1
|
Coussement P, Bauwens D, Peters G, Maertens J, De Mey M. Mapping and refactoring pathway control through metabolic and protein engineering: The hexosamine biosynthesis pathway. Biotechnol Adv 2020; 40:107512. [DOI: 10.1016/j.biotechadv.2020.107512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/07/2019] [Accepted: 09/30/2019] [Indexed: 01/14/2023]
|
2
|
A Proteomic View of Salmonella Typhimurium in Response to Phosphate Limitation. Proteomes 2018; 6:proteomes6020019. [PMID: 29693629 PMCID: PMC6027262 DOI: 10.3390/proteomes6020019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 11/17/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium), an important foodborne pathogen, often encounters phosphate (Pi) shortage both in the environment and inside host cells. To gain a global view on its physiological responses to Pi starvation, we performed proteomic profiling of S. Typhimurium upon the shift from Pi-rich to Pi-low conditions. In addition to the Pho regulon, many metabolic processes were up-regulated, such as glycolysis, pentose phosphate pathway, pyrimidine degradation, glycogen, and trehalose metabolism, allowing us to chart an overview of S. Typhimurium carbon metabolism under Pi starvation. Furthermore, proteomic analysis of a mutant lacking phoB (that encodes a key regulator of Pi shortage response) suggested that only a small subset of the altered proteins upon Pi limitation was PhoB-dependent. Importantly, we present evidence that S. Typhimurium N-acetylglucosamine catabolism was induced under Pi-limiting conditions in a PhoB-dependent manner. Immunoblotting and β-galactosidase assays demonstrated that PhoB was required for the full activation of NagB, a key enzyme of this pathway, in response to low Pi. Thus, our study reveals that N-acetylglucosamine catabolism may represent an additional PhoB-regulated pathway to tackle bacterial Pi shortage.
Collapse
|
3
|
Le Bihan G, Sicard JF, Garneau P, Bernalier-Donadille A, Gobert AP, Garrivier A, Martin C, Hay AG, Beaudry F, Harel J, Jubelin G. The NAG Sensor NagC Regulates LEE Gene Expression and Contributes to Gut Colonization by Escherichia coli O157:H7. Front Cell Infect Microbiol 2017; 7:134. [PMID: 28484684 PMCID: PMC5401889 DOI: 10.3389/fcimb.2017.00134] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/31/2017] [Indexed: 11/16/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 are human pathogens responsible for bloody diarrhea and renal failures. EHEC employ a type 3 secretion system to attach directly to the human colonic epithelium. This structure is encoded by the locus of enterocyte effacement (LEE) whose expression is regulated in response to specific nutrients. In this study, we show that the mucin-derived sugars N-acetylglucosamine (NAG) and N-acetylneuraminic acid (NANA) inhibit EHEC adhesion to epithelial cells through down-regulation of LEE expression. The effect of NAG and NANA is dependent on NagC, a transcriptional repressor of the NAG catabolism in E. coli. We show that NagC is an activator of the LEE1 operon and a critical regulator for the colonization of mice intestine by EHEC. Finally, we demonstrate that NAG and NANA as well as the metabolic activity of Bacteroides thetaiotaomicron affect the in vivo fitness of EHEC in a NagC-dependent manner. This study highlights the role of NagC in coordinating metabolism and LEE expression in EHEC and in promoting EHEC colonization in vivo.
Collapse
Affiliation(s)
- Guillaume Le Bihan
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Aviaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| | - Jean-Félix Sicard
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Aviaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| | - Philippe Garneau
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Aviaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| | | | - Alain P Gobert
- INRA, Université Clermont Auvergne, MEDISClermont-Ferrand, France
| | - Annie Garrivier
- INRA, Université Clermont Auvergne, MEDISClermont-Ferrand, France
| | - Christine Martin
- INRA, Université Clermont Auvergne, MEDISClermont-Ferrand, France
| | - Anthony G Hay
- Department of Microbiology, Cornell UniversityIthaca, NY, USA
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animal du Québec, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| | - Josée Harel
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Aviaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| | - Grégory Jubelin
- INRA, Université Clermont Auvergne, MEDISClermont-Ferrand, France
| |
Collapse
|
4
|
Miller CL, Karna SLR, Seshu J. Borrelia host adaptation Regulator (BadR) regulates rpoS to modulate host adaptation and virulence factors in Borrelia burgdorferi. Mol Microbiol 2013; 88:105-24. [PMID: 23387366 DOI: 10.1111/mmi.12171] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2013] [Indexed: 11/27/2022]
Abstract
The RpoS transcription factor of Borrelia burgdorferi is a 'gatekeeper' because it activates genes required for spirochaetes to transition from tick to vertebrate hosts. However, it remains unknown how RpoS becomes repressed to allow the spirochaetes to transition back from the vertebrate host to the tick vector. Here we show that a putative carbohydrate-responsive regulatory protein, designated BadR (Borrelia host adaptation Regulator), is a transcriptional repressor of rpoS. BadR levels are elevated in B. burgdorferi cultures grown under in vitro conditions mimicking unfed-ticks and badR-deficient strains are defective for growth under these same conditions. Microarray and immunoblot analyses of badR-deficient strains showed upregulation of rpoS and other factors important for virulence in vertebrate hosts, as well as downregulation of putative tick-specific determinants (e.g. linear plasmid 28-4 genes). DNA-binding assays revealed BadR binds to upstream regions of rpoS. Site-directed mutations in BadR and the presence of phosphorylated sugars affected BadR's binding to the rpoS promoters. badR-deficient B. burgdorferi were unable to colonize mice. Several putative tick-specific targets have been identified. Our study identified a novel regulator, BadR, and provides a link between nutritional environmental cues utilized by spirochaetes to adaptation to disparate conditions found in the tick and vertebrate hosts.
Collapse
Affiliation(s)
- Christine L Miller
- South Texas Center for Emerging Infectious Diseases, Center for Excellence in Infection Genomics and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | | | | |
Collapse
|
5
|
Stanek MT, Cooper TF, Lenski RE. Identification and dynamics of a beneficial mutation in a long-term evolution experiment with Escherichia coli. BMC Evol Biol 2009; 9:302. [PMID: 20040094 PMCID: PMC2806358 DOI: 10.1186/1471-2148-9-302] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 12/29/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Twelve populations of E. coli were serially propagated for 20,000 generations in a glucose-supplemented minimal medium in order to study the dynamics of evolution. We sought to find and characterize one of the beneficial mutations responsible for the adaptation and other phenotypic changes, including increased cell size, in one of these populations. RESULTS We used transposon-tagging followed by P1-transduction into the ancestor, screening for increased cell size and fitness, co-transduction analysis, and DNA sequencing. We identified a 1-bp insertion in the BoxG1 region located upstream of glmUS, an operon involved in cell-wall biosynthesis. When transduced into the ancestor, this mutation increased competitive fitness by about 5%. This mutation spread through its population of origin between 500 and 1500 generations. Mutations in this region were not found in the other 11 evolving populations, even after 20,000 generations. CONCLUSION The 1-bp insertion in the BoxG1 region near glmUS was demonstrably beneficial in the environment in which it arose. The absence of similar mutations in the other evolved populations suggests that they substituted other mutations that rendered this particular mutation unimportant. These results show the unpredictability of adaptive evolution, whereas parallel substitutions at other loci in these same populations reveal the predictability.
Collapse
Affiliation(s)
- Mark T Stanek
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824-4320, USA.
| | | | | |
Collapse
|
6
|
Allosteric regulation of glucosamine-6-phosphate deaminase (NagB) and growth of Escherichia coli on glucosamine. J Bacteriol 2009; 191:6401-7. [PMID: 19700525 DOI: 10.1128/jb.00633-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth on N-acetylglucosamine (GlcNAc) produces intracellular N-acetylglucosamine-6-phosphate (GlcNAc6P), which affects the regulation of the catabolism of amino sugars in Escherichia coli in two ways. First, GlcNAc6P is the inducing signal for the NagC repressor, and thus it increases the expression of the enzymes of the nagE-nagBACD operon. Second, it is the allosteric activator of glucosamine-6P (GlcN6P) deaminase, NagB, and thus increases the catalytic capacity of this key enzyme in the metabolism of amino sugars. We showed previously that both the level of expression of the nagB gene and the transport of glucosamine were limiting the growth rate on GlcN (L. I. Alvarez-Añorve et al., J. Bacteriol. 187:2974-2982, 2005). We were unable to conclude if the lack of allosteric activation of wild-type NagB was also contributing to the slower growth rate on GlcN. Using a single-copy plasmid, with a constitutive promoter, we have separated the effects of GlcNAc6P on the NagB protein level and on deaminase activity. We show that over a range of intracellular NagB concentrations it is the quantity of the substrate, GlcN6P, which is limiting growth rather than the concentration of the allosteric activator, GlcNAc6P. On the other hand, the F174A mutant of NagB, which requires higher concentrations of GlcNAc6P for activity in vitro, grew better on GlcN in the presence of GlcNAc6P. However, wild-type NagB behaves as if it is already fully allosterically activated during growth on GlcN, and we present evidence suggesting that sufficient GlcNAc6P for allosteric activation is derived from the recycling of peptidoglycan.
Collapse
|
7
|
An alternative route for recycling of N-acetylglucosamine from peptidoglycan involves the N-acetylglucosamine phosphotransferase system in Escherichia coli. J Bacteriol 2009; 191:5641-7. [PMID: 19617367 DOI: 10.1128/jb.00448-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A set of enzymes dedicated to recycling of the amino sugar components of peptidoglycan has previously been identified in Escherichia coli. The complete pathway includes the nagA-encoded enzyme, N-acetylglucosamine-6-phosphate (GlcNAc6P) deacetylase, of the catabolic pathway for use of N-acetylglucosamine (GlcNAc). Mutations in nagA result in accumulation of millimolar concentrations of GlcNAc6P, presumably by preventing peptidoglycan recycling. Mutations in the genes encoding the key enzymes upstream of nagA in the dedicated recycling pathway (ampG, nagZ, nagK, murQ, and anmK), which were expected to interrupt the recycling process, reduced but did not eliminate accumulation of GlcNAc6P. A mutation in the nagE gene of the GlcNAc phosphotransferase system (PTS) was found to reduce by 50% the amount of GlcNAc6P which accumulated in a nagA strain and, together with mutations in the dedicated recycling pathway, eliminated all the GlcNAc6P accumulation. This shows that the nagE-encoded PTS transporter makes an important contribution to the recycling of peptidoglycan. The manXYZ-encoded PTS transporter makes a minor contribution to the formation of cytoplasmic GlcNAc6P but appears to have a more important role in secretion of GlcNAc and/or GlcNAc6P from the cytoplasm.
Collapse
|
8
|
Delpin MW, Goodman AE. Nutrient regime regulates complex transcriptional start site usage within a Pseudoalteromonas chitinase gene cluster. ISME JOURNAL 2009; 3:1053-63. [DOI: 10.1038/ismej.2009.54] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Barnhart MM, Lynem J, Chapman MR. GlcNAc-6P levels modulate the expression of Curli fibers by Escherichia coli. J Bacteriol 2006; 188:5212-9. [PMID: 16816193 PMCID: PMC1539958 DOI: 10.1128/jb.00234-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Curli are extracellular surface fibers that are produced by many members of the Enterobacteriaceae and contribute to biofilm formation. The environmental cues that promote biofilm formation are poorly understood. We found that deletion of the N-acetylglucosamine-6-phosphate (GlcNAc-6P) deacetylase gene, nagA, resulted in decreased transcription from the curli-specific promoters csgBA and csgDEFG and a corresponding decrease in curli production in Escherichia coli. nagA is in an operon that contains nagB, nagC, nagD, and nagE, whose products are required for utilization of GlcNAc as a carbon source. NagC is a repressor of the nagBACD and nagE genes in the absence of intracellular GlcNAc-6P. We found that nagC mutants were also defective in curli production. Growth of a wild-type strain on media containing additional GlcNAc reduced curli gene transcription to a level similar to the level observed when nagA was deleted. The defect in curli production in nagA or nagC mutants was alleviated by deletion of the GlcNAc transporter gene, nagE. Curli-producing DeltanagA suppressor mutants whose cells were unable to take up GlcNAc were isolated. These results suggest that elevated levels of intracellular GlcNAc-6P signal cells to down-regulate curli gene expression.
Collapse
Affiliation(s)
- Michelle M Barnhart
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
10
|
Abstract
Escherichia coli and Salmonella enterica serovar Typhimurium exhibit a remarkable versatility in the usage of different sugars as the sole source of carbon and energy, reflecting their ability to make use of the digested meals of mammalia and of the ample offerings in the wild. Degradation of sugars starts with their energy-dependent uptake through the cytoplasmic membrane and is carried on further by specific enzymes in the cytoplasm, destined finally for degradation in central metabolic pathways. As variant as the different sugars are, the biochemical strategies to act on them are few. They include phosphorylation, keto-enol isomerization, oxido/reductions, and aldol cleavage. The catabolic repertoire for using carbohydrate sources is largely the same in E. coli and in serovar Typhimurium. Nonetheless, significant differences are found, even among the strains and substrains of each species. We have grouped the sugars to be discussed according to their first step in metabolism, which is their active transport, and follow their path to glycolysis, catalyzed by the sugar-specific enzymes. We will first discuss the phosphotransferase system (PTS) sugars, then the sugars transported by ATP-binding cassette (ABC) transporters, followed by those that are taken up via proton motive force (PMF)-dependent transporters. We have focused on the catabolism and pathway regulation of hexose and pentose monosaccharides as well as the corresponding sugar alcohols but have also included disaccharides and simple glycosides while excluding polysaccharide catabolism, except for maltodextrins.
Collapse
Affiliation(s)
- Christoph Mayer
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
11
|
Komatsuzawa H, Fujiwara T, Nishi H, Yamada S, Ohara M, McCallum N, Berger-Bächi B, Sugai M. The gate controlling cell wall synthesis in Staphylococcus aureus. Mol Microbiol 2004; 53:1221-31. [PMID: 15306023 DOI: 10.1111/j.1365-2958.2004.04200.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucosamine-6-P occupies a central position between cell wall synthesis and glycolysis. In the initial steps leading to peptidoglycan precursor formation glucosamine-6-P is processed sequentially to UDP-N-acetylglucosamine, while to enter the glycolysis pathway, glucosamine-6-P is isomerized by NagB to fructose-6-P. Although we could not demonstrate NagB activity, nagB inactivation significantly reduced growth. Mutational analysis showed that NagA was involved in glucosamine-6-P formation from N-acetylglucosamine-6-P, and GlmS in that from fructose-6-P. Inactivation of glmS prevented growth on glucose as sole carbon source, which resumed after complementation with N-acetylglucosamine. Transcription of glmS as well as the amount of GlmS was reduced in the presence of N-acetylglucosamine. This and the preferential incorporation of N-acetylglucosamine over glucose into cell wall material showed that N-acetylglucosamine was used exclusively for cell wall synthesis, while glucose served both cell wall synthesis and glycolysis. These observations suggest furthermore GlmS to be the key and only enzyme leading from glucose to cell wall synthesis in Staphylococcus aureus, and show that there exists a tight regulation and hierarchy in sugar utilization. Inactivation of nagA, nagB or glmS affected the susceptibility of S. aureus to cell wall synthesis inhibitors, suggesting an interdependence between efficiency of cell wall precursor formation and resistance levels.
Collapse
Affiliation(s)
- Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima city, Hiroshima 734-8553, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Soupene E, van Heeswijk WC, Plumbridge J, Stewart V, Bertenthal D, Lee H, Prasad G, Paliy O, Charernnoppakul P, Kustu S. Physiological studies of Escherichia coli strain MG1655: growth defects and apparent cross-regulation of gene expression. J Bacteriol 2003; 185:5611-26. [PMID: 12949114 PMCID: PMC193769 DOI: 10.1128/jb.185.18.5611-5626.2003] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli strain MG1655 was chosen for sequencing because the few mutations it carries (ilvG rfb-50 rph-1) were considered innocuous. However, it has a number of growth defects. Internal pyrimidine starvation due to polarity of the rph-1 allele on pyrE was problematic in continuous culture. Moreover, the isolate of MG1655 obtained from the E. coli Genetic Stock Center also carries a large deletion around the fnr (fumarate-nitrate respiration) regulatory gene. Although studies on DNA microarrays revealed apparent cross-regulation of gene expression between galactose and lactose metabolism in the Stock Center isolate of MG1655, this was due to the occurrence of mutations that increased lacY expression and suppressed slow growth on galactose. The explanation for apparent cross-regulation between galactose and N-acetylglucosamine metabolism was similar. By contrast, cross-regulation between lactose and maltose metabolism appeared to be due to generation of internal maltosaccharides in lactose-grown cells and may be physiologically significant. Lactose is of restricted distribution: it is normally found together with maltosaccharides, which are starch degradation products, in the mammalian intestine. Strains designated MG1655 and obtained from other sources differed from the Stock Center isolate and each other in several respects. We confirmed that use of other E. coli strains with MG1655-based DNA microarrays works well, and hence these arrays can be used to study any strain of interest. The responses to nitrogen limitation of two urinary tract isolates and an intestinal commensal strain isolated recently from humans were remarkably similar to those of MG1655.
Collapse
Affiliation(s)
- Eric Soupene
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang J, Zhang W, Zou D, Chen G, Wan T, Li N, Cao X. Cloning and functional characterization of GNPI2, a novel human homolog of glucosamine-6-phosphate isomerase/oscillin. J Cell Biochem 2003; 88:932-40. [PMID: 12616532 DOI: 10.1002/jcb.10444] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The enzyme, glucosamine-6-phosphate isomerase (GNPI) or deaminase (GNPDA) (EC 5.3.1.10), catalyzes the conversion of GNP to fructose-6-phosphate and ammonia, with an aldo/keto isomerization and an amination/deamination. A hamster sperm-derived protein (Oscillin) with high similarity to bacterial GNPI has been proved to be capable of inducing calcium oscillation in eggs at fertilization. GNPI/Oscillin was supposed to be an important factor in starting embryonic development. From the cDNA library of human dendritic cells (DC), we isolated a novel full-length cDNA encoding a 276-amino acid-residue protein that shares high homology with human GNPI/Oscillin. So, the novel molecule is named as GNPI2. The GNPI2 gene consists of seven exons and six introns. It is mapped to chromosome 4. Northern blot analysis indicated that the tissue distribution of GNPI2 mRNA is different from that of human GNPI or Oscillin mRNA. GNPI2 is ubiquitously expressed in most of human tissues with high expression in testis, ovary, placenta, and heart. Like GNPI, the recombinant GNPI2 has been proved to have the enzymatic activity to catalyze the conversion of GNP to fructose-6-phosphate. Our results indicated that GNPI2 is a novel protein with definite function as a GNPI.
Collapse
Affiliation(s)
- Jia Zhang
- Institute of Immunology & Department of Internal Medicine, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A. Regulation of noise in the expression of a single gene. Nat Genet 2002; 31:69-73. [PMID: 11967532 DOI: 10.1038/ng869] [Citation(s) in RCA: 1070] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stochastic mechanisms are ubiquitous in biological systems. Biochemical reactions that involve small numbers of molecules are intrinsically noisy, being dominated by large concentration fluctuations. This intrinsic noise has been implicated in the random lysis/lysogeny decision of bacteriophage-lambda, in the loss of synchrony of circadian clocks and in the decrease of precision of cell signals. We sought to quantitatively investigate the extent to which the occurrence of molecular fluctuations within single cells (biochemical noise) could explain the variation of gene expression levels between cells in a genetically identical population (phenotypic noise). We have isolated the biochemical contribution to phenotypic noise from that of other noise sources by carrying out a series of differential measurements. We varied independently the rates of transcription and translation of a single fluorescent reporter gene in the chromosome of Bacillus subtilis, and we quantitatively measured the resulting changes in the phenotypic noise characteristics. We report that of these two parameters, increased translational efficiency is the predominant source of increased phenotypic noise. This effect is consistent with a stochastic model of gene expression in which proteins are produced in random and sharp bursts. Our results thus provide the first direct experimental evidence of the biochemical origin of phenotypic noise, demonstrating that the level of phenotypic variation in an isogenic population can be regulated by genetic parameters.
Collapse
Affiliation(s)
- Ertugrul M Ozbudak
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
15
|
Revilla-Nuin B, Reglero A, Martínez-Blanco H, Bravo IG, Ferrero MA, Rodríguez-Aparicio LB. Transport of N-acetyl-D-mannosamine and N-acetyl-D-glucosamine in Escherichia coli K1: effect on capsular polysialic acid production. FEBS Lett 2002; 511:97-101. [PMID: 11821056 DOI: 10.1016/s0014-5793(01)03318-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
N-Acetyl-D-mannosamine (ManNAc) and N-acetyl-D-glucosamine (GlcNAc) are the essential precursors of N-acetylneuraminic acid (NeuAc), the specific monomer of polysialic acid (PA), a bacterial pathogenic determinant. Escherichia coli K1 uses both amino sugars as carbon sources and uptake takes place through the mannose phosphotransferase system transporter, a phosphoenolpyruvate-dependent phosphotransferase system that shows a broad range of specificity. Glucose, mannose, fructose, and glucosamine strongly inhibited the transport of these amino-acetylated sugars and GlcNAc and ManNAc strongly affected ManNAc and GlcNAc uptake, respectively. The ManNAc and the GlcNAc phosphorylation that occurs during uptake affected NeuAc synthesis in vitro. These findings account for the low in vivo PA production observed when E. coli K1 uses ManNAc or GlcNAc as a carbon source for growth.
Collapse
Affiliation(s)
- Beatriz Revilla-Nuin
- Departamento de Bioquímica y Biología Molecular, Universidad de León, Campus de Vegazana, 24007 León, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Shin D, Lim S, Seok YJ, Ryu S. Heat shock RNA polymerase (E sigma(32)) is involved in the transcription of mlc and crucial for induction of the Mlc regulon by glucose in Escherichia coli. J Biol Chem 2001; 276:25871-5. [PMID: 11340070 DOI: 10.1074/jbc.m101757200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mlc is a global regulator of carbohydrate metabolism. Recent studies have revealed that Mlc is depressed by protein-protein interaction with enzyme IICB(Glc), a glucose-specific permease, which is encoded by ptsG. The mlc gene has been previously known to be transcribed by two promoters, P1(+1) and P2(+13), and have a binding site of its own gene product at +16. However, the mechanism of transcriptional regulation of the gene has not yet been established. In vitro transcription assays of the mlc gene showed that P2 promoter could be recognized by RNA polymerase containing the heat shock sigma factor final sigma(32) (E sigma(32)) as well as E sigma(70), while P1 promoter is only recognized by E sigma(70). The cyclic AMP receptor protein and cyclic AMP complex (CRP.cAMP) increased expression from P2 but showed negative effect on transcription from P1 by E sigma(70), although it had little effect on transcription from P2 by E sigma(32) in vitro. Purified Mlc repressed transcription from both promoters, but with different degrees of inhibition. In vivo transcription assays using wild type and mlc strains indicated that the level of mlc expression was modulated less than 2-fold by glucose in the medium with concerted action of CRP.cAMP and Mlc. A dramatic increase in mlc expression was observed upon heat shock or in cells overexpressing final sigma(32), confirming that E sigma(32) is involved in the expression of mlc. Induction of ptsG P1 and pts P0 transcription by glucose was also dependent on E sigma(32). These results indicate that E sigma(32) plays an important role in balancing the relative concentration of Mlc and EIICB(Glc) in response to availability of glucose in order to maintain inducibility of the Mlc regulon at high growth temperature.
Collapse
Affiliation(s)
- D Shin
- Research Center for New Bio-Materials in Agriculture, Department of Food Science and Technology and School of Agricultural Biotechnology, Seoul National University, Suwon 441-744, Korea
| | | | | | | |
Collapse
|
17
|
Shevchenko V, Hogben M, Ekong R, Parrington J, Lai FA. The human glucosamine-6-phosphate deaminase gene: cDNA cloning and expression, genomic organization and chromosomal localization. Gene 1998; 216:31-8. [PMID: 9714720 DOI: 10.1016/s0378-1119(98)00335-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
When mammalian eggs are fertilized by sperm, a distinct series of calcium oscillations are generated which serve as the essential trigger for egg activation and early embryo development. The identification of a soluble hamster sperm 33-kDa protein that co-migrated with calcium oscillation-inducing activity was recently described by Parrington et al. (Parrington, J., Swann, K., Shevchenko, V.I., Sesay, A.K. and Lai, F.A., 1996. Calcium oscillations in mammalian eggs triggered by a soluble sperm protein. Nature 379, 364-368). The hamster sperm 33 kDa protein was termed oscillin because it correlated with calcium oscillation-inducing activity in mammalian eggs. Sequence analysis of the hamster sperm 33 kDa protein indicated no similarity to any known cell signalling molecule, however, it displayed extensive homology with a bacterial glucosamine-6-phosphate deaminase. We have isolated the corresponding human testis homologue of the hamster sperm 33 kDa cDNA. Nucleotide sequence analysis reveals a high level of sequence identity between the hamster and human genes. The deduced protein sequence of the human gene also shares extensive amino acid identity with the bacterial glucosamine-6-phosphate deaminase enzyme. Heterologous expression of the human testis 33 kDa protein produced a glucosamine-6-phosphate deaminase activity. The genomic structure of the human glucosamine-6-phosphate deaminase has been mapped and the gene was localized by fluorescence in situ hybridization (FISH) to chromosome 5q31.
Collapse
Affiliation(s)
- V Shevchenko
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | | | | |
Collapse
|