptake assays revealed that BAP1 could not transport appreciable amounts of fructose, while the wild type showed inducible high-affinity fructose transport with an apparent K(m) of 2 microM. Complementation and reconstitution experiments demonstrated that HPr is indispensable for a fructose-specific PTS activity. Investigation of the putative fruKA gene locus led to identification of the fructose-specific enzyme II permease encoded by the fruA gene. Synthesis of HPr was not specifically enhanced in fructose-grown cells and occurred also in the presence of non-PTS carbon sources. Transcriptional analysis of ptsH revealed two promoters that are carbon source regulated. In contrast to what happens in other bacteria, glucose repression of glycerol kinase was still operative in a ptsH background, which suggests that HPr is not involved in general carbon regulation. However, fructose repression of glycerol kinase was lost in BAP1, indicating that the fructose-PTS is required for transduction of the signal. This study provides the first molecular genetic evidence of a physiological role of the PTS in S. coelicolor.
Collapse
Affiliation(s)
- Harald Nothaft
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | | | | | | |
Collapse
|
16
|
Khan SR, Banerjee-Bhatnagar N. Loss of catabolite repression function of HPr, the phosphocarrier protein of the bacterial phosphotransferase system, affects expression of the cry4A toxin gene in Bacillus thuringiensis subsp. israelensis. J Bacteriol 2002; 184:5410-7. [PMID: 12218029 PMCID: PMC135351 DOI: 10.1128/jb.184.19.5410-5417.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HPr, the phosphocarrier protein of the bacterial phosphotransferase system, mediates catabolite repression of a number of operons in gram-positive bacteria. In order to participate in the regulatory process, HPr is activated by phosphorylation of a conserved serine-46 residue. To study the potential role of HPr in the regulation of Cry4A protoxin synthesis in Bacillus thuringiensis subsp. israelensis, we produced a catabolite repression-negative mutant by replacing the wild-type copy of the ptsH gene with a mutated copy in which the conserved serine residue of HPr was replaced with an alanine. HPr isolated from the mutant strain was not phosphorylated at Ser-45 by HPr kinase, but phosphorylation at His-14 was found to occur normally. The enzyme I and HPr kinase activities of the mutant were not affected. Analysis of the B. thuringiensis subsp. israelensis mutant harboring ptsH-S45A in the chromosome showed that cry4A expression was derepressed from the inhibitory effect of glucose. The mutant strain produced both cry4A and sigma(35) gene transcripts 4 h ahead of the parent strain, but there was no effect on sigma(28) synthesis. In wild-type B. thuringiensis subsp. israelensis cells, cry4A mRNA was observed from 12 h onwards, while in the mutant it appeared at 8 h and was produced for a longer period. The total amount of cry4A transcripts produced by the mutant was higher than by the parent strain. There was a 60 to 70% reduction in the sporulation efficiency of the mutant B. thuringiensis subsp. israelensis strain compared to the wild-type strain.
Collapse
Affiliation(s)
- Sharik R Khan
- Centre For Biotechnology, Jawaharlal Nehru University. International Centre For Genetic Engineering and Biotechnology, New Delhi, India
| | | |
Collapse
|
17
|
Tortosa P, Declerck N, Dutartre H, Lindner C, Deutscher J, Le Coq D. Sites of positive and negative regulation in the Bacillus subtilis antiterminators LicT and SacY. Mol Microbiol 2001; 41:1381-93. [PMID: 11580842 DOI: 10.1046/j.1365-2958.2001.02608.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis homologous transcriptional antiterminators LicT and SacY control the inducible expression of genes involved in aryl beta-glucoside and sucrose utilization respectively. Their RNA-binding activity is carried by the N-terminal domain (CAT), and is regulated by two similar C-terminal domains (PRD1 and PRD2), which are the targets of phosphorylation reactions catalysed by the phosphoenolpyruvate: sugar phosphotransferase system (PTS). In the absence of the corresponding inducer, LicT is inactivated by BglP, the PTS permease (EII) specific for aryl beta-glucosides, and SacY by SacX, a negative regulator homologous to the EII specific for sucrose. LicT, but not SacY, is also subject to a positive control by the general PTS components EI and HPr, which are thought to phosphorylate LicT in the absence of carbon catabolite repression. Construction of SacY/LicT hybrids and mutational analysis enabled the location of the sites of this positive regulation at the two phosphorylatable His207 and His269 within LicT-PRD2, and suggested that the presence of negative charges at these sites is sufficient for LicT activation in vivo. The BglP-mediated inhibition process was found to essentially involve His100 of LicT-PRD1, with His159 of the same domain playing a minor role in this regulation. In vitro experiments indicated that His100 could be phosphorylated directly by the general PTS proteins, this phosphorylation being stimulated by phosphorylated BglP. We confirmed that, similarly, the corresponding conserved His99 residue in SacY is the major site of the negative control exerted by SacX on SacY activity. Thus, for both antiterminators, the EII-mediated inhibition process seems to rely primarily on the presence of a negative charge at the first conserved histidine of the PRD1.
Collapse
Affiliation(s)
- P Tortosa
- Laboratoire de Génétique des Microorganismes, INRA, CNRS-URA1925, Thiverval-Grignon, France
| | | | | | | | | | | |
Collapse
|
18
|
Yamamoto H, Serizawa M, Thompson J, Sekiguchi J. Regulation of the glv operon in Bacillus subtilis: YfiA (GlvR) is a positive regulator of the operon that is repressed through CcpA and cre. J Bacteriol 2001; 183:5110-21. [PMID: 11489864 PMCID: PMC95387 DOI: 10.1128/jb.183.17.5110-5121.2001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maltose metabolism and the regulation of the glv operon of Bacillus subtilis, comprising three genes, glvA (6-phospho-alpha-glucosidase), yfiA (now designated glvR), and glvC (EIICB transport protein), were investigated. Maltose dissimilation was dependent primarily upon the glv operon, and insertional inactivation of either glvA, glvR, or glvC markedly inhibited growth on the disaccharide. A second system (MalL) contributed to a minor extent to maltose metabolism. Northern blotting revealed two transcripts corresponding to a monocistronic mRNA of glvA and a polycistronic mRNA of glvA-glvR-glvC. Primer extension analysis showed that both transcripts started at the same base (G) located 26 bp upstream of the 5' end of glvA. When glvR was placed under control of the spac promoter, expression of the glv operon was dependent upon the presence of isopropyl-beta-D-thiogalactopyranoside (IPTG). In regulatory studies, the promoter sequence of the glv operon was fused to lacZ and inserted into the amyE locus, and the resultant strain (AMGLV) was then transformed with a citrate-controlled glvR plasmid, pHYCM2VR. When cultured in Difco sporulation medium containing citrate, this transformant [AMGLV(pHYCM2VR)] expressed LacZ activity, but synthesis of LacZ was repressed by glucose. In an isogenic strain, [AMGLVCR(pHYCM2VR)], except for a mutation in the sequence of a catabolite-responsive element (cre), LacZ activity was expressed in the presence of citrate and glucose. Insertion of a citrate-controlled glvR plasmid at the amyE locus of ccpA(+) and ccpA mutant organisms yielded strains AMCMVR and AMCMVRCC, respectively. In the presence of both glucose and citrate, AMCMVR failed to express the glv operon, whereas under the same conditions high-level expression of both mRNA transcripts was found in strain AMCMVRCC. Collectively, our findings suggest that GlvR (the product of the glvR gene) is a positive regulator of the glv operon and that glucose exerts its effect via catabolite repression requiring both CcpA and cre.
Collapse
Affiliation(s)
- H Yamamoto
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan
| | | | | | | |
Collapse
|
19
|
Moreno MS, Schneider BL, Maile RR, Weyler W, Saier MH. Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol Microbiol 2001; 39:1366-81. [PMID: 11251851 DOI: 10.1111/j.1365-2958.2001.02328.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies have shown that the CcpA protein of Bacillus subtilis is a major transcription factor mediating catabolite repression. We report here whole-transcriptome analyses that characterize CcpA-dependent, glucose-dependent gene expression and correlate the results with full-genome computer analyses of DNA binding (CRE) sites for CcpA. The data obtained using traditional approaches show good agreement with those obtained using the transcriptome approach. About 10% of all genes in B. subtilis are regulated > 3x by glucose, with repressed genes outnumbering activated genes three to one. Eighty per cent of these genes depend on CcpA for regulation. Classical approaches have provided only evidence for CcpA-mediated, glucose-dependent activation or repression. We show here that CcpA also mediates glucose-independent activation or repression, and that glucose may alter either the direction or the intensity of either effect. Computer analyses revealed the presence of CRE sites in most operons subject to CcpA-mediated glucose repression, but not in those subject to glucose activation, suggesting that either secondary transcription factors regulate the latter genes or activation by CcpA involves a dissimilar binding site. Operons encoding the constituents of ABC-type transporters that are subject to CcpA-mediated glucose regulation show two distinct patterns: either all genes in the operon are regulated in parallel (the minor class) or the gene encoding the extracytoplasmic solute-binding receptor is preferentially regulated (the major class). Genes subject to CcpA-independent catabolite repression are primarily concerned with sporulation. Several transcription factors were identified that are themselves regulated by CcpA at the transcriptional level. Representative data with functionally characterized genes are presented to illustrate the novel findings. The comprehensive transcriptome data are available on our website: www.biology.uesd.edu/~MSAIER/regulation/ and also on http://www.blackwell-science.com/ products/journals/suppmat/MMI/MMI2328/MMI2328sm.htm
Collapse
Affiliation(s)
- M S Moreno
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
The gram-positive bacterium Bacillus subtilisis capable of using numerous carbohydrates as single sources of carbon and energy. In this review, we discuss the mechanisms of carbon catabolism and its regulation. Like many other bacteria, B. subtilis uses glucose as the most preferred source of carbon and energy. Expression of genes involved in catabolism of many other substrates depends on their presence (induction) and the absence of carbon sources that can be well metabolized (catabolite repression). Induction is achieved by different mechanisms, with antitermination apparently more common in B. subtilis than in other bacteria. Catabolite repression is regulated in a completely different way than in enteric bacteria. The components mediating carbon catabolite repression in B. subtilis are also found in many other gram-positive bacteria of low GC content.
Collapse
Affiliation(s)
- J Stülke
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
21
|
Chen Q, Postma PW, Amster-Choder O. Dephosphorylation of the Escherichia coli transcriptional antiterminator BglG by the sugar sensor BglF is the reversal of its phosphorylation. J Bacteriol 2000; 182:2033-6. [PMID: 10715013 PMCID: PMC101925 DOI: 10.1128/jb.182.7.2033-2036.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli BglF protein catalyzes transport and phosphorylation of beta-glucosides. In addition, BglF is a membrane sensor which reversibly phosphorylates the transcriptional regulator BglG, depending on beta-glucoside availability. Therefore, BglF has three enzymatic activities: beta-glucoside phosphotransferase, BglG phosphorylase, and phospho-BglG (BglG-P) dephosphorylase. Cys-24 of BglF is the active site which delivers the phosphoryl group either to the sugar or to BglG. To characterize the dephosphorylase activity, we asked whether BglG-P can give the phosphoryl group back to Cys-24 of BglF. Here we provide evidence which is consistent with the interpretation that Cys-24-P is an intermediate in the BglG-P dephosphorylation reaction. Hence, the dephosphorylation reaction catalyzed by BglF proceeds via reversal of the phosphorylation reaction.
Collapse
Affiliation(s)
- Q Chen
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
22
|
Henstra SA, Duurkens RH, Robillard GT. Multiple phosphorylation events regulate the activity of the mannitol transcriptional regulator MtlR of the Bacillus stearothermophilus phosphoenolpyruvate-dependent mannitol phosphotransferase system. J Biol Chem 2000; 275:7037-44. [PMID: 10702268 DOI: 10.1074/jbc.275.10.7037] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
D-mannitol is taken up by Bacillus stearothermophilus and phosphorylated via a phosphoenolpyruvate-dependent phosphotransferase system (PTS). Transcription of the genes involved in mannitol uptake in this bacterium is regulated by the transcriptional regulator MtlR, a DNA-binding protein whose affinity for DNA is controlled by phosphorylation by the PTS proteins HPr and IICB(mtl). The mutational and biochemical studies presented in this report reveal that two domains of MtlR, PTS regulation domain (PRD)-I and PRD-II, are phosphorylated by HPr, whereas a third IIA-like domain is phosphorylated by IICB(mtl). An involvement of PRD-I and the IIA-like domain in a decrease in affinity of MtlR for DNA and of PRD-II in an increase in affinity is demonstrated by DNA footprint experiments using MtlR mutants. Since both PRD-I and PRD-II are phosphorylated by HPr, PRD-I needs to be dephosphorylated by IICB(mtl) and mannitol to obtain maximal affinity for DNA. This implies that a phosphoryl group can be transferred from HPr to IICB(mtl) via MtlR. Indeed, this transfer could be demonstrated by the phosphoenolpyruvate-dependent formation of [(3)H]mannitol phosphate in the absence of IIA(mtl). Phosphoryl transfer experiments using MtlR mutants revealed that PRD-I and PRD-II are dephosphorylated via the IIA-like domain. Complementation experiments using two mutants with no or low phosphoryl transfer activity showed that phosphoryl transfer between MtlR molecules is possible, indicating that MtlR-MtlR interactions take place. Phosphorylation of the same site by HPr and dephosphorylation by IICB(mtl) have not been described before; they could also play a role in other PRD-containing proteins.
Collapse
Affiliation(s)
- S A Henstra
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
23
|
Reizer J, Bachem S, Reizer A, Arnaud M, Saier MH, Stülke J. Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 12):3419-3429. [PMID: 10627040 DOI: 10.1099/00221287-145-12-3419] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacillus subtilis can utilize several sugars as single sources of carbon and energy. Many of these sugars are transported and concomitantly phosphorylated by the phosphoenolpyruvate:sugar phosphotransferase system (PTS). In addition to its role in sugar uptake, the PTS is one of the major signal transduction systems in B. subtilis. In this study, an analysis of the complete set of PTS proteins encoded within the B. subtilis genome is presented. Fifteen sugar-specific PTS permeases were found to be present and the functions of novel PTS permeases were studied based on homology to previously characterized permeases, analysis of the structure of the gene clusters in which the permease encoding genes are located and biochemical analysis of relevant mutants. Members of the glucose, sucrose, lactose, mannose and fructose/mannitol families of PTS permeases were identified. Interestingly, nine pairs of IIB and IIC domains belonging to the glucose and sucrose permease families are present in B. subtilis; by contrast only five Enzyme IIA(Glc)-like proteins or domains are encoded within the B. subtilis genome. Consequently, some of the EIIA(Glc)-like proteins must function in phosphoryl transfer to more than one IIB domain of the glucose and sucrose families. In addition, 13 PTS-associated proteins are encoded within the B. subtilis genome. These proteins include metabolic enzymes, a bifunctional protein kinase/phosphatase, a transcriptional cofactor and transcriptional regulators that are involved in PTS-dependent signal transduction. The PTS proteins and the auxiliary PTS proteins represent a highly integrated network that catalyses and simultaneously modulates carbohydrate utilization in this bacterium.
Collapse
Affiliation(s)
- Jonathan Reizer
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA1
| | - Steffi Bachem
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany2
| | - Aiala Reizer
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA1
| | - Maryvonne Arnaud
- Unité de Biochimie Microbienne, D épartement des Biotechnologies, Institut Pasteur, 25 rue du Dr Roux, F-75724 Paris Cedex 15, France 3
| | - Milton H Saier
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA1
| | - Jörg Stülke
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany2
| |
Collapse
|
24
|
Martin-Verstraete I, Galinier A, Darbon E, Quentin Y, Kilhoffer MC, Charrier V, Haiech J, Rapoport G, Deutscher J. The Q15H mutation enables Crh, a Bacillus subtilis HPr-like protein, to carry out some regulatory HPr functions, but does not make it an effective phosphocarrier for sugar transport. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 11):3195-3204. [PMID: 10589728 DOI: 10.1099/00221287-145-11-3195] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Crh of Bacillus subtilis exhibits 45% sequence identity when compared to histidine-containing protein (HPr), a phosphocarrier protein of the phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS). Crh can be phosphorylated by ATP at the regulatory Ser-46 and similar to P-Ser-HPr, P-Ser-Crh plays a role in carbon-catabolite repression. The sequence around the phosphorylatable Ser-46 in Crh exhibits strong similarity to the corresponding sequence of HPr of Gram-positive and a few Gram-negative bacteria. In contrast, the catalytic His-15, the site of PEP-dependent phosphorylation in HPr, is replaced with a glutamine in Crh. When Gln-15 was exchanged for a histidyl residue, in vitro PEP-dependent enzyme I-catalysed phosphorylation of the mutant Crh was observed. However, expression of the crhQ15H mutant allele did not restore growth of a ptsH deletion strain on the PTS sugars glucose, fructose or mannitol or on the non-PTS sugar glycerol. In contrast, Q15H mutant Crh could phosphorylate the transcriptional activator LevR as well as LevD, the enzyme IIA of the fructose-specific lev-PTS, which together with enzyme I, HPr and LevE forms the phosphorylation cascade regulating induction of the lev operon via LevR. As a consequence, the constitutive expression from the lev promoter observed in a (delta)ptsH strain became inducible with fructose when the crhQ15H allele was expressed in this strain.
Collapse
Affiliation(s)
| | - Anne Galinier
- Institut de Biologie et Chimie des Protéines, CNRS UPR 412, F-69367 Lyon Cedex 07, France2
| | - Emmanuelle Darbon
- Laboratoire de Génétique des Microorganismes, INRA-CNRS URA 1925,F-78850 Thiverval-Grignon, France3
| | - Yves Quentin
- Laboratoire de Chimie Bactérienne, CNRS UPR 9043, F-13009 Marseille, France4
| | - Marie-Claude Kilhoffer
- Laboratoire de Biophysique, URA 491, Université Louis Pasteur,F-67401 Illkirch Cedex, France5
| | - Véronique Charrier
- Institut de Biologie et Chimie des Protéines, CNRS UPR 412, F-69367 Lyon Cedex 07, France2
| | - Jacques Haiech
- Laboratoire de Biophysique, URA 491, Université Louis Pasteur,F-67401 Illkirch Cedex, France5
| | - Georges Rapoport
- Unité de Biochimie Microbienne, CNRS URA 1300, Institut Pasteur,F-75724 Paris, France1
| | - Josef Deutscher
- Laboratoire de Génétique des Microorganismes, INRA-CNRS URA 1925,F-78850 Thiverval-Grignon, France3
| |
Collapse
|
25
|
Parche S, Schmid R, Titgemeyer F. The phosphotransferase system (PTS) of Streptomyces coelicolor identification and biochemical analysis of a histidine phosphocarrier protein HPr encoded by the gene ptsH. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:308-17. [PMID: 10491187 DOI: 10.1046/j.1432-1327.1999.00727.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HPr, the histidine-containing phosphocarrier protein of the bacterial phosphotransferase system (PTS) controls sugar uptake and carbon utilization in low-GC Gram-positive bacteria and in Gram-negative bacteria. We have purified HPr from Streptomyces coelicolor cell extracts. The N-terminal sequence matched the product of an S. coelicolor orf, designated ptsH, sequenced as part of the S. coelicolor genome sequencing project. The ptsH gene appears to form a monocistronic operon. Determination of the evolutionary relationship revealed that S. coelicolor HPr is equally distant to all known HPr and HPr-like proteins. The presumptive phosphorylation site around histidine 15 is perfectly conserved while a second possible phosphorylation site at serine 47 is not well-conserved. HPr was overproduced in Escherichia coli in its native form and as a histidine-tagged fusion protein. Histidine-tagged HPr was purified to homogeneity. HPr was phosphorylated by its own enzyme I (EI) and heterologously phosphorylated by EI of Bacillus subtilis and Staphylococcus aureus, respectively. This phosphoenolpyruvate-dependent phosphorylation was absent in an HPr mutant in which histidine 15 was replaced by alanine. Reconstitution of the fructose-specific PTS demonstrated that HPr could efficiently phosphorylate enzyme IIFructose. HPr-P could also phosphorylate enzyme IIGlucose of B. subtilis, enzyme IILactose of S. aureus, and IIAMannitol of E. coli. ATP-dependent phosphorylation was detected with HPr kinase/phosphatase of B. subtilis. These results present the first identification of a gene of the PTS complement of S. coelicolor, providing the basis to elucidate the role(s) of HPr and the PTS in this class of bacteria.
Collapse
Affiliation(s)
- S Parche
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
26
|
Tobisch S, Stülke J, Hecker M. Regulation of the lic operon of Bacillus subtilis and characterization of potential phosphorylation sites of the LicR regulator protein by site-directed mutagenesis. J Bacteriol 1999; 181:4995-5003. [PMID: 10438772 PMCID: PMC93989 DOI: 10.1128/jb.181.16.4995-5003.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lic operon of Bacillus subtilis is required for the transport and degradation of oligomeric beta-glucosides, which are produced by extracellular enzymes on substrates such as lichenan or barley glucan. The lic operon is transcribed from a sigma(A)-dependent promoter and is inducible by lichenan, lichenan hydrolysate, and cellobiose. Induction of the operon requires a DNA sequence with dyad symmetry located immediately upstream of the licBCAH promoter. Expression of the lic operon is positively controlled by the LicR regulator protein, which contains two potential helix-turn-helix motifs, two phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) regulation domains (PRDs), and a domain similar to PTS enzyme IIA (EIIA). The activity of LicR is stimulated by modification (probably phosphorylation) of both PRD-I and PRD-II by the general PTS components and is negatively regulated by modification (probably phosphorylation) of its EIIA domain by the specific EII(Lic) in the absence of oligomeric beta-glucosides. This was shown by the analysis of licR mutants affected in potential phosphorylation sites. Moreover, the lic operon is subject to carbon catabolite repression (CCR). CCR takes place via a CcpA-dependent mechanism and a CcpA-independent mechanism in which the general PTS enzyme HPr is involved.
Collapse
Affiliation(s)
- S Tobisch
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany
| | | | | |
Collapse
|
27
|
Görke B, Rak B. Catabolite control of Escherichia coli regulatory protein BglG activity by antagonistically acting phosphorylations. EMBO J 1999; 18:3370-9. [PMID: 10369677 PMCID: PMC1171417 DOI: 10.1093/emboj/18.12.3370] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In bacteria various sugars are taken up and concomitantly phosphorylated by sugar-specific enzymes II (EII) of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The phosphoryl groups are donated by the phosphocarrier protein HPr. BglG, the positively acting regulatory protein of the Escherichia coli bgl (beta-glucoside utilization) operon, is known to be negatively regulated by reversible phosphorylation catalyzed by the membrane spanning beta-glucoside-specific EIIBgl. Here we present evidence that in addition BglG must be phosphorylated by HPr at a distinct site to gain activity. Our data suggest that this second, shortcut route of phosphorylation is used to monitor the state of the various PTS sugar availabilities in order to hierarchically tune expression of the bgl operon in a physiologically meaningful way. Thus, the PTS may represent a highly integrated signal transduction network in carbon catabolite control.
Collapse
Affiliation(s)
- B Görke
- Institut für Biologie III, Universität, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | |
Collapse
|
28
|
Abstract
Carbon catabolite repression (CCR) is a regulatory mechanism by which the expression of genes required for the utilization of secondary sources of carbon is prevented by the presence of a preferred substrate. This enables bacteria to increase their fitness by optimizing growth rates in natural environments providing complex mixtures of nutrients. In most bacteria, the enzymes involved in sugar transport and phosphorylation play an essential role in signal generation leading through different transduction mechanisms to catabolite repression. The actual mechanisms of regulation are substantially different in various bacteria. The mechanism of lactose-glucose diauxie in Escherichia coli has been reinvestigated and was found to be caused mainly by inducer exclusion. In addition, the gene encoding HPr kinase, a key component of CCR in many bacteria, was discovered recently.
Collapse
Affiliation(s)
- J Stülke
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander-Universität, Erlangen-Nüurnberg, Staudtstr.5, D-91058, Erlangen, Germany
| | | |
Collapse
|
29
|
Henstra SA, Tuinhof M, Duurkens RH, Robillard GT. The Bacillus stearothermophilus mannitol regulator, MtlR, of the phosphotransferase system. A DNA-binding protein, regulated by HPr and iicbmtl-dependent phosphorylation. J Biol Chem 1999; 274:4754-63. [PMID: 9988713 DOI: 10.1074/jbc.274.8.4754] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
D-Mannitol is taken up by Bacillus stearothermophilus and phosphorylated via a phosphoenolpyruvate-dependent phosphotransferase system (PTS). The genes involved in the mannitol uptake were recently cloned and sequenced. One of the genes codes for a putative transcriptional regulator, MtlR. The presence of a DNA binding helix-turn-helix motif and two antiterminator-like PTS regulation domains, suggest that MtlR is a DNA-binding protein, the activity of which can be regulated by phosphorylation by components of the PTS. To demonstrate DNA binding of MtlR to a region upstream of the mannitol promoter, by DNA footprinting, MtlR was overproduced and purified. EI, HPr, IIAmtl, and IICBmtl of B. stearothermophilus were purified and used to demonstrate that MtlR can be phosphorylated and regulated by HPr and IICBmtl, in vitro. Phosphorylation of MtlR by HPr increases the affinity of MtlR for its binding site, whereas phosphorylation by IICBmtl results in a reduction of this affinity. The differential effect of phosphorylation, by two different proteins, on the DNA binding properties of a bacterial transcriptional regulator has not, to our knowledge, been described before. Regulation of MtlR by two components of the PTS is an example of an elegant control system sensing both the presence of mannitol and the need to utilize this substrate.
Collapse
Affiliation(s)
- S A Henstra
- Departments of Biochemistry, the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
30
|
Luesink EJ, Beumer CM, Kuipers OP, De Vos WM. Molecular characterization of the Lactococcus lactis ptsHI operon and analysis of the regulatory role of HPr. J Bacteriol 1999; 181:764-71. [PMID: 9922238 PMCID: PMC93441 DOI: 10.1128/jb.181.3.764-771.1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Lactococcus lactis ptsH and ptsI genes, encoding the general proteins of the phosphoenolpyruvate-dependent phosphotransferase system, HPr and enzyme I, respectively, were cloned, and the regulatory role of HPr was studied by mutational analysis of its gene. A promoter sequence was identified upstream of the ptsHI operon, and the transcription start site was mapped by primer extension. The results of Northern analyses showed the presence of two glucose-inducible transcripts, one of 0.3 kb containing ptsH and a second of 2.0 kb containing both ptsH and ptsI. Disruption of the ptsH and ptsI genes in strain NZ9800 resulted in a reduced growth rate at the expense of glucose, but no growth at the expense of sucrose and fructose, confirming the dominant role of the phosphotransferase system in the uptake of these sugars in L. lactis. Complementation of the ptsH and ptsI mutants with the intact genes under the control of a regulated promoter resulted in the restoration of the wild-type phenotype. The role of HPr(Ser-P) in the recently established CcpA-mediated control of galactose metabolism as well as glycolysis was analyzed by producing an HPr mutant carrying an aspartic acid on residue 46 which mimicks a phosphorylated serine. The results of these experiments demonstrated the role of HPr(Ser-P) as corepressor in the catabolite repression of the gal operon. Furthermore, we show for the first time that HPr(Ser-P) functions as a coactivator in the CcpA-mediated catabolite activation of the pyruvate kinase and L-lactate dehydrogenase genes.
Collapse
Affiliation(s)
- E J Luesink
- Microbial Ingredients Section, NIZO Food Research, 6710 BA Ede, The Netherlands
| | | | | | | |
Collapse
|
31
|
Bachem S, Stülke J. Regulation of the Bacillus subtilis GlcT antiterminator protein by components of the phosphotransferase system. J Bacteriol 1998; 180:5319-26. [PMID: 9765562 PMCID: PMC107579 DOI: 10.1128/jb.180.20.5319-5326.1998] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis utilizes glucose as the preferred source of carbon and energy. The sugar is transported into the cell by a specific permease of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) encoded by the ptsGHI operon. Expression of this operon is induced by glucose and requires the action of a positive transcription factor, the GlcT antiterminator protein. Glucose availability is sensed by glucose-specific enzyme II (EIIGlc), the product of ptsG. In the absence of inducer, the glucose permease negatively controls the activity of the antiterminator. The GlcT antiterminator has a modular structure. The isolated N-terminal part contains the RNA-binding protein and acts as a constitutively acting antiterminator. GlcT contains two PTS regulation domains (PRDs) at the C terminus. One (PRD-I) is the target of negative control exerted by EIIGlc. A conserved His residue (His-104 in GlcT) is involved in inactivation of GlcT in the absence of glucose. It was previously proposed that PRD-containing transcriptional antiterminators are phosphorylated and concomitantly inactivated in the absence of the substrate by their corresponding PTS permeases. The results obtained with B. subtilis glucose permease with site-specific mutations suggest, however, that the permease might modulate the phosphorylation reaction without being the phosphate donor.
Collapse
Affiliation(s)
- S Bachem
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | | |
Collapse
|
32
|
Carinato ME, Collin-Osdoby P, Yang X, Knox TM, Conlin CA, Miller CG. The apeE gene of Salmonella typhimurium encodes an outer membrane esterase not present in Escherichia coli. J Bacteriol 1998; 180:3517-21. [PMID: 9657991 PMCID: PMC107316 DOI: 10.1128/jb.180.14.3517-3521.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Salmonella typhimurium apeR mutations lead to overproduction of an outer membrane-associated N-acetyl phenylalanine beta-naphthyl ester-cleaving esterase that is encoded by the apeE gene (P. Collin-Osdoby and C. G. Miller, Mol. Gen. Genet. 243:674-680, 1994). This paper reports the cloning and nucleotide sequencing of the S. typhimurium apeE gene as well as some properties of the esterase that it encodes. The predicted product of apeE is a 69.9-kDa protein which is processed to a 67-kDa species by removal of a signal peptide. The predicted amino acid sequence of ApeE indicates that it is a member of the GDSL family of serine esterases/lipases. It is most similar to a lipase excreted by the entomopathogenic bacterium Photorhabdus luminescens. The Salmonella esterase catalyzes the hydrolysis of a variety of fatty acid naphthyl esters and of C6 to C16 fatty acid p-nitrophenyl esters but will not hydrolyze peptide bonds. A rapid diagnostic test reported to be useful in distinguishing Salmonella spp. from related organisms makes use of the ability of Salmonella to hydrolyze the chromogenic ester substrate methyl umbelliferyl caprylate. We report that the apeE gene product is the enzyme in Salmonella uniquely responsible for the hydrolysis of this substrate. Southern blot analysis indicates that Escherichia coli K-12 does not contain a close analog of apeE, and it appears that the apeE gene is contained in a region of DNA present in Salmonella but not in E. coli.
Collapse
Affiliation(s)
- M E Carinato
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
33
|
Cases I, de Lorenzo V. Expression systems and physiological control of promoter activity in bacteria. Curr Opin Microbiol 1998; 1:303-10. [PMID: 10066491 DOI: 10.1016/s1369-5274(98)80034-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Promoter activity in vivo is not just dependent on the performance of the regulator/promoter pair which may predominantly control transcription initiation in response to a given signal, it also relies on overimposed mechanisms that connect the activity of individual promoters to the metabolic and energetic status of the bacterial cells. Such mechanisms - which frequently become limiting for biotechnological applications involving regulated promoters - include classic (i.e. cAMP/CRP-mediated) or alternative catabolite control checks, recruitment of protein intermediates of the phosphotransferase sugar transport system, coregulation through protein-induced DNA bending and the interplay of sigma factors during various growth stages.
Collapse
Affiliation(s)
- I Cases
- Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones, Cientificas Campus de Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
34
|
Stülke J, Arnaud M, Rapoport G, Martin-Verstraete I. PRD--a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol Microbiol 1998; 28:865-74. [PMID: 9663674 DOI: 10.1046/j.1365-2958.1998.00839.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several operon-specific transcriptional regulators, including antiterminators and activators, contain a duplicated conserved domain, the PTS regulation domain (PRD). These duplicated domains modify the activity of the transcriptional regulators both positively and negatively. PRD-containing regulators are very common in Gram-positive bacteria. In contrast, antiterminators controlling beta-glucoside utilization are the only functionally characterized members of this family from gram-negative bacteria. PRD-containing regulators are controlled by PTS-dependent phosphorylation with different consequences: (i) In the absence of inducer, the phosphorylated EIIB component of the sugar permease donates its phosphate to a PRD, thereby inactivating the regulator. In the presence of the substrate, the regulator is dephosphorylated, and the phosphate is transferred to the sugar, resulting in induction of the operon. (ii) In gram-positive bacteria, a novel mechanism of carbon catabolite repression mediated by PRD-containing regulators has been demonstrated. In the absence of PTS substrates, the HPr protein is phosphorylated by enzyme I at His-15. This form of HPr can, in turn, phosphorylate PRD-containing regulators and stimulate their activity. In the presence of rapidly metabolizable carbon sources, ATP-dependent phosphorylation of HPr at Ser-46 by HPr kinase inhibits phosphorylation by enzyme I, and PRD-containing regulators cannot, therefore, be stimulated and are inactive. All regulators of this family contain two copies of PRD, which are functionally specialized in either induction or catabolite repression.
Collapse
Affiliation(s)
- J Stülke
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochimie und Genetik der Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | |
Collapse
|
35
|
Simpson CL, Russell RR. Identification of a homolog of CcpA catabolite repressor protein in Streptococcus mutans. Infect Immun 1998; 66:2085-92. [PMID: 9573093 PMCID: PMC108167 DOI: 10.1128/iai.66.5.2085-2092.1998] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A locus containing a gene with homology to ccpA of other bacteria has been cloned from Streptococcus mutans LT11, sequenced, and named regM. Upstream of the regM gene, on the opposite strand, is a gene encoding an X-Pro dipeptidase, pepQ. A 14-bp palindromic sequence with homology to the consensus catabolite-responsive element sequence lay in the promoter region between the two genes. To study the function of regM, the gene was inactivated by insertion of an antibiotic resistance marker. Diauxic growth of S. mutans on a number of sugars in the presence of glucose was not affected by disruption of regM. The loss of RegM increased glucose repression of alpha-galactosidase, mannitol-1-P dehydrogenase, and P-beta-galactosidase activities. These results suggest that while RegM can affect catabolite repression in S. mutans, it does not conform to the model proposed for CcpA in Bacillus subtilis.
Collapse
Affiliation(s)
- C L Simpson
- Department of Oral Biology, The Dental School, University of Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
36
|
Martin-Verstraete I, Charrier V, Stülke J, Galinier A, Erni B, Rapoport G, Deutscher J. Antagonistic effects of dual PTS-catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol Microbiol 1998; 28:293-303. [PMID: 9622354 DOI: 10.1046/j.1365-2958.1998.00781.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
LevR, which controls the expression of the levoperon of Bacillus subtilis, is a regulatory protein containing an N-terminal domain similar to the NifA/NtrC transcriptional activator family and a C-terminal domain similar to the regulatory part of bacterial anti-terminators, such as BgIG and LicT. Here, we demonstrate that the activity of LevR is regulated by two phosphoenolpyruvate (PEP)-dependent phosphorylation reactions catalysed by the phosphotransferase system (PTS), a transport system for sugars, polyols and other sugar derivatives. The two general components of the PTS, enzyme I and HPr, and the two soluble, sugar-specific proteins of the lev-PTS, LevD and LevE, form a signal transduction chain allowing the PEP-dependent phosphorylation of LevR, presumably at His-869. This phosphorylation seems to inhibit LevR activity and probably regulates the induction of the lev operon. Mutants in which His-869 of LevR has been replaced with a non-phosphorylatable alanine residue exhibited constitutive expression from the lev promoter, as do levD or levE mutants. In contrast, PEP-dependent phosphorylation of LevR in the presence of only the general components of the PTS, enzyme I and HPr, regulates LevR activity positively. This phosphorylation most probably occurs at His-585. Mutants in which His-585 has been replaced with an alanine had lost stimulation of LevR activity and PEP-dependent phosphorylation by enzyme I and HPr. This second phosphorylation of LevR at His-585 is presumed to play a role in carbon catabolite repression.
Collapse
Affiliation(s)
- I Martin-Verstraete
- Unité de Biochimie Microbienne, Institut Pasteur, URA 1300 du CNRS, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
37
|
Reizer J, Hoischen C, Titgemeyer F, Rivolta C, Rabus R, Stülke J, Karamata D, Saier MH, Hillen W. A novel protein kinase that controls carbon catabolite repression in bacteria. Mol Microbiol 1998; 27:1157-69. [PMID: 9570401 DOI: 10.1046/j.1365-2958.1998.00747.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HPr(Ser) kinase is the sensor in a multicomponent phosphorelay system that controls catabolite repression, sugar transport and carbon metabolism in gram-positive bacteria. Unlike most other protein kinases, it recognizes the tertiary structure in its target protein, HPr, a phosphocarrier protein of the bacterial phosphotransferase system and a transcriptional cofactor controlling the phenomenon of catabolite repression. We have identified the gene (ptsK) encoding this serine/threonine protein kinase and characterized the purified protein product. Orthologues of PtsK have been identified only in bacteria. These proteins constitute a novel family unrelated to other previously characterized protein phosphorylating enzymes. The Bacillus subtilis kinase is shown to be allosterically activated by metabolites such as fructose 1,6-bisphosphate and inhibited by inorganic phosphate. In contrast to wild-type B. subtilis, the ptsK mutant is insensitive to transcriptional regulation by catabolite repression. The reported results advance our understanding of phosphorylation-dependent carbon control mechanisms in Gram-positive bacteria.
Collapse
Affiliation(s)
- J Reizer
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Idelson M, Amster-Choder O. SacY, a transcriptional antiterminator from Bacillus subtilis, is regulated by phosphorylation in vivo. J Bacteriol 1998; 180:660-6. [PMID: 9457872 PMCID: PMC106936 DOI: 10.1128/jb.180.3.660-666.1998] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
SacY antiterminates transcription of the sacB gene in Bacillus subtilis in response to the presence of sucrose in the growth medium. We have found that it can substitute for BglG, a homologous protein, in antiterminating transcription of the bgl operon in Escherichia coli. We therefore sought to determine whether, similarly to BglG, SacY is regulated by reversible phosphorylation in response to the availability of the inducing sugar. We show here that two forms of SacY, phosphorylated and nonphosphorylated, exist in B. subtilis cells and that the ratio between them depends on the external level of sucrose. Addition of sucrose to the growth medium after SacY phosphorylation in the cell resulted in its rapid dephosphorylation. The extent of SacY phosphorylation was found to be proportional to the cellular levels of SacX, a putative sucrose permease which was previously shown to have a negative effect on SacY activity. Thus, the mechanism by which the sac sensory system modulates sacB expression in response to sucrose involves reversible phosphorylation of the regulator SacY, and this process appears to depend on the SacX sucrose sensor. The sac system is therefore a member of the novel family of sensory systems represented by bgl.
Collapse
Affiliation(s)
- M Idelson
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
39
|
Bachem S, Faires N, Stülke J. Characterization of the presumptive phosphorylation sites of the Bacillus subtilis glucose permease by site-directed mutagenesis: implication in glucose transport and catabolite repression. FEMS Microbiol Lett 1997; 156:233-8. [PMID: 9513271 DOI: 10.1111/j.1574-6968.1997.tb12733.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Bacillus subtilis utilizes glucose as the preferred source of carbon and energy. Glucose is transported and concomitantly phosphorylated by the glucose permease (PtsG) of the phosphoenolpyruvate:sugar phosphotransferase system. The phosphate is transferred from enzyme I via HPr and domains IIA and IIB of the glucose permease to the sugar. In this study mutants affected in the putative phosphorylation sites of glucose permease were constructed and the effect on sugar transport and glucose repression tested. Phosphorylation of both domains IIAGlc and IIBGlc is required for efficient glucose transport and repression of beta-xylosidase and the bglPH operon.
Collapse
Affiliation(s)
- S Bachem
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
40
|
Abstract
This review attempts to substantiate the notion that nonlinear DNA structures allow prokaryotic cells to evolve complex signal integration devices that, to some extent, parallel the transduction cascades employed by higher organisms to control cell growth and differentiation. Regulatory cascades allow the possibility of inserting additional checks, either positive or negative, in every step of the process. In this context, the major consequence of DNA bending in transcription is that promoter geometry becomes a key regulatory element. By using DNA bending, bacteria afford multiple metabolic control levels simply through alteration of promoter architecture, so that positive signals favor an optimal constellation of protein-protein and protein-DNA contacts required for activation. Additional effects of regulated DNA bending in prokaryotic promoters include the amplification and translation of small physiological signals into major transcriptional responses and the control of promoter specificity for cognate regulators.
Collapse
Affiliation(s)
- J Pérez-Martín
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid, Spain
| | | |
Collapse
|
41
|
Amster-Choder O, Wright A. BglG, the response regulator of the Escherichia coli bgl operon, is phosphorylated on a histidine residue. J Bacteriol 1997; 179:5621-4. [PMID: 9287026 PMCID: PMC179442 DOI: 10.1128/jb.179.17.5621-5624.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have shown previously that the activity of BglG, the response regulator of the bgl system, as a transcriptional antiterminator is modulated by the sensor BglF, which reversibly phosphorylates BglG. We show here that the phosphoryl group on BglG is present as a phosphoramidate, based on the sensitivity of phosphorylated BglG to heat, hydroxylamine, and acidic but not basic conditions. By analyzing the products of base-hydrolyzed phosphorylated BglG by thin-layer chromatography, we show that the phosphorylation occurs on a histidine residue. This result supports the notion that the bgl system is a member of a new family of bacterial sensory systems.
Collapse
Affiliation(s)
- O Amster-Choder
- Department of Molecular Biology, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| | | |
Collapse
|
42
|
Galinier A, Haiech J, Kilhoffer MC, Jaquinod M, Stülke J, Deutscher J, Martin-Verstraete I. The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Proc Natl Acad Sci U S A 1997; 94:8439-44. [PMID: 9237995 PMCID: PMC22949 DOI: 10.1073/pnas.94.16.8439] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Carbon catabolite repression (CCR) of several Bacillus subtilis catabolic genes is mediated by ATP-dependent phosphorylation of histidine-containing protein (HPr), a phosphocarrier protein of the phosphoenolpyruvate (PEP): sugar phosphotransferase system. In this study, we report the discovery of a new B. subtilis gene encoding a HPr-like protein, Crh (for catabolite repression HPr), composed of 85 amino acids. Crh exhibits 45% sequence identity with HPr, but the active site His-15 of HPr is replaced with a glutamine in Crh. Crh is therefore not phosphorylated by PEP and enzyme I, but is phosphorylated by ATP and the HPr kinase in the presence of fructose-1,6-bisphosphate. We determined Ser-46 as the site of phosphorylation in Crh by carrying out mass spectrometry with peptides obtained by tryptic digestion or CNBr cleavage. In a B. subtilis ptsH1 mutant strain, synthesis of beta-xylosidase, inositol dehydrogenase, and levanase was only partially relieved from CCR. Additional disruption of the crh gene caused almost complete relief from CCR. In a ptsH1 crh1 mutant, producing HPr and Crh in which Ser-46 is replaced with a nonphosphorylatable alanyl residue, expression of beta-xylosidase was also completely relieved from glucose repression. These results suggest that CCR of certain catabolic operons requires, in addition to CcpA, ATP-dependent phosphorylation of Crh, and HPr at Ser-46.
Collapse
Affiliation(s)
- A Galinier
- Institut de Biologie et Chimie des Protéines, Unité Propre de Recherche 412 Centre National de la Recherche Scientifique, F-69367 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Tortosa P, Aymerich S, Lindner C, Saier MH, Reizer J, Le Coq D. Multiple phosphorylation of SacY, a Bacillus subtilis transcriptional antiterminator negatively controlled by the phosphotransferase system. J Biol Chem 1997; 272:17230-7. [PMID: 9202047 DOI: 10.1074/jbc.272.27.17230] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Bacillus subtilis SacY transcriptional antiterminator is a regulator involved in sucrose-promoted induction of the sacB gene. SacY activity is negatively controlled by enzyme I and HPr, the general energy coupling proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), and by SacX, a membranal protein homologous to SacP, the B. subtilis sucrose-specific PTS-permease. Previous studies suggested that the negative control exerted by the PTS on bacterial antiterminators of the SacY family involves phosphoenolpyruvate-dependent phosphorylation by the sugar-specific PTS-permeases. However, data reported herein show direct phosphorylation of SacY by HPr(His approximately P) with no requirement for SacX. Experiments were carried out to determine the phosphorylatable residues in SacY. In silico analyses of SacY and its homologues revealed the modular structure of these proteins as well as four conserved histidines within two homologous domains (here designated P1 and P2), present in 14 distinct mRNA- and DNA-binding bacterial transcriptional regulators. Single or multiple substitutions of these histidyl residues were introduced in SacY by site-directed mutagenesis, and their effects on phosphorylation and antitermination activity were examined. In vitro phosphorylation experiments showed that SacY was phosphorylated on three of the conserved histidines. Nevertheless, in vivo studies using cells bearing a sacB'-lacZ reporter fusion, as well as SacY mutants lacking the phosphorylatable histidyls, revealed that only His-99 is directly involved in regulation of SacY antitermination activity.
Collapse
Affiliation(s)
- P Tortosa
- Laboratoire de Génétique des Microorganismes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique ERS 567, F-78850 Thiverval-Grignon, France
| | | | | | | | | | | |
Collapse
|
44
|
Charrier V, Buckley E, Parsonage D, Galinier A, Darbon E, Jaquinod M, Forest E, Deutscher J, Claiborne A. Cloning and sequencing of two enterococcal glpK genes and regulation of the encoded glycerol kinases by phosphoenolpyruvate-dependent, phosphotransferase system-catalyzed phosphorylation of a single histidyl residue. J Biol Chem 1997; 272:14166-74. [PMID: 9162046 DOI: 10.1074/jbc.272.22.14166] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The glpK genes of Enterococcus casseliflavus and Enterococcus faecalis, encoding glycerol kinase, the key enzyme of glycerol uptake and metabolism in bacteria, have been cloned and sequenced. The translated amino acid sequences exhibit strong homology to the amino acid sequences of other bacterial glycerol kinases. After expression of the enterococcal glpK genes in Escherichia coli, both glycerol kinases were purified and were found to be phosphorylated by enzyme I and the histidine-containing protein of the phosphoenolpyruvate:glycose phosphotransferase system. Phosphoenolpyruvate-dependent phosphorylation caused a 9-fold increase in enzyme activity. The site of phosphorylation in glycerol kinase of E. casseliflavus was determined as His-232. Site-specific mutagenesis was used to replace His-232 in glycerol kinase of E. casseliflavus with an alanyl, glutamate, or arginyl residue. The mutant proteins could no longer be phosphorylated confirming that His-232 of E. casseliflavus glycerol kinase represents the site of phosphorylation. The His232 --> Arg glycerol kinase exhibited an about 3-fold elevated activity compared with wild-type glycerol kinase. Fructose 1,6-bisphosphate was found to inhibit E. casseliflavus glycerol kinase activity. However, neither EIIAGlc from E. coli nor the EIIAGlc domain of Bacillus subtilis had an inhibitory effect on glycerol kinase of E. casseliflavus.
Collapse
Affiliation(s)
- V Charrier
- Institut de Biologie et Chimie des Protéines, CNRS, 7 passage du Vercors, F-69367 Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Charrier V, Deutscher J, Galinier A, Martin-Verstraete I. Protein phosphorylation chain of a Bacillus subtilis fructose-specific phosphotransferase system and its participation in regulation of the expression of the lev operon. Biochemistry 1997; 36:1163-72. [PMID: 9033408 DOI: 10.1021/bi961813w] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The proteins encoded by the fructose-inducible lev operon of Bacillus subtilis are components of a phosphotransferase system. They transport fructose by a mechanism which couples sugar uptake and phosphoenolpyruvate-dependent sugar phosphorylation. The complex transport system consists of two integral membrane proteins (LevF and LevG) and two soluble, hydrophilic proteins (LevD and LevE). The two soluble proteins from together with the general proteins of the phosphotransferase system, enzyme I and HPr, a protein phosphorylation chain which serves to phosphorylate fructose transported by LevF and LevG. We have synthesized modified LevD and LevE by fusing a His-tag to the N-terminus of each protein allowing rapid and efficient purification of the proteins. We determined His-9 in LevD and His-15 in LevE as the sites of PEP-dependent phosphorylation by isolating single, labeled peptides derived from 32P-labeled LevD, LevD(His)6, and LevE(His)6. The labeled peptides were subsequently analyzed by amino acid sequencing and mass spectroscopy. Mutations replacing the phosphorylatable histidyl residue in LevD with an alanyl residue and in LevE with a glutamate or aspartate were introduced in the levD and levE genes. These mutations caused strongly reduced fructose uptake via the lev-PTS. The mutant proteins were synthesized with a N-terminal His-tag and purified. Mutant LevD(His)6 was very slowly phosphorylated, whereas mutant LevE(His)6 was not phosphorylated at all. The corresponding levD and levE alleles were incorporated into the chromosome of a B. subtilis strain expressing the lacZ gene under control of the lev promoter. The mutations affecting the site of phosphorylation in either LevD or LevE were found to cause constitutive expression from the lev promoter of B. subtilis.
Collapse
Affiliation(s)
- V Charrier
- Institut de Biologie et Chimie des Protéines, CNRS, 7, Lyon, France
| | | | | | | |
Collapse
|
46
|
Vadeboncoeur C, Pelletier M. The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol Rev 1997; 19:187-207. [PMID: 9050218 DOI: 10.1111/j.1574-6976.1997.tb00297.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Oral streptococci are sugar-fermentative bacteria comprising at least 19 distinct species and are a significant proportion of the normal microbial population of the mouth and upper respiratory tract of humans. These streptococci transport several sugars by the phosphoenolpyruvate:sugar phosphotransferase system (PTS) which concomitantly catalyzes the phosphorylation and translocation of mono- and disaccharides via a chain of enzymic reactions that transfer a phosphate group from phosphoenolpyruvate to the incoming sugar. A number of PTS components, including HPr, Enzyme I and some Enzymes II, have been studied at the biochemical and/or genetical level in Streptococcus salivarius, Streptococcus mutans and Streptococcus sobrinus. Moreover, compelling evidence indicates that the oral streptococcal PTS is involved in the regulation of sugar metabolism. Results are accumulating suggesting that a protein called IIABMan, as well as the phosphocarrier protein HPr, are key regulatory components that allow these bacteria to select rapidly metabolizable sugars, such as glucose or fructose, over less readily utilizable carbohydrates. Circumstantial evidence suggests that the molecular mechanisms by which oral streptococcal PTS exert their regulatory functions differ from mechanisms in other Gram-negative or Gram-positive bacteria.
Collapse
Affiliation(s)
- C Vadeboncoeur
- Département de Biochimie (Sciences), Université Laval, Québec, Canada.
| | | |
Collapse
|
47
|
Deutscher J, Fischer C, Charrier V, Galinier A, Lindner C, Darbon E, Dossonnet V. Regulation of carbon metabolism in gram-positive bacteria by protein phosphorylation. Folia Microbiol (Praha) 1997; 42:171-8. [PMID: 9246758 DOI: 10.1007/bf02818974] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The main function of the bacterial phosphotransferase system is to transport and to phosphorylate mono- and disaccharides as well as sugar alcohols. However, the phosphotransferase system is also involved in regulation of carbon metabolism. In Gram-positive bacteria, it is implicated in carbon catabolite repression and regulation of expression of catabolic genes by controlling either catabolic enzyme activities, transcriptional activators or antiterminators. All these different regulations follow a protein phosphorylation mechanism.
Collapse
Affiliation(s)
- J Deutscher
- Institut de Biologie et Chimie des Protéines, CNRS UPR-412, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Tobisch S, Glaser P, Krüger S, Hecker M. Identification and characterization of a new beta-glucoside utilization system in Bacillus subtilis. J Bacteriol 1997; 179:496-506. [PMID: 8990303 PMCID: PMC178721 DOI: 10.1128/jb.179.2.496-506.1997] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A new catabolic system in Bacillus subtilis involved in utilization of beta-glucosidic compounds has been investigated. It consists of five genes encoding phosphotransferase system (PTS) enzyme II (licB and licC) and enzyme IIA (licA), a presumed 6-phospho-beta-glucosidase (licH), as well as a putative regulator protein (licR). The genes map around 334 degrees of the B. subtilis chromosome, and their products are involved in the uptake and utilization of lichenan degradation products. These five genes are organized in two transcriptional units. A weak promoter precedes gene licR, and transcription is obviously terminated at a secondary structure immediately downstream of the reading frame, as shown by Northern RNA blot analysis. Genes licB, licC, licA, and licH constitute an operon. Initiation of transcription at the promoter in front of this operon presumably requires activation by the gene product of licR. The LicR protein shows an unusual domain structure, i.e., similarities to (i) the conserved transcriptional antiterminator BgIG family signature and (ii) PTS enzyme II. Using RNA techniques and transcriptional lacZ fusions, we have shown that the expression of the licBCAH operon is inducible by products of lichenan hydrolysis, lichenan and cellobiose. The presence of excess glucose prevents the induction of this operon, indicating the control by carbon catabolite repression. Moreover, the expression of the operon requires the general PTS components and seems to be negatively controlled by the specific lic PTS enzymes.
Collapse
Affiliation(s)
- S Tobisch
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | | | |
Collapse
|
49
|
Reizer J, Bergstedt U, Galinier A, Küster E, Saier MH, Hillen W, Steinmetz M, Deutscher J. Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr. J Bacteriol 1996; 178:5480-6. [PMID: 8808939 PMCID: PMC178371 DOI: 10.1128/jb.178.18.5480-5486.1996] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Carbon catabolite repression of the gnt operon of Bacillus subtilis is mediated by the catabolite control protein CcpA and by HPr, a phosphocarrier protein of the phosphotransferase system. ATP-dependent phosphorylation of HPr at Ser-46 is required for carbon catabolite repression as ptsH1 mutants in which Ser-46 of HPr is replaced with an unphosphorylatable alanyl residue are resistant to carbon catabolite repression. We here demonstrate that mutation of His-15 of HPr, the site of phosphoenolpyruvate-dependent phosphorylation, also prevents carbon catabolite repression of the gnt operon. A strain which expressed two mutant HPrs (one in which Ser-46 is replaced by Ala [S46A HPr] and one in which His-15 is replaced by Ala [H15A HPr]) on the chromosome was barely sensitive to carbon catabolite repression, although the H15A mutant HPr can be phosphorylated at Ser-46 by the ATP-dependent HPr kinase in vitro and in vivo. The S46D mutant HPr which structurally resembles seryl-phosphorylated HPr has a repressive effect on gnt expression even in the absence of a repressing sugar. By contrast, the doubly mutated H15E,S46D HPr, which resembles the doubly phosphorylated HPr because of the negative charges introduced by the mutations at both phosphorylation sites, had no such effect. In vitro assays substantiated these findings and demonstrated that in contrast to the wild-type seryl-phosphorylated HPr and the S46D mutant HPr, seryl-phosphorylated H15A mutant HPr and H15E,S46D doubly mutated HPr did not interact with CcpA. These results suggest that His-15 of HPr is important for carbon catabolite repression and that either mutation or phosphorylation at His-15 can prevent carbon catabolite repression.
Collapse
Affiliation(s)
- J Reizer
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Arnaud M, Débarbouillé M, Rapoport G, Saier MH, Reizer J. In vitro reconstitution of transcriptional antitermination by the SacT and SacY proteins of Bacillus subtilis. J Biol Chem 1996; 271:18966-72. [PMID: 8702561 DOI: 10.1074/jbc.271.31.18966] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Expression of the sacPA and sacB genes of Bacillus subtilis is positively modulated by transcriptional regulatory proteins encoded by the sacT and sacY genes, respectively. Previous genetic studies led to the suggestion that SacT and SacY function as nascent mRNA binding proteins preventing early termination of transcription at terminators located in the leader regions of the corresponding genes. Here we report the overproduction, purification to near homogeneity, and characterization of the two antiterminators, SacT and SacY. Using mRNA band migration retardation assays and a reconstituted transcriptional antitermination system, the mRNA binding functions and antitermination activities of purified SacT and SacY are demonstrated under in vitro conditions. The results establish for the first time that members of the BglG family of antiterminators function in antitermination in the absence of other proteins in vitro. Purified SacT is shown to be phosphorylated by phosphoenolpyruvate in a phosphotransferase-catalyzed reaction dependent on Enzyme I and HPr. Unexpectedly, the purified SacT is shown to be functional in mRNA binding and in transcriptional antitermination independently of its phosphorylation state.
Collapse
Affiliation(s)
- M Arnaud
- Unité de Biochimie Microbienne, Institut Pasteur, URA 1300 Centre National de la Recherche Scientifique 25, rue du Docteur Roux-75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|