1
|
Wang X, Cai X, Ma H, Yin W, Zhu L, Li X, Lim HM, Chou SH, He J. A c-di-AMP riboswitch controlling kdpFABC operon transcription regulates the potassium transporter system in Bacillus thuringiensis. Commun Biol 2019; 2:151. [PMID: 31044176 PMCID: PMC6488665 DOI: 10.1038/s42003-019-0414-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 11/09/2022] Open
Abstract
The intracellular K+ level in bacteria is strictly controlled by K+ uptake and efflux systems. Among these, KdpFABC is a high-affinity K+ transporter system that is generally activated by the KdpDE two-component system in response to K+ limitation stress. However, the regulatory mechanism remains obscure in bacteria lacking the kdpDE genes. Here we report that the transcription of a kdpFABC operon is distinctively regulated by a cyclic diadenylate monophosphate (c-di-AMP) riboswitch located at the 5'-untranslated region of kdp transcript, and binding of c-di-AMP to the riboswitch promotes its intrinsic termination that blocks the kdpFABC transcription. Further, the intracellular c-di-AMP concentration was found to decrease under the K+ limitation stress, leading to transcriptional read-through over the terminator to allow kdpFABC expression. This regulatory element is found predominantly in the Bacillus cereus group and correlate well with the K+ and c-di-AMP homeostasis that affects a variety of crucial cellular functions.
Collapse
Affiliation(s)
- Xun Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| | - Xia Cai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| | - Hongdan Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| | - Xinfeng Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| | - Heon M. Lim
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, 305-764 Republic of Korea
| | - Shan-Ho Chou
- Institute of Biochemistry and Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| |
Collapse
|
2
|
Dani P, Ujaoney AK, Apte SK, Basu B. Regulation of potassium dependent ATPase (kdp) operon of Deinococcus radiodurans. PLoS One 2017; 12:e0188998. [PMID: 29206865 PMCID: PMC5716572 DOI: 10.1371/journal.pone.0188998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/16/2017] [Indexed: 11/19/2022] Open
Abstract
The genome of D. radiodurans harbors genes for structural and regulatory proteins of Kdp ATPase, in an operon pattern, on Mega plasmid 1. Organization of its two-component regulatory genes is unique. Here we demonstrate that both, the structural as well as regulatory components of the kdp operon of D. radiodurans are expressed quickly as the cells experience potassium limitation but are not expressed upon increase in osmolarity. The cognate DNA binding response regulator (RR) effects the expression of kdp operon during potassium deficiency through specific interaction with the kdp promoter. Deletion of the gene encoding RR protein renders the mutant D. radiodurans (ΔRR) unable to express kdp operon under potassium limitation. The ΔRR D. radiodurans displays no growth defect when grown on rich media or when exposed to oxidative or heat stress but shows reduced growth following gamma irradiation. The study elucidates the functional and regulatory aspects of the novel kdp operon of this extremophile, for the first time.
Collapse
Affiliation(s)
- Pratiksha Dani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Shree Kumar Apte
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
- * E-mail:
| |
Collapse
|
3
|
Ali MK, Li X, Tang Q, Liu X, Chen F, Xiao J, Ali M, Chou SH, He J. Regulation of Inducible Potassium Transporter KdpFABC by the KdpD/KdpE Two-Component System in Mycobacterium smegmatis. Front Microbiol 2017; 8:570. [PMID: 28484428 PMCID: PMC5401905 DOI: 10.3389/fmicb.2017.00570] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/20/2017] [Indexed: 12/28/2022] Open
Abstract
Kdp-ATPase is an inducible high affinity potassium uptake system that is widely distributed in bacteria, and is generally regulated by the KdpD/KdpE two-component system (TCS). In this study, conducted on Mycobacterium smegmatis, the kdpFABC (encoding Kdp-ATPase) expression was found to be affected by low concentration of K+, high concentrations of Na+, and/or [Formula: see text] of the medium. The KdpE was found to be a transcriptional regulator that bound to a specific 22-bp sequence in the promoter region of kdpFABC operon to positively regulate kdpFABC expression. The KdpE binding motif was highly conserved in the promoters of kdpFABC among the mycobacterial species. 5'-RACE data indicated a transcriptional start site (TSS) of the kdpFABC operon within the coding sequence of MSMEG_5391, which comprised a 120-bp long 5'-UTR and an open reading frame of the 87-bp kdpF gene. The kdpE deletion resulted in altered growth rate under normal and low K+ conditions. Furthermore, under K+ limiting conditions, a single transcript (kdpFABCDE) spanning kdpFABC and kdpDE operons was observed. This study provided the first insight into the regulation of kdpFABC operon by the KdpD/KdpE TCS in M. smegmatis.
Collapse
Affiliation(s)
- Maria K Ali
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xinfeng Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Qing Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xiaoyu Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Fang Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jinfeng Xiao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Muhammad Ali
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information TechnologyAbbottabad, Pakistan
| | - Shan-Ho Chou
- Institute of Biochemistry and NCHU Agricultural Biotechnology Center, National Chung Hsing UniversityTaichung, Taiwan
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
4
|
Transcriptional adaptations during long-term persistence of Staphylococcus aureus in the airways of a cystic fibrosis patient. Int J Med Microbiol 2014; 305:38-46. [PMID: 25439320 DOI: 10.1016/j.ijmm.2014.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 08/22/2014] [Accepted: 10/20/2014] [Indexed: 12/16/2022] Open
Abstract
The lungs of Cystic fibrosis (CF) patients are often colonized and/or infected by Staphylococcus aureus for years, mostly by one predominant clone. For long-term survival in this environment, S. aureus needs to adapt during its interactions with host factors, antibiotics, and other pathogens. Here, we study long-term transcriptional as well as genomic adaptations of an isogenic pair of S. aureus isolates from a single patient using RNA sequencing (RNA-Seq) and whole genome sequencing (WGS). Mimicking in vivo conditions, we cultivated the S. aureus isolates using artificial sputum medium before harvesting RNA for subsequent analysis. We confirmed our RNA-Seq data using quantitative real-time (qRT)-PCR and additionally investigated intermediate isolates from the same patient representing in total 13.2 years of persistence in the CF airways. Comparative RNA-Seq analysis of the first and the last ("late") isolate revealed significant differences in the late isolate after 13.2 years of persistence. Of the 2545 genes expressed in both isolates that were cultivated aerobically, 256 genes were up- and 161 were down-regulated with a minimum 2-fold change (2f). Focusing on 25 highly (≥8f) up- (n=9) or down- (n=16) regulated genes, we identified several genes encoding for virulence factors involved in immune evasion, bacterial spread or secretion (e.g. spa, sak, and esxA). Moreover, these genes displayed similar expression trends under aerobic, microaerophilic and anaerobic conditions. Further qRT-PCR-experiments of highly up- or down-regulated genes within intermediate S. aureus isolates resulted in different gene expression patterns over the years. Using sequencing analysis of the differently expressed genes and their upstream regions in the late S. aureus isolate resulted in only few genomic alterations. Comparative transcriptomic analysis revealed adaptive changes affecting mainly genes involved in host-pathogen interaction. Although the underlying mechanisms were not known, our results suggest adaptive processes beyond genomic mutations triggered by local factors rather than by activation of global regulators.
Collapse
|
5
|
Chen C, Ai L, Zhou F, Ren J, Sun K, Zhang H, Chen W, Guo B. Complete nucleotide sequence of plasmid pST-III from Lactobacillus plantarum ST-III. Plasmid 2011; 67:236-44. [PMID: 22209721 DOI: 10.1016/j.plasmid.2011.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 12/07/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
The complete nucleotide sequence of the 53,560-bp plasmid pST-III from Lactobacillus plantarum ST-III has been determined. The plasmid contains 42 predicted protein-coding sequences, and the functions of 34 coding sequences could be assigned. Homology analysis for the replication protein and the typical features of the origin of replication suggested that pST-III replicates via the theta-type mechanism. Among the predicted genes, we identified a kdp gene cluster (a high-affinity K(+)-transport system) for the first time in the Lactobacillus genus and a system for osmolyte transport. Analysis of the plasmid-encoded functions and the plasmid-cured experiment showed that the genes of pST-III could serve for the niche adaptations of L. plantarum ST-III and make significant contributions to its viability under hyperosmotic conditions. Furthermore, the relative copy number of pST-III was determined to be 6.79±1.55 copies per cell.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Global gene expression profile for swarming Bacillus cereus bacteria. Appl Environ Microbiol 2011; 77:5149-56. [PMID: 21642396 DOI: 10.1128/aem.00245-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus cereus can use swarming to move over and colonize solid surfaces in different environments. This kind of motility is a collective behavior accompanied by the production of long and hyperflagellate swarm cells. In this study, the genome-wide transcriptional response of B. cereus ATCC 14579 during swarming was analyzed. Swarming was shown to trigger the differential expression (>2-fold change) of 118 genes. Downregulated genes included those required for basic cellular metabolism. In accordance with the hyperflagellate phenotype of the swarm cell, genes encoding flagellin were overexpressed. Some genes associated with K(+) transport, phBC6A51 phage genes, and the binding component of the enterotoxin hemolysin BL (HBL) were also induced. Quantitative reverse transcription-PCR (qRT-PCR) experiments indicated an almost 2-fold upregulation of the entire hbl operon during swarming. Finally, BC1435 and BC1436, orthologs of liaI-liaH that are known to be involved in the resistance of Bacillus subtilis to daptomycin, were upregulated under swarming conditions. Accordingly, phenotypic assays showed reduced susceptibility of swarming B. cereus cells to daptomycin, and P(spac)-induced hyper-expression of these genes in liquid medium highlighted the role of BC1435 and BC1436 in the response of B. cereus to daptomycin.
Collapse
|
7
|
The Staphylococcus aureus KdpDE two-component system couples extracellular K+ sensing and Agr signaling to infection programming. Infect Immun 2011; 79:2154-67. [PMID: 21422185 DOI: 10.1128/iai.01180-10] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Kdp system is widely distributed among bacteria. In Escherichia coli, the Kdp-ATPase is a high-affinity K+ uptake system and its expression is activated by the KdpDE two-component system in response to K+ limitation or salt stress. However, information about the role of this system in many bacteria still remains obscure. Here we demonstrate that KdpFABC in Staphylococcus aureus is not a major K+ transporter and that the main function of KdpDE is not associated with K+ transport but that instead it regulates transcription for a series of virulence factors through sensing external K+ concentrations, indicating that this bacterium might modulate its infectious status through sensing specific external K+ stimuli in different environments. Our results further reveal that S. aureus KdpDE is upregulated by the Agr/RNAIII system, which suggests that KdpDE may be an important virulence regulator coordinating the external K+ sensing and Agr signaling during pathogenesis in this bacterium.
Collapse
|
8
|
Microarray identification of Clostridium difficile core components and divergent regions associated with host origin. J Bacteriol 2009; 191:3881-91. [PMID: 19376880 DOI: 10.1128/jb.00222-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a gram-positive, spore-forming enteric anaerobe which can infect humans and a wide variety of animal species. Recently, the incidence and severity of human C. difficile infection has markedly increased. In this study, we evaluated the genomic content of 73 C. difficile strains isolated from humans, horses, cattle, and pigs by comparative genomic hybridization with microarrays containing coding sequences from C. difficile strains 630 and QCD-32g58. The sequenced genome of C. difficile strain 630 was used as a reference to define a candidate core genome of C. difficile and to explore correlations between host origins and genetic diversity. Approximately 16% of the genes in strain 630 were highly conserved among all strains, representing the core complement of functional genes defining C. difficile. Absent or divergent genes in the tested strains were distributed across the entire C. difficile 630 genome and across all the predicted functional categories. Interestingly, certain genes were conserved among strains from a specific host species, but divergent in isolates with other host origins. This information provides insight into the genomic changes which might contribute to host adaptation. Due to a high degree of divergence among C. difficile strains, a core gene list from this study offers the first step toward the construction of diagnostic arrays for C. difficile.
Collapse
|
9
|
A comparative proteomic analysis of Gluconacetobacter diazotrophicus PAL5 at exponential and stationary phases of cultures in the presence of high and low levels of inorganic nitrogen compound. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1578-89. [PMID: 18662807 DOI: 10.1016/j.bbapap.2008.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 06/07/2008] [Accepted: 06/23/2008] [Indexed: 11/23/2022]
Abstract
A proteomic view of G. diazotrophicus PAL5 at the exponential (E) and stationary phases (S) of cultures in the presence of low (L) and high levels (H) of combined nitrogen is presented. The proteomes analyzed on 2D-gels showed 131 proteins (42E+32S+29H+28L) differentially expressed by G. diazotrophicus, from which 46 were identified by combining mass spectrometry and bioinformatics tools. Proteins related to cofactor, energy and DNA metabolisms and cytoplasmic pH homeostasis were differentially expressed in E growth phase, under L and H conditions, in line with the high metabolic rate of the cells and the low pH of the media. Proteins most abundant in S-phase cells were stress associated and transporters plus transferases in agreement with the general phenomenon that binding protein-dependent systems are induced under nutrient limitation as part of hunger response. Cells grown in L condition produced nitrogen-fixation accessory proteins with roles in biosynthesis and stabilization of the nitrogenase complex plus proteins for protection of the nitrogenases from O(2)-induced inactivation. Proteins of the cell wall biogenesis apparatus were also expressed under nitrogen limitation and might function in the reshaping of the nitrogen-fixing G. diazotrophicus cells previously described. Genes whose protein products were detected in our analysis were mapped onto the chromosome and, based on the tendency of functionally related bacterial genes to cluster, we identified genes of particular pathways that could be organized in operons and are co-regulated. These results showed the great potential of proteomics to describe events in G. diazotrophicus cells by looking at proteins expressed under distinct growth conditions.
Collapse
|
10
|
Abstract
K+, the dominant intracellular cation, is required for various physiological processes like turgor homeostasis, pH regulation etc. Bacterial cells have evolved many diverse K+ transporters to maintain the desired concentration of internal K+. In E.coli, the KdpATPase (comprising of the KdpFABC complex), encoded by the kdpFABC operon, is an inducible high-affinity K+ transporter that is synthesised under conditions of severe K+ limitation or osmotic upshift. The E.coli kdp expression is transcriptionally regulated by the KdpD and KdpE proteins, which together constitute a typical bacterial two-component signal transduction system. The Kdp system is widely dispersed among the different classes of bacteria including the cyanobacteria. The ordering of the kdpA, kdpB and kdpC is relatively fixed but the kdpD/E genes show different arrangements in distantly related bacteria. Our studies have shown that the cyanobacterium Anabaena sp. strain L-31 possesses two kdp operons, kdp1 and kdp2, of which, the later is expressed under K+ deficiency and desiccation. Among the regulatory genes,the kdpD ORF of Anabaena L-31 is truncated when compared to the kdpD of other bacteria, while a kdpE -like gene is absent. The extremely radio-resistant bacterium, Deinococcus radiodurans strain R1, also shows the presence of a naturally short kdpD ORF similar to Anabaena in its kdp operon. The review elaborates the expression of bacterial kdp operons in response to various environmental stress conditions, with special emphasis on Anabaena. The possible mechanism(s)of regulation of the unique kdp operons from Anabaena and Deinococcus are also discussed.
Collapse
Affiliation(s)
- Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | | | | |
Collapse
|
11
|
Flythe MD, Russell JB. Effect of acidic pH on the ability ofClostridium sporogenesMD1 to take up and retain intracellular potassium. FEMS Microbiol Lett 2007; 267:46-50. [PMID: 17233675 DOI: 10.1111/j.1574-6968.2006.00535.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
At pH values >5.5, Clostridium sporogenes MD1 accumulated potassium even though it had little protonmotive force, but an ATPase inhibitor (N, N'- dicyclohexylcarbodiimide) prevented this uptake. The results suggested that potassium transport was ATP-driven, and a protonophore (3, 3', 4', 5 - tetrachlorosalicylanilide) did not eliminate uptake. However, potassium uptake could also be driven by an artificial pH gradient, and in this case the protonophore acted as an inhibitor. These latter results indicated that the cells also had a protonmotive force-driven transporter. When the pH <5.1, the cells could not retain potassium, rapid efflux was observed, and intracellular volume collapsed.
Collapse
Affiliation(s)
- Michael D Flythe
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
12
|
Schleussinger E, Schmid R, Bakker EP. New type of kdp region with a split sensor-kinase kdpD gene located within two divergent kdp operons from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius. ACTA ACUST UNITED AC 2006; 1759:437-41. [PMID: 17023259 DOI: 10.1016/j.bbaexp.2006.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 07/10/2006] [Accepted: 07/31/2006] [Indexed: 10/24/2022]
Abstract
The kdp region from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius consists of two divergent operons: kdpZFABCN, which is tenfold induced at low K+ concentrations and encodes the K+-translocating P-type ATPase KdpZFABC as well as KdpN, a novel covalent homo-dimer of the cytoplasmic N-terminal part from sensor kinase KdpD; and secondly, the constitutively expressed kdpHE operon, encoding the remainder of KdpD and the response regulator KdpE.
Collapse
Affiliation(s)
- Erik Schleussinger
- Abteilung Mikrobiologie, Universität Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | | | | |
Collapse
|
13
|
Ballal A, Bramkamp M, Rajaram H, Zimmann P, Apte SK, Altendorf K. An atypical KdpD homologue from the cyanobacterium Anabaena sp. strain L-31: cloning, in vivo expression, and interaction with Escherichia coli KdpD-CTD. J Bacteriol 2005; 187:4921-7. [PMID: 15995207 PMCID: PMC1169523 DOI: 10.1128/jb.187.14.4921-4927.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The kdpFABC operon of Escherichia coli, coding for the high-affinity K(+) transport system KdpFABC, is transcriptionally regulated by the products of the adjacently located kdpDE genes. The KdpD protein is a membrane-bound sensor kinase consisting of a large N-terminal domain and a C-terminal transmitter domain interconnected by four transmembrane segments (the transmembrane segments together with the C-terminal transmitter domain of KdpD are referred to as CTD), while KdpE is a cytosolic response regulator. We have cloned and sequenced the kdp operon from a nitrogen-fixing, filamentous cyanobacterium, Anabaena sp. strain L-31 (GenBank accession. number AF213466). The kdpABC genes are similar in size to those of E. coli, but the kdpD gene is short (coding only for 365 amino acids), showing homology only to the N-terminal domain of E. coli KdpD. A kdpE-like gene is absent in the vicinity of this operon. Anabaena KdpD with six C-terminal histidines was overproduced in E. coli and purified by Ni(2+)-nitrilotriacetic acid affinity chromatography. With antisera raised against the purified Anabaena KdpD, the protein was detected in Anabaena sp. strain L-31 membranes. The membrane-associated or soluble form of the Anabaena KdpD(6His) could be photoaffinity labeled with the ATP analog 8-azido-ATP, indicating the presence of an ATP binding site. The coproduction of Anabaena KdpD with E. coli KdpD-CTD decreased E. coli kdpFABC expression in response to K(+) limitation in vivo relative to the wild-type KdpD-CTD protein. In vitro experiments revealed that the kinase activity of the E. coli KdpD-CTD was unaffected, but its phosphatase activity increased in the presence of Anabaena KdpD(6His). To our knowledge this is the first report where a heterologous N-terminal domain (Anabaena KdpD) is shown to affect in trans KdpD-CTD (E. coli) activity, which is just opposite to that observed for the KdpD-N-terminal domain of E. coli.
Collapse
Affiliation(s)
- Anand Ballal
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Gaßel M, Altendorf K. Analysis of KdpC of the K+-transporting KdpFABC complex ofEscherichia coli. ACTA ACUST UNITED AC 2003. [DOI: 10.1046/j.1432-1327.2001.02048.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Le Breton Y, Boël G, Benachour A, Prévost H, Auffray Y, Rincé A. Molecular characterization of Enterococcus faecalis two-component signal transduction pathways related to environmental stresses. Environ Microbiol 2003; 5:329-37. [PMID: 12713459 DOI: 10.1046/j.1462-2920.2003.00405.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A key issue in the comprehension of the Enterococcus faecalis stress response is to understand how this bacterium is able to modulate its gene expression in accordance to environmental conditions. Through bioinformatic analysis of the E. faecalis V583 genome, nine two-component systems and a single orphan response regulator were identified. A transcriptional study gave evidence of four systems whose expression is induced by at least one environmental stress. In addition, gene disruption experiments allowed the isolation of eight response regulator mutants. Insertional inactivation of the response regulator gene err 05 resulted in growth default and cell morphology alterations; and also in expression default of the sagA gene, this latter being recently shown involved in E. faecalis stress resistance toward numerous lethal treatments (Y. Le Breton, A. Mazé, A. Hartke, S. Lemarinier, Y. Auffray and A. Rincé (2002) Current Microbiol 45: 434-439). Disruption of the err 04, err 08 or err 18 genes resulted in sensitivity towards heat. Finally, the err 10 mutant was shown to be more sensitive to acid pH and NaCl whereas its growth was less affected by bile salts or heat. We also demonstrated that the heat resistance phenotype of the err 10 mutant was correlated with an increase of the heat shock proteins DnaK and GroEL level.
Collapse
Affiliation(s)
- Yoann Le Breton
- USC INRA Microbiologie de l'Environnement, EA 956, IRBA, Université de Caen, 14032 Caen cedex, France
| | | | | | | | | | | |
Collapse
|
16
|
Epstein W. The roles and regulation of potassium in bacteria. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 75:293-320. [PMID: 14604015 DOI: 10.1016/s0079-6603(03)75008-9] [Citation(s) in RCA: 341] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Potassium is the major intracellular cation in bacteria as well as in eucaryotic cells. Bacteria accumulate K+ by a number of different transport systems that vary in kinetics, energy coupling, and regulation. The Trk and Kdp systems of enteric organisms have been well studied and are found in many distantly related species. The Ktr system, resembling Trk in many ways, is also found in many bacteria. In most species two or more independent saturable K(+)-transport systems are present. The KefB and KefC type of system that is activated by treatment of cells with toxic electrophiles is the only specific K(+)-efflux system that has been well characterized. Pressure-activated channels of at least three types are found in bacteria; these represent nonspecific paths of efflux when turgor pressure is dangerously high. A close homolog of eucaryotic K+ channels is found in many bacteria, but its role remains obscure. K+ transporters are regulated both by ion concentrations and turgor. A very general property is activation of K+ uptake by an increase in medium osmolarity. This response is modulated by both internal and external concentrations of K+. Kdp is the only K(+)-transport system whose expression is regulated by environmental conditions. Decrease in turgor pressure and/or reduction in external K+ rapidly increase expression of Kdp. The signal created by these changes, inferred to be reduced turgor, is transmitted by the KdpD sensor kinase to the KdpE-response regulator that in turn stimulates transcription of the kdp genes. K+ acts as a cytoplasmic-signaling molecule, activating and/or inducing enzymes and transport systems that allow the cell to adapt to elevated osmolarity. The signal could be ionic strength or specifically K+. This signaling response is probably mediated by a direct sensing of internal ionic strength by each particular system and not by a component or system that coordinates this response by different systems to elevated K+.
Collapse
Affiliation(s)
- Wolfgang Epstein
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
17
|
Affiliation(s)
- Lynn Hancock
- Division of Cellular Biology, Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
18
|
The High-affinity K+-translocating ATPase Complex from Clostridium acetobutylicum Consists of Six Subunits. Anaerobe 2001. [DOI: 10.1006/anae.2001.0371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
|
20
|
Horii T, Yokoyama K, Barua S, Odagiri T, Futamura N, Hasegawa T, Ohta M. The staphylokinase gene is located in the structural gene encoding N-acetylmuramyl-L-alanine amidase in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 2000; 185:221-4. [PMID: 10754251 DOI: 10.1111/j.1574-6968.2000.tb09065.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The nucleotide sequence of a 15600-bp DNA fragment containing the staphylokinase gene (sakNU3-1) of methicillin-resistant Staphylococcus aureus (MRSA) NU3-1 was determined. The sak gene was found within the ply gene encoding N-acetylmuramyl-L-alanine amidase and thus the ply gene should be inactivated. In the flanking region of the sak gene, the tandem repeat sequences (GAAGTGTT and GAATGGTT) were present as possible junction points between the sak and ply genes. No sequences characteristic of the presence of an IS-like element were found. Upstream from the ply gene, the kdpA, kdpB and kdpC homologues were present. Downstream from the ply gene, the tagA, tagH and tagG homologues were present. The sak gene was inserted into the same position of ply in 5/6 of sak(+) MRSA isolates with different genotypes. In all of these sak(+) isolates, Sak was detected in the culture supernatant.
Collapse
Affiliation(s)
- T Horii
- Department of Molecular Bacteriology, Nagoya University Postgraduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Botero LM, Al-Niemi TS, McDermott TR. Characterization of two inducible phosphate transport systems in Rhizobium tropici. Appl Environ Microbiol 2000; 66:15-22. [PMID: 10618197 PMCID: PMC91779 DOI: 10.1128/aem.66.1.15-22.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium tropici forms nitrogen-fixing nodules on the roots of the common bean (Phaseolus vulgaris). Like other legume-Rhizobium symbioses, the bean-R. tropici association is sensitive to the availability of phosphate (P(i)). To better understand phosphorus movement between the bacteroid and the host plant, P(i) transport was characterized in R. tropici. We observed two P(i) transport systems, a high-affinity system and a low-affinity system. To facilitate the study of these transport systems, a Tn5B22 transposon mutant lacking expression of the high-affinity transport system was isolated and used to characterize the low-affinity transport system in the absence of the high-affinity system. The K(m) and V(max) values for the low-affinity system were estimated to be 34 +/- 3 microM P(i) and 118 +/- 8 nmol of P(i) x min(-1) x mg (dry weight) of cells(-1), respectively, and the K(m) and V(max) values for the high-affinity system were 0.45 +/- 0.01 microM P(i) and 86 +/- 5 nmol of P(i) x min(-1) x mg (dry weight) of cells(-1), respectively. Both systems were inducible by P(i) starvation and were also shock sensitive, which indicated that there was a periplasmic binding-protein component. Neither transport system appeared to be sensitive to the proton motive force dissipator carbonyl cyanide m-chlorophenylhydrazone, but P(i) transport through both systems was eliminated by the ATPase inhibitor N,N'-dicyclohexylcarbodiimide; the P(i) transport rate was correlated with the intracellular ATP concentration. Also, P(i) movement through both systems appeared to be unidirectional, as no efflux or exchange was observed with either the wild-type strain or the mutant. These properties suggest that both P(i) transport systems are ABC type systems. Analysis of the transposon insertion site revealed that the interrupted gene exhibited a high level of homology with kdpE, which in several bacteria encodes a cytoplasmic response regulator that governs responses to low potassium contents and/or changes in medium osmolarity.
Collapse
Affiliation(s)
- L M Botero
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana 59717, USA
| | | | | |
Collapse
|
22
|
Gassel M, Möllenkamp T, Puppe W, Altendorf K. The KdpF subunit is part of the K(+)-translocating Kdp complex of Escherichia coli and is responsible for stabilization of the complex in vitro. J Biol Chem 1999; 274:37901-7. [PMID: 10608856 DOI: 10.1074/jbc.274.53.37901] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kdpABC operon codes for the high affinity K(+)-translocating Kdp complex (P-type ATPase) of Escherichia coli. Upon expression of this operon in minicells, a so far unrecognized small hydrophobic polypeptide, KdpF, could be identified on high resolution SDS-polyacrylamide gels in addition to the subunits KdpA, KdpB, and KdpC. Furthermore, it could be demonstrated that KdpF remains associated with the purified complex. As determined by mass spectrometry, this peptide is present in its formylated form and has a molecular mass of 3100 Da. KdpF is not essential for growth on low K(+) (0.1 mM) medium, as shown by deletion analysis of kdpF, but proved to be indispensable for a functional enzyme complex in vitro. In the absence of KdpF, the ATPase activity of the membrane-bound Kdp complex was almost indistinguishable from that of the wild type. In contrast, the purified detergent-solubilized enzyme complex showed a dramatic decrease in enzymatic activity. However, addition of purified KdpF to the KdpABC complex restored the activity up to wild type level. It is interesting to note that the addition of high amounts of E. coli lipids had a similar effect. Although KdpF is not essential for the function of the Kdp complex in vivo, it is part of the complex and functions as a stabilizing element in vitro. The corresponding operon should now be referred to as kdpFABC.
Collapse
Affiliation(s)
- M Gassel
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, D-49069 Osnabrück, Germany
| | | | | | | |
Collapse
|
23
|
Schuster KC. Monitoring the physiological status in bioprocesses on the cellular level. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1999; 66:185-208. [PMID: 10592530 DOI: 10.1007/3-540-48773-5_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The trend in bioprocess monitoring and control is towards strategies which are based on the physiological status of the organism in the bioprocess. This requires that the measured process variables should be biologically meaningful in order to apply them in physiologically based control strategies. The on-line monitoring equipment available today mostly derives information on the physiological status indirectly, from external variables outside the cells. The complementary approach reviewed here is to analyse the microbial cells directly, in order to obtain information on the internal variables inside the cells. This overview covers methods for analysis of whole cells (as a population or as a single cell), for groups of cellular components, and for specific compounds which serve as markers for a certain physiological status. Physico-chemical separation methods (chromatography, electrophoresis) and reactive analysis can be used to analyse elemental and macromolecular composition of cells. Spectroscopic methods (mass, dielectric, nuclear magnetic, infrared, and Raman) have only recently been applied to such complex multicomponent mixtures such as microbial cells. Spectroscopy and chemical separation methods produce large amounts of data, which can often be used in the best way by applying chemometrics. Some of the methods can yield information not just on the average of the microbial cell population, but also on the distribution of sub-populations. The suitability of the methods for on-line coupling to the bioprocess is discussed. Others not suitable for on-line coupling can be established in routine off-line analysis procedures. The information gained by the methods discussed can mainly be used to establish better knowledge of the basis for monitoring and control strategies. Some are also applicable in real-time monitoring and control.
Collapse
Affiliation(s)
- K C Schuster
- Institute of Chemical Engineering, Fuel and Environmental Technology, Vienna University of Technology, Austria.
| |
Collapse
|
24
|
Abstract
Bacteria can survive dramatic osmotic shifts. Osmoregulatory responses mitigate the passive adjustments in cell structure and the growth inhibition that may ensue. The levels of certain cytoplasmic solutes rise and fall in response to increases and decreases, respectively, in extracellular osmolality. Certain organic compounds are favored over ions as osmoregulatory solutes, although K+ fluxes are intrinsic to the osmoregulatory response for at least some organisms. Osmosensors must undergo transitions between "off" and "on" conformations in response to changes in extracellular water activity (direct osmosensing) or resulting changes in cell structure (indirect osmosensing). Those located in the cytoplasmic membranes and nucleoids of bacteria are positioned for indirect osmosensing. Cytoplasmic membrane-based osmosensors may detect changes in the periplasmic and/or cytoplasmic solvent by experiencing changes in preferential interactions with particular solvent constituents, cosolvent-induced hydration changes, and/or macromolecular crowding. Alternatively, the membrane may act as an antenna and osmosensors may detect changes in membrane structure. Cosolvents may modulate intrinsic biomembrane strain and/or topologically closed membrane systems may experience changes in mechanical strain in response to imposed osmotic shifts. The osmosensory mechanisms controlling membrane-based K+ transporters, transcriptional regulators, osmoprotectant transporters, and mechanosensitive channels intrinsic to the cytoplasmic membrane of Escherichia coli are under intensive investigation. The osmoprotectant transporter ProP and channel MscL act as osmosensors after purification and reconstitution in proteoliposomes. Evidence that sensor kinase KdpD receives multiple sensory inputs is consistent with the effects of K+ fluxes on nucleoid structure, cellular energetics, cytoplasmic ionic strength, and ion composition as well as on cytoplasmic osmolality. Thus, osmoregulatory responses accommodate and exploit the effects of individual cosolvents on cell structure and function as well as the collective contribution of cosolvents to intracellular osmolality.
Collapse
Affiliation(s)
- J M Wood
- Department of Microbiology and Guelph-Waterloo Centre for Graduate Work in Chemistry, University of Guelph, Guelph, Ontario, Canada N1G
| |
Collapse
|
25
|
Abstract
Bacteria possess multiple mechanisms for the transport of metal ions. While many of these systems may have evolved in the first instance to resist the detrimental effects of toxic environmental heavy metals, they have since become adapted to a variety of important homeostatic functions. The 'P'-type ATPases play a key role in metal ion transport in bacteria. A Cu+-ATPase from the intracellular bacterium Listeria monocytogenes is implicated in pathogenesis, and similar pumps in Mycobacterium tuberculosis and M. leprae may play a comparable role. Intracellular bacteria require transition metal cations for the synthesis of superoxide dismutases and catalases, which constitute an important line of defence against macrophage-killing mechanisms. The macrophage protein Nramp1, which confers resistance to a variety of intracellular pathogens, has also been shown recently to be a divalent amphoteric cation transporter. Mycobacterial homologues have recently been identified by genomic analysis. These findings suggest a model in which competition for divalent cations plays a pivotal role in the interaction between host and parasite.
Collapse
Affiliation(s)
- D D Agranoff
- Department of Cellular and Molecular Sciences, St George's Hospital Medical School, London, UK
| | | |
Collapse
|