1
|
Merz M, Schiffer CJ, Klingl A, Ehrmann MA. Characterization of the major autolysin (AtlC) of Staphylococcus carnosus. BMC Microbiol 2024; 24:77. [PMID: 38459514 PMCID: PMC10921637 DOI: 10.1186/s12866-024-03231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Autolysis by cellular peptidoglycan hydrolases (PGH) is a well-known phenomenon in bacteria. During food fermentation, autolysis of starter cultures can exert an accelerating effect, as described in many studies on cheese ripening. In contrast, very little is known about autolysis of starter cultures used in other fermentations. Staphylococcus (S.) carnosus is often used in raw sausage fermentations, contributing to nitrate reduction and flavor formation. In this study, we analyzed the influence of PGHs of the strains S. carnosus TMW 2.146 and S. carnosus TMW 2.2525 on their autolytic behavior. The staphylococcal major autolysin (Atl), a bifunctional enzyme with an N-acetylmuramoyl-L-alanine amidase and a glucosaminidase as an active site, is assumed to be the enzyme by which autolysis is mainly mediated. RESULTS AtlC mutant strains showed impaired growth and almost no autolysis compared to their respective wild-type strains. Light microscopy and scanning electron microscopy showed that the mutants could no longer appropriately separate from each other during cell division, resulting in the formation of cell clusters. The surface of the mutants appeared rough with an irregular morphology compared to the smooth cell surfaces of the wild-types. Moreover, zymograms showed that eight lytic bands of S. carnosus, with a molecular mass between 140 and 35 kDa, are processed intermediates of AtlC. It was noticed that additional bands were found that had not been described in detail before and that the banding pattern changes over time. Some bands disappear entirely, while others become stronger or are newly formed. This suggests that AtlC is degraded into smaller fragments over time. A second knockout was generated for the gene encoding a N-acetylmuramoyl-L-alanine amidase domain-containing protein. Still, no phenotypic differences could be detected in this mutant compared to the wild-type, implying that the autolytic activity of S. carnosus is mediated by AtlC. CONCLUSIONS In this study, two knockout mutants of S. carnosus were generated. The atlC mutant showed a significantly altered phenotype compared to the wild-type, revealing AtlC as a key factor in staphylococcal autolysis. Furthermore, we show that Atl is degraded into smaller fragments, which are still cell wall lytic active.
Collapse
Affiliation(s)
- Maximilian Merz
- Chair of Microbiology, Technical University of Munich, Gregor-Mendel-Straße 4, 85354, Freising, Germany
| | - Carolin J Schiffer
- Chair of Microbiology, Technical University of Munich, Gregor-Mendel-Straße 4, 85354, Freising, Germany
| | - Andreas Klingl
- Plant Development, Department Biology I - Botany, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | - Matthias A Ehrmann
- Chair of Microbiology, Technical University of Munich, Gregor-Mendel-Straße 4, 85354, Freising, Germany.
| |
Collapse
|
2
|
Takala TM, Mokhtari S, Ahonen SL, Wan X, Saris PEJ. Wild-type Lactococcus lactis producing bacteriocin-like prophage lysins. Front Microbiol 2023; 14:1219723. [PMID: 37520360 PMCID: PMC10377672 DOI: 10.3389/fmicb.2023.1219723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Lactococcus is a genus of lactic acid bacteria used in the dairy industry as a starter. Lactococci have been found to produce altogether more than 40 different bacteriocins, ribosomally synthesized antimicrobial proteins. All known Lactococcus spp. bacteriocins belong to classes I and II, which are mainly heat-resistant peptides. No class III bacteriocins, bigger heat-sensitive proteins, including phage tail-like bacteriocins, have been found from the Lactococcus spp. Unlike phage tail-like bacteriocins, prophage lysins have not been regarded as bacteriocins, possibly because phage lysins contribute to autolysis, degrading the host's own cell wall. Methods Wild-type Lactococcus lactis strain LAC460, isolated from spontaneously fermented idli batter, was examined for its antimicrobial activity. We sequenced the genome, searched phage lysins from the culture supernatant, and created knock-out mutants to find out the source of the antimicrobial activity. Results and discussion The strain LAC460 was shown to kill other Lactococcus strains with protease- and heat-sensitive lytic activity. Three phage lysins were identified in the culture supernatant. The genes encoding the three lysins were localized in different prophage regions in the chromosome. By knock-out mutants, two of the lysins, namely LysL and LysP, were demonstrated to be responsible for the antimicrobial activity. The strain LAC460 was found to be resistant to the lytic action of its own culture supernatant, and as a consequence, the phage lysins could behave like bacteriocins targeting and killing other closely related bacteria. Hence, similar to phage tail-like bacteriocins, phage lysin-like bacteriocins could be regarded as a novel type of class III bacteriocins.
Collapse
Affiliation(s)
- Timo M. Takala
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Samira Mokhtari
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Susanna L. Ahonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Xing Wan
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Per E. J. Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Jiang J, Zhao Z, Gao S, Chen Z, Pan Y, Guan X, Jiang P, Li P, Wang B, Sun H, Dong Y, Zhou Z. Functions of lysin motif (LysM)-containing protein in antibacterial responses of sea cucumbers, Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1275-1281. [PMID: 36400371 DOI: 10.1016/j.fsi.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The lysin motif (LysM)-containing protein is one of widespread pattern-recognition receptors in prokaryotes and eukaryotes. Numerous LysM-containing gene sequences are present in gene databases; however, few have been well characterized, especially in echinoderms. In this study, the full-length cDNA of a novel LysM-containing gene was obtained from the sea cucumber Apostichopus japonicus, named AjLysM-1, using polymerase chain reaction (PCR) combined with rapid amplification of cDNA ends. We prepared and expressed recombinant AjLysM-1 protein (rAjLysM-1) and determined its pathogen-recognition ability by enzyme-linked immunosorbent and immunofluorescence assays. We also analyzed the tissue expression pattern and response to immune challenges of AjLysM-1 using quantitative real-time reverse transcription-PCR and in situ hybridization. The AjLysM-1 protein was predicted to be an intracellular non-secreted LysM-containing protein, highly homologous to the same protein in other marine echinoderms. AjLysM-1 transcripts were highest expressed in coelomocytes and were strikingly induced by challenge with representative bacterial and fungal polysaccharides. rAjLysM-1 showed weak binding to mannan, Pseudoalteromonas nigrifaciens, and Shewanella baltica, implying that AjLysM-1 might provide inadequate defense against Gram-negative bacteria and fungi. Notably, rAjLysM-1 also interacted with tyrosine protein kinase and filamin-B, indicating that it could be involved in focal adhesion in A. japonicus. These findings improve our understanding of the functions of LysM-containing proteins in marine echinoderms.
Collapse
Affiliation(s)
- Jingwei Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zelong Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Shan Gao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zhong Chen
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Yongjia Pan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Xiaoyan Guan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Pingzhe Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Peipei Li
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Bai Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Hongjuan Sun
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Ying Dong
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
4
|
Rendueles C, Escobedo S, Rodríguez A, Martínez B. Bacteriocin-phage interaction (BaPI): Phage predation of Lactococcus in the presence of bacteriocins. Microbiologyopen 2022; 11:e1308. [PMID: 36031956 PMCID: PMC9358928 DOI: 10.1002/mbo3.1308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteriophages infecting dairy starter bacteria are a leading cause of milk fermentation failure and strategies to reduce the risk of phage infection in dairy settings are demanded. Along with dairy starters, bacteriocin producers (protective cultures) or the direct addition of bacteriocins as biopreservatives may be applied in food to extend shelf-life. In this work, we have studied the progress of infection of Lactococcus cremoris MG1363 by the phage sk1, in the presence of three bacteriocins with different modes of action: nisin, lactococcin A (LcnA), and lactococcin 972 (Lcn972). We aimed to reveal putative bacteriocin-phage interactions (BaPI) that could be detrimental and increase the risk of fermentation failure due to phages. Based on infections in broth and solid media, a synergistic effect was observed with Lcn972. This positive sk1-Lcn972 interaction could be correlated with an increased burst size. sk1-Lcn972 BaPI occurred independently of a functional SOS and cell envelope stress response but was lost in the absence of the major autolysin AcmA. Furthermore, BaPI was not exclusive to the sk1-Lcn972 pairing and could be observed with other phages and lactococcal strains. Therefore, bacteriocins may facilitate phage predation of dairy lactococci and their use should be carefully evaluated.
Collapse
Affiliation(s)
- Claudia Rendueles
- Department Technology and Biotechnology of Dairy ProductsInstituto de Productos Lácteos de Asturias (IPLA), CSICVillaviciosaAsturiasSpain
| | - Susana Escobedo
- Department Technology and Biotechnology of Dairy ProductsInstituto de Productos Lácteos de Asturias (IPLA), CSICVillaviciosaAsturiasSpain
| | - Ana Rodríguez
- Department Technology and Biotechnology of Dairy ProductsInstituto de Productos Lácteos de Asturias (IPLA), CSICVillaviciosaAsturiasSpain
| | - Beatriz Martínez
- Department Technology and Biotechnology of Dairy ProductsInstituto de Productos Lácteos de Asturias (IPLA), CSICVillaviciosaAsturiasSpain
| |
Collapse
|
5
|
Riboswitch RS thiT as a molecular tool in Lactococcus lactis. Appl Environ Microbiol 2021; 88:e0176421. [PMID: 34936833 PMCID: PMC8862789 DOI: 10.1128/aem.01764-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Previous RNA sequencing has allowed the identification of 129 long 5′ untranslated regions (UTRs) in the Lactococcus lactis MG1363 transcriptome. These sequences potentially harbor cis-acting riboswitches. One of the identified extended 5′ UTRs is a putative thiamine pyrophosphate (TPP) riboswitch. It is located immediately upstream of the thiamine transporter gene thiT (llmg_0334). To confirm this assumption, the 5′-UTR sequence was placed upstream of the gene encoding the superfolder green fluorescent protein (sfGFP), sfgfp, allowing the examination of the expression of sfGFP in the presence or absence of thiamine in the medium. The results show that this sequence indeed represents a thiamine-responsive TPP riboswitch. This RNA-based genetic control device was used to successfully restore the mutant phenotype of an L. lactis strain lacking the major autolysin gene, acmA. The L. lactisthiT TPP riboswitch (RSthiT) is a useful molecular genetic tool enabling the gradual downregulation of the expression of genes under its control by adjusting the thiamine concentration. IMPORTANCE The capacity of microbes with biotechnological importance to adapt to and survive under quickly changing industrial conditions depends on their ability to adequately control gene expression. Riboswitches are important RNA-based elements involved in rapid and precise gene regulation. Here, we present the identification of a natural thiamine-responsive riboswitch of Lactococcus lactis, a bacterium used worldwide in the production of dairy products. We used it to restore a genetic defect in an L. lactis mutant and show that it is a valuable addition to the ever-expanding L. lactis genetic toolbox.
Collapse
|
6
|
Martínez B, Rodríguez A, Kulakauskas S, Chapot-Chartier MP. Cell wall homeostasis in lactic acid bacteria: threats and defences. FEMS Microbiol Rev 2021; 44:538-564. [PMID: 32495833 PMCID: PMC7476776 DOI: 10.1093/femsre/fuaa021] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Lactic acid bacteria (LAB) encompasses industrially relevant bacteria involved in food fermentations as well as health-promoting members of our autochthonous microbiota. In the last years, we have witnessed major progresses in the knowledge of the biology of their cell wall, the outermost macrostructure of a Gram-positive cell, which is crucial for survival. Sophisticated biochemical analyses combined with mutation strategies have been applied to unravel biosynthetic routes that sustain the inter- and intra-species cell wall diversity within LAB. Interplay with global cell metabolism has been deciphered that improved our fundamental understanding of the plasticity of the cell wall during growth. The cell wall is also decisive for the antimicrobial activity of many bacteriocins, for bacteriophage infection and for the interactions with the external environment. Therefore, genetic circuits involved in monitoring cell wall damage have been described in LAB, together with a plethora of defence mechanisms that help them to cope with external threats and adapt to harsh conditions. Since the cell wall plays a pivotal role in several technological and health-promoting traits of LAB, we anticipate that this knowledge will pave the way for the future development and extended applications of LAB.
Collapse
Affiliation(s)
- Beatriz Martínez
- DairySafe research group. Department of Technology and Biotechnology of Dairy Products. Instituto de Productos Lácteos de Asturias, IPLA-CSIC. Paseo Río Linares s/n. 33300 Villaviciosa, Spain
| | - Ana Rodríguez
- DairySafe research group. Department of Technology and Biotechnology of Dairy Products. Instituto de Productos Lácteos de Asturias, IPLA-CSIC. Paseo Río Linares s/n. 33300 Villaviciosa, Spain
| | - Saulius Kulakauskas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
7
|
Wilkinson MG, LaPointe G. Invited review: Starter lactic acid bacteria survival in cheese: New perspectives on cheese microbiology. J Dairy Sci 2020; 103:10963-10985. [DOI: 10.3168/jds.2020-18960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022]
|
8
|
Gandhi D, Chanalia P, Bansal P, Dhanda S. Peptidoglycan Hydrolases of Probiotic Pediococcus acidilactici NCDC 252: Isolation, Physicochemical and In Silico Characterization. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-10008-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Ali A, Kumar R, Khan A, Khan AU. Interaction of LysM BON family protein domain with carbapenems: A putative mechanism of carbapenem resistance. Int J Biol Macromol 2020; 160:212-223. [PMID: 32464197 DOI: 10.1016/j.ijbiomac.2020.05.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Abstract
Carbapenem resistance in Gram-negative pathogens has become a global concern for health workers worldwide. In one of our earlier studies, a Klebsiella pneumoniae-carbapenemase-2 producing strain was induced with meropenem to explore differentially expressed proteins under induced and uninduced conditions. There is, LysM domain BON family protein, was found over 12-fold expressed under the induced state. A hypothesis was proposed that LysM domain protein might have an affinity towards carbapenem antibiotics making them unavailable to bind with their target. Hence, we initiated a study to understand the binding mode of carbapenem with LysM domain protein. MICs of imipenem and meropenem against LysM clone were increased by several folds as compared to NP-6 clinical strain as well as DH5 α (PET-28a KPC-2) clone. This study further revealed a strong binding of both antibiotics to LysM domain protein. Molecular simulation studies of LysM domain protein with meropenem and imipenem for 80 ns has also showed stable structure. We concluded that overexpressed LysM domain under induced condition interacted with carbapenems, leading to enhanced resistance as proved by high MIC values. Hence, the study proved the proposed hypothesis that the LysM domain plays a significant role in the putative mechanism of antibiotics resistance.
Collapse
Affiliation(s)
- Abid Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP, India
| | - Rakesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Arbab Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP, India
| | - Asad U Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP, India; Faculty of Science and Marine Environment, University Malysia Terengganu, Kuala Terengganu, Malaysia.
| |
Collapse
|
10
|
Shirakawa D, Wakinaka T, Watanabe J. Identification of the putative N-acetylglucosaminidase CseA associated with daughter cell separation in Tetragenococcus halophilus. Biosci Biotechnol Biochem 2020; 84:1724-1735. [PMID: 32448081 DOI: 10.1080/09168451.2020.1764329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lactic acid bacterium Tetragenococcus halophilus, which is used as a starter to brew soy sauce, comprises both cluster-forming strains and dispersed strains. The cluster-forming strains are industrially useful for obtaining clear soy sauce, because the cell clusters are trapped by filter cloth when the soy sauce mash is pressed. However, the molecular mechanism underlying cell cluster formation is unknown. Whole genome sequence analysis and subsequent target sequence analysis revealed that the cluster-forming strains commonly have functional defects in N-acetylglucosaminidase CseA, a peptidoglycan hydrolase. CseA is a multimodular protein that harbors a GH73 domain and six peptidoglycan-binding LysM domains. Recombinant CseA hydrolyzed peptidoglycan and promoted cell separation. Functional analysis of truncated CseA derivatives revealed that the LysM domains play an important role in efficient peptidoglycan degradation and cell separation. Taken together, the results of this study identify CseA as a factor that greatly affects the cluster formation in T. halophilus.
Collapse
Affiliation(s)
| | | | - Jun Watanabe
- Manufacturing Division, Yamasa Corporation , Chiba, Japan
| |
Collapse
|
11
|
Bi J, Li F, Zhang M, Wang H, Lu J, Zhang Y, Ling H, Wang J, Gao F, Kong W, Yu B, Yu X. An HIV-1 vaccine based on bacterium-like particles elicits Env-specific mucosal immune responses. Immunol Lett 2020; 222:29-39. [PMID: 32173375 DOI: 10.1016/j.imlet.2020.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/12/2020] [Accepted: 03/11/2020] [Indexed: 01/26/2023]
Abstract
Although many vaccines have been designed to induce effective mucosal immune responses against HIV-1, designing an effective HIV-1 vaccine remains a challenge. Bacterium-like particles (BLPs) are a new type of vector used to induce mucosal immune responses, and have already been used for some vaccines against respiratory tract viruses. In this study, we designed a mucosal vaccine against HIV-1 based on BLPs. The vaccine was used to immunize both mice and guinea pigs via intramuscular (i.m.) injection or intranasal (i.n.) drip. We found that gp120 trimers bound to BLPs delivered via i.n. drip successfully induced Env-specific secretory IgA (sIgA) at mucosal sites in mice. Furthermore, nasal washes from guinea pigs immunized via i.n. drip showed neutralizing activity against HIV-1 tier 1 pseudoviruses. Thus, gp120 trimers bound to BLPs may be an effective vaccine strategy against HIV-1.
Collapse
Affiliation(s)
- Jinpeng Bi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fangshen Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Mo Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Huaiyu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jingcai Lu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hong Ling
- Department of Parasitology, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, China
| | - Jiaye Wang
- Key Lab of Heilongjiang Province for infection and Immunity, Harbin, Heilongjiang 150081, China; Key Lab of Heilongjiang Province Education Bureau for Etiology, Harbin, Heilongjiang 150081, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
12
|
Identification and Characterization of a Cell Wall Hydrolase for Sporangiospore Maturation in Actinoplanes missouriensis. J Bacteriol 2019; 201:JB.00519-19. [PMID: 31570527 DOI: 10.1128/jb.00519-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/23/2019] [Indexed: 11/20/2022] Open
Abstract
The rare actinomycete Actinoplanes missouriensis grows as substrate mycelium and forms terminal sporangia containing a few hundred spores as dormant cells. Upon contact with water, the sporangia open up and release spores to external environments. Here, we report a cell wall hydrolase, GsmA, that is required for sporangiospore maturation in A. missouriensis The gsmA gene is conserved among Actinoplanes species and several species of other rare actinomycetes. Transcription of gsmA is activated in the late stage of sporangium formation by the global transcriptional activator TcrA, which is involved in sporangium formation and dehiscence. GsmA is composed of an N-terminal signal peptide for the twin arginine translocation pathway, two tandem bacterial SH3-like domains, and a glucosaminidase domain. Zymographic analysis using a recombinant C-terminal glucosaminidase domain protein showed that GsmA is a hydrolase able to digest cell walls extracted from the vegetative mycelia of A. missouriensis and Streptomyces griseus A gsmA deletion mutant (ΔgsmA) formed apparently normal sporangia, but they released chains of 2 to 20 spores under sporangium dehiscence-inducing conditions, indicating that spores did not completely mature in the mutant sporangia. From these results, we concluded that GsmA is a cell wall hydrolase for digesting peptidoglycan at septum-forming sites to separate adjacent spores during sporangiospore maturation in A. missouriensis Unexpectedly, flagella were observed around the spore chains of the ΔgsmA mutant by transmission electron microscopy. The flagellar formation was strictly restricted to cell-cell interfaces, giving an important insight into the polarity of the flagellar biogenesis in a spherical spore.IMPORTANCE In streptomycetes, an aerial hypha is compartmentalized by multiple septations into prespores, which become spores through a series of maturation processes. However, little is known about these maturation processes. The rare actinomycete Actinoplanes missouriensis produces sporangiospores, which are assumed to be formed also from prespores generated by the compartmentalization of intrasporangium hyphae via septation. The identification of GsmA as a cell wall hydrolase for the separation of adjacent spores sheds light on the almost unknown processes of sporangiospore formation in A. missouriensis Furthermore, the fact that GsmA orthologues are conserved within the genus Actinoplanes but not in streptomycetes indicates that Actinoplanes has developed an original strategy for the spore maturation in a specific environment, that is, inside a sporangium.
Collapse
|
13
|
Martino C, Ianni A, Grotta L, Pomilio F, Martino G. Influence of Zinc Feeding on Nutritional Quality, Oxidative Stability and Volatile Profile of Fresh and Ripened Ewes' Milk Cheese. Foods 2019; 8:E656. [PMID: 31817893 PMCID: PMC6963858 DOI: 10.3390/foods8120656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022] Open
Abstract
Zinc represents a ubiquitous element in cells with relevant roles in the metabolism of essential nutrients in animals. The aim of this study was to investigate the effect of dietary zinc supplementation on nutritional and aromatic properties of milk and Pecorino cheeses obtained from lactating ewes. Fifty-two commercial ewes were randomly assigned to two groups. The control group was fed with a conventional complete diet, while the experimental group received a daily supplementation of 375 mg/head of zinc oxide. At the end of the trial, which lasted 30 days, samples of milk and related cheese were collected in order to obtain information about the chemical composition and volatile profile. The experimental feeding strategy induced a significant increase in zinc concentration in milk. Furthermore, both in milk and cheese, was observed an increase in vaccenic, rumenic and total polyunsaturated fatty acids, with the consequent significant reduction of atherogenic and thrombogenic indices. The volatile profile of dairy products was also positively affected by dietary zinc intake, with an increase in concentration of hexanoic acid and ethyl esters. The present study suggests interesting possible effects of dietary zinc supplementation of ewes in improving the nutritional characteristics of fresh and ripened dairy products, although more specific and in-depth assessments should be performed on these new products, in order to characterize potential variations on consumers acceptability.
Collapse
Affiliation(s)
- Camillo Martino
- Specialist Diagnostic Department, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale” Via Campo Boario, 64100 Teramo, Italy;
| | - Andrea Ianni
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Lisa Grotta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy;
| | - Francesco Pomilio
- Food Hygiene Unit, NRL for L. monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale” Via Campo Boario, 64100 Teramo, Italy;
| | - Giuseppe Martino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy;
| |
Collapse
|
14
|
Patras KA, Derieux J, Al-Bassam MM, Adiletta N, Vrbanac A, Lapek JD, Zengler K, Gonzalez DJ, Nizet V. Group B Streptococcus Biofilm Regulatory Protein A Contributes to Bacterial Physiology and Innate Immune Resistance. J Infect Dis 2019; 218:1641-1652. [PMID: 29868829 DOI: 10.1093/infdis/jiy341] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/02/2018] [Indexed: 12/18/2022] Open
Abstract
Background Streptococcus agalactiae (group B Streptococcus [GBS]) asymptomatically colonizes approximately 20% of adults; however, GBS causes severe disease in susceptible populations, including newborns, pregnant women, and elderly individuals. In shifting between commensal and pathogenic states, GBS reveals multiple mechanisms of virulence factor control. Here we describe a GBS protein that we named "biofilm regulatory protein A" (BrpA) on the basis of its homology with BrpA from Streptococcus mutans. Methods We coupled phenotypic assays, RNA sequencing, human neutrophil and whole-blood killing assays, and murine infection models to investigate the contribution of BrpA to GBS physiology and virulence. Results Sequence analysis identified BrpA as a LytR-CpsA-Psr enzyme. Targeted mutagenesis yielded a GBS mutant (ΔbrpA) with normal ultrastructural morphology but a 6-fold increase in chain length, a biofilm defect, and decreased acid tolerance. GBS ΔbrpA stimulated increased neutrophil reactive oxygen species and proved more susceptible to human and murine blood and neutrophil killing. Notably, the wild-type parent outcompeted ΔbrpA GBS in murine sepsis and vaginal colonization models. RNA sequencing of ΔbrpA uncovered multiple differences from the wild-type parent, including pathways of cell wall synthesis and cellular metabolism. Conclusions We propose that BrpA is an important virulence regulator and potential target for design of novel antibacterial therapeutics against GBS.
Collapse
Affiliation(s)
- Kathryn A Patras
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla
| | - Jaclyn Derieux
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla
| | - Mahmoud M Al-Bassam
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla
| | - Nichole Adiletta
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla
| | - Alison Vrbanac
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla
| | - John D Lapek
- Department of Pharmacology, School of Medicine, University of California-San Diego, La Jolla.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla
| | - Karsten Zengler
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla
| | - David J Gonzalez
- Department of Pharmacology, School of Medicine, University of California-San Diego, La Jolla.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla
| |
Collapse
|
15
|
Engineered Lactococcus lactis Secreting IL-23 Receptor-Targeted REX Protein Blockers for Modulation of IL-23/Th17-Mediated Inflammation. Microorganisms 2019; 7:microorganisms7050152. [PMID: 31137908 PMCID: PMC6560508 DOI: 10.3390/microorganisms7050152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
Lactococcus lactis, a probiotic bacterium of food origin, has recently been demonstrated as a suitable strain for the production and in vivo delivery of therapeutically important proteins into the gut. We aimed to engineer recombinant L. lactis cells producing/secreting REX binding proteins that have been described as IL-23 receptor (IL-23R) blockers and IL-23R antagonists suppressing the secretion of cytokine IL-17A, a pivotal step in the T-helper Th17-mediated pro-inflammatory cascade, as well as in the development of autoimmune diseases, including inflammatory bowel disease (IBD). To reach this goal, we introduced cDNA sequences coding for REX009, REX115, and REX125 proteins into plasmid vectors carrying a Usp45 secretion signal, a FLAG tag sequence consensus, and a LysM-containing cA surface anchor (AcmA), thus allowing cell-surface peptidoglycan anchoring. These plasmids, or their non-FLAG/non-AcmA versions, were introduced into L. lactis host cells, thus generating unique recombinant L. lactis-REX strains. We demonstrate that all three REX proteins are expressed in L. lactis cells and are efficiently displayed on the bacterial surface, as tested by flow cytometry using an anti-FLAG antibody conjugate. Upon 10-fold concentration of the conditioned media, a REX125 secretory variant can be detected by Western blotting. To confirm that the FLAG/non-FLAG REX proteins displayed by L. lactis retain their binding specificity, cell-surface interactions of REX proteins with an IL-23R-IgG chimera were demonstrated by flow cytometry. In addition, statistically significant binding of secreted REX009 and REX115 proteins to bacterially produced, soluble human IL-23R was confirmed by ELISA. We conclude that REX-secreting L. lactis strains were engineered that might serve as IL-23/IL-23R blockers in an experimentally induced mouse model of colitis.
Collapse
|
16
|
Schlöffel MA, Käsbauer C, Gust AA. Interplay of plant glycan hydrolases and LysM proteins in plant-Bacteria interactions. Int J Med Microbiol 2019; 309:252-257. [PMID: 31079999 DOI: 10.1016/j.ijmm.2019.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/10/2019] [Accepted: 04/25/2019] [Indexed: 12/18/2022] Open
Abstract
Plants are always found together with bacteria and other microbes. Although plants can be attacked by phytopathogenic bacteria, they are more often engaged in neutral or mutualistic bacterial interactions. In the soil, plants associate with rhizobia or other plant growth promoting rhizosphere bacteria; above ground, bacteria colonise plants as epi- and endophytes. For mounting appropriate responses, such as permitting colonisation by beneficial symbionts while at the same time fending off pathogenic invaders, plants need to distinguish between the "good" and the "bad". Plants make use of proteins containing the lysin motif (LysM) for perception of N-acetylglucosamine containing carbohydrate structures, such as chitooligosaccharides functioning as symbiotic nodulation factors or bacterial peptidoglycan. Moreover, plant hydrolytic enzymes of the chitinase family, which are able to cleave bacterial peptidoglycan or chitooligosaccharides, are essential for cellular signalling induced by rhizobial nodulation factors during symbiosis as well as bacterial peptidoglycan during pathogenesis. Hence, LysM receptors seem to work in concert with hydrolytic enzymes that fine-tune ligand availability to either allow symbiotic interactions or trigger plant immunity.
Collapse
Affiliation(s)
- Maria A Schlöffel
- Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Christoph Käsbauer
- Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Andrea A Gust
- Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
17
|
Ianni A, Innosa D, Martino C, Grotta L, Bennato F, Martino G. Zinc supplementation of Friesian cows: Effect on chemical-nutritional composition and aromatic profile of dairy products. J Dairy Sci 2019; 102:2918-2927. [PMID: 30772019 DOI: 10.3168/jds.2018-15868] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022]
Abstract
Zinc represents an essential microelement for several biochemical mechanisms. The body's inability to store zinc necessarily requires a constant dietary supply to avoid alteration of physiological functions. The aim of the present study was to investigate the effect of dietary enrichment with zinc on chemical-nutritional and aromatic properties of milk and cheese. Thirty commercial dairy cows, balanced for parity, milk production, and days in milk, were randomly assigned to 2 groups. The control group was fed with a conventional complete diet (22 kg of dry matter/animal per day), whereas the experimental group received a daily zinc supplementation of 60 mg per kg of dry complete feed. During the experimental period, the milk yield was monitored and samples of milk and caciotta cheese were collected to obtain information about the chemical-nutritional composition and aromatic profile. Dietary zinc integration did not influence milk yield and composition, but induced a marked reduction of somatic cell count and improved the oxidative stability of ripened caciotta cheese. In both milk and cheese, the experimental group samples were characterized by a lower concentration of saturated fatty acids and an increase in oleic acid, vaccenic acid, and rumenic acid. The aromatic profile of dairy products was also positively affected by dietary zinc intake, with an increase in concentration of carboxylic acids, aldehydes, and esters. The present results suggest a positive role of zinc in improving animal health and nutraceutical properties of milk and corresponding cheese. Taking into account the analysis of volatile compounds, zinc dietary supplementation of dairy cows should contribute to the production of cheeses with interesting organoleptic properties, although more studies are necessary to confirm the consumer acceptability of these changes.
Collapse
Affiliation(s)
- Andrea Ianni
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Denise Innosa
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Camillo Martino
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Lisa Grotta
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Francesca Bennato
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Giuseppe Martino
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy.
| |
Collapse
|
18
|
Price CE, Branco Dos Santos F, Hesseling A, Uusitalo JJ, Bachmann H, Benavente V, Goel A, Berkhout J, Bruggeman FJ, Marrink SJ, Montalban-Lopez M, de Jong A, Kok J, Molenaar D, Poolman B, Teusink B, Kuipers OP. Adaption to glucose limitation is modulated by the pleotropic regulator CcpA, independent of selection pressure strength. BMC Evol Biol 2019; 19:15. [PMID: 30630406 PMCID: PMC6327505 DOI: 10.1186/s12862-018-1331-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 12/14/2018] [Indexed: 11/23/2022] Open
Abstract
Background A central theme in (micro)biology is understanding the molecular basis of fitness i.e. which strategies are successful under which conditions; how do organisms implement such strategies at the molecular level; and which constraints shape the trade-offs between alternative strategies. Highly standardized microbial laboratory evolution experiments are ideally suited to approach these questions. For example, prolonged chemostats provide a constant environment in which the growth rate can be set, and the adaptive process of the organism to such environment can be subsequently characterized. Results We performed parallel laboratory evolution of Lactococcus lactis in chemostats varying the quantitative value of the selective pressure by imposing two different growth rates. A mutation in one specific amino acid residue of the global transcriptional regulator of carbon metabolism, CcpA, was selected in all of the evolution experiments performed. We subsequently showed that this mutation confers predictable fitness improvements at other glucose-limited growth rates as well. In silico protein structural analysis of wild type and evolved CcpA, as well as biochemical and phenotypic assays, provided the underpinning molecular mechanisms that resulted in the specific reprogramming favored in constant environments. Conclusion This study provides a comprehensive understanding of a case of microbial evolution and hints at the wide dynamic range that a single fitness-enhancing mutation may display. It demonstrates how the modulation of a pleiotropic regulator can be used by cells to improve one trait while simultaneously work around other limiting constraints, by fine-tuning the expression of a wide range of cellular processes. Electronic supplementary material The online version of this article (10.1186/s12862-018-1331-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claire E Price
- Molecular Genetics Group, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.,Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.,Kluyver Center for Genomics of Industrial Fermentations/NCSB, Julianalaan 67, 2628 BC, Delft, The Netherlands.,Present address: DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| | - Filipe Branco Dos Santos
- Kluyver Center for Genomics of Industrial Fermentations/NCSB, Julianalaan 67, 2628 BC, Delft, The Netherlands.,Systems Bioinformatics, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.,Molecular Microbial Physiology Group, Faculty of Life Science, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Anne Hesseling
- Molecular Genetics Group, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jaakko J Uusitalo
- Molecular Dynamics Group, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Herwig Bachmann
- Kluyver Center for Genomics of Industrial Fermentations/NCSB, Julianalaan 67, 2628 BC, Delft, The Netherlands.,Systems Bioinformatics, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Vera Benavente
- Systems Bioinformatics, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Anisha Goel
- Kluyver Center for Genomics of Industrial Fermentations/NCSB, Julianalaan 67, 2628 BC, Delft, The Netherlands.,Systems Bioinformatics, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.,Present address: Chr. Hansen, Boege Allé 10-12, 2970, Hoersholm, Denmark
| | - Jan Berkhout
- Systems Bioinformatics, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Frank J Bruggeman
- Systems Bioinformatics, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Siewert-Jan Marrink
- Molecular Dynamics Group, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Manolo Montalban-Lopez
- Molecular Genetics Group, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Anne de Jong
- Molecular Genetics Group, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jan Kok
- Molecular Genetics Group, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Douwe Molenaar
- Kluyver Center for Genomics of Industrial Fermentations/NCSB, Julianalaan 67, 2628 BC, Delft, The Netherlands.,Systems Bioinformatics, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bas Teusink
- Kluyver Center for Genomics of Industrial Fermentations/NCSB, Julianalaan 67, 2628 BC, Delft, The Netherlands. .,Systems Bioinformatics, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Oscar P Kuipers
- Molecular Genetics Group, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands. .,Kluyver Center for Genomics of Industrial Fermentations/NCSB, Julianalaan 67, 2628 BC, Delft, The Netherlands.
| |
Collapse
|
19
|
Liu L, Xu L, Jia Q, Pan R, Oelmüller R, Zhang W, Wu C. Arms race: diverse effector proteins with conserved motifs. PLANT SIGNALING & BEHAVIOR 2019; 14:1557008. [PMID: 30621489 PMCID: PMC6351098 DOI: 10.1080/15592324.2018.1557008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Effector proteins play important roles in the infection by pathogenic oomycetes and fungi or the colonization by endophytic and mycorrhizal fungi. They are either translocated into the host plant cells via specific translocation mechanisms and function in the host's cytoplasm or nucleus, or they reside in the apoplast of the plant cells and act at the extracellular host-microbe interface. Many effector proteins possess conserved motifs (such as the RXLR, CRN, LysM, RGD, DELD, EAR, RYWT, Y/F/WXC or CFEM motifs) localized in their N- or C-terminal regions. Analysis of the functions of effector proteins, especially so-called "core effectors", is crucial for the understanding of pathogenicity/symbiosis mechanisms and plant defense strategies, and helps to develop breeding strategies for pathogen-resistant cultivars, and to increase crop yield and quality as well as abiotic stress resistance. This review summarizes current knowledge about these effector proteins with the conversed motifs and their involvement in pathogenic or mutualistic plant/fungal interactions.
Collapse
Affiliation(s)
- Liping Liu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Qie Jia
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
- CONTACT Wenying Zhang Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou 434025, China; Chu Wu College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
- Institute of Plant Ecology and Environmental Restoration, Yangtze University, Jingzhou, China
| |
Collapse
|
20
|
p19-Targeting ILP Protein Blockers of IL-23/Th-17 Pro-Inflammatory Axis Displayed on Engineered Bacteria of Food Origin. Int J Mol Sci 2018; 19:ijms19071933. [PMID: 29966384 PMCID: PMC6073689 DOI: 10.3390/ijms19071933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/23/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022] Open
Abstract
IL-23-mediated Th-17 cell activation and stimulation of IL-17-driven pro-inflammatory axis has been associated with autoimmunity disorders such as Inflammatory Bowel Disease (IBD) or Crohn’s Disease (CD). Recently we developed a unique class of IL-23-specific protein blockers, called ILP binding proteins that inhibit binding of IL-23 to its cognate cell-surface receptor (IL-23R) and exhibit immunosuppressive effect on human primary blood leukocytes ex vivo. In this study, we aimed to generate a recombinant Lactococcus lactis strain which could serve as in vivo producer/secretor of IL-23 protein blockers into the gut. To achieve this goal, we introduced ILP030, ILP317 and ILP323 cDNA sequences into expression plasmid vector containing USP45 secretion signal, FLAG sequence consensus and LysM-containing cA surface anchor (AcmA) ensuring cell-surface peptidoglycan anchoring. We demonstrate that all ILP variants are expressed in L. lactis cells, efficiently transported and secreted from the cell and displayed on the bacterial surface. The binding function of AcmA-immobilized ILP proteins is documented by interaction with a recombinant p19 protein, alpha subunit of human IL-23, which was assembled in the form of a fusion with Thioredoxin A. ILP317 variant exhibits the best binding to the human IL-23 cytokine, as demonstrated for particular L.lactis-ILP recombinant variants by Enzyme-Linked ImmunoSorbent Assay (ELISA). We conclude that novel recombinant ILP-secreting L. lactis strains were developed that might be useful for further in vivo studies of IL-23-mediated inflammation on animal model of experimentally-induced colitis.
Collapse
|
21
|
Bacterial flagellar axial structure and its construction. Biophys Rev 2017; 10:559-570. [PMID: 29235079 DOI: 10.1007/s12551-017-0378-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/26/2017] [Indexed: 12/19/2022] Open
Abstract
The bacterial flagellum is a motile organelle composed of thousands of protein subunits. The filamentous part that extends from the cell membrane is called the axial structure and consists of three major parts, the filament, hook, and rod, and other minor components. Each of the three main parts shares a similar self-assembly mechanism and a common basic architecture of subunit arrangement while showing quite distinct mechanical properties to achieve its specific function. Structural and molecular mechanisms to produce these various mechanical properties of the axial structure, such as the filament, the hook, and the rod, have been revealed by the complementary use of X-ray crystallography and cryo-electron microscopy. In addition, the mechanism of growth of the axial structure is beginning to be revealed based on the molecular structure.
Collapse
|
22
|
Škrlec K, Pucer Janež A, Rogelj B, Štrukelj B, Berlec A. Evasin-displaying lactic acid bacteria bind different chemokines and neutralize CXCL8 production in Caco-2 cells. Microb Biotechnol 2017; 10:1732-1743. [PMID: 28736998 PMCID: PMC5658612 DOI: 10.1111/1751-7915.12781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 01/26/2023] Open
Abstract
Chemokines are key signals in the immune system and play an important role as proinflammatory mediators in the pathology of inflammatory bowel disease and colorectal cancer, making them an important target for therapy. Recombinant lactic acid bacteria (LAB) were engineered to bind CC and CXC chemokines by displaying chemokine‐binding proteins evasin‐1, evasin‐3 and evasin‐4 on their surface. Evasin genes were cloned into lactococcal surface display vector and overexpressed in L. lactis NZ9000 and NZ9000ΔhtrA in fusion with secretion signal and surface anchor. Evasin‐displaying bacteria removed from 15% to 90% of 11 different chemokines from the solution as determined with ELISA and Luminex multiplexing assays, whereby L. lactis NZ9000ΔhtrA proved more efficient. Lactobacillus salivarius ATCC 11741 was coated with L. . lactis‐expressed evasin fusion protein, and its ability to bind chemokines was also confirmed. Evasin‐3‐displaying L. lactis removed 76.0% of IL‐1β‐induced CXCL8 from the supernatant of Caco‐2 epithelial cells. It also prevented secretion of CXCL8 from Caco‐2 cells in a time‐dependent manner when added before induction with IL‐1β. Evasin‐displaying LAB have the ability to bind multiple chemokines simultaneously and exert synergistic activity. This innovative treatment approach therefore has the potential for mucosal therapy of inflammatory bowel disease or colorectal cancer.
Collapse
Affiliation(s)
- Katja Škrlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.,Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Anja Pucer Janež
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.,Biomedical Research Institute (BRIS), Puhova 10, SI-1000, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia
| | - Borut Štrukelj
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
23
|
Arrigucci R, Pozzi G. Identification of the chain-dispersing peptidoglycan hydrolase LytB of Streptococcus gordonii. PLoS One 2017; 12:e0176117. [PMID: 28414782 PMCID: PMC5393624 DOI: 10.1371/journal.pone.0176117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/05/2017] [Indexed: 12/05/2022] Open
Abstract
Bacterial cell division ends with the separation of the daughter cells, a process that requires peptidoglycan hydrolases (PGHs). Bacteria lacking cell separating PGHs are impaired in cell separation with the formation of long chains or clusters. We identified a gene in Streptococcus gordonii encoding for a putative glucosaminidase (lytB). The lytB isogenic mutant grew in long bacterial chains and resulted in impaired biofilm formation. Purified recombinant LytB showed a murolytic activity on Micrococcus lysodeikticus cell suspension and was able to disperse the long chains of the mutant, restoring the wild type diplococci/short chain phenotype. LytB protein was localized only in culture supernatant cell fraction of S. gordonii, and co-cultures of wild type and lytB mutant showed a significant reduction of bacterial chain length, indicating that LytB is a secreted enzyme. Our results demonstrate that LytB is a secreted peptidoglycan hydrolase required for S. gordonii cell separation.
Collapse
Affiliation(s)
- Riccardo Arrigucci
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
- * E-mail:
| | - Gianni Pozzi
- LAMMB, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
24
|
Kang MS, Lim HS, Oh JS, Lim YJ, Wuertz-Kozak K, Harro JM, Shirtliff ME, Achermann Y. Antimicrobial activity of Lactobacillus salivarius and Lactobacillus fermentum against Staphylococcus aureus. Pathog Dis 2017; 75:2966468. [DOI: 10.1093/femspd/ftx009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/25/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Mi-Sun Kang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, 21201 MD, USA
- Oradentics Research Institute, Seoul 06157, South Korea
| | - Hae-Soon Lim
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, 21201 MD, USA
- Dental Science Research Institute, Chonnam National University, Gwangju 61186, South Korea
- Department of Dental Education, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Jong-Suk Oh
- Department of Microbiology, School of Medicine, Chonnam National University, Gwangju 61469, South Korea
| | - You-jin Lim
- Department of Nursing, Gwangju Health University, Gwangju 62287, South Korea
| | - Karin Wuertz-Kozak
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research, Institute of the Paracelsus Medical University 5020 Salzburg (Austria), 81547 Munich, Germany
- Department of Health Sciences, University of Potsdam, 14469 Potsdam, Deutschland
| | - Janette M. Harro
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, 21201 MD, USA
| | - Mark E. Shirtliff
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, 21201 MD, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland—Baltimore, Baltimore, 21201 MD, USA
| | - Yvonne Achermann
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, 21201 MD, USA
- Department of Infectious Diseases, University and University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
25
|
Wang N, Hasegawa H, Huang CY, Fukase K, Fujimoto Y. Synthesis of Peptidoglycan Fragments from Enterococcus faecalis with Fmoc-Strategy for Glycan Elongation. Chem Asian J 2016; 12:27-30. [PMID: 27868361 DOI: 10.1002/asia.201601357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/03/2016] [Indexed: 12/21/2022]
Abstract
Peptidoglycan (PGN) is an essential structural component of the bacterial cell wall conferring cell shape, which can be recognized by host-recognition proteins and receptors as well as bacterial surface proteins. In this work, the PGN partial structures from Enterococcus faecalis that contain a tetrasaccharide and an octasaccharide with a unique heptapeptide were synthesized via an Fmoc-strategy for elongation of the glycan chains. Namely, a 4'-O-Fmoc-protected disaccharide was utilized as the key intermediate in this efficient synthetic pathway for preparing various PGN fragments. Both the tetrasaccharide and octasaccharide with the unique heptapeptide were successfully synthesized for the first time.
Collapse
Affiliation(s)
- Ning Wang
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroki Hasegawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Cheng-Yuan Huang
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yukari Fujimoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| |
Collapse
|
26
|
Jee PF, Chen FS, Shu MH, Wong WF, Abdul Rahim R, AbuBakar S, Chang LY. Insertion of single-chain variable fragment (scFv) peptide linker improves surface display of influenza hemagglutinin (HA1) on non-recombinant Lactococcus lactis. Biotechnol Prog 2016; 33:154-162. [PMID: 27802566 DOI: 10.1002/btpr.2400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/26/2016] [Indexed: 12/14/2022]
Abstract
Heterologous protein displayed on the surface of Lactococcus lactis using the binding domain of N-acetylmuramidase (AcmA) has a potential application in vaccine delivery. In this study, we developed a non-recombinant L. lactis surface displaying the influenza A (H1N1) 2009 hemagglutinin (HA1). Three recombinant proteins, HA1/L/AcmA, HA1/AcmA, and HA1 were overexpressed in Escherichia coli, and purified. In the binding study using flow cytometry, the HA1/L/AcmA, which contained the single-chain variable fragment (scFv) peptide linker showed significantly higher percentage of binding counts and mean fluorescence binding intensity (MFI) (51.7 ± 1.4% and 3,594.0 ± 675.9, respectively) in comparison to the HA1/AcmA without the scFv peptide linker (41.1 ± 1.5% and 1,652.0 ± 34.1, respectively). Higher amount of HA1/L/AcmA (∼2.9 × 104 molecules per cell) was displayed on L. lactis when compared to HA1/AcmA (∼1.1 × 104 molecules per cell) in the immunoblotting analysis. The HA1/L/AcmA completely agglutinated RBCs at comparable amount of protein to that of HA1/AcmA and HA1. Computational modeling of protein structures suggested that scFv peptide linker in HA1/L/AcmA kept the HA1 and the AcmA domain separated at a much longer distance in comparison to HA1/AcmA. These findings suggest that insertion of the scFv peptide linker between HA1 and AcmA improved binding of recombinant proteins to L. lactis. Hence, insertion of scFv peptide linker can be further investigated as a potential approach for improvement of heterologous proteins displayed on the surface of L. lactis using the AcmA binding domain. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:154-162, 2017.
Collapse
Affiliation(s)
- Pui-Fong Jee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Fez-Shin Chen
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Meng-Hooi Shu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sazaly AbuBakar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Visweswaran GRR, Kurek D, Szeliga M, Pastrana FR, Kuipers OP, Kok J, Buist G. Expression of prophage-encoded endolysins contributes to autolysis of Lactococcus lactis. Appl Microbiol Biotechnol 2016; 101:1099-1110. [PMID: 27660179 PMCID: PMC5247546 DOI: 10.1007/s00253-016-7822-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/14/2016] [Accepted: 08/16/2016] [Indexed: 11/28/2022]
Abstract
Analysis of autolysis of derivatives of Lactococcus lactis subsp. cremoris MG1363 and subsp. lactis IL1403, both lacking the major autolysin AcmA, showed that L. lactis IL1403 still lysed during growth while L. lactis MG1363 did not. Zymographic analysis revealed that a peptidoglycan hydrolase activity of around 30 kDa is present in cell extracts of L. lactis IL1403 that could not be detected in strain MG1363. A comparison of all genes encoding putative peptidoglycan hydrolases of IL1403 and MG1363 led to the assumption that one or more of the 99 % homologous 27.9-kDa endolysins encoded by the prophages bIL285, bIL286 and bIL309 could account for the autolysis phenotype of IL1403. Induced expression of the endolysins from bIL285, bIL286 or bIL309 in L. lactis MG1363 resulted in detectable lysis or lytic activity. Prophage deletion and insertion derivatives of L. lactis IL1403 had a reduced cell lysis phenotype. RT-qPCR and zymogram analysis showed that each of these strains still expressed one or more of the three phage lysins. A homologous gene and an endolysin activity were also identified in the natural starter culture L. lactis subsp. cremoris strains E8, Wg2 and HP, and the lytic activity could be detected under growth conditions that were identical as those used for IL1403. The results presented here show that these endolysins of L. lactis are expressed during normal growth and contribute to autolysis without production of (lytic) phages. Screening for natural strains expressing homologous endolysins could help in the selection of strains with enhanced autolysis and, thus, cheese ripening properties.
Collapse
Affiliation(s)
- Ganesh Ram R Visweswaran
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.,Department of Immunology, University of Oslo, Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Dorota Kurek
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands
| | - Monika Szeliga
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands
| | - Francisco Romero Pastrana
- Department of Medical Microbiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9700, Groningen, RB, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands
| | - Jan Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - Girbe Buist
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.,Department of Medical Microbiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9700, Groningen, RB, the Netherlands
| |
Collapse
|
28
|
Surface display on lactic acid bacteria without genetic modification: strategies and applications. Appl Microbiol Biotechnol 2016; 100:9407-9421. [DOI: 10.1007/s00253-016-7842-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 12/21/2022]
|
29
|
Zadravec P, Marečková L, Petroková H, Hodnik V, Perišić Nanut M, Anderluh G, Štrukelj B, Malý P, Berlec A. Development of Recombinant Lactococcus lactis Displaying Albumin-Binding Domain Variants against Shiga Toxin 1 B Subunit. PLoS One 2016; 11:e0162625. [PMID: 27606705 PMCID: PMC5015993 DOI: 10.1371/journal.pone.0162625] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/25/2016] [Indexed: 01/06/2023] Open
Abstract
Infections with shiga toxin-producing bacteria, like enterohemorrhagic Escherichia coli and Shigella dysenteriae, represent a serious medical problem. No specific and effective treatment is available for patients with these infections, creating a need for the development of new therapies. Recombinant lactic acid bacterium Lactococcus lactis was engineered to bind Shiga toxin by displaying novel designed albumin binding domains (ABD) against Shiga toxin 1 B subunit (Stx1B) on their surface. Functional recombinant Stx1B was produced in Escherichia coli and used as a target for selection of 17 different ABD variants (named S1B) from the ABD scaffold-derived high-complex combinatorial library in combination with a five-round ribosome display. Two most promising S1Bs (S1B22 and S1B26) were characterized into more details by ELISA, surface plasmon resonance and microscale thermophoresis. Addition of S1Bs changed the subcellular distribution of Stx1B, completely eliminating it from Golgi apparatus most likely by interfering with its retrograde transport. All ABD variants were successfully displayed on the surface of L. lactis by fusing to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA. Binding of Stx1B by engineered lactococcal cells was confirmed using flow cytometry and whole cell ELISA. Lactic acid bacteria prepared in this study are potentially useful for the removal of Shiga toxin from human intestine.
Collapse
Affiliation(s)
- Petra Zadravec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- The Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Lucie Marečková
- Laboratory of Ligand Engineering, Institute of Biotechnology CAS, v. v. i., BIOCEV Research Center, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Hana Petroková
- Laboratory of Ligand Engineering, Institute of Biotechnology CAS, v. v. i., BIOCEV Research Center, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Borut Štrukelj
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- The Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology CAS, v. v. i., BIOCEV Research Center, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
30
|
Wang N, Hirata A, Nokihara K, Fukase K, Fujimoto Y. Peptidoglycan microarray as a novel tool to explore protein-ligand recognition. Biopolymers 2016; 106:422-9. [DOI: 10.1002/bip.22807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Ning Wang
- Department of Chemistry, Graduate School of Science; Osaka University; 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Akiyoshi Hirata
- HiPep Laboratories; 486-46 Nakatsukasa-Cho Kamigyo-Ku, Kyoto 602-8158 Japan
| | - Kiyoshi Nokihara
- HiPep Laboratories; 486-46 Nakatsukasa-Cho Kamigyo-Ku, Kyoto 602-8158 Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science; Osaka University; 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Yukari Fujimoto
- Department of Chemistry, Graduate School of Science; Osaka University; 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Department of Chemistry, Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi Kohoku-Ku, Yokohama Kanagawa 223-8522 Japan
| |
Collapse
|
31
|
Yuan Y, Gao M. Proteomic Analysis of a Novel Bacillus Jumbo Phage Revealing Glycoside Hydrolase As Structural Component. Front Microbiol 2016; 7:745. [PMID: 27242758 PMCID: PMC4870245 DOI: 10.3389/fmicb.2016.00745] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/03/2016] [Indexed: 12/31/2022] Open
Abstract
Tailed phages with genomes of larger than 200 kbp are classified as Jumbo phages and exhibited extremely high uncharted diversity. The genomic annotation of Jumbo phage is often disappointing because most of the predicted proteins, including structural proteins, failed to make good hits to the sequences in the databases. In this study, 23 proteins of a novel Bacillus Jumbo phage, vB_BpuM_BpSp, were identified as phage structural proteins by the structural proteome analysis, including 14 proteins of unknown function, 5 proteins with predicted function as structural proteins, a glycoside hydrolase, a Holliday junction resolvase, a RNA-polymerase β-subunit, and a host-coding portal protein, which might be hijacked from the host strain during phage virion assembly. The glycoside hydrolase (Gp255) was identified as phage virion component and was found to interact with the phage baseplate protein. Gp255 shows specific lytic activity against the phage host strain GR8 and has high temperature tolerance. In situ peptidoglycan-hydrolyzing activities analysis revealed that the expressed Gp255 and phage structural proteome exhibited glycoside hydrolysis activity against the tested GR8 cell extracts. This study identified the first functional individual structural glycoside hydrolase in phage virion. The presence of activated glycoside hydrolase in phage virions might facilitate the injection of the phage genome during infection by forming pores on the bacterial cell wall.
Collapse
Affiliation(s)
| | - Meiying Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan, China
| |
Collapse
|
32
|
Kondo A, Asami K, Suda Y, Shimoyamada M, Kanauchi M. Isolation of Endotoxin Eliminating Lactic Acid Bacteria and a Property of Endotoxin Eliminating Protein. J Food Sci 2016; 81:M1457-65. [DOI: 10.1111/1750-3841.13310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/13/2016] [Accepted: 03/21/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Ayaka Kondo
- Miyagi Univ; Dept. of Food Management; 2-2-1 Hatatate, Taihaku-ku Sendai Miyagi
| | - Kyoko Asami
- Miyagi Univ; Dept. of Food Management; 2-2-1 Hatatate, Taihaku-ku Sendai Miyagi
| | - Yoshihito Suda
- Miyagi Univ; Dept. of Food Management; 2-2-1 Hatatate, Taihaku-ku Sendai Miyagi
| | - Makoto Shimoyamada
- Univ. of Shizuoka; School of Food and Nutritional Sciences; 52-1 Yada, Sugaru-ku Shizuoka Shizuoka
| | - Makoto Kanauchi
- Miyagi Univ; Dept. of Food Management; 2-2-1 Hatatate, Taihaku-ku Sendai Miyagi
| |
Collapse
|
33
|
Solopova A, Formosa-Dague C, Courtin P, Furlan S, Veiga P, Péchoux C, Armalyte J, Sadauskas M, Kok J, Hols P, Dufrêne YF, Kuipers OP, Chapot-Chartier MP, Kulakauskas S. Regulation of Cell Wall Plasticity by Nucleotide Metabolism in Lactococcus lactis. J Biol Chem 2016; 291:11323-36. [PMID: 27022026 DOI: 10.1074/jbc.m116.714303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 12/21/2022] Open
Abstract
To ensure optimal cell growth and separation and to adapt to environmental parameters, bacteria have to maintain a balance between cell wall (CW) rigidity and flexibility. This can be achieved by a concerted action of peptidoglycan (PG) hydrolases and PG-synthesizing/modifying enzymes. In a search for new regulatory mechanisms responsible for the maintenance of this equilibrium in Lactococcus lactis, we isolated mutants that are resistant to the PG hydrolase lysozyme. We found that 14% of the causative mutations were mapped in the guaA gene, the product of which is involved in purine metabolism. Genetic and transcriptional analyses combined with PG structure determination of the guaA mutant enabled us to reveal the pivotal role of the pyrB gene in the regulation of CW rigidity. Our results indicate that conversion of l-aspartate (l-Asp) to N-carbamoyl-l-aspartate by PyrB may reduce the amount of l-Asp available for PG synthesis and thus cause the appearance of Asp/Asn-less stem peptides in PG. Such stem peptides do not form PG cross-bridges, resulting in a decrease in PG cross-linking and, consequently, reduced PG thickness and rigidity. We hypothesize that the concurrent utilization of l-Asp for pyrimidine and PG synthesis may be part of the regulatory scheme, ensuring CW flexibility during exponential growth and rigidity in stationary phase. The fact that l-Asp availability is dependent on nucleotide metabolism, which is tightly regulated in accordance with the growth rate, provides L. lactis cells the means to ensure optimal CW plasticity without the need to control the expression of PG synthesis genes.
Collapse
Affiliation(s)
- Ana Solopova
- From the Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Cécile Formosa-Dague
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium, and
| | | | | | | | - Christine Péchoux
- Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | | | - Jan Kok
- From the Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Pascal Hols
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium, and
| | - Yves F Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium, and
| | - Oscar P Kuipers
- From the Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | | | | |
Collapse
|
34
|
Roces C, Campelo AB, Escobedo S, Wegmann U, García P, Rodríguez A, Martínez B. Reduced Binding of the Endolysin LysTP712 to Lactococcus lactis ΔftsH Contributes to Phage Resistance. Front Microbiol 2016; 7:138. [PMID: 26904011 PMCID: PMC4749879 DOI: 10.3389/fmicb.2016.00138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/25/2016] [Indexed: 02/01/2023] Open
Abstract
Absence of the membrane protease FtsH in Lactococcus lactis hinders release of the bacteriophage TP712. In this work we have analyzed the mechanism responsible for the non-lytic phenotype of L. lactis ΔftsH after phage infection. The lytic cassette of TP712 contains a putative antiholin–pinholin system and a modular endolysin (LysTP712). Inducible expression of the holin gene demonstrated the presence of a dual start motif which is functional in both wildtype and L. lactis ΔftsH cells. Moreover, simulating holin activity with ionophores accelerated lysis of wildtype cells but not L. lactis ΔftsH cells, suggesting inhibition of the endolysin rather than a role of FtsH in holin activation. However, zymograms revealed the synthesis of an active endolysin in both wildtype and L. lactis ΔftsH TP712 lysogens. A reporter protein was generated by fusing the cell wall binding domain of LysTP712 to the fluorescent mCherry protein. Binding of this reporter protein took place at the septa of both wildtype and L. lactis ΔftsH cells as shown by fluorescence microscopy. Nonetheless, fluorescence spectroscopy demonstrated that mutant cells bound 40% less protein. In conclusion, the non-lytic phenotype of L. lactis ΔftsH is not due to direct action of the FtsH protease on the phage lytic proteins but rather to a putative function of FtsH in modulating the architecture of the L. lactis cell envelope that results in a lower affinity of the phage endolysin to its substrate.
Collapse
Affiliation(s)
- Clara Roces
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Ana B Campelo
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Susana Escobedo
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Udo Wegmann
- Institute of Food Research, Norwich Research Park Norwich, UK
| | - Pilar García
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Ana Rodríguez
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Beatriz Martínez
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| |
Collapse
|
35
|
Najjari A, Amairi H, Chaillou S, Mora D, Boudabous A, Zagorec M, Ouzari H. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei. J Adv Res 2016; 7:155-63. [PMID: 26843981 PMCID: PMC4703478 DOI: 10.1016/j.jare.2015.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 11/26/2022] Open
Abstract
Lactobacillus sakei, a lactic acid bacterium naturally found in fresh meat and sea products, is considered to be one of the most important bacterial species involved in meat fermentation and bio-preservation. Several enzymes of Lb. sakei species contributing to microbial safeguarding and organoleptic properties of fermented-meat were studied. However, the specific autolytic mechanisms and associated enzymes involved in Lb. sakei are not well understood. The autolytic phenotype of 22 Lb. sakei strains isolated from Tunisian meat and seafood products was evaluated under starvation conditions, at pH 6.5 and 8.5, and in the presence of different carbon sources. A higher autolytic rate was observed when cells were grown in the presence of glucose and incubated at pH 6.5. Almost all strains showed high resistance to mutanolysin, indicating a minor role of muramidases in Lb. sakei cell lysis. Using Micrococcus lysodeikticus cells as a substrate in activity gels zymogram, peptidoglycan hydrolase (PGH) patterns for all strains was characterized by two lytic bands of ∼80 (B1) and ∼70 kDa (B2), except for strain BMG.167 which harbored two activity signals at a lower MW. Lytic activity was retained in high salt and in acid/basic conditions and was active toward cells of Lb. sakei, Listeria monocytogenes, Listeria ivanovii and Listeria innocua. Analysis of five putative PGH genes found in the Lb. sakei 23 K model strain genome, indicated that one gene, lsa1437, could encode a PGH (N-acetylmuramoyl-L-alanine amidase) containing B1 and B2 as isoforms. According to this hypothesis, strain BMG.167 showed an allelic version of lsa1437 gene deleted of one of the five LysM domains, leading to a reduction in the MW of lytic bands and the high autolytic rate of this strain. Characterization of autolytic phenotype of Lb. sakei should expand the knowledge of their role in fermentation processes where they represent the dominant species.
Collapse
Affiliation(s)
- Afef Najjari
- Université Tunis El Manar, Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
| | - Houda Amairi
- Université Tunis El Manar, Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
| | - Stéphane Chaillou
- Unité Flore Lactique et Environnement Carné, UR309, INRA, Domaine de Vilvert, F-78350 Jouy en Josas, France
| | - Diego Mora
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Milan, Italy
| | - Abdellatif Boudabous
- Université Tunis El Manar, Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
| | - Monique Zagorec
- Unité Flore Lactique et Environnement Carné, UR309, INRA, Domaine de Vilvert, F-78350 Jouy en Josas, France
| | - Hadda Ouzari
- Université Tunis El Manar, Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
| |
Collapse
|
36
|
Neef J, Milder FJ, Koedijk DGAM, Klaassens M, Heezius EC, van Strijp JAG, Otto A, Becher D, van Dijl JM, Buist G. Versatile vector suite for the extracytoplasmic production and purification of heterologous His-tagged proteins in Lactococcus lactis. Appl Microbiol Biotechnol 2015; 99:9037-48. [PMID: 26160391 PMCID: PMC4619460 DOI: 10.1007/s00253-015-6778-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/05/2015] [Accepted: 06/17/2015] [Indexed: 11/25/2022]
Abstract
Recent studies have shown that the Gram-positive bacterium Lactococcus lactis can be exploited for the expression of heterologous proteins; however, a versatile set of vectors suitable for inducible extracellular protein production and subsequent purification of the expressed proteins by immobilized metal affinity chromatography was so far lacking. Here we describe three novel vectors that, respectively, facilitate the nisin-inducible production of N- or C-terminally hexa-histidine (His6)-tagged proteins in L. lactis. One of these vectors also encodes a tobacco etch virus (TEV) protease cleavage site allowing removal of the N-terminal His6-tag from expressed proteins. Successful application of the developed vectors for protein expression, purification and/or functional studies is exemplified with six different cell wall-bound or secreted proteins from Staphylococcus aureus. The results show that secretory production of S. aureus proteins is affected by the position, N- or C-terminal, of the His6-tag. This seems to be due to an influence of the His6-tag on protein stability. Intriguingly, the S. aureus IsdB protein, which is phosphorylated in S. aureus, was also found to be phosphorylated when heterologously produced in L. lactis, albeit not on the same Tyr residue. This implies that this particular post-translational protein modification is to some extent conserved in S. aureus and L. lactis. Altogether, we are confident that the present vector set combined with the L. lactis expression host has the potential to become a very useful tool in optimization of the expression, purification and functional analysis of extracytoplasmic bacterial proteins.
Collapse
Affiliation(s)
- Jolanda Neef
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Fin J Milder
- Department of Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Danny G A M Koedijk
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Marindy Klaassens
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Erik C Heezius
- Department of Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Andreas Otto
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489, Greifswald, Germany
| | - Dörte Becher
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489, Greifswald, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
37
|
Xu Y, Wang T, Kong J, Wang HL. Identification and functional characterization of AclB, a novel cell-separating enzyme from Lactobacillus casei. Int J Food Microbiol 2015; 203:93-100. [DOI: 10.1016/j.ijfoodmicro.2015.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/01/2015] [Accepted: 03/08/2015] [Indexed: 01/23/2023]
|
38
|
Kelleher P, Murphy J, Mahony J, van Sinderen D. Next-generation sequencing as an approach to dairy starter selection. DAIRY SCIENCE & TECHNOLOGY 2015; 95:545-568. [PMID: 26798445 PMCID: PMC4712225 DOI: 10.1007/s13594-015-0227-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/25/2015] [Accepted: 04/02/2015] [Indexed: 02/06/2023]
Abstract
Lactococcal and streptococcal starter strains are crucial ingredients to manufacture fermented dairy products. As commercial starter culture suppliers and dairy producers attempt to overcome issues of phage sensitivity and develop new product ranges, there is an ever increasing need to improve technologies for the rational selection of novel starter culture blends. Whole genome sequencing, spurred on by recent advances in next-generation sequencing platforms, is a promising approach to facilitate rapid identification and selection of such strains based on gene-trait matching. This review provides a comprehensive overview of the available methodologies to analyse the technological potential of candidate starter strains and highlights recent advances in the area of dairy starter genomics.
Collapse
Affiliation(s)
- Philip Kelleher
- School of Microbiology, University College Cork, Cork, Ireland
| | - James Murphy
- School of Microbiology, University College Cork, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Cork, Ireland
| |
Collapse
|
39
|
van den Berg S, Koedijk DGAM, Back JW, Neef J, Dreisbach A, van Dijl JM, Bakker-Woudenberg IAJM, Buist G. Active immunization with an octa-valent Staphylococcus aureus antigen mixture in models of S. aureus bacteremia and skin infection in mice. PLoS One 2015; 10:e0116847. [PMID: 25710376 PMCID: PMC4339199 DOI: 10.1371/journal.pone.0116847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/15/2014] [Indexed: 11/18/2022] Open
Abstract
Proteomic studies with different Staphylococcus aureus isolates have shown that the cell surface-exposed and secreted proteins IsaA, LytM, Nuc, the propeptide of Atl (pro-Atl) and four phenol-soluble modulins α (PSMα) are invariantly produced by this pathogen. Therefore the present study was aimed at investigating whether these proteins can be used for active immunization against S. aureus infection in mouse models of bacteremia and skin infection. To this end, recombinant His-tagged fusions of IsaA, LytM, Nuc and pro-Atl were isolated from Lactococcus lactis or Escherichia coli, while the PSMα1-4 peptides were chemically synthesized. Importantly, patients colonized by S. aureus showed significant immunoglobulin G (IgG) responses against all eight antigens. BALB/cBYJ mice were immunized subcutaneously with a mixture of the antigens at day one (5 μg each), and boosted twice (25 μg of each antigen) with 28 days interval. This resulted in high IgG responses against all antigens although the response against pro-Atl was around one log lower compared to the other antigens. Compared to placebo-immunized mice, immunization with the octa-valent antigen mixture did not reduce the S. aureus isolate P load in blood, lungs, spleen, liver, and kidneys in a bacteremia model in which the animals were challenged for 14 days with a primary load of 3 × 105 CFU. Discomfort scores and animal survival rates over 14 days did not differ between immunized mice and placebo-immunized mice upon bacteremia with S. aureus USA300 (6 × 105 CFU). In addition, this immunization did not reduce the S. aureus isolate P load in mice with skin infection. These results show that the target antigens are immunogenic in both humans and mice, but in the used animal models do not result in protection against S. aureus infection.
Collapse
Affiliation(s)
- Sanne van den Berg
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
- * E-mail:
| | - Dennis G. A. M. Koedijk
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Jolanda Neef
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Annette Dreisbach
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
40
|
Improvement of LysM-mediated surface display of designed ankyrin repeat proteins (DARPins) in recombinant and nonrecombinant strains of Lactococcus lactis and Lactobacillus Species. Appl Environ Microbiol 2015; 81:2098-106. [PMID: 25576617 DOI: 10.1128/aem.03694-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Safety and probiotic properties make lactic acid bacteria (LAB) attractive hosts for surface display of heterologous proteins. Protein display on nonrecombinant microorganisms is preferred for therapeutic and food applications due to regulatory requirements. We displayed two designed ankyrin repeat proteins (DARPins), each possessing affinity for the Fc region of human IgG, on the surface of Lactococcus lactis by fusing them to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA, containing lysine motif (LysM) repeats. Growth medium containing a secreted fusion protein was used to test its heterologous binding to 10 strains of species of the genus Lactobacillus, using flow cytometry, whole-cell enzyme-linked immunosorbent assay (ELISA), and fluorescence microscopy. The fusion proteins bound to the surfaces of all lactobacilli; however, binding to the majority of bacteria was only 2- to 5-fold stronger than that of the control. Lactobacillus salivarius ATCC 11741 demonstrated exceptionally strong binding (32- to 55-fold higher than that of the control) and may therefore be an attractive host for nonrecombinant surface display. Genomic comparison of the species indicated the exopolysaccharides of Lb. salivarius as a possible reason for the difference. Additionally, a 15-fold concentration-dependent increase in nonrecombinant surface display on L. lactis was demonstrated by growing bacteria with sublethal concentrations of the antibiotics chloramphenicol and erythromycin. Nonrecombinant surface display on LAB, based on LysM repeats, was optimized by selecting Lactobacillus salivarius ATCC 11741 as the optimal host and by introducing antibiotics as additives for increasing surface display on L. lactis. Additionally, effective display of DARPins on the surfaces of nonrecombinant LAB has opened up several new therapeutic possibilities.
Collapse
|
41
|
Abstract
The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts.
Collapse
|
42
|
Carvalho F, Sousa S, Cabanes D. How Listeria monocytogenes organizes its surface for virulence. Front Cell Infect Microbiol 2014; 4:48. [PMID: 24809022 PMCID: PMC4010754 DOI: 10.3389/fcimb.2014.00048] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/02/2014] [Indexed: 02/04/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive pathogen responsible for the manifestation of human listeriosis, an opportunistic foodborne disease with an associated high mortality rate. The key to the pathogenesis of listeriosis is the capacity of this bacterium to trigger its internalization by non-phagocytic cells and to survive and even replicate within phagocytes. The arsenal of virulence proteins deployed by L. monocytogenes to successfully promote the invasion and infection of host cells has been progressively unveiled over the past decades. A large majority of them is located at the cell envelope, which provides an interface for the establishment of close interactions between these bacterial factors and their host targets. Along the multistep pathways carrying these virulence proteins from the inner side of the cytoplasmic membrane to their cell envelope destination, a multiplicity of auxiliary proteins must act on the immature polypeptides to ensure that they not only maturate into fully functional effectors but also are placed or guided to their correct position in the bacterial surface. As the major scaffold for surface proteins, the cell wall and its metabolism are critical elements in listerial virulence. Conversely, the crucial physical support and protection provided by this structure make it an ideal target for the host immune system. Therefore, mechanisms involving fine modifications of cell envelope components are activated by L. monocytogenes to render it less recognizable by the innate immunity sensors or more resistant to the activity of antimicrobial effectors. This review provides a state-of-the-art compilation of the mechanisms used by L. monocytogenes to organize its surface for virulence, with special focus on those proteins that work “behind the frontline”, either supporting virulence effectors or ensuring the survival of the bacterium within its host.
Collapse
Affiliation(s)
- Filipe Carvalho
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| | - Sandra Sousa
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| | - Didier Cabanes
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| |
Collapse
|
43
|
Visweswaran GRR, Leenhouts K, van Roosmalen M, Kok J, Buist G. Exploiting the peptidoglycan-binding motif, LysM, for medical and industrial applications. Appl Microbiol Biotechnol 2014; 98:4331-45. [PMID: 24652063 PMCID: PMC4004799 DOI: 10.1007/s00253-014-5633-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 12/14/2022]
Abstract
The lysin motif (LysM) was first identified by Garvey et al. in 1986 and, in subsequent studies, has been shown to bind noncovalently to peptidoglycan and chitin by interacting with N-acetylglucosamine moieties. The LysM sequence is present singly or repeatedly in a large number of proteins of prokaryotes and eukaryotes. Since the mid-1990s, domains containing one or more of these LysM sequences originating from different LysM-containing proteins have been examined for purely scientific reasons as well as for their possible use in various medical and industrial applications. These studies range from detecting localized binding of LysM-containing proteins onto bacteria to actual bacterial cell surface analysis. On a more applied level, the possibilities of employing the LysM domains for cell immobilization, for the display of peptides, proteins, or enzymes on (bacterial) surfaces as well as their utility in the development of novel vaccines have been scrutinized. To serve these purposes, the chimeric proteins containing one or more of the LysM sequences have been produced and isolated from various prokaryotic and eukaryotic expression hosts. This review gives a succinct overview of the characteristics of the LysM domain and of current developments in its application potential.
Collapse
Affiliation(s)
- Ganesh Ram R Visweswaran
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Kumar A, Kumar S, Kumar D, Mishra A, Dewangan RP, Shrivastava P, Ramachandran S, Taneja B. The structure of Rv3717 reveals a novel amidase from Mycobacterium tuberculosis. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2543-54. [PMID: 24311595 PMCID: PMC3852659 DOI: 10.1107/s0907444913026371] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/24/2013] [Indexed: 11/16/2022]
Abstract
Bacterial N-acetylmuramoyl-L-alanine amidases are cell-wall hydrolases that hydrolyze the bond between N-acetylmuramic acid and L-alanine in cell-wall glycopeptides. Rv3717 of Mycobacterium tuberculosis has been identified as a unique autolysin that lacks a cell-wall-binding domain (CBD) and its structure has been determined to 1.7 Å resolution by the Pt-SAD phasing method. Rv3717 possesses an α/β-fold and is a zinc-dependent hydrolase. The structure reveals a short flexible hairpin turn that partially occludes the active site and may be involved in autoregulation. This type of autoregulation of activity of PG hydrolases has been observed in Bartonella henselae amidase (AmiB) and may be a general mechanism used by some of the redundant amidases to regulate cell-wall hydrolase activity in bacteria. Rv3717 utilizes its net positive charge for substrate binding and exhibits activity towards a broad spectrum of substrate cell walls. The enzymatic activity of Rv3717 was confirmed by isolation and identification of its enzymatic products by LC/MS. These studies indicate that Rv3717, an N-acetylmuramoyl-L-alanine amidase from M. tuberculosis, represents a new family of lytic amidases that do not have a separate CBD and are regulated conformationally.
Collapse
Affiliation(s)
- Atul Kumar
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Sanjiv Kumar
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Dilip Kumar
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Arpit Mishra
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Rikeshwer P. Dewangan
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Priyanka Shrivastava
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | | | - Bhupesh Taneja
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| |
Collapse
|
45
|
Van Braeckel-Budimir N, Haijema BJ, Leenhouts K. Bacterium-like particles for efficient immune stimulation of existing vaccines and new subunit vaccines in mucosal applications. Front Immunol 2013; 4:282. [PMID: 24062748 PMCID: PMC3775300 DOI: 10.3389/fimmu.2013.00282] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/31/2013] [Indexed: 12/14/2022] Open
Abstract
The successful development of a mucosal vaccine depends critically on the use of a safe and effective immunostimulant and/or carrier system. This review describes the effectiveness and mode of action of an immunostimulating particle, derived from bacteria, used in mucosal subunit vaccines. The non-living particles, designated bacterium-like particles are based on the food-grade bacterium Lactococcus lactis. The focus of the overview is on the development of intranasal BLP-based vaccines to prevent diseases caused by influenza and respiratory syncytial virus, and includes a selection of Phase I clinical data for the intranasal FluGEM vaccine.
Collapse
|
46
|
Visweswaran GRR, Steen A, Leenhouts K, Szeliga M, Ruban B, Hesseling-Meinders A, Dijkstra BW, Kuipers OP, Kok J, Buist G. AcmD, a homolog of the major autolysin AcmA of Lactococcus lactis, binds to the cell wall and contributes to cell separation and autolysis. PLoS One 2013; 8:e72167. [PMID: 23951292 PMCID: PMC3738550 DOI: 10.1371/journal.pone.0072167] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 07/12/2013] [Indexed: 11/18/2022] Open
Abstract
Lactococcus lactis expresses the homologous glucosaminidases AcmB, AcmC, AcmA and AcmD. The latter two have three C-terminal LysM repeats for peptidoglycan binding. AcmD has much shorter intervening sequences separating the LysM repeats and a lower iso-electric point (4.3) than AcmA (10.3). Under standard laboratory conditions AcmD was mainly secreted into the culture supernatant. An L. lactis acmAacmD double mutant formed longer chains than the acmA single mutant, indicating that AcmD contributes to cell separation. This phenotype could be complemented by plasmid-encoded expression of AcmD in the double mutant. No clear difference in cellular lysis and protein secretion was observed between both mutants. Nevertheless, overexpression of AcmD resulted in increased autolysis when AcmA was present (as in the wild type strain) or when AcmA was added to the culture medium of an AcmA-minus strain. Possibly, AcmD is mainly active within the cell wall, at places where proper conditions are present for its binding and catalytic activity. Various fusion proteins carrying either the three LysM repeats of AcmA or AcmD were used to study and compare their cell wall binding characteristics. Whereas binding of the LysM domain of AcmA took place at pHs ranging from 4 to 8, LysM domain of AcmD seems to bind strongest at pH 4.
Collapse
Affiliation(s)
- Ganesh Ram R. Visweswaran
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Laboratory of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Anton Steen
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | - Monika Szeliga
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Beata Ruban
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Anne Hesseling-Meinders
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Bauke W. Dijkstra
- Laboratory of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Jan Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Girbe Buist
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
47
|
Khemariya P, Singh S, Nath G, Gulati AK. Subspecies-Specific Nested PCR Assay for Detection ofLactococcus lactisspp.lactisand spp.cremoris. FOOD BIOTECHNOL 2013. [DOI: 10.1080/08905436.2013.811085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Shi XZ, Zhou J, Lan JF, Jia YP, Zhao XF, Wang JX. A Lysin motif (LysM)-containing protein functions in antibacterial responses of red swamp crayfish, Procambarus clarkii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:311-319. [PMID: 23529009 DOI: 10.1016/j.dci.2013.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 06/02/2023]
Abstract
Lysin domain (LysM) is a widely spread domain in nature and could bind different peptidoglycans and chitin-like compounds in bacteria and eukaryotes. In plants, Lysin motif containing proteins are one of the major classes of pattern recognition proteins which can recognize GlcNAc-containing glycans and have important functions in plant immunity. However, their functions in animal immunity are still unclear. In this study, a cDNA encoding a LysM containing protein was identified from red swamp crayfish, Procambarus clarkii. The cDNA of PcLysM contained 1200 base pair nucleotides with an open reading frame of 702bp encoding a protein of 233 amino acid residues. The deduced protein had a calculated molecular mass of 25.950kDa and a pI of 6.84. Tissue distribution analysis in mRNA level showed that it was highly expressed in gills, hemocytes, and intestine, and lowly expressed in hearts, hepatopancreas, and stomach. Time course expression pattern analysis showed that PcLysM was upregulated in hemocytes and gills after challenge with Vibrio anguillarum, and it was upregulated at 12h after challenge with Staphylococcus aureus in gills. The recombinant PcLysM could bind to different bacteria, and yeast. Further study revealed that PcLysM could bind to peptidoglycans from different bacteria, and chitin. After PcLysM was knocked down, the upregulation of antimicrobial peptide (AMP) genes (crustins and antilipopolysaccharide factors) was suppressed in response to bacterial infection in gills. These results suggest that PcLysM recognizes different microorganisms through binding to polysaccharides, such as peptidoglycans and chitin and regulates the expression of some antimicrobial peptide genes though unknown pathways and regulates the expression of some antimicrobial peptide genes though unknown pathways. This study might provide a clue to elucidate the roles of PcLysM in the innate immune reaction of crayfish P. clarkii.
Collapse
Affiliation(s)
- Xiu-Zhen Shi
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | | | | | | | | | | |
Collapse
|
49
|
Xu Y, Kong J. Construction and potential application of controlled autolytic systems for Lactobacillus casei in cheese manufacture. J Food Prot 2013; 76:1187-93. [PMID: 23834793 DOI: 10.4315/0362-028x.jfp-12-307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The rapid release of intracellular enzymes into the curd by the autolysis of lactic acid bacteria starters is universally recognized as a critical biological process to accelerate cheese ripening. Lactobacillus casei is typically the dominant nonstarter lactic acid bacterium in the ripening cheese. In this study, two controlled autolytic systems were established in L. casei BL23, based on the exploitation of the autolysins sourced from Lactococcus lactis (AcmA) and Enterococcus faecalis (AtlA). The lysis abilities of the systems were demonstrated both in broth and a model cheese, in which a fivefold increase in lactate dehydrogenase activity was detected in the curd with sufficient viable starter cells being maintained, indicating that they could lead to the timely release of intracellular enzymes.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda South Road, Jinan 250100, People's Republic of China
| | | |
Collapse
|
50
|
Parapouli M, Delbès-Paus C, Kakouri A, Koukkou AI, Montel MC, Samelis J. Characterization of a wild, novel nisin a-producing Lactococcus strain with an L. lactis subsp. cremoris genotype and an L. lactis subsp. lactis phenotype, isolated from Greek raw milk. Appl Environ Microbiol 2013; 79:3476-84. [PMID: 23542625 PMCID: PMC3648029 DOI: 10.1128/aem.00436-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/25/2013] [Indexed: 11/20/2022] Open
Abstract
Several molecular taxonomic studies have revealed that many natural (wild) Lactococcus lactis strains of dairy origin which are phenotypically representative of the L. lactis subspecies lactis cluster genotypically within subspecies cremoris and vice versa. Recently, we isolated two wild nisin-producing (Nis(+)) L. lactis strains, M78 and M104, of the lactis phenotype from Greek raw milk (J. Samelis, A. Lianou, A. Kakouri, C. Delbès, I. Rogelj, B. B. Matijašic, and M. C. Montel, J. Food Prot. 72:783-790, 2009); strain M78 possess a novel nisin A sequence (GenBank accession number HM219853). In this study, the actual subspecies identity of M78 and M104 isolates was elucidated, using 16S rRNA and acmA (encoding lactococcal N-acetylmuramidase) gene and histidine biosynthesis operon polymorphisms and 16S rRNA and ldh (encoding lactate dehydrogenase) gene phylogenies. Except the acmA gene analysis, molecular tools revealed that isolates M78 and M104 clustered with strains of the cremoris genotype, including the LMG 6897(T) strain, while they were distant from strains of the lactis genotype, including the LMG 6890(T) strain. The two wild isolates had identical repetitive sequence-based PCR (rep-PCR), randomly amplified polymorphic DNA (RAPD), plasmid, and whole-cell protein profiles and shared high 16S rRNA (99.9%) and ldh (100%) gene sequence homologies. In contrast, they exhibited identical sugar fermentation and enzymatic patterns which were similar to those of the subspecies lactis LMG 6890(T) strain. To our knowledge, this is the first complete identification report on a wild L. lactis subsp. cremoris genotype of the lactis phenotype which is capable of nisin A production and, thus, has strong potential for use as a novel dairy starter and/or protective culture.
Collapse
Affiliation(s)
- Maria Parapouli
- Department of Chemistry, Laboratory of Biochemistry, University of Ioannina, Ioannina, Greece
- Dairy Research Institure, Katsikas, Ioannina, Greece
| | | | | | - Anna-Irini Koukkou
- Department of Chemistry, Laboratory of Biochemistry, University of Ioannina, Ioannina, Greece
| | | | - John Samelis
- Dairy Research Institure, Katsikas, Ioannina, Greece
| |
Collapse
|