1
|
Influence of Mo and Fe on Photosynthetic and Nitrogenase Activities of Nitrogen-Fixing Cyanobacteria under Nitrogen Starvation. Cells 2022; 11:cells11050904. [PMID: 35269526 PMCID: PMC8909559 DOI: 10.3390/cells11050904] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 01/01/2023] Open
Abstract
The potential of cyanobacteria to perform a variety of distinct roles vital for the biosphere, including nutrient cycling and environmental detoxification, drives interest in studying their biodiversity. Increasing soil erosion and the overuse of chemical fertilizers are global problems in developed countries. The option might be to switch to organic farming, which entails largely the use of biofertilisers. Cyanobacteria are prokaryotic, photosynthetic organisms with considerable potential, within agrobiotechnology, to produce biofertilisers. They contribute significantly to plant drought resistance and nitrogen enrichment in the soil. This study sought, isolated, and investigated nitrogen-fixing cyanobacterial strains in rice fields, and evaluated the effect of Mo and Fe on photosynthetic and nitrogenase activities under nitrogen starvation. Cyanobacterial isolates, isolated from rice paddies in Kazakhstan, were identified as Trichormus variabilis K-31 (MZ079356), Cylindrospermum badium J-8 (MZ079357), Nostoc sp. J-14 (MZ079360), Oscillatoria brevis SH-12 (MZ090011), and Tolypothrix tenuis J-1 (MZ079361). The study of the influence of various concentrations of Mo and Fe on photosynthetic and nitrogenase activities under conditions of nitrogen starvation revealed the optimal concentrations of metals that have a stimulating effect on the studied parameters.
Collapse
|
2
|
Eichner M, Thoms S, Rost B, Mohr W, Ahmerkamp S, Ploug H, Kuypers MMM, de Beer D. N 2 fixation in free-floating filaments of Trichodesmium is higher than in transiently suboxic colony microenvironments. THE NEW PHYTOLOGIST 2019; 222:852-863. [PMID: 30507001 PMCID: PMC6590460 DOI: 10.1111/nph.15621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/22/2018] [Indexed: 05/31/2023]
Abstract
To understand the role of micrometer-scale oxygen (O2 ) gradients in facilitating dinitrogen (N2 ) fixation, we characterized O2 dynamics in the microenvironment around free-floating trichomes and colonies of Trichodesmium erythraeum IMS101. Diurnal and spatial variability in O2 concentrations in the bulk medium, within colonies, along trichomes and within single cells were determined using O2 optodes, microsensors and model calculations. Carbon (C) and N2 fixation as well as O2 evolution and uptake under different O2 concentrations were analyzed by stable isotope incubations and membrane inlet mass spectrometry. We observed a pronounced diel rhythm in O2 fluxes, with net O2 evolution restricted to short periods in the morning and evening, and net O2 uptake driven by dark respiration and light-dependent O2 uptake during the major part of the light period. Remarkably, colonies showed lower N2 fixation and C fixation rates than free-floating trichomes despite the long period of O2 undersaturation in the colony microenvironment. Model calculations demonstrate that low permeability of the cell wall in combination with metabolic heterogeneity between single cells allows for anoxic intracellular conditions in colonies but also free-floating trichomes of Trichodesmium. Therefore, whereas colony formation must have benefits for Trichodesmium, it does not favor N2 fixation.
Collapse
Affiliation(s)
- Meri Eichner
- Max Planck Institute for Marine MicrobiologyCelsiusstr. 1Bremen28359Germany
| | - Silke Thoms
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine ResearchAm Handelshafen 12Bremerhaven27570Germany
| | - Björn Rost
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine ResearchAm Handelshafen 12Bremerhaven27570Germany
| | - Wiebke Mohr
- Max Planck Institute for Marine MicrobiologyCelsiusstr. 1Bremen28359Germany
| | - Soeren Ahmerkamp
- Max Planck Institute for Marine MicrobiologyCelsiusstr. 1Bremen28359Germany
| | - Helle Ploug
- Department of Marine SciencesUniversity of GothenburgCarl Skottbergsgata 22 BGöteborg41319Sweden
| | | | - Dirk de Beer
- Max Planck Institute for Marine MicrobiologyCelsiusstr. 1Bremen28359Germany
| |
Collapse
|
3
|
Martien JI, Hebert AS, Stevenson DM, Regner MR, Khana DB, Coon JJ, Amador-Noguez D. Systems-Level Analysis of Oxygen Exposure in Zymomonas mobilis: Implications for Isoprenoid Production. mSystems 2019; 4:e00284-18. [PMID: 30801024 PMCID: PMC6372839 DOI: 10.1128/msystems.00284-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/07/2019] [Indexed: 11/20/2022] Open
Abstract
Zymomonas mobilis is an aerotolerant anaerobe and prolific ethanologen with attractive characteristics for industrial bioproduct generation. However, there is currently insufficient knowledge of the impact that environmental factors have on flux through industrially relevant biosynthetic pathways. Here, we examined the effect of oxygen exposure on metabolism and gene expression in Z. mobilis by combining targeted metabolomics, mRNA sequencing, and shotgun proteomics. We found that exposure to oxygen profoundly influenced metabolism, inducing both transient metabolic bottlenecks and long-term metabolic remodeling. In particular, oxygen induced a severe but temporary metabolic bottleneck in the methyl erythritol 4-phosphate pathway for isoprenoid biosynthesis caused by oxidative damage to the iron-sulfur cofactors of the final two enzymes in the pathway. This bottleneck was resolved with minimal changes in expression of isoprenoid biosynthetic enzymes. Instead, it was associated with pronounced upregulation of enzymes related to iron-sulfur cluster maintenance and biogenesis (i.e., flavodoxin reductase and the suf operon). We also detected major changes in glucose utilization in the presence of oxygen. Specifically, we observed increased gluconate production following exposure to oxygen, accounting for 18% of glucose uptake. Our results suggest that under aerobic conditions, electrons derived from the oxidation of glucose to gluconate are diverted to the electron transport chain, where they can minimize oxidative damage by reducing reactive oxygen species such as H2O2. This model is supported by the simultaneous upregulation of three membrane-bound dehydrogenases, cytochrome c peroxidase, and a cytochrome bd oxidase following exposure to oxygen. IMPORTANCE Microbially generated biofuels and bioproducts have the potential to provide a more environmentally sustainable alternative to fossil-fuel-derived products. In particular, isoprenoids, a diverse class of natural products, are chemically suitable for use as high-grade transport fuels and other commodity molecules. However, metabolic engineering for increased production of isoprenoids and other bioproducts is limited by an incomplete understanding of factors that control flux through biosynthetic pathways. Here, we examined the native regulation of the isoprenoid biosynthetic pathway in the biofuel producer Zymomonas mobilis. We leveraged oxygen exposure as a means to perturb carbon flux, allowing us to observe the formation and resolution of a metabolic bottleneck in the pathway. Our multi-omics analysis of this perturbation enabled us to identify key auxiliary enzymes whose expression correlates with increased production of isoprenoid precursors, which we propose as potential targets for future metabolic engineering.
Collapse
Affiliation(s)
- Julia I. Martien
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Alexander S. Hebert
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Genome Center of Wisconsin, Madison, Wisconsin, USA
| | - David M. Stevenson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Matthew R. Regner
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Daven B. Khana
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Joshua J. Coon
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Eichner MJ, Klawonn I, Wilson ST, Littmann S, Whitehouse MJ, Church MJ, Kuypers MM, Karl DM, Ploug H. Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of Trichodesmium under different pCO 2. ISME JOURNAL 2017; 11:1305-1317. [PMID: 28398346 PMCID: PMC5437350 DOI: 10.1038/ismej.2017.15] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/19/2016] [Accepted: 01/09/2017] [Indexed: 11/20/2022]
Abstract
Gradients of oxygen (O2) and pH, as well as small-scale fluxes of carbon (C), nitrogen (N) and O2 were investigated under different partial pressures of carbon dioxide (pCO2) in field-collected colonies of the marine dinitrogen (N2)-fixing cyanobacterium Trichodesmium. Microsensor measurements indicated that cells within colonies experienced large fluctuations in O2, pH and CO2 concentrations over a day–night cycle. O2 concentrations varied with light intensity and time of day, yet colonies exposed to light were supersaturated with O2 (up to ~200%) throughout the light period and anoxia was not detected. Alternating between light and dark conditions caused a variation in pH levels by on average 0.5 units (equivalent to 15 nmol l−1 proton concentration). Single-cell analyses of C and N assimilation using secondary ion mass spectrometry (SIMS; large geometry SIMS and nanoscale SIMS) revealed high variability in metabolic activity of single cells and trichomes of Trichodesmium, and indicated transfer of C and N to colony-associated non-photosynthetic bacteria. Neither O2 fluxes nor C fixation by Trichodesmium were significantly influenced by short-term incubations under different pCO2 levels, whereas N2 fixation increased with increasing pCO2. The large range of metabolic rates observed at the single-cell level may reflect a response by colony-forming microbial populations to highly variable microenvironments.
Collapse
Affiliation(s)
- Meri J Eichner
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Isabell Klawonn
- Department of Ecology, Environment and Plant Sciences, University of Stockholm, Stockholm, Sweden
| | - Samuel T Wilson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA
| | - Sten Littmann
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Martin J Whitehouse
- Department of Geosciences, Swedish Museum of Natural History, Stockholm, Sweden
| | - Matthew J Church
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA
| | - Marcel Mm Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - David M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA
| | - Helle Ploug
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Ocean acidification slows nitrogen fixation and growth in the dominant diazotroph Trichodesmium under low-iron conditions. Proc Natl Acad Sci U S A 2012; 109:E3094-100. [PMID: 23071328 DOI: 10.1073/pnas.1216012109] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dissolution of anthropogenic CO(2) increases the partial pressure of CO(2) (pCO(2)) and decreases the pH of seawater. The rate of Fe uptake by the dominant N(2)-fixing cyanobacterium Trichodesmium declines as pH decreases in metal-buffered medium. The slower Fe-uptake rate at low pH results from changes in Fe chemistry and not from a physiological response of the organism. Contrary to previous observations in nutrient-replete media, increasing pCO(2)/decreasing pH causes a decrease in the rates of N(2) fixation and growth in Trichodesmium under low-Fe conditions. This result was obtained even though the bioavailability of Fe was maintained at a constant level by increasing the total Fe concentration at low pH. Short-term experiments in which pCO(2) and pH were varied independently showed that the decrease in N(2) fixation is caused by decreasing pH rather than by increasing pCO(2) and corresponds to a lower efficiency of the nitrogenase enzyme. To compensate partially for the loss of N(2) fixation efficiency at low pH, Trichodesmium synthesizes additional nitrogenase. This increase comes partly at the cost of down-regulation of Fe-containing photosynthetic proteins. Our results show that although increasing pCO(2) often is beneficial to photosynthetic marine organisms, the concurrent decreasing pH can affect primary producers negatively. Such negative effects can occur both through chemical mechanisms, such as the bioavailability of key nutrients like Fe, and through biological mechanisms, as shown by the decrease in N(2) fixation in Fe-limited Trichodesmium.
Collapse
|
6
|
Raven JA. Protein turnover and plant RNA and phosphorus requirements in relation to nitrogen fixation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 188-189:25-35. [PMID: 22525241 DOI: 10.1016/j.plantsci.2012.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 01/25/2012] [Accepted: 02/19/2012] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) is the proximate (immediate) limiting element for primary productivity in some habitats, and is generally the ultimate limiting element for primary productivity. Although RNA can account for over half of the non-storage P in photosynthetic organisms, some primary producers have more ribosomes than the minimum needed for the observed rate of net protein synthesis; some of this RNA may be needed for protein turnover. Two cases of protein turnover which can occur at a much faster rate than the bulk protein turnover are those of photodamaged photosystem II and O(2)-damaged nitrogenase. While RNA involved in photosystem II repair accounts for less than 1% of the non-storage P in photosynthetic organisms, a maximum, of 12% of non-storage P could occur in RNA associated with replacement of damaged nitrogenase and/or O(2) damage avoidance mechanism in diazotrophic (N(2) fixing) organisms. There is a general trend in published data towards lower P use efficiency (g dry matter gain per day per mol P in the organism) for photosynthetic diazotrophic organisms growing under P limitation with N(2) as their nitrogen source, rather than with NH(4)(+), urea or NO(3)(-). Additional work is needed to examine the generality of a statistically verified decrease in P use efficiency for diazotrophic growth relative to growth on other nitrogen sources and, if this is confirmed, further investigation of the mechanism is needed. The outcome of such work would be important for relating the global distribution of diazotrophy to P availability. There are no known P acquisition mechanisms specific to diazotrophs. Phosphorus (P) is the proximate (immediate) limiting element for primary productivity in some habitats, and is generally the ultimate limiting element for primary productivity. Although RNA can account for over half of the non-storage P in photosynthetic organisms, some primary producers have more ribosomes than the minimum needed for the observed rate of net protein synthesis; some of this RNA may be needed for protein turnover. Two cases of protein turnover which can occur at a much faster rate than the bulk protein turnover are those of photodamaged photosystem II and O(2)-damaged nitrogenase. While RNA involved in photosystem II repair accounts for less than 1% of the non-storage P in photosynthetic organisms, a maximum, of 12% of non-storage P could occur in RNA associated with replacement of damaged nitrogenase and/or O(2) damage avoidance mechanism in diazotrophic (N(2) fixing) organisms. There is a general trend in published data towards lower P use efficiency (g dry matter gain per day per mol P in the organism) for photosynthetic diazotrophic organisms growing under P limitation with N(2) as their nitrogen source, rather than with NH(4)(+), urea or NO(3)(-). Additional work is needed to examine the generality of a statistically verified decrease in P use efficiency for diazotrophic growth relative to growth on other nitrogen sources and, if this is confirmed, further investigation of the mechanism is needed. The outcome of such work would be important for relating the global distribution of diazotrophy to P availability. There are no known P acquisition mechanisms specific to diazotrophs.
Collapse
Affiliation(s)
- John A Raven
- School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
7
|
Kranz SA, Eichner M, Rost B. Interactions between CCM and N2 fixation in Trichodesmium. PHOTOSYNTHESIS RESEARCH 2011; 109:73-84. [PMID: 21190135 DOI: 10.1007/s11120-010-9611-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 12/17/2010] [Indexed: 05/30/2023]
Abstract
In view of the current increase in atmospheric pCO(2) and concomitant changes in the marine environment, it is crucial to assess, understand, and predict future responses of ecologically relevant phytoplankton species. The diazotrophic cyanobacterium Trichodesmium erythraeum was found to respond strongly to elevated pCO(2) by increasing growth, production rates, and N(2) fixation. The magnitude of these CO(2) effects exceeds those previously seen in other phytoplankton, raising the question about the underlying mechanisms. Here, we review recent publications on metabolic pathways of Trichodesmium from a gene transcription level to the protein activities and energy fluxes. Diurnal patterns of nitrogenase activity change markedly with CO(2) availability, causing higher diel N(2) fixation rates under elevated pCO(2). The observed responses to elevated pCO(2) could not be attributed to enhanced energy generation via gross photosynthesis, although there are indications for CO(2)-dependent changes in ATP/NADPH + H(+) production. The CO(2) concentrating mechanism (CCM) in Trichodesmium is primarily based on HCO(3)(-) uptake. Although only little CO(2) uptake was detected, the NDH complex seems to play a crucial role in internal cycling of inorganic carbon, especially under elevated pCO(2). Affinities for inorganic carbon change over the day, closely following the pattern in N(2) fixation, and generally decrease with increasing pCO(2). This down-regulation of CCM activity and the simultaneously enhanced N(2) fixation point to a shift in energy allocation from carbon acquisition to N(2) fixation under elevated pCO(2) levels. A strong light modulation of CO(2) effects further corroborates the role of energy fluxes as a key to understand the responses of Trichodesmium.
Collapse
Affiliation(s)
- Sven A Kranz
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
| | | | | |
Collapse
|
8
|
Cumino AC, Marcozzi C, Barreiro R, Salerno GL. Carbon cycling in Anabaena sp. PCC 7120. Sucrose synthesis in the heterocysts and possible role in nitrogen fixation. PLANT PHYSIOLOGY 2007; 143:1385-97. [PMID: 17237189 PMCID: PMC1820908 DOI: 10.1104/pp.106.091736] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Accepted: 01/08/2006] [Indexed: 05/13/2023]
Abstract
Nitrogen (N) available to plants mostly originates from N(2) fixation carried out by prokaryotes. Certain cyanobacterial species contribute to this energetically expensive process related to carbon (C) metabolism. Several filamentous strains differentiate heterocysts, specialized N(2)-fixing cells. To understand how C and N metabolism are regulated in photodiazotrophically grown organisms, we investigated the role of sucrose (Suc) biosynthesis in N(2) fixation in Anabaena sp. PCC 7120 (also known as Nostoc sp. PCC 7120). The presence of two Suc-phosphate synthases (SPS), SPS-A and SPS-B, directly involved in Suc synthesis with different glucosyl donor specificity, seems to be important in the N(2)-fixing filament. Measurement of enzyme activity and polypeptide levels plus reverse transcription-polymerase chain reaction experiments showed that total SPS expression is greater in cells grown in N(2) versus combined N conditions. Only SPS-B, however, was seen to be active in the heterocyst, as confirmed by analysis of green fluorescent protein reporters. SPS-B gene expression is likely controlled at the transcriptional initiation level, probably in relation to a global N regulator. Metabolic control analysis indicated that the metabolism of glycogen and Suc is likely interconnected in N(2)-fixing filaments. These findings suggest that N(2) fixation may be spatially compatible with Suc synthesis and support the role of the disaccharide as an intermediate in the reduced C flux in heterocyst-forming cyanobacteria.
Collapse
Affiliation(s)
- Andrea C Cumino
- Centro de Investigaciones Biológicas, Fundación para Investigaciones Biológicas Aplicadas, 7600 Mar del Plata, Argentina
| | | | | | | |
Collapse
|
9
|
|
10
|
Küpper H, Ferimazova N, Setlík I, Berman-Frank I. Traffic lights in trichodesmium. Regulation of photosynthesis for nitrogen fixation studied by chlorophyll fluorescence kinetic microscopy. PLANT PHYSIOLOGY 2004; 135:2120-33. [PMID: 15299119 PMCID: PMC520784 DOI: 10.1104/pp.104.045963] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We investigated interactions between photosynthesis and nitrogen fixation in the non-heterocystous marine cyanobacterium Trichodesmium IMS101 at the single-cell level by two-dimensional (imaging) microscopic measurements of chlorophyll fluorescence kinetics. Nitrogen fixation was closely associated with the appearance of cells with high basic fluorescence yield (F(0)), termed bright cells. In cultures aerated with normal air, both nitrogen fixation and bright cells appeared in the middle of the light phase. In cultures aerated with 5% oxygen, both processes occurred at a low level throughout most of the day. Under 50% oxygen, nitrogen fixation commenced at the beginning of the light phase but declined soon afterwards. Rapid reversible switches between fluorescence levels were observed, which indicated that the elevated F(0) of the bright cells originates from reversible uncoupling of the photosystem II (PSII) antenna from the PSII reaction center. Two physiologically distinct types of bright cells were observed. Type I had about double F(0) compared to the normal F(0) in the dark phase and a PSII activity, measured as variable fluorescence (F(v) = F(m) - F(0)), similar to normal non-diazotrophic cells. Correlation of type I cells with nitrogen fixation, oxygen concentration, and light suggests that this physiological state is connected to an up-regulation of the Mehler reaction, resulting in oxygen consumption despite functional PSII. Type II cells had more than three times the normal F(0) and hardly any PSII activity measurable by variable fluorescence. They did not occur under low-oxygen concentrations, but appeared under high-oxygen levels outside the diazotrophic period, suggesting that this state represents a reaction to oxidative stress not necessarily connected to nitrogen fixation. In addition to the two high-fluorescence states, cells were observed to reversibly enter a low-fluorescence state. This occurred mainly after a cell went through its bright phase and may represent a fluorescence-quenching recovery phase.
Collapse
Affiliation(s)
- Hendrik Küpper
- Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, Universität Konstanz, D-78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
11
|
Martin G, Haehnel W, Böger P. Oxidative inactivation of glutamine synthetase from the cyanobacterium Anabaena variabilis. J Bacteriol 1997; 179:730-4. [PMID: 9006027 PMCID: PMC178754 DOI: 10.1128/jb.179.3.730-734.1997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In crude extracts of the cyanobacterium Anabaena variabilis, glutamine synthetase (GS) could be effectively inactivated by the addition of NADH. GS inactivation was completed within 30 min. Both the inactivated GS and the active enzyme were isolated. No difference between the two enzyme forms was seen in sodium dodecyl sulfate-gels, and only minor differences were detectable by UV spectra, which excludes modification by a nucleotide. Mass spectrometry revealed that the molecular masses of active and inactive GS are equal. While the Km values of the substrates were unchanged, the Vmax values of the inactive GS were lower, reflecting the inactivation factor in the crude extract. This result indicates that the active site was affected. From the crude extract, a fraction mediating GS inactivation could be enriched by ammonium sulfate precipitation and gel filtration. GS inactivation by this fraction required the presence of NAD(P)H, Fe3+, and oxygen. In the absence of the GS-inactivating fraction, GS could be inactivated by Fe2+ and H2O2. The GS-inactivating fraction produced Fe2+ and H2O2, using NADPH, Fe3+, and oxygen. Accordingly, the inactivating fraction was inhibited by catalase and EDTA. This GS-inactivating system of Anabaena is similar to that described for oxidative GS inactivation in Escherichia coli. We conclude that GS inactivation by NAD(P)H is caused by irreversible oxidative damage and is not due to a regulatory mechanism of nitrogen assimilation.
Collapse
Affiliation(s)
- G Martin
- Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, Germany
| | | | | |
Collapse
|