1
|
Iliev I, Yahubyan G, Apostolova-Kuzova E, Gozmanova M, Mollova D, Iliev I, Ilieva L, Marhova M, Gochev V, Baev V. Characterization and Probiotic Potential of Levilactobacillus brevis DPL5: A Novel Strain Isolated from Human Breast Milk with Antimicrobial Properties Against Biofilm-Forming Staphylococcus aureus. Microorganisms 2025; 13:160. [PMID: 39858927 PMCID: PMC11767307 DOI: 10.3390/microorganisms13010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Lactobacillus is a key genus of probiotics commonly utilized for the treatment of oral infections The primary aim of our research was to investigate the probiotic potential of the newly isolated Levilactobacillus brevis DPL5 strain from human breast milk, focusing on its ability to combat biofilm-forming pathogens such as Staphylococcus aureus. Employing in vitro approaches, we demonstrate L. brevis DPL5's ability to endure at pH 3 with survival rates above 30%, and withstand the osmotic stress often found during industrial processes like fermentation and freeze drying, retaining over 90% viability. The lyophilized cell-free supernatant of L. brevis DPL5 had a significant antagonistic effect against biofilm-producing nasal strains of Staphylococcus aureus, and it completely eradicated biofilms at subinhibitory concentrations of 20 mg·mL-1. Higher concentrations of 69 mg·mL-1 were found to have a 99% bactericidal effect, based on the conducted probability analysis, indicating the production of bactericidal bioactive extracellular compounds capable of disrupting the biofilm formation of pathogens like S. aureus. Furthermore, genome-wide sequencing and analysis of L. brevis DPL5 with cutting-edge Nanopore technology has uncovered over 50 genes linked to probiotic activity, supporting its ability to adapt and thrive in the harsh gut environment. The genome also contains multiple biosynthetic gene clusters such as lanthipeptide class IV, Type III polyketide synthase (T3PKS), and ribosomally synthesized, and post-translationally modified peptides (RiPP-like compounds), all of which are associated with antibacterial properties. Our study paves the way for the further exploration of DPL5, setting the stage for innovative, nature-inspired solutions to combat stubborn bacterial infections.
Collapse
Affiliation(s)
- Ivan Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Galina Yahubyan
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Elena Apostolova-Kuzova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Mariyana Gozmanova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Daniela Mollova
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Iliya Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Lena Ilieva
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Mariana Marhova
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Velizar Gochev
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Vesselin Baev
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| |
Collapse
|
2
|
Mudaliar SB, Poojary SS, Bharath Prasad AS, Mazumder N. Probiotics and Paraprobiotics: Effects on Microbiota-Gut-Brain Axis and Their Consequent Potential in Neuropsychiatric Therapy. Probiotics Antimicrob Proteins 2024; 16:1440-1464. [PMID: 38294675 PMCID: PMC11322360 DOI: 10.1007/s12602-024-10214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
Neuropsychiatric disorders are clinical conditions that affect cognitive function and emotional stability, often resulting from damage or disease in the central nervous system (CNS). These disorders are a worldwide concern, impacting approximately 12.5% of the global population. The gut microbiota has been linked to neurological development and function, implicating its involvement in neuropsychiatric conditions. Due to their interaction with gut microbial communities, probiotics offer a natural alternative to traditional treatments such as therapeutic drugs and interventions for alleviating neuropsychiatric symptoms. Introduced by Metchnikoff in the early 1900s, probiotics are live microorganisms that provide various health benefits, including improved digestion, enhanced sleep quality, and reduced mental problems. However, concerns about their safety, particularly in immunocompromised patients, warrant further investigation; this has led to the concept of "paraprobiotics", inactivated forms of beneficial microorganisms that offer a safer alternative. This review begins by exploring different methods of inactivation, each targeting specific cellular components like DNA or proteins. The choice of inactivation method is crucial, as the health benefits may vary depending on the conditions employed for inactivation. The subsequent sections focus on the potential mechanisms of action and specific applications of probiotics and paraprobiotics in neuropsychiatric therapy. Probiotics and paraprobiotics interact with gut microbes, modulating the gut microbial composition and alleviating gut dysbiosis. The resulting neuropsychiatric benefits primarily stem from the gut-brain axis, a bidirectional communication channel involving various pathways discussed in the review. While further research is needed, probiotics and paraprobiotics are promising therapeutic agents for the management of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Samriti Balaji Mudaliar
- Department of Public Health & Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sumith Sundara Poojary
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Alevoor Srinivas Bharath Prasad
- Department of Public Health & Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Foster AJ, van den Noort M, Poolman B. Bacterial cell volume regulation and the importance of cyclic di-AMP. Microbiol Mol Biol Rev 2024; 88:e0018123. [PMID: 38856222 PMCID: PMC11332354 DOI: 10.1128/mmbr.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYNucleotide-derived second messengers are present in all domains of life. In prokaryotes, most of their functionality is associated with general lifestyle and metabolic adaptations, often in response to environmental fluctuations of physical parameters. In the last two decades, cyclic di-AMP has emerged as an important signaling nucleotide in many prokaryotic lineages, including Firmicutes, Actinobacteria, and Cyanobacteria. Its importance is highlighted by the fact that both the lack and overproduction of cyclic di-AMP affect viability of prokaryotes that utilize cyclic di-AMP, and that it generates a strong innate immune response in eukaryotes. In bacteria that produce the second messenger, most molecular targets of cyclic di-AMP are associated with cell volume control. Besides, other evidence links the second messenger to cell wall remodeling, DNA damage repair, sporulation, central metabolism, and the regulation of glycogen turnover. In this review, we take a biochemical, quantitative approach to address the main cellular processes that are directly regulated by cyclic di-AMP and show that these processes are very connected and require regulation of a similar set of proteins to which cyclic di-AMP binds. Altogether, we argue that cyclic di-AMP is a master regulator of cell volume and that other cellular processes can be connected with cyclic di-AMP through this core function. We further highlight important directions in which the cyclic di-AMP field has to develop to gain a full understanding of the cyclic di-AMP signaling network and why some processes are regulated, while others are not.
Collapse
Affiliation(s)
- Alexander J. Foster
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Zhang K, Zhang Z, Guo X, Guo R, Zhu L, Qiu X, Yu X, Chai J, Gu C, Feng Z. Changes in nutrient consumption patterns of Lactobacillus fermentum mediated by sodium lactate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1775-1783. [PMID: 36305089 DOI: 10.1002/jsfa.12295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/28/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND During high-cell-density culture of Lactobacillus fermentum, the optimal pH is often maintained by adding NaOH. During cultivation at controlled pH, L. fermentum experiences osmotic stress due to the continuous accumulation of sodium lactate as a neutralizer product, affecting its survival in subsequent processing. The purpose of this study was to evaluate the nutrient consumption patterns of L. fermentum ATCC 14931 under sodium lactate stress and to screen nutrients that help it resist osmotic stress. RESULTS The consumption and consumption rates of amino acids, purines, pyrimidines, vitamins, and metal ions were analyzed in chemically defined media containing 0.13, 0.31, or 0.62 mm L-1 sodium lactate. The highest consumption rates were found for arginine, guanine, folic acid, and Mn2+ , and the most consumed nutrients were glutamate + glutamine, guanine, ascorbic acid, and Na+ . Arginine 2.58 mm L-1 , guanine 0.23 mm L-1 , and Mn2+ 0.25 mm L-1 were added to the medium at sodium lactate concentrations of 0.13 and 0.62 mm L-1 , and arginine 2.58 mm L-1 , guanine 0.26 mm L-1 , and Mn2+ 0.25 mm L-1 at a sodium lactate concentration of 0.31 mm L-1 . The viable cell counts of L. fermentum ATCC 14931 were approximately 1.02-fold (P < 0.05) of the counts observed in control medium at all three concentrations of sodium lactate. CONCLUSION The present results suggest that certain nutrients accelerate the growth of L. fermentum under sodium lactate stress and enhance its resistance to this adverse condition. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kenan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zongcai Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaoxue Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Ruijia Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Lin Zhu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xinrong Qiu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaohan Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Jun Chai
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chunhe Gu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| |
Collapse
|
5
|
Gao X, Kong J, Zhu H, Mao B, Cui S, Zhao J. Lactobacillus, Bifidobacterium and Lactococcus response to environmental stress: Mechanisms and application of cross-protection to improve resistance against freeze-drying. J Appl Microbiol 2021; 132:802-821. [PMID: 34365708 DOI: 10.1111/jam.15251] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/12/2021] [Accepted: 07/07/2021] [Indexed: 01/30/2023]
Abstract
The review deals with lactic acid bacteria in characterizing the stress adaptation with cross-protection effects, mainly associated with Lactobacillus, Bifidobacterium and Lactococcus. It focuses on adaptation and cross-protection in Lactobacillus, Bifidobacterium and Lactococcus, including heat shocking, cold stress, acid stress, osmotic stress, starvation effect, etc. Web of Science, Google Scholar, Science Direct, and PubMed databases were used for the systematic search of literature up to the year 2020. The literature suggests that a lower survival rate during freeze-drying is linked to environmental stress. Protective pretreatment under various mild stresses can be applied to lactic acid bacteria which may enhance resistance in a strain-dependent manner. We investigate the mechanism of damage and adaptation under various stresses including heat, cold, acidic, osmotic, starvation, oxidative and bile stress. Adaptive mechanisms include synthesis of stress-induced proteins, adjusting the composition of cell membrane fatty acids, accumulating compatible substances, etc. Next, we reveal the cross-protective effect of specific stress on the other environmental stresses. Freeze-drying is discussed from three perspectives including the regulation of membrane, accumulation of compatible solutes and the production of chaperones and stress-responsive proteases. The resistance of lactic acid bacteria against technological stress can be enhanced via cross-protection, which improves industrial efficiency concerning the survival of probiotics. However, the adaptive responses and cross-protection are strain-dependent and should be optimized case by case.
Collapse
Affiliation(s)
- Xinwei Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Kong
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongkang Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Shubha JR, Tripathi P, Somashekar BS, Kurrey N, Bhatt P. Woodfordia fruticosa extract supplementation stimulates the growth of Lacticaseibacillus casei and Lacticaseibacillus rhamnosus with adapted intracellular and extracellular metabolite pool. J Appl Microbiol 2021; 131:2994-3007. [PMID: 33973306 DOI: 10.1111/jam.15132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/15/2021] [Accepted: 04/30/2021] [Indexed: 01/24/2023]
Abstract
AIM To investigate the effect of Woodfordia fruticosa extract (WfE) on two probiotic bacteria: Lacticaseibacillus casei and Lacticaseibacillus rhamnosus. METHODS AND RESULTS WfE supplementation at 0·5 and 1 mg ml-1 stimulated probiotic growth (P < 0·05), enhanced adhesion to CaCO2 cells (P < 0·05) while inhibiting foodborne pathogens Escherichia coli and Staphylococcus aureus (P < 0·05). 1 H-NMR based metabolomic studies indicated higher glucose : lactate and glucose : acetate in the extracellular matrix with significant variation (P < 0·05) in intracellular concentrations of lactate, acetate, glutamate, dimethylamine, phenylalanine, branched-chain amino acids and total cellular lipid composition. Fatty acid methyl ester analysis showed a chemical shift from saturated to unsaturated lipids with WfE supplementation. PCA plots indicated clear discrimination between test groups, highlighting variation in metabolite pool in response to WfE supplementation. CONCLUSION Phytonutrient-rich WfE exhibited prebiotic-like attributes, and probiotic bacteria showed altered metabolite pools as an adaptive mechanism. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report providing insights into the prebiotic-like activity of WfE on gut representative probiotics. The extended metabolomic studies shed light on the positive interaction between phytonutrients and beneficial bacteria that possibly help them to adapt to a phytonutrient-rich WfE environment. WfE with potential prebiotic attributes can be used in the development of novel synbiotic functional products targeting gut microbial modulation to improve health.
Collapse
Affiliation(s)
- J R Shubha
- Microbiology and Fermentation Technology Department, CSIR-CFTRI, Mysuru, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - P Tripathi
- Spices and Flavor Science Department, CSIR-CFTRI, Mysuru, India
| | | | - N Kurrey
- Department of Biochemistry, CSIR-CFTRI, Mysuru, India
| | - P Bhatt
- Microbiology and Fermentation Technology Department, CSIR-CFTRI, Mysuru, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
7
|
Chen C, Huang K, Li X, Tian H, Yu H, Huang J, Yuan H, Zhao S, Shao L. Effects of CcpA against salt stress in Lactiplantibacillus plantarum as assessed by comparative transcriptional analysis. Appl Microbiol Biotechnol 2021; 105:3691-3704. [PMID: 33852024 DOI: 10.1007/s00253-021-11276-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Lactiplantibacillus plantarum is frequently exposed to salt stress during industrial applications. Catabolite control protein (CcpA) controls the transcription of many genes, but its role in the response to salt stress remains unclear. In this study, we used transcriptome analyses to investigate differences in the logarithmic growth phases of Lactiplantibacillus plantarum ST-III and its ccpA-knockout mutant when grown with or without salt and glycine betaine (GB). The deletion of ccpA significantly affected bacterial growth under different conditions. Among the comparisons, the highest proportion of differentially expressed genes (64%) was observed in the comparison between the wild-type and ccpA mutant grown with NaCl, whereas the lowest proportion (6%) was observed in the comparison between the ccpA mutant strain cultures grown with NaCl alone or with GB together. Transcriptomic analyses showed that CcpA could regulate GB uptake, activate iron uptake, produce acetyl-CoA, and affect fatty acid composition to maintain membrane lipid homeostasis in the adaptation of high-salinity conditions. Conclusively, these results demonstrate the importance of CcpA as a master regulator of these processes in response to salt stress, and provide new insights into the complex regulatory network of lactic acid bacteria. KEY POINTS: • The absence of CcpA significantly affected growth of L. plantarum and its response to salt stress. • CcpA regulates compatible solutes absorption and ions transport to resist salt stress. • CcpA alters fatty acids composition to maintain membrane lipid homeostasis towards salt stress.
Collapse
Affiliation(s)
- Chen Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Ke Huang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Xiaohong Li
- Shanghai Customs P. R. China Technical Center For Animal, Plant And Food Inspection And Quarantine, Shanghai, People's Republic of China
| | - Huaixiang Tian
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Haiyan Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Juan Huang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Haibin Yuan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Shanshan Zhao
- College of Agriculture, Hebei University of Engineering, Handan, People's Republic of China
| | - Li Shao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Kubyshkin V, Davis R, Budisa N. Biochemistry of fluoroprolines: the prospect of making fluorine a bioelement. Beilstein J Org Chem 2021; 17:439-460. [PMID: 33727970 PMCID: PMC7934785 DOI: 10.3762/bjoc.17.40] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Due to the heterocyclic structure and distinct conformational profile, proline is unique in the repertoire of the 20 amino acids coded into proteins. Here, we summarize the biochemical work on the replacement of proline with (4R)- and (4S)-fluoroproline as well as 4,4-difluoroproline in proteins done mainly in the last two decades. We first recapitulate the complex position and biochemical fate of proline in the biochemistry of a cell, discuss the physicochemical properties of fluoroprolines, and overview the attempts to use these amino acids as proline replacements in studies of protein production and folding. Fluorinated proline replacements are able to elevate the protein expression speed and yields and improve the thermodynamic and kinetic folding profiles of individual proteins. In this context, fluoroprolines can be viewed as useful tools in the biotechnological toolbox. As a prospect, we envision that proteome-wide proline-to-fluoroproline substitutions could be possible. We suggest a hypothetical scenario for the use of laboratory evolutionary methods with fluoroprolines as a suitable vehicle to introduce fluorine into living cells. This approach may enable creation of synthetic cells endowed with artificial biodiversity, containing fluorine as a bioelement.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, R3T 2N2, Canada
| | - Rebecca Davis
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, R3T 2N2, Canada
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, R3T 2N2, Canada
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, 10623 Berlin, Germany
| |
Collapse
|
9
|
Gaucher F, Rabah H, Kponouglo K, Bonnassie S, Pottier S, Dolivet A, Marchand P, Jeantet R, Blanc P, Jan G. Intracellular osmoprotectant concentrations determine Propionibacterium freudenreichii survival during drying. Appl Microbiol Biotechnol 2020; 104:3145-3156. [PMID: 32076782 PMCID: PMC7062905 DOI: 10.1007/s00253-020-10425-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/22/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Propionibacterium freudenreichii is a beneficial bacterium widely used in food as a probiotic and as a cheese-ripening starter. In these different applications, it is produced, dried, and stored before being used. Both freeze-drying and spray-drying were considered for this purpose. Freeze-drying is a discontinuous process that is energy-consuming but that allows high cell survival. Spray-drying is a continuous process that is more energy-efficient but that can lead to massive bacterial death related to heat, osmotic, and oxidative stresses. We have shown that P. freudenreichii cultivated in hyperconcentrated rich media can be spray-dried with limited bacterial death. However, the general stress tolerance conferred by this hyperosmotic constraint remained a black box. In this study, we modulated P. freudenreichii growth conditions and monitored both osmoprotectant accumulation and stress tolerance acquisition. Changing the ratio between the carbohydrates provided and non-protein nitrogen during growth under osmotic constraint modulated osmoprotectant accumulation. This, in turn, was correlated with P. freudenreichii tolerance towards different stresses, on the one hand, and towards freeze-drying and spray-drying, on the other. Surprisingly, trehalose accumulation correlated with spray-drying survival and glycine betaine accumulation with freeze-drying. This first report showing the ability to modulate the trehalose/GB ratio in osmoprotectants accumulated by a probiotic bacterium opens new perspectives for the optimization of probiotics production.
Collapse
Affiliation(s)
- Floriane Gaucher
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France.,Bioprox, 6 rue Barbès, 92532, Levallois-Perret, France
| | - Houem Rabah
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France.,Pôle Agronomique Ouest, Régions Bretagne et Pays de la Loire, 35042, Rennes, France
| | | | - Sylvie Bonnassie
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France.,Université de Rennes I, Rennes, France
| | - Sandrine Pottier
- CNRS, ISCR - UMR 6226, University Rennes, PRISM, BIOSIT - UMS 3480, 35000, Rennes, France
| | - Anne Dolivet
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France
| | | | - Romain Jeantet
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France
| | | | - Gwénaël Jan
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France.
| |
Collapse
|
10
|
Gaucher F, Kponouglo K, Rabah H, Bonnassie S, Ossemond J, Pottier S, Jardin J, Briard-Bion V, Marchand P, Blanc P, Jeantet R, Jan G. Propionibacterium freudenreichii CIRM-BIA 129 Osmoadaptation Coupled to Acid-Adaptation Increases Its Viability During Freeze-Drying. Front Microbiol 2019; 10:2324. [PMID: 31681198 PMCID: PMC6797830 DOI: 10.3389/fmicb.2019.02324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Propionibacterium freudenreichii is a beneficial bacterium with documented effects on the gut microbiota and on inflammation. Its presence within the animal and human intestinal microbiota was correlated with immunomodulatory effects, mediated by both propionibacterial surface components and by secreted metabolites. It is widely implemented, both in the manufacture of fermented dairy products such as Swiss-type cheeses, and in the production of probiotic food complements, under the form of freeze-dried powders. The bottleneck of this drying process consists in the limited survival of bacteria during drying and storage. Protective pre-treatments have been applied to other bacteria and may, in a strain-dependent manner, confer enhanced resistance. However, very little information was yet published on P. freudenreichii adaptation to freeze-drying. In this report, an immunomodulatory strain of this probiotic bacterium was cultured under hyperosmotic constraint in order to trigger osmoadaptation. This adaptation was then combined with acid or thermal pre-treatment. Such combination led to accumulation of key stress proteins, of intracellular compatible solute glycine betaine, to modulation of the propionibacterial membrane composition, and to enhanced survival upon freeze-drying. This work opens new perspectives for efficient production of live and active probiotic propionibacteria.
Collapse
Affiliation(s)
- Floriane Gaucher
- UMR STLO, Agrocampus Ouest, INRA, Rennes, France
- Bioprox, Levallois-Perret, France
| | | | - Houem Rabah
- UMR STLO, Agrocampus Ouest, INRA, Rennes, France
- Bba, Pôle Agronomique Ouest, Régions Bretagne et Pays de la Loire, Rennes, France
| | - Sylvie Bonnassie
- UMR STLO, Agrocampus Ouest, INRA, Rennes, France
- Université de Rennes I, Rennes, France
| | | | - Sandrine Pottier
- CNRS, ISCR – UMR 6226, PRISM, BIOSIT – UMS 3480 Université de Rennes I, Rennes, France
| | | | | | | | | | | | - Gwénaël Jan
- UMR STLO, Agrocampus Ouest, INRA, Rennes, France
| |
Collapse
|
11
|
Gaucher F, Bonnassie S, Rabah H, Leverrier P, Pottier S, Jardin J, Briard-Bion V, Marchand P, Jeantet R, Blanc P, Jan G. Benefits and drawbacks of osmotic adjustment in Propionibacterium freudenreichii. J Proteomics 2019; 204:103400. [PMID: 31152938 DOI: 10.1016/j.jprot.2019.103400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/02/2019] [Accepted: 05/19/2019] [Indexed: 02/08/2023]
Abstract
Propionibacterium freudenreichii is a beneficial bacterium used as a cheese starter and as a probiotic. Indeed, selected strains of P. freudenreichii combine both technological and health-promoting abilities. Moreover, during large-scale industrial production of dried bacteria and during consumption, P. freudenreichii may undergo different stressful processes. Osmotic adaptation was shown to enhance P. freudenreichii tolerance towards stresses, which are encountered during freeze-drying and during digestion. In this report, we compared the osmoadaptation molecular mechanisms of two P. freudenreichii strains. Both osmotolerance and osmoadaptation were strain-dependent and had different effects on multiple stress tolerance, depending on the presence of osmoprotectants. Availability of glycine betaine (GB) restored the growth of one of the two strains. In this strain, osmotic preadaptation enhanced heat, oxidative and acid stresses tolerance, as well as survival upon freeze-drying. However, addition of GB in the medium had deleterious effects on stress tolerance, while restoring optimal growth under hyperosmotic constraint. In the other strain, neither salt nor GB enhanced stress tolerance, which was constitutively low. Accordingly, whole cell proteomics revealed that mechanisms triggered by salt in the presence and in the absence of GB are different between strains. Osmotic adjustment may thus have deleterious effects on industrial abilities of P. freudenreichii. BIOLOGICAL SIGNIFICANCE: Propionibacteria are found in various niches including fodder, silage, rumen, milk and cheeses. This means adaptation towards different ecological environments with different physicochemical parameters. Propionibacterium freudenreichii, in particular, is furthermore used both as dairy starter and as probiotic and is thus submitted to high scale industrial production. Production and subsequent stabilization still need optimization. Drying processes like freeze-drying are stressful. Osmotic adjustments may modulated tolerance towards drying. However, they are strain-dependent, medium-dependent and may either reduce or increase stress tolerance. A case-by-case study, for each strain-medium thus seems necessary. In this work, we identify key proteins involved in osmoadaptation and give new insights into adaptation mechanisms in P. freudenreichii. This opens new perspectives for the selections of strains and for the choice of the growth medium composition.
Collapse
Affiliation(s)
- Floriane Gaucher
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France; Bioprox, 6 rue Barbès, 92532 Levallois-Perret, France
| | - Sylvie Bonnassie
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France; Université de Rennes I, Univ. Rennes, Rennes, France
| | - Houem Rabah
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France; Bba, Pôle Agronomique Ouest, Régions Bretagne et Pays de la Loire, F-35042 Rennes, France
| | - Pauline Leverrier
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Sandrine Pottier
- Univ. Rennes, CNRS, ISCR, - UMR 6226, PRISM, BIOSIT - UMS 3480, F-35000 Rennes, France
| | - Julien Jardin
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France
| | | | | | - Romain Jeantet
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France
| | | | - Gwénaël Jan
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France.
| |
Collapse
|
12
|
Gaucher F, Bonnassie S, Rabah H, Marchand P, Blanc P, Jeantet R, Jan G. Review: Adaptation of Beneficial Propionibacteria, Lactobacilli, and Bifidobacteria Improves Tolerance Toward Technological and Digestive Stresses. Front Microbiol 2019; 10:841. [PMID: 31068918 PMCID: PMC6491719 DOI: 10.3389/fmicb.2019.00841] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/02/2019] [Indexed: 01/15/2023] Open
Abstract
This review deals with beneficial bacteria, with a focus on lactobacilli, propionibacteria, and bifidobacteria. As being recognized as beneficial bacteria, they are consumed as probiotics in various food products. Some may also be used as starters in food fermentation. In either case, these bacteria may be exposed to various environmental stresses during industrial production steps, including drying and storage, and during the digestion process. In accordance with their adaptation to harsh environmental conditions, they possess adaptation mechanisms, which can be induced by pretreatments. Adaptive mechanisms include accumulation of compatible solutes and of energy storage compounds, which can be largely modulated by the culture conditions. They also include the regulation of energy production pathways, as well as the modulation of the cell envelop, i.e., membrane, cell wall, surface layers, and exopolysaccharides. They finally lead to the overexpression of molecular chaperones and of stress-responsive proteases. Triggering these adaptive mechanisms can improve the resistance of beneficial bacteria toward technological and digestive stresses. This opens new perspectives for the improvement of industrial processes efficiency with regard to the survival of beneficial bacteria. However, this bibliographical survey evidenced that adaptive responses are strain-dependent, so that growth and adaptation should be optimized case-by-case.
Collapse
Affiliation(s)
- Floriane Gaucher
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Bioprox, Levallois-Perret, France
| | - Sylvie Bonnassie
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Science de la Vie et de la Terre, Université de Rennes 1, Rennes, France
| | - Houem Rabah
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Pôle Agronomique Ouest, Bba, Rennes, France
| | | | | | - Romain Jeantet
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
| | - Gwénaël Jan
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
| |
Collapse
|
13
|
Glycine betaine transport conditions of Lactobacillus delbrueckii subsp. bulgaricus in salt induced hyperosmotic stress. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Peng YY, Nebl T, Glattauer V, Ramshaw JA. Incorporation of hydroxyproline in bacterial collagen from Streptococcus pyogenes. Acta Biomater 2018; 80:169-175. [PMID: 30218779 DOI: 10.1016/j.actbio.2018.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/30/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
Bacterial collagen-like proteins differ from vertebrate collagens in that they do not contain hydroxyproline, which is seen as a characteristic of the vertebrate collagens, and which provides a significant contribution to the stability of the collagen triple-helix at body temperature. Despite this difference, the bacterial collagens are stable at around body temperature through inclusion of other stabilising sequence elements. Another difference is the lack of aggregation, and certain vertebrate collagen binding domains that can be introduced into the bacterial sequence lack full function when hydroxyproline is absent. In the present study we have demonstrated that a simple method utilising co-translational incorporation during fermentation can be used to incorporate hydroxyproline into the recombinant bacterial collagen. The presence and amount of hydroxyproline incorporation was shown by amino acid analysis and by mass spectrometry. A small increase in thermal stability was observed using circular dichroism spectroscopy. STATEMENT OF SIGNIFICANCE: Recombinant bacterial collagens provide a new opportunity for biomedical materials as they are readily produced in large quantity in E. coli. Unlike animal collagens, they are stable without the need for inclusion of a secondary modification system for hydroxyproline incorporation. In animal collagens, however, introduction of hydroxyproline is essential for stability and is also important for functional molecular interactions within the mammalian extracellular matrix. The present study has shown that hydroxyproline can be readily introduced into recombinant S. pyogenes bacterial collagen through direct co-translational incorporation of this modified imino acid during expression using the codons for proline in the introduced gene construct. This hydroxylation further improves the stability of the collagen and is available to enhance any introduced molecular functions.
Collapse
|
15
|
Liang S, Gao D, Liu H, Wang C, Wen J. Metabolomic and proteomic analysis of D-lactate-producing Lactobacillus delbrueckii under various fermentation conditions. J Ind Microbiol Biotechnol 2018; 45:681-696. [PMID: 29808292 DOI: 10.1007/s10295-018-2048-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/19/2018] [Indexed: 11/29/2022]
Abstract
As an important feedstock monomer for the production of biodegradable stereo-complex poly-lactic acid polymer, D-lactate has attracted much attention. To improve D-lactate production by microorganisms such as Lactobacillus delbrueckii, various fermentation conditions were performed, such as the employment of anaerobic fermentation, the utilization of more suitable neutralizing agents, and exploitation of alternative nitrogen sources. The highest D-lactate titer could reach 133 g/L under the optimally combined fermentation condition, increased by 70.5% compared with the control. To decipher the potential mechanisms of D-lactate overproduction, the time-series response of intracellular metabolism to different fermentation conditions was investigated by GC-MS and LC-MS/MS-based metabolomic analysis. Then the metabolomic datasets were subjected to weighted correlation network analysis (WGCNA), and nine distinct metabolic modules and eight hub metabolites were identified to be specifically associated with D-lactate production. Moreover, a quantitative iTRAQ-LC-MS/MS proteomic approach was employed to further analyze the change of intracellular metabolism under the combined fermentation condition, identifying 97 up-regulated and 42 down-regulated proteins compared with the control. The in-depth analysis elucidated how the key factors exerted influence on D-lactate biosynthesis. The results revealed that glycolysis and pentose phosphate pathways, transport of glucose, amino acids and peptides, amino acid metabolism, peptide hydrolysis, synthesis of nucleotides and proteins, and cell division were all strengthened, while ATP consumption for exporting proton, cell damage, metabolic burden caused by stress response, and bypass of pyruvate were decreased under the combined condition. These might be the main reasons for significantly improved D-lactate production. These findings provide the first omics view of cell growth and D-lactate overproduction in L. delbrueckii, which can be a theoretical basis for further improving the production of D-lactate.
Collapse
Affiliation(s)
- Shaoxiong Liang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Dacheng Gao
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian, 116000, People's Republic of China
| | - Huanhuan Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Cheng Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| |
Collapse
|
16
|
Zhu M, Fan W, Cha Y, Yang X, Lai Z, Li S, Wang X. Dynamic cell responses in Thermoanaerobacterium sp. under hyperosmotic stress. Sci Rep 2017; 7:10088. [PMID: 28855699 PMCID: PMC5577258 DOI: 10.1038/s41598-017-10514-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/09/2017] [Indexed: 12/17/2022] Open
Abstract
As a nongenetic engineering technique, adaptive evolution is an effective and easy-to-operate approach to strain improvement. In this work, a commercial Thermoanaerobacterium aotearoense SCUT27/Δldh-G58 was successfully isolated via sequential batch fermentation with step-increased carbon concentrations. Mutants were isolated under selective high osmotic pressures for 58 passages. The evolved isolate rapidly catabolized sugars at high concentrations and subsequently produced ethanol with good yield. A 1.6-fold improvement of ethanol production was achieved in a medium containing 120 g/L of carbon substrate using the evolved strain, compared to the start strain. The analysis of transcriptome and intracellular solute pools suggested that the adaptive evolution altered the synthesis of some compatible solutes and activated the DNA repair system in the two Thermoanaerobacterium sp. evolved strains. Overall, the results indicated the potential of adaptive evolution as a simple and effective tool for the modification and optimization of industrial microorganisms.
Collapse
Affiliation(s)
- Muzi Zhu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Wudi Fan
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yaping Cha
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaofeng Yang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhicheng Lai
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuang Li
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| | - Xiaoning Wang
- State Key Laboratory of Kidney, the Institute of Life Sciences, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Mathipa MG, Thantsha MS. Probiotic engineering: towards development of robust probiotic strains with enhanced functional properties and for targeted control of enteric pathogens. Gut Pathog 2017; 9:28. [PMID: 28491143 PMCID: PMC5422995 DOI: 10.1186/s13099-017-0178-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/27/2017] [Indexed: 12/19/2022] Open
Abstract
There is a growing concern about the increase in human morbidity and mortality caused by foodborne pathogens. Antibiotics were and still are used as the first line of defense against these pathogens, but an increase in the development of bacterial antibiotic resistance has led to a need for alternative effective interventions. Probiotics are used as dietary supplements to promote gut health and for prevention or alleviation of enteric infections. They are currently used as generics, thus making them non-specific for different pathogens. A good understanding of the infection cycle of the foodborne pathogens as well as the virulence factors involved in causing an infection can offer an alternative treatment with specificity. This specificity is attained through the bioengineering of probiotics, a process by which the specific gene of a pathogen is incorporated into the probiotic. Such a process will subsequently result in the inhibition of the pathogen and hence its infection. Recombinant probiotics offer an alternative novel therapeutic approach in the treatment of foodborne infections. This review article focuses on various strategies of bioengineered probiotics, their successes, failures and potential future prospects for their applications.
Collapse
Affiliation(s)
- Moloko Gloria Mathipa
- Department of Microbiology and Plant Pathology, University of Pretoria, New Agricultural Sciences Building, Pretoria, 0002 South Africa
| | - Mapitsi Silvester Thantsha
- Department of Microbiology and Plant Pathology, University of Pretoria, New Agricultural Sciences Building, Pretoria, 0002 South Africa
| |
Collapse
|
18
|
Ai Z, Lv X, Huang S, Liu G, Sun X, Chen H, Sun J, Feng Z. The effect of controlled and uncontrolled pH cultures on the growth of Lactobacillus delbrueckii subsp. bulgaricus. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Schott AS, Behr J, Quinn J, Vogel RF. MALDI-TOF Mass Spectrometry Enables a Comprehensive and Fast Analysis of Dynamics and Qualities of Stress Responses of Lactobacillus paracasei subsp. paracasei F19. PLoS One 2016; 11:e0165504. [PMID: 27783652 PMCID: PMC5082675 DOI: 10.1371/journal.pone.0165504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/03/2016] [Indexed: 11/21/2022] Open
Abstract
Lactic acid bacteria (LAB) are widely used as starter cultures in the manufacture of foods. Upon preparation, these cultures undergo various stresses resulting in losses of survival and fitness. In order to find conditions for the subsequent identification of proteomic biomarkers and their exploitation for preconditioning of strains, we subjected Lactobacillus (Lb.) paracasei subsp. paracasei TMW 1.1434 (F19) to different stress qualities (osmotic stress, oxidative stress, temperature stress, pH stress and starvation stress). We analysed the dynamics of its stress responses based on the expression of stress proteins using MALDI-TOF mass spectrometry (MS), which has so far been used for species identification. Exploiting the methodology of accumulating protein expression profiles by MALDI-TOF MS followed by the statistical evaluation with cluster analysis and discriminant analysis of principle components (DAPC), it was possible to monitor the expression of low molecular weight stress proteins, identify a specific time point when the expression of stress proteins reached its maximum, and statistically differentiate types of adaptive responses into groups. Above the specific result for F19 and its stress response, these results demonstrate the discriminatory power of MALDI-TOF MS to characterize even dynamics of stress responses of bacteria and enable a knowledge-based focus on the laborious identification of biomarkers and stress proteins. To our knowledge, the implementation of MALDI-TOF MS protein profiling for the fast and comprehensive analysis of various stress responses is new to the field of bacterial stress responses. Consequently, we generally propose MALDI-TOF MS as an easy and quick method to characterize responses of microbes to different environmental conditions, to focus efforts of more elaborate approaches on time points and dynamics of stress responses.
Collapse
Affiliation(s)
- Ann-Sophie Schott
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Jürgen Behr
- Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Freising, Germany
| | - Jennifer Quinn
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Rudi F. Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| |
Collapse
|
20
|
Abstract
Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.
Collapse
|
21
|
|
22
|
Yu H, Meng X, Aflakpui FWK, Luo L. A salt-induced butA gene of Tetragenococcus halophilus confers salt tolerance to Escherichia coli by heterologous expression of its dual copies. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1160-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
23
|
Yong CC, Khoo BY, Sasidharan S, Piyawattanametha W, Kim SH, Khemthongcharoen N, Chuah LO, Ang MY, Liong MT. Activity of crude and fractionated extracts by lactic acid bacteria (LAB) isolated from local dairy, meat, and fermented products against Staphylococcus aureus. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-014-0949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
24
|
|
25
|
Zhao S, Zhang Q, Hao G, Liu X, Zhao J, Chen Y, Zhang H, Chen W. The protective role of glycine betaine in Lactobacillus plantarum ST-III against salt stress. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Wu R, Lu J. Proteomics of Lactic Acid Bacteria. LACTIC ACID BACTERIA 2014:249-301. [DOI: 10.1007/978-94-017-8841-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Wu RN, Wu ZX, Zhao CY, LV CM, Wu JR, Meng XJ. Identification of lactic acid bacteria in suancai, a traditional Northeastern Chinese fermented food, and salt response of Lactobacillus paracasei LN-1. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0776-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
28
|
Chun L, Li-bo L, Di S, Jing C, Ning L. Response of Osmotic Adjustment of Lactobacillus bulgaricus to NaCl Stress. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/s1006-8104(13)60054-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Consequences of packaging on bacterial growth. Meat is an ecological niche. Meat Sci 2012; 52:299-305. [PMID: 22062579 DOI: 10.1016/s0309-1740(99)00006-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/1997] [Revised: 10/07/1998] [Accepted: 01/09/1999] [Indexed: 11/21/2022]
Abstract
Meat is a good support for bacterial growth and particularly for bacteria which are specific of meat and meat products. Little is known about the physiological and biochemical factors which could explain why some bacterial species are only isolated from meat. This review tentatively points out, from an ecological point of view, some of these factors in Gram negative and Gram positive micro-organisms influencing storage life.
Collapse
|
30
|
Bergenholtz ÅS, Wessman P, Wuttke A, Håkansson S. A case study on stress preconditioning of a Lactobacillus strain prior to freeze-drying. Cryobiology 2012; 64:152-9. [DOI: 10.1016/j.cryobiol.2012.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/28/2011] [Accepted: 01/07/2012] [Indexed: 11/16/2022]
|
31
|
|
32
|
Ameur H, Ghoul M, Selvin J. The osmoprotective effect of some organic solutes on Streptomyces sp. mado2 and nocardiopsis sp. mado3 growth. Braz J Microbiol 2011; 42:543-53. [PMID: 24031666 PMCID: PMC3769824 DOI: 10.1590/s1517-838220110002000019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/19/2010] [Accepted: 11/04/2010] [Indexed: 11/21/2022] Open
Abstract
The response of two marine actinomycetes such as Streptomyces sp. MADO2 and Nocardiopsis sp. MADO3 to osmotic stress in minimal medium M63 and in glycerol-asparagine medium (ISP5) was studied. The two strains were moderately halophilic and the behavior of the strain Streptomyces sp. MADO2 and Nocardiopsis sp. MADO3 towards the salt stress was varied depends on the media composition and the salinity concentration. The strain Streptomyces sp. was more sensitive to salt stress than Nocardiopsis sp. The growth of both Streptomyces sp. and Nocardiopsis sp. were inhibited at 1 M NaCl irrespective of the medium used. The Nocardiopsis sp. acquired osmoadaptation on ISP5 medium whereas the Streptomyces sp. showed poor growth on M63 medium. Glycine betaine (GB), proline and trehalose played a critical role in osmotic adaptation at high osmolarity whereas at low osmolarity they showed an inhibitory effect on the bacterial growth. The present findings confirmed that GB was the powerful osmoprotectant for Streptomyces sp. and Nocardiopsis sp. grown at 1 M NaCl both in M63 and ISP5 media.
Collapse
Affiliation(s)
- Hanane Ameur
- Laboratoire d'écologie microbienne, Département de Biologie, Faculté des sciences , Université Ferhat Abbas, Sétif 19000 , Algeria
| | | | | |
Collapse
|
33
|
Dobrogosz WJ, Peacock TJ, Hassan HM. Evolution of the Probiotic Concept. ADVANCES IN APPLIED MICROBIOLOGY 2010; 72:1-41. [DOI: 10.1016/s0065-2164(10)72001-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Hurtado A, Reguant C, Bordons A, Rozès N. Influence of fruit ripeness and salt concentration on the microbial processing of Arbequina table olives. Food Microbiol 2009; 26:827-33. [DOI: 10.1016/j.fm.2009.05.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 05/13/2009] [Accepted: 05/18/2009] [Indexed: 11/15/2022]
|
35
|
Abstract
Lactic acid bacteria (LAB) constitute a diverse group of Gram positive obligately fermentative microorganisms which include both beneficial and pathogenic strains. LAB generally have complex nutritional requirements and therefore they are usually associated with nutrient-rich environments such as animal bodies, plants and foodstuffs. Amino acids represent an important resource for LAB and their utilization serves a number of physiological roles such as intracellular pH control, generation of metabolic energy or redox power, and resistance to stress. As a consequence, the regulation of amino acid catabolism involves a wide set of both general and specific regulators and shows significant differences among LAB. Moreover, due to their fermentative metabolism, LAB amino acid catabolic pathways in some cases differ significantly from those described in best studied prokaryotic model organisms such as Escherichia coli or Bacillus subtilis. Thus, LAB amino acid catabolism constitutes an interesting case for the study of metabolic pathways. Furthermore, LAB are involved in the production of a great variety of fermented products so that the products of amino acid catabolism are also relevant for the safety and the quality of fermented products.
Collapse
Affiliation(s)
- María Fernández
- Instituto de Productos Lácteos de Asturias CSIC, Crta de Infiesto s/n, Villaviciosa, Asturias, Spain
| | | |
Collapse
|
36
|
Santivarangkna C, Higl B, Foerst P. Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures. Food Microbiol 2008; 25:429-41. [DOI: 10.1016/j.fm.2007.12.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 12/16/2007] [Accepted: 12/30/2007] [Indexed: 11/29/2022]
|
37
|
Chen C, Beattie GA. Pseudomonas syringae BetT is a low-affinity choline transporter that is responsible for superior osmoprotection by choline over glycine betaine. J Bacteriol 2008; 190:2717-25. [PMID: 18156257 PMCID: PMC2293270 DOI: 10.1128/jb.01585-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Accepted: 12/12/2007] [Indexed: 11/20/2022] Open
Abstract
The plant pathogen Pseudomonas syringae derives better osmoprotection from choline than from glycine betaine, unlike most bacteria that have been characterized. In this report, we identified a betaine/carnitine/choline family transporter (BCCT) in P. syringae pv. tomato strain DC3000 that mediates the transport of choline and acetylcholine. This transporter has a particularly low affinity (K(m) of 876 microM) and high capacity (V(max) of 80 nmol/min/mg of protein) for choline transport relative to other known BCCTs. Although BetT activity increased in response to hyperosmolarity, BetT mediated significant uptake under low-osmolarity conditions, suggesting a role in transport for both osmoprotection and catabolism. Growth studies with mutants deficient in BetT and other choline transporters demonstrated that BetT was responsible for the superior osmoprotection conferred to P. syringae by choline over glycine betaine when these compounds were provided at high concentrations (>100 microM). These results suggest that P. syringae has evolved to survive in relatively choline-rich habitats, a prediction that is supported by the common association of P. syringae with plants and the widespread production of choline, but genus- and species-specific production of glycine betaine, by plants. Among the three putative BCCT family transporters in Pseudomonas aeruginosa and six in Pseudomonas putida, different transporters were predicted to function based on similarity to Escherichia coli BetT than to P. syringae BetT. Functional P. putida and P. aeruginosa transporters were identified, and their possession of a long C-terminal tail suggested an osmoregulatory function for this tail; this function was confirmed for P. syringae BetT using deletion derivatives.
Collapse
Affiliation(s)
- Chiliang Chen
- Iowa State University, Department of Plant Pathology, 207 Science I, Ames, IA 50011-3211, USA
| | | |
Collapse
|
38
|
Le Marrec C, Bon E, Lonvaud-Funel A. Tolerance to high osmolality of the lactic acid bacterium Oenococcus oeni and identification of potential osmoprotectants. Int J Food Microbiol 2007; 115:335-42. [PMID: 17320992 DOI: 10.1016/j.ijfoodmicro.2006.12.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 12/07/2006] [Indexed: 12/01/2022]
Abstract
Growth of the lactic acid bacterium Oenococcus oeni under hyperosmotic constraint was investigated in a chemically defined medium. The bacterium could grow on media with an elevated osmolality, preferably below 1.5 Osm kg(-)(1) H(2)O. At osmolalities comprised between 0.6 and 1.5 Osm kg(-)(1) H(2)O, the growth deficit elicited by the sugars glucose and fructose was slightly more severe than with salts (NaCl or KCl). In contrast to what was observed in other lactic acid bacteria, proline, glycine betaine and related molecules were unable to relieve inhibition of growth of O. oeni under osmotic constraint. This was correlated to the absence of sequences homologous to the genes coding for glycine betaine and/or proline transporters described in Lactococcus lactis and Lactobacillus plantarum. The amino acid aspartate proved to be osmoprotective under electrolyte and non-electrolyte stress. Examination of the role of peptides during osmoregulation showed that proline- and glutamate-containing peptides were protective under salt-induced stress, and not under sugar-induced stress. Under high salt, PepQ a cytoplasmic prolidase that specifically liberated proline from di-peptides increased activity, while PepX (X-prolyl-dipeptidyl aminopeptidase) and PepI (iminopeptidase) activities were unaffected. Our data suggest that proline- and glutamate-containing peptides may contribute to the adaptation of O. oeni to high salt through their intracellular hydrolysis and/or direct accumulation.
Collapse
Affiliation(s)
- Claire Le Marrec
- Faculté d'Oenologie, UMR Oenologie-Ampélologie, INRA-Université Victor Segalen Bordeaux 2-Université Bordeaux 1, 351, Cours de la Libération, 33405 Talence, France.
| | | | | |
Collapse
|
39
|
Konings WN. Microbial transport: Adaptations to natural environments. Antonie van Leeuwenhoek 2006; 90:325-42. [PMID: 17043914 DOI: 10.1007/s10482-006-9089-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 05/11/2006] [Indexed: 11/25/2022]
Abstract
The cytoplasmic membrane of bacteria is the matrix for metabolic energy transducing processes such as proton motive force generation and solute transport. Passive permeation of protons across the cytoplasmic membrane is a crucial determinant in the proton motive generating capacity of the organisms. Adaptations of the membrane composition are needed to restrict the proton permeation rates especially at higher temperatures. Thermophilic bacteria cannot sufficiently restrict this proton permeation at their growth temperature and have to rely on the much lower permeation of Na + to generate a sodium motive force for driving metabolic energy-dependent membrane processes. Specific transport systems mediate passage across the membrane at physiological rates of all compounds needed for growth and metabolism and of all end products of metabolism. Some of transport systems, the secondary transporters, transduce one form of electrochemical energy into another form. These transporters can play crucial roles in the generation of metabolic energy. This is especially so in anaerobes such as Lactic Acid Bacteria which live under energy-limited conditions. Several transport systems are specifically aimed at the generation of metabolic energy during periods of energy-limitation. In their natural environment bacteria are also often exposed to cytotoxic compounds, including antibiotics. Many bacteria can respond to this live-threatening condition by overexpressing powerful drug-extruding multidrug resistance systems.
Collapse
Affiliation(s)
- Wil N Konings
- Department of Microbiology, Groningen Bio-molecular Sciences and Biotechnology Center, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands.
| |
Collapse
|
40
|
Onraedt A, De Mey M, Walcarius B, Soetaert W, Vandamme EJ. Transport kinetics of ectoine, an osmolyte produced by Brevibacterium epidermis. Biotechnol Lett 2006; 28:1741-7. [PMID: 16900330 DOI: 10.1007/s10529-006-9149-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 06/26/2006] [Indexed: 11/30/2022]
Abstract
Brevibacterium epidermis DSM 20659 is a halotolerant Gram-positive bacterium which can synthesize the osmolyte, ectoine, but prefers to take it up from its environment. The present study revealed that B. epidermis is equipped with at least one transport system for ectoine, with a maximal transport velocity of 15.7 +/- 4.3 nmol/g CDW.min. The transport requires energy (ATP) and is completely inhibited by the proton uncoupler, CCCP. The ectoine uptake system is constitutively expressed at a basal level of activity and its activity is immediately 10-fold increased by hyper-osmotic stress. Initial uptake rates are not influenced by the intensity of the hyper-osmotic shock but the duration of the increased activity of the uptake system could be directly related to the osmotic strength of the assay solution. Competition assays indicate that betaine, but not proline, is also transported by the ectoine uptake system.
Collapse
Affiliation(s)
- A Onraedt
- Laboratory of Industrial Microbiology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | | | | | |
Collapse
|
41
|
Duong T, Barrangou R, Russell WM, Klaenhammer TR. Characterization of the tre locus and analysis of trehalose cryoprotection in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 2006; 72:1218-25. [PMID: 16461669 PMCID: PMC1392980 DOI: 10.1128/aem.72.2.1218-1225.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Freezing and lyophilization are common methods used for preservation and storage of microorganisms during the production of concentrated starter cultures destined for industrial fermentations or product formulations. The compatible solute trehalose has been widely reported to protect bacterial, yeast and animal cells against a variety of environmental stresses, particularly freezing and dehydration. Analysis of the Lactobacillus acidophilus NCFM genome revealed a putative trehalose utilization locus consisting of a transcriptional regulator, treR; a trehalose phosphoenolpyruvate transferase system (PTS) transporter, treB; and a trehalose-6-phosphate hydrolase, treC. The objective of this study was to characterize the tre locus in L. acidophilus and determine whether or not intracellular uptake of trehalose contributes to cryoprotection. Cells subjected to repeated freezing and thawing cycles were monitored for survival in the presence of various concentrations of trehalose. At 20% trehalose a 2-log increase in survival was observed. The trehalose PTS transporter and trehalose hydrolase were disrupted by targeted plasmid insertions. The resulting mutants were unable to grow on trehalose, indicating that both trehalose transport into the cell via a PTS and hydrolysis via a trehalose-6-phosphate hydrolase were necessary for trehalose fermentation. Trehalose uptake was found to be significantly reduced in the transporter mutant but unaffected in the hydrolase mutant. Additionally, the cryoprotective effect of trehalose was reduced in these mutants, suggesting that intracellular transport and hydrolysis contribute significantly to cryoprotection.
Collapse
Affiliation(s)
- Tri Duong
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
42
|
Wang C, Zhu D, Nagata S. Supplementation effects of hydroxyectoine on proline uptake of downshocked Brevibacterium sp. JCM 6894. J Biosci Bioeng 2006; 101:178-84. [PMID: 16569616 DOI: 10.1263/jbb.101.178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 11/19/2005] [Indexed: 11/17/2022]
Abstract
Downshock treatment of the halotolerant Brevibacterium sp. JCM 6894 was a prerequisite for proline uptake which is a function for cell survival. Hydroxyectoine served as an effective stimulator for the proline uptake and cell survival of the downshocked cells of this strain. Duration of osmotic downshock, downshock strength, and the kinds of osmolyte affected the efficient rate of growth (ERG) and the uptake of proline. A shorter duration of osmotic downshock, that is <or=1 h, induced higher ERG values and stimulated proline uptake, compared with those of non-downshocked cells when incubated with hydroxyectoine and proline. These activities, however, were gradually suppressed with the prolongation of the duration of osmotic downshock. When the cells grown in KCl-containing medium were subjected to downshock treatment for 1 h, their activities were enhanced more remarkably than those of cells grown in NaCl-containing medium.
Collapse
Affiliation(s)
- Chenxiang Wang
- Environmental Biochemistry Group, Research Center for Inland Seas, Kobe University, 5-1-1 Fukae, Kobe 658-0022, Japan
| | | | | |
Collapse
|
43
|
Kets EP, Bont JA. Effect of carnitines on Lactobacillus plantarum subjected to osmotic stress. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1997.tb10194.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
44
|
Nagata S, Wang C. Effect of duration of osmotic downshock and coexisting glutamate on survival and uptake of ectoine in halotolerant Brevibacterium sp. JCM 6894. J Biosci Bioeng 2006; 101:57-62. [PMID: 16503292 DOI: 10.1263/jbb.101.57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 10/27/2005] [Indexed: 11/17/2022]
Abstract
Halotolerant Brevibacterium sp. JCM 6894 that was subjected to an osmotic downshock (0.7 M NaCl to 0 M) was examined for its survival and uptake of ectoine in the presence of ectoine and/or carbon sources. In the presence of ectoine alone, the rates of ectoine uptake by the 1 h-downshocked cells were low and high in the absence and presence of 0.7 M NaCl, respectively, which were in parallel with the rates of cell growth. The presence of glutamate or amino acids together with ectoine exerted a stimulative effect on the survival of downshocked cells. The incubation time of the cells subjected to osmotic downshock strongly affected ectoine uptake as well as the cell growth of this strain, suggesting that the transporter of ectoine in the strain JCM 6894 was stimulated during the osmotic downshock for about 1 h. Different downshock strengths had marked effects on the rate of ectoine uptake when the downshocked cells were incubated in the presence of NaCl.
Collapse
Affiliation(s)
- Shinichi Nagata
- Environmental Biochemistry Group, Research Center for Inland Seas, Kobe University, 5-1-1 Fukae, Higashinada-ku, Kobe 658-0022, Japan.
| | | |
Collapse
|
45
|
Saarela M, Virkajärvi I, Alakomi HL, Mattila-Sandholm T, Vaari A, Suomalainen T, Mättö J. Influence of fermentation time, cryoprotectant and neutralization of cell concentrate on freeze-drying survival, storage stability, and acid and bile exposure of Bifidobacterium animalis ssp. lactis cells produced without milk-based ingredients. J Appl Microbiol 2005; 99:1330-9. [PMID: 16313405 DOI: 10.1111/j.1365-2672.2005.02742.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To investigate the stability of Bifidobacterium animalis ssp. lactis VTT E-012010 (=Bb-12) during freeze-drying, storage and acid and bile exposure. The effect of harvesting time and composition and pH of the cryoprotectant on the survival was evaluated. The procedure was performed by using a milk-free culture medium and cryoprotectants to produce cells for nonmilk-based applications. METHODS AND RESULTS Bifidobacterial cells were grown in fermenters in general edible medium for 15 or 22 h. The cell mass was freeze-dried either as non-neutralized or neutralized using sucrose, betaine or reconstituted skim milk (control) as cryoprotectants. For stability studies freeze-dried powders were stored at 37, 5 and -20 degrees C for 2-6 months. In addition, acid and bile tolerance of the powders was tested. Sucrose-formulated B. animalis ssp. lactis preparations had an excellent stability during storage at refrigerated and frozen temperatures for 5-6 months. They also had a good survival during storage at 37 degrees C for 2 months as well as during exposure to pH 3 and 1% bile acids. No difference was observed between 15 and 22 h grown cells or between non-neutralized and neutralized cells. Betaine proved to be a poor cryoprotectant compared with sucrose. CONCLUSIONS Fermentation time and neutralization of cell concentrate before freeze-drying had no impact on the storage stability and bile and acid tolerance of freeze-dried bifidobacterial cells. The nonmilk-based production protocol using sucrose as a cryoprotectant yielded powdery preparations with excellent stability in adverse conditions (storage at elevated temperatures and during acid and bile exposure). SIGNIFICANCE AND IMPACT OF THE STUDY The results indicate that it is feasible to develop nonmilk-based production technologies for probiotic cultures. This provides new possibilities for the development of nondairy-based probiotic products.
Collapse
|
46
|
Poolman B, Spitzer JJ, Wood JM. Bacterial osmosensing: roles of membrane structure and electrostatics in lipid–protein and protein–protein interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1666:88-104. [PMID: 15519310 DOI: 10.1016/j.bbamem.2004.06.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 05/17/2004] [Accepted: 06/18/2004] [Indexed: 10/26/2022]
Abstract
Bacteria act to maintain their hydration when the osmotic pressure of their environment changes. When the external osmolality decreases (osmotic downshift), mechanosensitive channels are activated to release low molecular weight osmolytes (and hence water) from the cytoplasm. Upon osmotic upshift, osmoregulatory transporters are activated to import osmolytes (and hence water). Osmoregulatory channels and transporters sense and respond to osmotic stress via different mechanisms. Mechanosensitive channel MscL senses the increasing tension in the membrane and appears to gate when the lateral pressure in the acyl chain region of the lipids drops below a threshold value. Transporters OpuA, BetP and ProP are activated when increasing external osmolality causes threshold ionic concentrations in excess of about 0.05 M to be reached in the proteoliposome lumen. The threshold activation concentrations for the OpuA transporter are strongly dependent on the fraction of anionic lipids that surround the cytoplasmic face of the protein. The higher the fraction of anionic lipids, the higher the threshold ionic concentrations. A similar trend is observed for the BetP transporter. The lipid dependence of osmotic activation of OpuA and BetP suggests that osmotic signals are transmitted to the protein via interactions between charged osmosensor domains and the ionic headgroups of the lipids in the membrane. The charged, C-terminal domains of BetP and ProP are important for osmosensing. The C-terminal domain of ProP participates in homodimeric coiled-coil formation and it may interact with the membrane lipids and soluble protein ProQ. The activation of ProP by lumenal, macromolecular solutes at constant ionic strength indicates that its structure and activity may also respond to macromolecular crowding. This excluded volume effect may restrict the range over which the osmosensing domain can electrostatically interact. A simplified version of the dissociative double layer theory is used to explain the activation of the transporters by showing how changes in ion concentration could modulate interactions between charged osmosensor domains and charged lipid or protein surfaces. Importantly, the relatively high ionic concentrations at which osmosensors become activated at different surface charge densities compare well with the predicted dependence of 'critical' ion concentrations on surface charge density. The critical ion concentrations represent transitions in Maxwellian ionic distributions at which the surface potential reaches 25.7 mV for monovalent ions. The osmosensing mechanism is qualitatively described as an "ON/OFF switch" representing thermally relaxed and electrostatically locked protein conformations.
Collapse
Affiliation(s)
- Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology and Materials Science Center(plus), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | | | |
Collapse
|
47
|
Abstract
Environmental stress responses in Lactobacillus, which have been investigated mainly by proteomics approaches, are reviewed. The physiological and molecular mechanisms of responses to heat, cold, acid, osmotic, oxygen, high pressure and starvation stresses are described. Specific examples of the repercussions of these effects in food processing are given. Molecular mechanisms of stress responses in lactobacilli and other bacteria are compared.
Collapse
Affiliation(s)
- Maria De Angelis
- Istituto di Scienze delle Produzioni Alimentari, CNR, Bari, Italy
| | | |
Collapse
|
48
|
Baliarda A, Robert H, Jebbar M, Blanco C, Deschamps A, Le Marrec C. Potential osmoprotectants for the lactic acid bacteria Pediococcus pentosaceus and Tetragenococcus halophila. Int J Food Microbiol 2003; 84:13-20. [PMID: 12781949 DOI: 10.1016/s0168-1605(02)00388-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The physiological responses of the lactic acid bacteria Pediococcus pentosaceus and Tetragenococcus halophila (formely known as P. halophila), subjected to osmotic stress in the presence of molecules known to act as osmoprotectants for other bacteria were studied. In a defined medium, glycine betaine, dimethylsulfonioacetate, choline, proline and L-carnitine were able to relieve inhibition of growth at 0.8 M NaCl. The five compounds were shown to efficiently compete with glycine betaine transport, suggesting the existence of common transporter(s) for these molecules. T. halophila, the most tolerant strain, exhibited a larger spectrum of compatible solutes including dimethylsulfonioacetate, dimethylsulfoniopropionate and ectoine. Preliminary data suggest that restoration of growth by ectoine under osmotic constraint seems specific to the genus Tetragenococcus.
Collapse
Affiliation(s)
- Aurélie Baliarda
- Unité Sécurité Microbiologique des Aliments, ISTAB, Université Bordeaux 1, Avenue des Facultés, F-33405 Talence Cedex, France
| | | | | | | | | | | |
Collapse
|
49
|
Ben-Izhak Monselise E, Parola AH, Kost D. Low-frequency electromagnetic fields induce a stress effect upon higher plants, as evident by the universal stress signal, alanine. Biochem Biophys Res Commun 2003; 302:427-34. [PMID: 12604366 DOI: 10.1016/s0006-291x(03)00194-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
15N NMR analysis reveals alanine production in Duckweed plants exposed to low intensity sinusoidally varying magnetic fields (SVMF) at 60 and 100Hz, and fed by 15N-labeled ammonium chloride. Alanine does not accumulate in the absence of SVMF. Addition of vitamin C, a radical scavenger, reduced alanine production by 82%, indicating the roll of free radicals in the process. Alanine accumulation in plants and animals in response to exposure to a variety of stress conditions, including SVMF, is a general phenomenon. It is proposed that alanine is a universal first stress signal expressed by cells.
Collapse
|
50
|
Romeo Y, Obis D, Bouvier J, Guillot A, Fourçans A, Bouvier I, Gutierrez C, Mistou MY. Osmoregulation in Lactococcus lactis: BusR, a transcriptional repressor of the glycine betaine uptake system BusA. Mol Microbiol 2003; 47:1135-47. [PMID: 12581365 DOI: 10.1046/j.1365-2958.2003.03362.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The busA (opuA) locus of Lactococcus lactis encodes a glycine betaine uptake system. Transcription of busA is osmotically inducible and its induction after an osmotic stress is reduced in the presence of glycine betaine. Using a genetic screen in CLG802, an Escherichia coli strain carrying a lacZ transcriptional fusion expressed under the control of the busA promoter, we isolated a genomic fragment from the L. lactis subsp. cremoris strain MG1363, which represses transcription from busAp. The cloned locus responsible for this repression was identified as a gene present upstream from the busA operon, encoding a putative DNA binding protein. This gene was named busR. Electrophoretic mobility shift and footprinting experiments showed that BusR is able to bind a site that overlaps the busA promoter. Overexpression of busR in L. lactis reduced expression of busA. Its disruption led to increased and essentially constitutive transcription of busA at low osmolarity. Therefore, BusR is a major actor of the osmotic regulation of busA in L. lactis.
Collapse
Affiliation(s)
- Yves Romeo
- Laboratoire de Microbiologie et Génétique Moléculaire, UMR 5100 CNRS-Université Toulouse III 118, route de Narbonne 31062 Toulouse Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|