1
|
Wang H, Zhang J, Toso D, Liao S, Sedighian F, Gunsalus R, Zhou ZH. Hierarchical organization and assembly of the archaeal cell sheath from an amyloid-like protein. Nat Commun 2023; 14:6720. [PMID: 37872154 PMCID: PMC10593813 DOI: 10.1038/s41467-023-42368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Certain archaeal cells possess external proteinaceous sheath, whose structure and organization are both unknown. By cellular cryogenic electron tomography (cryoET), here we have determined sheath organization of the prototypical archaeon, Methanospirillum hungatei. Fitting of Alphafold-predicted model of the sheath protein (SH) monomer into the 7.9 Å-resolution structure reveals that the sheath cylinder consists of axially stacked β-hoops, each of which is comprised of two to six 400 nm-diameter rings of β-strand arches (β-rings). With both similarities to and differences from amyloid cross-β fibril architecture, each β-ring contains two giant β-sheets contributed by ~ 450 SH monomers that entirely encircle the outer circumference of the cell. Tomograms of immature cells suggest models of sheath biogenesis: oligomerization of SH monomers into β-ring precursors after their membrane-proximal cytoplasmic synthesis, followed by translocation through the unplugged end of a dividing cell, and insertion of nascent β-hoops into the immature sheath cylinder at the junction of two daughter cells.
Collapse
Affiliation(s)
- Hui Wang
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Jiayan Zhang
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Daniel Toso
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Shiqing Liao
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Farzaneh Sedighian
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Robert Gunsalus
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
- The UCLA-DOE Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Z Hong Zhou
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
Ahari H, Fakhrabadipour M, Paidari S, Goksen G, Xu B. Role of AuNPs in Active Food Packaging Improvement: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228027. [PMID: 36432128 PMCID: PMC9696957 DOI: 10.3390/molecules27228027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022]
Abstract
There is a worldwide concern about food loss due to reduced shelf life among food science researchers. Hence, it seems that any techniques contributing to improved food packaging are most welcome in the food sector. It has been demonstrated that the administration of nanotechnology-based techniques such as metal-based nanoparticles can fade away the unresolved obstacles in shortened shelf life and environmental concerns. Along with substantial signs of progress in nanoscience, there is a great interest in the usage of green synthesis-based methods for gold nanoparticles as the most advantageous metals, when compared to conventional chemistry-based methods. Interestingly, those aforementioned methods have significant potential to simplify targeted administration of gold nanoparticles due to a large surface-volume ratio, and diminished biohazards, aimed at increasing stability, and induction of anti-microbial or antioxidant properties. However, it is necessary to consider the hazards of gold nanoparticles including migration for food packaging purposes.
Collapse
Affiliation(s)
- Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
- Correspondence: (H.A.); (B.X.)
| | - Mostafa Fakhrabadipour
- Department of Food Science and Technology, Qeshm Branch, Islamic Azad University, Qeshm 7953163135, Iran
| | - Saeed Paidari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin 33100, Turkey
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- Correspondence: (H.A.); (B.X.)
| |
Collapse
|
3
|
Kasas S, Malovichko A, Villalba MI, Vela ME, Yantorno O, Willaert RG. Nanomotion Detection-Based Rapid Antibiotic Susceptibility Testing. Antibiotics (Basel) 2021; 10:287. [PMID: 33801939 PMCID: PMC7999052 DOI: 10.3390/antibiotics10030287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 01/04/2023] Open
Abstract
Rapid antibiotic susceptibility testing (AST) could play a major role in fighting multidrug-resistant bacteria. Recently, it was discovered that all living organisms oscillate in the range of nanometers and that these oscillations, referred to as nanomotion, stop as soon the organism dies. This finding led to the development of rapid AST techniques based on the monitoring of these oscillations upon exposure to antibiotics. In this review, we explain the working principle of this novel technique, compare the method with current ASTs, explore its application and give some advice about its implementation. As an illustrative example, we present the application of the technique to the slowly growing and pathogenic Bordetella pertussis bacteria.
Collapse
Affiliation(s)
- Sandor Kasas
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.M.); (M.I.V.)
- Unité Facultaire d’Anatomie et de Morphologie (UFAM), CUMRL, University of Lausanne, 1005 Lausanne, Switzerland
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Anton Malovichko
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.M.); (M.I.V.)
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Maria Ines Villalba
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.M.); (M.I.V.)
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - María Elena Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, and CONICET, Diagonal 113 y 64, 1900 La Plata, Argentina;
| | - Osvaldo Yantorno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina;
| | - Ronnie G. Willaert
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
- Research Group Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
4
|
Obeid S, Guyomarc'h F. Atomic force microscopy of food assembly: Structural and mechanical insights at the nanoscale and potential opportunities from other fields. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Christensen LFB, Hansen LM, Finster K, Christiansen G, Nielsen PH, Otzen DE, Dueholm MS. The Sheaths of Methanospirillum Are Made of a New Type of Amyloid Protein. Front Microbiol 2018; 9:2729. [PMID: 30483237 PMCID: PMC6242892 DOI: 10.3389/fmicb.2018.02729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
The genera Methanospirillum and Methanosaeta contain species of anaerobic archaea that grow and divide within proteinaceous tubular sheaths that protect them from environmental stressors. The sheaths of Methanosaeta thermophila PT are composed of the 60.9 kDa major sheath protein MspA. In this study we show that sheaths purified from Methanospirillum hungatei JF-1 are regularly striated tubular structures with amyloid-like properties similar to those of M. thermophila PT. Depolymerizing the sheaths from M. hungatei JF-1 allowed us to identify a 40.6 kDa protein (WP_011449234.1) that shares 23% sequence similarity to MspA from M. thermophila PT (ABK14853.1), indicating that they might be distant homologs. The genome of M. hungatei JF-1 encodes six homologs of the identified MspA protein. Several homologs also exist in the related strains Methanospirillum stamsii Pt1 (7 homologs, 28–66% sequence identity), M. lacunae Ki8-1 C (15 homologs, 29–60% sequence identity) and Methanolinea tarda NOBI-1 (2 homologs, 31% sequence identity). The MspA protein discovered here could accordingly represent a more widely found sheath protein than the MspA from M. thermophila PT, which currently has no homologs in the NCBI Reference Sequence database (RefSeq).
Collapse
Affiliation(s)
- Line Friis Bakmann Christensen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lonnie Maria Hansen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Kai Finster
- Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Gunna Christiansen
- Section for Medical Microbiology and Immunology, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Morten Simonsen Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
6
|
Milani P, Chlasta J, Abdayem R, Kezic S, Haftek M. Changes in nano-mechanical properties of human epidermal cornified cells depending on their proximity to the skin surface. J Mol Recognit 2018; 31:e2722. [DOI: 10.1002/jmr.2722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/14/2018] [Accepted: 04/04/2018] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Rawad Abdayem
- CNRS UMR5305, Laboratory of Tissue Biology and Therapeutic Engineering (LBTI); Lyon France
- L'Oréal, R&I, Aulnay sous Bois; France
| | - Sanja Kezic
- Coronel Institute of Occupational Health, Amsterdam Public Health Research Institute, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Marek Haftek
- CNRS UMR5305, Laboratory of Tissue Biology and Therapeutic Engineering (LBTI); Lyon France
| |
Collapse
|
7
|
AFM contribution to unveil pro- and eukaryotic cell mechanical properties. Semin Cell Dev Biol 2018; 73:177-187. [DOI: 10.1016/j.semcdb.2017.08.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/28/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023]
|
8
|
Poweleit N, Ge P, Nguyen HH, Ogorzalek Loo RR, Gunsalus RP, Zhou ZH. CryoEM structure of the Methanospirillum hungatei archaellum reveals structural features distinct from the bacterial flagellum and type IV pilus. Nat Microbiol 2016; 2:16222. [PMID: 27922015 PMCID: PMC5695567 DOI: 10.1038/nmicrobiol.2016.222] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/07/2016] [Indexed: 11/08/2022]
Abstract
Archaea use flagella known as archaella-distinct both in protein composition and structure from bacterial flagella-to drive cell motility, but the structural basis of this function is unknown. Here, we report an atomic model of the archaella, based on the cryo electron microscopy (cryoEM) structure of the Methanospirillum hungatei archaellum at 3.4 Å resolution. Each archaellum contains ∼61,500 archaellin subunits organized into a curved helix with a diameter of 10 nm and average length of 10,000 nm. The tadpole-shaped archaellin monomer has two domains, a β-barrel domain and a long, mildly kinked α-helix tail. Our structure reveals multiple post-translational modifications to the archaella, including six O-linked glycans and an unusual N-linked modification. The extensive interactions among neighbouring archaellins explain how the long but thin archaellum maintains the structural integrity required for motility-driving rotation. These extensive inter-subunit interactions and the absence of a central pore in the archaellum distinguish it from both the bacterial flagellum and type IV pili.
Collapse
Affiliation(s)
- Nicole Poweleit
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
- Electron Imaging Center for Nanomachines, California Nano Systems Institute, UCLA, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Peng Ge
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
- Electron Imaging Center for Nanomachines, California Nano Systems Institute, UCLA, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Hong H. Nguyen
- Department of Chemistry and Biochemistry, UCLA, Los Angeles 90095, UCLA, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, UCLA, Los Angeles 90095, UCLA, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Robert P. Gunsalus
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
- The UCLA-DOE Institute, UCLA, Los Angeles, California 90095, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
- Electron Imaging Center for Nanomachines, California Nano Systems Institute, UCLA, Los Angeles (UCLA), Los Angeles, California 90095, USA
| |
Collapse
|
9
|
Dueholm MS, Larsen P, Finster K, Stenvang MR, Christiansen G, Vad BS, Bøggild A, Otzen DE, Nielsen PH. The Tubular Sheaths Encasing Methanosaeta thermophila Filaments Are Functional Amyloids. J Biol Chem 2015; 290:20590-600. [PMID: 26109065 DOI: 10.1074/jbc.m115.654780] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 11/06/2022] Open
Abstract
Archaea are renowned for their ability to thrive in extreme environments, although they can be found in virtually all habitats. Their adaptive success is linked to their unique cell envelopes that are extremely resistant to chemical and thermal denaturation and that resist proteolysis by common proteases. Here we employ amyloid-specific conformation antibodies and biophysical techniques to show that the extracellular cell wall sheaths encasing the methanogenic archaea Methanosaeta thermophila PT are functional amyloids. Depolymerization of sheaths and subsequent MS/MS analyses revealed that the sheaths are composed of a single major sheath protein (MspA). The amyloidogenic nature of MspA was confirmed by in vitro amyloid formation of recombinant MspA under a wide range of environmental conditions. This is the first report of a functional amyloid from the archaeal domain of life. The amyloid nature explains the extreme resistance of the sheath, the elastic properties that allow diffusible substrates to penetrate through expandable hoop boundaries, and how the sheaths are able to split and elongate outside the cell. The archaeal sheath amyloids do not share homology with any of the currently known functional amyloids and clearly represent a new function of the amyloid protein fold.
Collapse
Affiliation(s)
- Morten S Dueholm
- From the Center for Microbial Communities, Department of Chemistry and Biosciences, Aalborg University, 9220 Aalborg, Denmark
| | - Poul Larsen
- From the Center for Microbial Communities, Department of Chemistry and Biosciences, Aalborg University, 9220 Aalborg, Denmark
| | | | - Marcel R Stenvang
- the Interdisciplinary Nanoscience Center (iNANO) and Center for Insoluble Protein Structures (inSPIN), the Department of Molecular Biology and Genetics, and
| | | | - Brian S Vad
- the Interdisciplinary Nanoscience Center (iNANO) and Center for Insoluble Protein Structures (inSPIN), the Department of Molecular Biology and Genetics, and
| | | | - Daniel E Otzen
- the Interdisciplinary Nanoscience Center (iNANO) and Center for Insoluble Protein Structures (inSPIN), the Department of Molecular Biology and Genetics, and
| | - Per Halkjær Nielsen
- From the Center for Microbial Communities, Department of Chemistry and Biosciences, Aalborg University, 9220 Aalborg, Denmark,
| |
Collapse
|
10
|
Mechanical and cell-to-cell adhesive properties of aggregated Methanosarcina. Colloids Surf B Biointerfaces 2015; 126:303-12. [PMID: 25578422 DOI: 10.1016/j.colsurfb.2014.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/15/2014] [Accepted: 12/19/2014] [Indexed: 11/20/2022]
Abstract
The mechanical and adhesive properties as well as the turgor pressure of microbes play an important role in cell growth and aggregation. By applying AFM together with finite element modelling, one can determine the cell wall structural homogeneity, mechanical and cell-to-cell adhesive properties for aggregated Methanosarcina barkeri cells. This also allows a novel approach to determine in-aggregate turgor pressure determination. Analyzing the AFM force-indentation response of the aggregates under loads less than 10 nN, our study reveals structural inhomogeneity of the polymeric part of the cell wall material and suggests that the cell wall consists of two layers of methanochondroitin (external: with a thickness of 3 ± 1 nm and internal: with a thickness of 169 ± 30 nm). On average, the hyperelastic finite element model showed that the internal layer is more rigid (μ = 14 ± 4 MPa) than the external layer (μ = 2.8 ± 0.9 MPa). To determine the turgor pressure and adhesiveness of the cells, a specific mode of indentation (under a load of 45 nN), aimed towards the centre of the individual aggregate, was performed. By modelling the AFM induced decohesion of the aggregate, the turgor pressure and the cell-to-cell adhesive interface properties could be determined. On average, the turgor pressure is estimated to be 59 ± 22 kPa, the interface strength is 78 ± 12 kPa and the polymer network extensibility is 2.8 ± 0.9 nm. We predict that internal cell wall comprised highly compressed methanochondroitin chains and we are able to identify a conceptual model for stress dependent inner cell wall growth.
Collapse
|
11
|
General Characteristics and Important Model Organisms. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014. [DOI: 10.1128/9781555815516.ch2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Longo G, Kasas S. Effects of antibacterial agents and drugs monitored by atomic force microscopy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:230-44. [PMID: 24616433 DOI: 10.1002/wnan.1258] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/06/2014] [Accepted: 01/13/2014] [Indexed: 11/07/2022]
Abstract
Originally invented for topographic imaging, atomic force microscopy (AFM) has evolved into a multifunctional biological toolkit, enabling to measure structural and functional details of cells and molecules. Its versatility and the large scope of information it can yield make it an invaluable tool in any biologically oriented laboratory, where researchers need to perform characterizations of living samples as well as single molecules in quasi-physiological conditions and with nanoscale resolution. In the last 20 years, AFM has revolutionized the characterization of microbial cells by allowing a better understanding of their cell wall and of the mechanism of action of drugs and by becoming itself a powerful diagnostic tool to study bacteria. Indeed, AFM is much more than a high-resolution microscopy technique. It can reconstruct force maps that can be used to explore the nanomechanical properties of microorganisms and probe at the same time the morphological and mechanical modifications induced by external stimuli. Furthermore it can be used to map chemical species or specific receptors with nanometric resolution directly on the membranes of living organisms. In summary, AFM offers new capabilities and a more in-depth insight in the structure and mechanics of biological specimens with an unrivaled spatial and force resolution. Its application to the study of bacteria is extremely significant since it has already delivered important information on the metabolism of these small microorganisms and, through new and exciting technical developments, will shed more light on the real-time interaction of antimicrobial agents and bacteria.
Collapse
Affiliation(s)
- Giovanni Longo
- Ecole Polytechnique Fédérale de Lausanne, LPMV, Lausanne, Switzerland; Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
13
|
Li Y, Wang X, Onnis-Hayden A, Wan KT, Gu AZ. Universal quantifier derived from AFM analysis links cellular mechanical properties and cell-surface integration forces with microbial deposition and transport behavior. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1769-1778. [PMID: 24450282 DOI: 10.1021/es403511a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, we employed AFM analysis combined with mathematical modeling for quantifying cell-surface contact mechanics and magnitude and range of cell-surface interaction forces for seven bacterial strains with a wide range of cell morphology, dimension, and surface characteristics. Comprehensive cell-surface characterization including surface charge, extracellular polymeric substance content, hydrophobicity, and cell-cell aggregation analyses were performed. Flow-through column tests were employed to determine the attachment efficiency and deposition-transport behavior of these bacterial strains. No statistically significant correlation between attachment efficiency and any single-cell surface property was identified. Single-cell characterization by atomic force microscopy (AFM) yielded the mechanical deformation and elastic modulus, penetration resistance to AFM probe penetration by cellular surface substances (CSS), range and magnitude of the repulsive-attractive intersurface forces, and geometry of each strain. We proposed and derived a universal dimensionless modified Tabor's parameter to integrate all these properties that account for their collective behavior. Results showed that the Tabor parameter derived from AFM analysis correlated well with experimentally determined attachment efficiency (α), which therefore is able to link microscale cell-surface properties with macroscale bacterial transport behavior. Results suggested that the AFM tests performed between a single cell and a surface captured the key quantities of the interactions between the cell and the surface that dictate overall cell attachment behavior. Tabor's parameter therefore can be potentially incorporated into the microbial transport model.
Collapse
Affiliation(s)
- Yueyun Li
- Department of Civil and Environmental Engineering and ‡Department of Mechanical and Industrial Engineering, Northeastern University , Boston, Massachusetts 02115, United States
| | | | | | | | | |
Collapse
|
14
|
Meyer B, Kuehl JV, Deutschbauer AM, Arkin AP, Stahl DA. Flexibility of syntrophic enzyme systems in Desulfovibrio species ensures their adaptation capability to environmental changes. J Bacteriol 2013; 195:4900-14. [PMID: 23974031 PMCID: PMC3807489 DOI: 10.1128/jb.00504-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/20/2013] [Indexed: 12/31/2022] Open
Abstract
The mineralization of organic matter in anoxic environments relies on the cooperative activities of hydrogen producers and consumers obligately linked by interspecies metabolite exchange in syntrophic consortia that may include sulfate reducing species such as Desulfovibrio. To evaluate the metabolic flexibility of syntrophic Desulfovibrio to adapt to naturally fluctuating methanogenic environments, we studied Desulfovibrio alaskensis strain G20 grown in chemostats under respiratory and syntrophic conditions with alternative methanogenic partners, Methanococcus maripaludis and Methanospirillum hungatei, at different growth rates. Comparative whole-genome transcriptional analyses, complemented by G20 mutant strain growth experiments and physiological data, revealed a significant influence of both energy source availability (as controlled by dilution rate) and methanogen on the electron transfer systems, ratios of interspecies electron carriers, energy generating systems, and interspecies physical associations. A total of 68 genes were commonly differentially expressed under syntrophic versus respiratory lifestyle. Under low-energy (low-growth-rate) conditions, strain G20 further had the capacity to adapt to the metabolism of its methanogenic partners, as shown by its differing gene expression of enzymes involved in the direct metabolic interactions (e.g., periplasmic hydrogenases) and the ratio shift in electron carriers used for interspecies metabolite exchange (hydrogen/formate). A putative monomeric [Fe-Fe] hydrogenase and Hmc (high-molecular-weight-cytochrome c3) complex-linked reverse menaquinone (MQ) redox loop become increasingly important for the reoxidation of the lactate-/pyruvate oxidation-derived redox pair, DsrC(red) and Fd(red), relative to the Qmo-MQ-Qrc (quinone-interacting membrane-bound oxidoreductase; quinone-reducing complex) loop. Together, these data underscore the high enzymatic and metabolic adaptive flexibility that likely sustains Desulfovibrio in naturally fluctuating methanogenic environments.
Collapse
Affiliation(s)
- Birte Meyer
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Jennifer V. Kuehl
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam M. Deutschbauer
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam P. Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - David A. Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
|
16
|
Sokolov I, Dokukin ME, Guz NV. Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments. Methods 2013; 60:202-13. [PMID: 23639869 DOI: 10.1016/j.ymeth.2013.03.037] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/25/2013] [Accepted: 03/01/2013] [Indexed: 02/09/2023] Open
Abstract
Here we overview and further develop a quantitative method to measure mechanics of biological cells in indentation experiments, which is based on the use of atomic force microscopy (AFM). We demonstrate how the elastic modulus of the cell body should be measured when the cellular brush is taken into account. The brush is an essential inelastic part of the cell, which surrounds all eukaryotic (the brush is mostly microvilli and glycocalyx) and gram-negative prokaryotic cells (the brush is polysaccharides). The other main feature of the described method is the use of a relatively dull AFM probe to stay in the linear stress-strain regime. In particular, we show that the elastic modulus (aka the Young's modulus) of cells is independent of the indentation depth up to 10-20% deformation for the eukaryotic cells studied here. Besides the elastic modulus, the method presented allows obtaining the parameters of cellular brush, such as the effective length and grafting density of the brush. Although the method is demonstrated on eukaryotic cells, it is directly applicable for all types of cells, and even non-biological soft materials surrounded by either a brush or any field of long-range forces.
Collapse
Affiliation(s)
- Igor Sokolov
- Department of Mechanical Engineering, Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| | | | | |
Collapse
|
17
|
Dhahri S, Ramonda M, Marlière C. In-situ determination of the mechanical properties of gliding or non-motile bacteria by atomic force microscopy under physiological conditions without immobilization. PLoS One 2013; 8:e61663. [PMID: 23593493 PMCID: PMC3625152 DOI: 10.1371/journal.pone.0061663] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
Abstract
We present a study about AFM imaging of living, moving or self-immobilized bacteria in their genuine physiological liquid medium. No external immobilization protocol, neither chemical nor mechanical, was needed. For the first time, the native gliding movements of Gram-negative Nostoc cyanobacteria upon the surface, at speeds up to 900 µm/h, were studied by AFM. This was possible thanks to an improved combination of a gentle sample preparation process and an AFM procedure based on fast and complete force-distance curves made at every pixel, drastically reducing lateral forces. No limitation in spatial resolution or imaging rate was detected. Gram-positive and non-motile Rhodococcus wratislaviensis bacteria were studied as well. From the approach curves, Young modulus and turgor pressure were measured for both strains at different gliding speeds and are ranging from 20±3 to 105±5 MPa and 40±5 to 310±30 kPa depending on the bacterium and the gliding speed. For Nostoc, spatially limited zones with higher values of stiffness were observed. The related spatial period is much higher than the mean length of Nostoc nodules. This was explained by an inhomogeneous mechanical activation of nodules in the cyanobacterium. We also observed the presence of a soft extra cellular matrix (ECM) around the Nostoc bacterium. Both strains left a track of polymeric slime with variable thicknesses. For Rhodococcus, it is equal to few hundreds of nanometers, likely to promote its adhesion to the sample. While gliding, the Nostoc secretes a slime layer the thickness of which is in the nanometer range and increases with the gliding speed. This result reinforces the hypothesis of a propulsion mechanism based, for Nostoc cyanobacteria, on ejection of slime. These results open a large window on new studies of both dynamical phenomena of practical and fundamental interests such as the formation of biofilms and dynamic properties of bacteria in real physiological conditions.
Collapse
Affiliation(s)
- Samia Dhahri
- Géosciences Montpellier, University Montpellier 2, CNRS, Montpellier, France
| | - Michel Ramonda
- Centrale de Technologie en Micro et nanoélectronique, Laboratoire de Microscopie en Champ Proche, University Montpellier 2, Montpellier, France
| | - Christian Marlière
- Géosciences Montpellier, University Montpellier 2, CNRS, Montpellier, France
- Institut des Sciences Moléculaires d'Orsay, University Paris-Sud, CNRS, Orsay, France
- * E-mail:
| |
Collapse
|
18
|
Yamashita H, Taoka A, Uchihashi T, Asano T, Ando T, Fukumori Y. Single-Molecule Imaging on Living Bacterial Cell Surface by High-Speed AFM. J Mol Biol 2012; 422:300-9. [DOI: 10.1016/j.jmb.2012.05.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/14/2012] [Indexed: 11/27/2022]
|
19
|
Tuson HH, Auer GK, Renner LD, Hasebe M, Tropini C, Salick M, Crone WC, Gopinathan A, Huang KC, Weibel DB. Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity. Mol Microbiol 2012; 84:874-91. [PMID: 22548341 DOI: 10.1111/j.1365-2958.2012.08063.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although bacterial cells are known to experience large forces from osmotic pressure differences and their local microenvironment, quantitative measurements of the mechanical properties of growing bacterial cells have been limited. We provide an experimental approach and theoretical framework for measuring the mechanical properties of live bacteria. We encapsulated bacteria in agarose with a user-defined stiffness, measured the growth rate of individual cells and fit data to a thin-shell mechanical model to extract the effective longitudinal Young's modulus of the cell envelope of Escherichia coli (50-150 MPa), Bacillus subtilis (100-200 MPa) and Pseudomonas aeruginosa (100-200 MPa). Our data provide estimates of cell wall stiffness similar to values obtained via the more labour-intensive technique of atomic force microscopy. To address physiological perturbations that produce changes in cellular mechanical properties, we tested the effect of A22-induced MreB depolymerization on the stiffness of E. coli. The effective longitudinal Young's modulus was not significantly affected by A22 treatment at short time scales, supporting a model in which the interactions between MreB and the cell wall persist on the same time scale as growth. Our technique therefore enables the rapid determination of how changes in genotype and biochemistry affect the mechanical properties of the bacterial envelope.
Collapse
Affiliation(s)
- Hannah H Tuson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu BY, Zhang GM, Li XL, Chen H. Effect of glutaraldehyde fixation on bacterial cells observed by atomic force microscopy. SCANNING 2012; 34:6-11. [PMID: 21898456 DOI: 10.1002/sca.20269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 06/23/2011] [Indexed: 05/31/2023]
Abstract
Atomic force microscopy (AFM) is a promising microscopy technique that can provide high-resolution images of bacterial cells without fixation. Three species of bacteria, Xanthomonas campestris, Pseudomonas syringae, and Bacillus subtilis, were used in this study. AFM images were obtained from unfixed and glutaraldehyde-fixed cells, and cell height was measured. The mean height of bacterial cells prepared by fixation was higher than that of those prepared by nonfixation. However, the height changes were different between Gram-negative and Gram-positive bacteria: the mean height of two fixed Gram-negative bacteria, X. campestris and P. syringae, increased by 112.31 and 84.08%, respectively, whereas Gram-positive bacterium, B. subtilis, increased only by 38.79%. The results above indicated that glutaraldehyde fixation could affect the measured height of cells imaged by AFM; further more, the effect of glutaraldehyde fixation on the measured height of Gram-negative bacterial cells imaged by AFM seemed much more than on that of Gram-positive bacterial cells.
Collapse
Affiliation(s)
- Bao You Liu
- Yantai Academy of Agriculture Sciences, Yan Tai, People's Republic of China
| | | | | | | |
Collapse
|
21
|
de Souza W, Rocha GM. Atomic force microscopy: a tool to analyze the structural organization of pathogenic protozoa. Trends Parasitol 2011; 27:160-7. [PMID: 21273123 DOI: 10.1016/j.pt.2010.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
Abstract
The fine structure of parasitic protozoa has been the subject of intense investigation with the use of electron microscopy. The recent development of atomic force microscopy (AFM) and all of the techniques associated with AFM has created new ways to further analyze the structure of cells. In this review, the various, presently-available modalities of AFM are discussed, as well as the results obtained in analysis of: (i) the structure of intact and detergent-extracted protozoa; (ii) the surface of infected cells; (iii) the structure of parasite macromolecules; (iv) the measurement of surface potential; and (v) force spectroscopy, the measurement of elasticity and ligand-receptor interactions.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho and Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens - Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brasil.
| | | |
Collapse
|
22
|
Dieluweit S, Csiszár A, Rubner W, Fleischhauer J, Houben S, Merkel R. Mechanical properties of bare and protein-coated giant unilamellar phospholipid vesicles. A comparative study of micropipet aspiration and atomic force microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:11041-11049. [PMID: 20355933 DOI: 10.1021/la1005242] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this study, protein-coated giant phospholipid vesicles were used to model cell plasma membranes coated by surface protein layers that increase membrane stiffness under mechanical or osmotic stress. These changed mechanical properties like bending stiffness, membrane area compressibility modulus, and effective Young's modulus were determined by micropipet aspiration, while bending stiffness, effective Young's modulus, and effective spring constant of vesicles were analyzed by AFM. The experimental setups, the applied models, and the results using both methods were compared here. As demonstrated before, we found that bare vesicles were best probed by micropipet aspiration due to its high sensitivity. The mechanical properties of vesicles with protein surface layers were, however, better determined by AFM because it enables very local deformations of the membrane with barely any structural damage to the protein layer. Mechanical properties of different species of coating proteins, here streptavidin and avidin, could be clearly distinguished using this technique.
Collapse
Affiliation(s)
- Sabine Dieluweit
- Institute of Bio- and Nanosystems, Biomechanics (IBN-4), Research Centre Juelich, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Kumar U, Vivekanand K, Poddar P. Real-Time Nanomechanical and Topographical Mapping on Live Bacterial Cells—Brevibacterium casei under Stress Due to Their Exposure to Co2+ Ions during Microbial Synthesis of Co3O4 Nanoparticles. J Phys Chem B 2009; 113:7927-33. [DOI: 10.1021/jp902698n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Umesh Kumar
- Materials Chemistry Division, National Chemical Laboratory, Pune-411008, India
| | - K. Vivekanand
- Materials Chemistry Division, National Chemical Laboratory, Pune-411008, India
| | - Pankaj Poddar
- Materials Chemistry Division, National Chemical Laboratory, Pune-411008, India
| |
Collapse
|
24
|
Abstract
The atomic force microscope (AFM) is an important tool for studying biological samples due to its ability to image surfaces under liquids. The AFM operates by physical interaction of a cantilever tip with the molecules on the cell surface. Adhesion forces between the tip and cell surface molecules are detected as cantilever deflections. Thus, the cantilever tip can be used to image live cells with atomic resolution and to probe single molecular events in living cells under physiological conditions. Currently, this is the only technique available that directly provides structural, mechanical, and functional information at high resolution. This unit presents the basic AFM components, modes of operation, useful tips for sample preparation, and a short review of AFM applications in microbiology.
Collapse
Affiliation(s)
- Andreea Trache
- Department of Systems Biology & Translational Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | | |
Collapse
|
25
|
Graham LL, McLean RJC. Training the next scientific generation--a tribute to Terrance J. Beveridge. GEOBIOLOGY 2008; 6:190-195. [PMID: 18445018 DOI: 10.1111/j.1472-4669.2008.00153.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- L L Graham
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada.
| | | |
Collapse
|
26
|
Surface viscoelasticity of individual gram-negative bacterial cells measured using atomic force microscopy. J Bacteriol 2008; 190:4225-32. [PMID: 18408030 DOI: 10.1128/jb.00132-08] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell envelope of gram-negative bacteria is responsible for many important biological functions: it plays a structural role, it accommodates the selective transfer of material across the cell wall, it undergoes changes made necessary by growth and division, and it transfers information about the environment into the cell. Thus, an accurate quantification of cell mechanical properties is required not only to understand physiological processes but also to help elucidate the relationship between cell surface structure and function. We have used a novel, atomic force microscopy (AFM)-based approach to probe the mechanical properties of single bacterial cells by applying a constant compressive force to the cell under fluid conditions while measuring the time-dependent displacement (creep) of the AFM tip due to the viscoelastic properties of the cell. For these experiments, we chose a representative gram-negative bacterium, Pseudomonas aeruginosa PAO1, and we used regular V-shaped AFM cantilevers with pyramid-shaped and colloidal tips. We find that the cell response is well described by a three-element mechanical model which describes an effective cell spring constant, k(1), and an effective time constant, tau, for the creep deformation. Adding glutaraldehyde, an agent that increases the covalent bonding of the cell surface, produced a significant increase in k(1) together with a significant decrease in tau. This work represents a new attempt toward the understanding of the nanomechanical properties of single bacteria while they are under fluid conditions, which could be of practical value for elucidating, for instance, the biomechanical effects of drugs (such as antibiotics) on pathogens.
Collapse
|
27
|
Kasas S, Dietler G. Probing nanomechanical properties from biomolecules to living cells. Pflugers Arch 2008; 456:13-27. [DOI: 10.1007/s00424-008-0448-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 01/09/2008] [Indexed: 12/27/2022]
|
28
|
Ubbink J, Schär-Zammaretti P. Colloidal properties and specific interactions of bacterial surfaces. Curr Opin Colloid Interface Sci 2007. [DOI: 10.1016/j.cocis.2007.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Engelhardt H. Mechanism of osmoprotection by archaeal S-layers: a theoretical study. J Struct Biol 2007; 160:190-9. [PMID: 17888677 DOI: 10.1016/j.jsb.2007.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/29/2007] [Accepted: 08/02/2007] [Indexed: 11/19/2022]
Abstract
Many Archaea possess protein surface layers (S-layers) as the sole cell wall component. S-layers must therefore integrate the basic functions of mechanical and osmotic cell stabilisation. While the necessity is intuitively clear, the mechanism of structural osmoprotection by S-layers has not been elucidated yet. The theoretical analysis of a model S-layer-membrane assembly, derived from the typical cell envelope of Crenarchaeota, explains how S-layers impart lipid membranes with increased resistance to internal osmotic pressure and offers a quantitative assessment of S-layer stability. These considerations reveal the functional significance of S-layer symmetry and unit cell size and shed light on the rationale of S-layer architectures.
Collapse
Affiliation(s)
- Harald Engelhardt
- Abteilung Molekulare Strukturbiologie, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
30
|
Méndez-Vilas A, Gallardo-Moreno AM, González-Martín ML. Atomic force microscopy of mechanically trapped bacterial cells. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2007; 13:55-64. [PMID: 17234038 DOI: 10.1017/s1431927607070043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 10/08/2006] [Indexed: 05/13/2023]
Abstract
This article presents a study on the influence of the protocol used for immobilization of bacterial cells onto surfaces by mechanically trapping them into a filter. In this sense, the surface and structure of trapped cells are analyzed. Bacteria can be present solely or with extracellular polymeric substances (EPS). To test the behavior of the EPS layer duing the filtering process, different strains of a well-known EPS-producer bacteria (Staphylococcus epidermidis), which produce an extracellular matrix clearly visible in AFM images, have been used. Results show that this immobilization method can cause severe structural and mechanical deformation to the cell membrane. This altered mechanical state may possibly influence the parameters derived from AFM force curves (which are micro/nano-mechanical tests). Also, our results suggest that the EPS layer might move during the filtering process and could accumulate at the upper part of the cell, thus favoring distorted data of adhesion/pull-off forces as measured by an AFM tip, especially in the case of submicron-sized microbial cells such as bacteria.
Collapse
Affiliation(s)
- Antonio Méndez-Vilas
- Department of Physics, University of Extremadura, Avda de Elvas s/n, 06071 Badajoz, Spain.
| | | | | |
Collapse
|
31
|
Abstract
A three-dimensional simulation of the formation of metachronal waves in rows of pulmonary cilia is presented. The cilia move in a two-layer fluid model. The fluid layer adjacent to the cilia bases is purely viscous while the tips of the cilia move through a viscoelastic fluid. An overlapping fixed-moving grid formulation is employed to capture the effect of the cilia on the surrounding fluid. In contrast with immersed boundary methods, this technique allows a natural enforcement of boundary conditions without the need for smoothing of singular force distributions. The fluid domains are discretized using a finite volume method. The 9 + 2 internal microtubule structure of an individual cilium is modeled using large-deflection, curved, finite-element beams. The microtubule skeleton is cross-linked to itself and to the cilium membrane through spring elements which model nexin links. The cilium membrane itself is considered to be elastic and subject to fluid stresses computed from the moving grid formulation as well as internal forces transmitted from the microtubule skeleton. A cilium is set into motion by the action of dynein molecules exerting forces between adjacent microtubules. Realistic models of the forces exerted by dynein molecules are extracted from measurements of observed cilia shapes.
Collapse
Affiliation(s)
- Sorin M Mitran
- Applied Mathematics Program, Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, United States
| |
Collapse
|
32
|
Dufrêne YF. Nanoscale exploration of microbial surfaces using the atomic force microscope. Future Microbiol 2006; 1:387-96. [PMID: 17661630 DOI: 10.2217/17460913.1.4.387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Atomic force microscopy (AFM) has recently opened a variety of novel possibilities for imaging and manipulating microbial surfaces in their native environment. While AFM imaging offers a means to visualize surface structures at high resolution and in physiological conditions, AFM force spectroscopy enables researchers to probe a variety of properties, including the unfolding pathways of single-membrane proteins, the elasticity of cell walls and surface macromolecules, and the molecular forces responsible for cell–cell and cell–solid interactions. These nanoscale analyses enable us to answer a number of questions that were difficult to address previously, such as: how does the surface architecture of microbes change as they grow or interact with antibiotics; what is the force required to unfold and extract a single membrane protein; and what are the molecular forces driving the interaction between a pathogen and a host or biomaterial surface? This review will expand on these issues.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Université Catholique de Louvain, Unité de chimie des interfaces/Nanobio team, Croix du Sud 2/18, Louvain-la-Neuve, Belgium.
| |
Collapse
|
33
|
Beckmann MA, Venkataraman S, Doktycz MJ, Nataro JP, Sullivan CJ, Morrell-Falvey JL, Allison DP. Measuring cell surface elasticity on enteroaggregative Escherichia coli wild type and dispersin mutant by AFM. Ultramicroscopy 2006; 106:695-702. [PMID: 16682120 DOI: 10.1016/j.ultramic.2006.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 02/10/2006] [Indexed: 11/24/2022]
Abstract
Enteroaggregative Escherichia coli (EAEC) is pathogenic and produces severe diarrhea in humans. A mutant of EAEC that does not produce dispersin, a cell surface protein, is not pathogenic. It has been proposed that dispersin imparts a positive charge to the bacterial cell surface allowing the bacteria to colonize on the negatively charged intestinal mucosa. However, physical properties of the bacterial cell surface, such as rigidity, may be influenced by the presence of dispersin and may contribute to pathogenicity. Using the system developed in our laboratory for mounting and imaging bacterial cells by atomic force microscopy (AFM), in liquid, on gelatin coated mica surfaces, studies were initiated to measure cell surface elasticity. This was carried out in both wild type EAEC, that produces dispersin, and the mutant that does not produce dispersin. This was accomplished using AFM force-distance (FD) spectroscopy on the wild type and mutant grown in liquid or on solid medium. Images in liquid and in air of both the wild-type and mutant grown in liquid and on solid media are presented. This work represents an initial step in efforts to understand the pathogenic role of the dispersin protein in the wild-type bacteria.
Collapse
Affiliation(s)
- M A Beckmann
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, 37996-0840, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Rabinovich YI, Esayanur M, Daosukho S, Byer KJ, El-Shall HE, Khan SR. Adhesion force between calcium oxalate monohydrate crystal and kidney epithelial cells and possible relevance for kidney stone formation. J Colloid Interface Sci 2006; 300:131-40. [PMID: 16677664 DOI: 10.1016/j.jcis.2006.03.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 03/24/2006] [Accepted: 03/28/2006] [Indexed: 11/24/2022]
Abstract
AFM interaction force measurements have been performed between calcium oxalate monohydrate crystal (COM) colloidal probes and monolayers of renal epithelial cells (on a polymer substrate) in artificial urine (AU) solutions. The adhesion force was measured for the COM/MDCK cell interaction, while no adhesion force was found for the COM/LLC-PK(1) cell interaction. Long-range repulsive forces for both lines of cells were measured in the range of 2-3 mum. After removal of the cell from the substrate by the AU flow, the basal membrane (BM), with a thickness of 100-200 nm, remained on the substrate. In this case, the shorter-range repulsive forces were found on the extending (approaching) portion of force/indentation curves. Similar to the COM/MDCK cell interaction, the retracting portions of curves for COM/basal membranes have shown the existence of the attractive force of adhesion for the interaction of COM with a BM of MDCK cells, while no adhesion was found for COM/BM LLC-PK(1) cells interaction. No adhesion force was found for the interaction of a BM (of any cells) with the silicon nitride tip. Besides the hydrodynamic reasons, the adhesion difference between LLC-PK(1) and MDCK cells possibly explains the preferential deposition of crystals only in collecting ducts (lined with MDCK-type cells) and the lack of the crystal deposition in the proximal tubules (lined with LLC-PK(1)-type cells). Previous treatments of cells with oxalate alone increased the adhesion force COM/BM MDCK; however, even after oxalate treatment there was small or no adhesion between COM and BM LLC-PK(1) cells. Note that the adhesion force for COM/BM MDCK is practically independent of the probe velocity, i.e., does not have the viscous origin. Evaluation of the adhesion energy shows that this force should be related to the ionic or hydrogen bonds of samples.
Collapse
|
35
|
Zinin PV, Allen JS, Levin VM. Mechanical resonances of bacteria cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:061907. [PMID: 16485974 DOI: 10.1103/physreve.72.061907] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Indexed: 05/06/2023]
Abstract
The quality of the natural vibrations of specific bacteria is investigated using a shell model which accounts for the elastic properties of the membrane and the associated viscosities of the cytoplasma and the surrounding fluid. The motion of the membrane is approximated in terms of the distribution of internal forces over the shell thickness, which is assumed to be much less than the size of the cell. Flexural moments and intersecting stresses are neglected. Using experimentally obtained values for the membrane properties, high-quality resonances are predicted for several types of bacteria which have radii greater than 5 microm. Viscous shear waves are the main source of energy dissipation as has been previously reported in other studies on the natural oscillations of red blood cells, drops, and bubbles. Implications for the acoustic mediated destruction of bacteria are discussed.
Collapse
Affiliation(s)
- P V Zinin
- Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, Hawaii, USA
| | | | | |
Collapse
|
36
|
Ubbink J, Schär-Zammaretti P. Probing bacterial interactions: integrated approaches combining atomic force microscopy, electron microscopy and biophysical techniques. Micron 2005; 36:293-320. [PMID: 15857770 DOI: 10.1016/j.micron.2004.11.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 11/24/2004] [Accepted: 11/25/2004] [Indexed: 11/27/2022]
Abstract
Recent developments in the application of Atomic Force Microscopy (AFM) and other biophysical techniques for the study of bacterial interactions and adhesion are discussed in the light of established biological and microscopic approaches. Whereas molecular-biological techniques combined with electron microscopy allow the identification and localization of surface constituents mediating bacterial interactions, with AFM it has become possible to actually measure the forces involved in bacterial interactions. Combined with the flexibility of AFM in probing various types of physical interactions, such as electrostatic interactions, specific ligand-receptor interactions and the elastic forces of deformation and extension of bacterial surface polymers and cell wall, this provides prospects for the elucidation of the biophysical mechanism of bacterial interaction. However, because of the biochemical and a biophysical complexity of the bacterial cell wall, integrated approaches combining AFM with electron microscopy and biophysical techniques are needed to elucidate the mechanism by which a bacterium interacts with a host or material surface. The literature on electron microscopy of the bacterial cell wall is reviewed, with particular emphasis on the staining of specific classes of cell-wall constituents. The application of AFM in the analysis of bacterial surfaces is discussed, including AFM operating modes, sample preparation methods and results obtained on various strains. For various bacterial strains, the integration of EM and AFM data is discussed. Various biophysical aspects of the analysis of bacterial surface structure and interactions are discussed, including the theory of colloidal interactions and Bell's theory of cell-to-cell adhesion. An overview is given of biophysical techniques used in the analysis of the properties of bacterial surfaces and bacterial surface constituents and their integration with AFM. Finally, we discuss recent progress in the understanding of the role of bacterial interactions in medicine within the framework of the techniques and concepts discussed in the paper.
Collapse
Affiliation(s)
- Job Ubbink
- Nestlé Research Center, Vers-chez-les-Blanc, P.O. Box 44, CH-1000 Lausanne 26, Switzerland.
| | | |
Collapse
|
37
|
Rabinovich Y, Esayanur M, Daosukho S, Byer K, El-Shall H, Khan S. Atomic force microscopy measurement of the elastic properties of the kidney epithelial cells. J Colloid Interface Sci 2005; 285:125-35. [PMID: 15797405 DOI: 10.1016/j.jcis.2004.11.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 11/11/2004] [Indexed: 11/17/2022]
Abstract
Direct interaction force measurements using atomic force microscopy (AFM) were carried out between a silicon nitride tip and renal epithelial cells (Madin-Darby Canine Kidney-MDCK and proximal tubular epithelial cells derived from pig kidneys, LLC-PK1). The approaching (extending) portion of the force/distance curves is considered, and repulsive forces in the long range of 2-3 microm were seen in both MDCK as well as LLC-PK1 cells growing under normal conditions. The repulsive force in the shorter distance range of 50-200 nm was also observed, when cells were damaged exposing the underlying basal membrane. LLC-PK1 cells were more prone to damage than the MDCK cells, hence short-range forces were common in the former and long-range forces in the latter cells. The functional dependence of repulsive force on the indentation depth changes, at small indentation depth the force increases linearly, while at larger indentations the force is a quadratic function of the distance, which is attributed to the elasticity of the membrane and the solid-like response of cells, respectively. The oxalate treatment of cells for 2-4 h gives rise to an increase in the elastic modulus of the cells.
Collapse
Affiliation(s)
- Y Rabinovich
- Particle Engineering Research Center, 206 P, S & T Bldg, Bldg # 746, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Schär-Zammaretti P, Ubbink J. The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations. Biophys J 2004; 85:4076-92. [PMID: 14645095 PMCID: PMC1303707 DOI: 10.1016/s0006-3495(03)74820-6] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A variety of strains of the genus Lactobacillus was investigated with respect to the structure, softness, and interactions of their outer surface layers in order to construct structure-property relations of the Gram-positive bacterial cell wall. The role of the conformational properties of the constituents of the outer cell-wall layers and their spatial distribution on the cell wall is emphasized. Atomic force microscopy was used to resolve the surface structure, interactions, and softness of the bacterial cell wall at nanometer-length scales and upwards. The pH-dependence of the electrophoretic mobility and a novel interfacial adhesion assay were used to analyze the average physicochemical properties of the bacterial strains. The bacterial surface is smooth when a compact layer of globular proteins constitutes the outer surface, e.g., the S-layer of L. crispatus DSM20584. In contrast, for two other S-layer containing strains (L. helveticus ATCC12046 and L. helveticus ATCC15009), the S-layer is covered by polymeric surface constituents which adopt a much more extended conformation and which confer a certain roughness to the surface. Consequently, the S-layer is important for the overall surface properties of L. crispatus, but not for the surface properties of L. helveticus. Both surface proteins (L. crispatus DSM20584) and (lipo)teichoic acids (L. johnsonii ATCC332) confer hydrophobic properties to the bacterial surface whereas polysaccharides (L. johnsonii DSM20533 and L. johnsonii ATCC 33200) render the bacterial surface hydrophilic. Using the interfacial adhesion assay, it was demonstrated that hydrophobic groups within the cell wall adsorb limited quantities of hydrophobic compounds. The present work demonstrates that the impressive variation in surface properties displayed by even a limited number of genetically-related bacterial strains can be understood in terms of established colloidal concepts, provided that sufficiently detailed structural, chemical, and conformational information on the surface constituents is available.
Collapse
|
39
|
Affiliation(s)
- Yves F Dufrêne
- Unité de chimie des interfaces, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
40
|
Affiliation(s)
- Yves F Dufrêne
- Unité de chimie des interfaces, Université catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
41
|
Dufrêne YF, Müller DJ. Microbial Surfaces Investigated Using Atomic Force Microscopy. METHODS IN MICROBIOLOGY 2004. [DOI: 10.1016/s0580-9517(04)34006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
42
|
Touhami A, Hoffmann B, Vasella A, Denis FA, Dufrêne YF. Aggregation of yeast cells: direct measurement of discrete lectin–carbohydrate interactions. Microbiology (Reading) 2003; 149:2873-2878. [PMID: 14523119 DOI: 10.1099/mic.0.26431-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aggregation of microbial cells mediated by specific interactions plays a pivotal role in the natural environment, in medicine and in biotechnological processes. Here we used atomic force microscopy (AFM) to measure individual lectin–carbohydrate interactions involved in the flocculation of yeast cells, an aggregation event of crucial importance in fermentation technology. AFM probes functionalized with oligoglucose carbohydrates were used to record force-distance curves on living yeast cells at a rate of 0·5 μm s−1. Flocculating cells showed adhesion forces of 121±53 pN, reflecting the specific interaction between individual cell-surface lectins and glucose residues. Similar adhesion forces, 117±41 pN, were measured using probes functionalized with the lectin concanavalin A and attributed to specific binding to cell-surface mannose residues. By contrast, specific interaction forces were not observed in non-flocculating conditions, i.e. in the presence of mannose or when using non-flocculating cells, pointing to their involvement in yeast flocculation. The single molecule force spectroscopy measurements presented here provide a means to study a variety of cellular interactions at the molecular level, such as the adhesion of bacteria to animal and plant tissues.
Collapse
Affiliation(s)
- Ahmed Touhami
- Unité de Chimie des Interfaces, Université Catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| | - Barbara Hoffmann
- Laboratorium für Organische Chemie, HCI H 317, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | - Andrea Vasella
- Laboratorium für Organische Chemie, HCI H 317, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | - Frédéric A Denis
- Unité de Chimie des Interfaces, Université Catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Unité de Chimie des Interfaces, Université Catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
43
|
Dufrêne YF. Recent progress in the application of atomic force microscopy imaging and force spectroscopy to microbiology. Curr Opin Microbiol 2003; 6:317-23. [PMID: 12831910 DOI: 10.1016/s1369-5274(03)00058-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Atomic force microscopy imaging and force spectroscopy have recently opened a range of novel applications in microbiology. During the past two years, rapid advances have been made using atomic force microscopy to visualize the surface structure of two-dimensional bacterial protein crystals, biofilms and individual cells in physiological conditions. There has also been remarkable progress in using force spectroscopy to measure biomolecular interactions and physical properties of microbial surfaces. Specific highlights include the imaging and manipulation of membrane proteins at the subnanometer level, the observation of the surface of living cells at high resolution, the mapping of local properties such as surface charges, the measurement of elastic properties of cell-surface constituents and the probing of cellular interactions using functionalized probes.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Unité de chimie des interfaces, Université catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
44
|
Abstract
In this chapter I discussed the possibility of measuring elastic properties of living cells by AFM. One reason for using the AFM for this purpose is its ability to both measure locally the mechanics of a cell and to distinguish different regions of the cell. Since the AFM can be operated under physiological conditions cellular processes can be followed, for example, cytokinesis and the investigation of the migration of cells.
Collapse
Affiliation(s)
- Manfred Radmacher
- Drittes Physics Institute, Georg-August Universität, 37073 Göttingen, Germany
| |
Collapse
|
45
|
Affiliation(s)
- Yves F Dufrêne
- Unité de Chimie des Interfaces, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
46
|
Boonaert CJ, Toniazzo V, Mustin C, Dufrêne YF, Rouxhet PG. Deformation of Lactococcus lactis surface in atomic force microscopy study. Colloids Surf B Biointerfaces 2002. [DOI: 10.1016/s0927-7765(01)00250-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces. Colloids Surf B Biointerfaces 2002. [DOI: 10.1016/s0927-7765(01)00233-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Dufrêne YF. Application of atomic force microscopy to microbial surfaces: from reconstituted cell surface layers to living cells. Micron 2001; 32:153-65. [PMID: 10936459 DOI: 10.1016/s0968-4328(99)00106-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The application of atomic force microscopy (AFM) to probe the ultrastructure and physical properties of microbial cell surfaces is reviewed. The unique capabilities of AFM can be summarized as follows: imaging surface topography with (sub)nanometer lateral resolution; examining biological specimens under physiological conditions; measuring local properties and interaction forces. AFM is being used increasingly for: (i) visualizing the surface ultrastructure of microbial cell surface layers, including bacterial S-layers, purple membranes, porin OmpF crystals and fungal rodlet layers; (ii) monitoring conformational changes of individual membrane proteins; (iii) examining the morphology of bacterial biofilms, (iv) revealing the nanoscale structure of living microbial cells, including fungi, yeasts and bacteria, (v) mapping interaction forces at microbial surfaces, such as van der Waals and electrostatic forces, solvation forces, and steric/bridging forces; and (vi) probing the local mechanical properties of cell surface layers and of single cells.
Collapse
Affiliation(s)
- Y F Dufrêne
- Unité de chimie des interfaces, Université catholique de Louvain, Place Croix du Sud 2/18, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
49
|
Boulbitch A, Quinn B, Pink D. Elasticity of the rod-shaped gram-negative eubacteria. PHYSICAL REVIEW LETTERS 2000; 85:5246-9. [PMID: 11102232 DOI: 10.1103/physrevlett.85.5246] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2000] [Indexed: 05/20/2023]
Abstract
We report a theoretical calculation of the elasticity of the peptidoglycan network, the only stress-bearing part of rod-shaped Gram-negative eubacteria. The peptidoglycan network consists of elastic peptides and inextensible glycan strands, and it has been proposed that the latter form zigzag filaments along the circumference of the cylindrical bacterial shell. The zigzag geometry of the glycan strands gives rise to nonlinear elastic behavior. The four elastic moduli of the peptidoglycan network depend on its stressed state. For a bacterium under physiological conditions the elasticity is proportional to the bacterial turgor pressure. Our results are in good agreement with recent measurements.
Collapse
Affiliation(s)
- A Boulbitch
- Department für Biophysik E22, Technische Universität München, James-Franck-Strasse, D-85747 Garching bei München, Germany
| | | | | |
Collapse
|
50
|
Arnoldi M, Fritz M, Bäuerlein E, Radmacher M, Sackmann E, Boulbitch A. Bacterial turgor pressure can be measured by atomic force microscopy. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 2000; 62:1034-44. [PMID: 11088560 DOI: 10.1103/physreve.62.1034] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/1999] [Indexed: 05/02/2023]
Abstract
We report a study of the deformability of a bacterial wall with an atomic force microscope (AFM). A theoretical expression is derived for the force exerted by the wall on the cantilever as a function of the depths of indentation generated by the AFM tip. Evidence is provided that this reaction force is a measure for the turgor pressure of the bacterium. The method was applied to magnetotactic bacteria of the species Magnetospirillum gryphiswaldense. Force curves were generated on the substrate and on the bacteria while scanning laterally. With the mechanical properties so gained we obtained the spring constant of the bacterium as a whole. Making use of our theoretical results we determined the turgor pressure to be in the range of 85 to 150 kPa.
Collapse
Affiliation(s)
- M Arnoldi
- Physik Department, Institut für Biophysik, E22, Technische Universität München, James-Franck-Strasse, 85747 Garching bei München, Germany
| | | | | | | | | | | |
Collapse
|