1
|
Adaptation of Lactobacillus plantarum to Ampicillin Involves Mechanisms That Maintain Protein Homeostasis. mSystems 2020; 5:5/1/e00853-19. [PMID: 31992633 PMCID: PMC6989132 DOI: 10.1128/msystems.00853-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The widespread use of antibiotics has caused great concern in the biosafety of probiotics. In this study, we conducted a 12-month adaptive laboratory evolution (ALE) experiment to select for antibiotics-adapted Lactobacillus plantarum P-8, a dairy-originated probiotic bacterium. During the ALE process, the ampicillin MIC for the parental L. plantarum P-8 strain increased gradually and reached the maximum level of bacterial fitness. To elucidate the molecular mechanisms underlying the ampicillin-resistant phenotype, we comparatively analyzed the genomes and proteomes of the parental strain (L. plantarum P-8) and two adapted lines (L. plantarum 400g and L. plantarum 1600g). The adapted lines showed alterations in their carbon, amino acid, and cell surface-associated metabolic pathways. Then, gene disruption mutants were created to determine the role of six highly expressed genes in contributing to the enhanced ampicillin resistance. Inactivation of an ATP-dependent Clp protease/the ATP-binding subunit ClpL, a small heat shock protein, or a hypothetical protein resulted in partial but significant phenotypic reversion, confirming their necessary roles in the bacterial adaptation to ampicillin. Genomic analysis confirmed that none of the ampicillin-specific differential expressed genes were flanked by any mobile genetic elements; thus, even though long-term exposure to ampicillin upregulated their expression, there is low risk of spread of these genes and adapted drug resistance to other bacteria via horizontal gene transfer. Our study has provided evidence of the biosafety of probiotics even when used in the presence of antibiotics.IMPORTANCE Antibiotic resistance acquired by adaptation to certain antibiotics has led to growing public concerns. Here, a long-term evolution experiment was used together with proteomic analysis to identify genes/proteins responsible for the adaptive phenotype. This work has provided novel insights into the biosafety of new probiotics with high tolerance to antibiotics.
Collapse
|
2
|
Dubard Gault M, Mandelker D, DeLair D, Stewart CR, Kemel Y, Sheehan MR, Siegel B, Kennedy J, Marcell V, Arnold A, Al-Ahmadie H, Modak S, Robson M, Shukla N, Roberts S, Vijai J, Topka S, Kentsis A, Cadoo K, Carlo M, Latham Schwark A, Reznik E, Dinatale R, Hechtman J, Borras Flores E, Jairam S, Yang C, Li Y, Bayraktar EC, Ceyhan-Birsoy O, Zhang L, Kohlman W, Schiffman J, Stadler Z, Birsoy K, Kung A, Offit K, Walsh MF. Germline SDHA mutations in children and adults with cancer. Cold Spring Harb Mol Case Stud 2018; 4:a002584. [PMID: 30068732 PMCID: PMC6071569 DOI: 10.1101/mcs.a002584] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/10/2018] [Indexed: 11/24/2022] Open
Abstract
Mutations in succinate dehydrogenase complex genes predispose to familial paraganglioma-pheochromocytoma syndrome (FPG) and gastrointestinal stromal tumors (GIST). Here we describe cancer patients undergoing agnostic germline testing at Memorial Sloan Kettering Cancer Center and found to harbor germline SDHA mutations. Using targeted sequencing covering the cancer census genes, we identified 10 patients with SDHA germline mutations. Cancer diagnoses for these patients carrying SDHA germline mutations included neuroblastoma (n = 1), breast (n = 1), colon (n = 1), renal (n = 1), melanoma and uterine (n = 1), prostate (n = 1), endometrial (n = 1), bladder (n = 1), and gastrointestinal stromal tumor (GIST) (n = 2). Immunohistochemical staining and assessment of patient tumors for second hits and loss of heterozygosity in SDHA confirmed GIST as an SDHA-associated tumor and suggests SDHA germline mutations may be a driver in neuroblastoma tumorigenesis.
Collapse
Affiliation(s)
- Marianne Dubard Gault
- Graduate Education Memorial, Memorial Sloan Kettering Cancer Center and Weill Cornell Genetics, New York, New York 10065, USA
| | - Diana Mandelker
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Deborah DeLair
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Carolyn R Stewart
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Yelena Kemel
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
- Niehaus Center for Inherited Cancer Genomics, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Margaret R Sheehan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Beth Siegel
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Jennifer Kennedy
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Vanessa Marcell
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Angela Arnold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Mark Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
- Niehaus Center for Inherited Cancer Genomics, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Stephen Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
- Niehaus Center for Inherited Cancer Genomics, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Sabine Topka
- Niehaus Center for Inherited Cancer Genomics, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Alex Kentsis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Karen Cadoo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
- Niehaus Center for Inherited Cancer Genomics, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Maria Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
- Niehaus Center for Inherited Cancer Genomics, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Alicia Latham Schwark
- Graduate Education Memorial, Memorial Sloan Kettering Cancer Center and Weill Cornell Genetics, New York, New York 10065, USA
| | - Ed Reznik
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Renzo Dinatale
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Jaclyn Hechtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Ester Borras Flores
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Sowmaya Jairam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Ciyu Yang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Yirong Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | | | - Ozge Ceyhan-Birsoy
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Liying Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Wendy Kohlman
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Joshua Schiffman
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Zsofia Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
- Niehaus Center for Inherited Cancer Genomics, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Kivanc Birsoy
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Andrew Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
- Niehaus Center for Inherited Cancer Genomics, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Michael F Walsh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
- Niehaus Center for Inherited Cancer Genomics, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| |
Collapse
|
3
|
Xu XL, Grant GA. Mutagenic and chemical analyses provide new insight into enzyme activation and mechanism of the type 2 iron-sulfur l-serine dehydratase from Legionella pneumophila. Arch Biochem Biophys 2016; 596:108-17. [PMID: 26971469 DOI: 10.1016/j.abb.2016.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/18/2016] [Accepted: 03/05/2016] [Indexed: 11/28/2022]
Abstract
The crystal structure of the Type 2 l-serine dehydratase from Legionella pneumophila (lpLSD), revealed a "tail-in-mouth" configuration where the C-terminal residue acts as an intrinsic competitive inhibitor. This pre-catalytic structure undergoes an activation step prior to catalytic turnover. Mutagenic analysis of residues at or near the active site cleft is consistent with stabilization of substrate binding by many of the same residues that interact with the C-terminal cysteine and highlight the critical role of certain tail residues in activity. pH-rate profiles show that a residue with pK of 5.9 must be deprotonated and a residue with a pK of 8.5 must be protonated for activity. This supports an earlier suggestion that His 61 is the likely catalytic base. An additional residue with a pK of 8.5-9 increases cooperativity when it is deprotonated. This investigation also demonstrates that the Fe-S dehydratases convert the enamine/imine intermediates of the catalytic reaction to products on the enzyme prior to release. This is in contrast to pyridoxyl 5' phosphate based dehydratases that release an enamine/imine intermediate into solution, which then hydrolyzes to produce the ketoamine product.
Collapse
Affiliation(s)
- Xiao Lan Xu
- Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8103, St. Louis, MO 63110, USA
| | - Gregory A Grant
- Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8103, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8103, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Chu HS, Ahn JH, Yun J, Choi IS, Nam TW, Cho KM. Direct fermentation route for the production of acrylic acid. Metab Eng 2015; 32:23-29. [PMID: 26319589 DOI: 10.1016/j.ymben.2015.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/30/2015] [Accepted: 08/18/2015] [Indexed: 11/18/2022]
Abstract
There have been growing concerns regarding the limited fossil resources and global climate changes resulting from modern civilization. Currently, finding renewable alternatives to conventional petrochemical processes has become one of the major focus areas of the global chemical industry sector. Since over 4.2 million tons of acrylic acid (AA) is annually employed for the manufacture of various products via petrochemical processes, this chemical has been the target of efforts to replace the petrochemical route by ecofriendly processes. However, there has been limited success in developing an approach combining the biological production of 3-hydroxypropionic acid (3-HP) and its chemical conversion to AA. Here, we report the first direct fermentative route for producing 0.12 g/L of AA from glucose via 3-HP, 3-HP-CoA, and Acryloyl-CoA, leading to a strain of Escherichia coli capable of directly producing acrylic acid. This route was developed through extensive screening of key enzymes and designing a novel metabolic pathway for AA.
Collapse
Affiliation(s)
- Hun Su Chu
- Biomaterials Lab, Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Jin-Ho Ahn
- Biomaterials Lab, Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Jiae Yun
- Biomaterials Lab, Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - In Suk Choi
- Biomaterials Lab, Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Tae-Wook Nam
- Biomaterials Lab, Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Kwang Myung Cho
- Biomaterials Lab, Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
5
|
Identification and characterization of two new types of bacterial l-serine dehydratases and assessment of the function of the ACT domain. Arch Biochem Biophys 2013; 540:62-9. [DOI: 10.1016/j.abb.2013.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/09/2013] [Accepted: 10/13/2013] [Indexed: 11/17/2022]
|
6
|
Chen S, Xu XL, Grant GA. Allosteric Activation and Contrasting Properties of l-Serine Dehydratase Types 1 and 2. Biochemistry 2012; 51:5320-8. [DOI: 10.1021/bi300523p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shawei Chen
- Department
of Developmental Biology and ‡Department of Medicine, Washington University School of Medicine, 660 South
Euclid Avenue, Box 8103, St. Louis, Missouri 63110, United States
| | - Xiao Lan Xu
- Department
of Developmental Biology and ‡Department of Medicine, Washington University School of Medicine, 660 South
Euclid Avenue, Box 8103, St. Louis, Missouri 63110, United States
| | - Gregory A. Grant
- Department
of Developmental Biology and ‡Department of Medicine, Washington University School of Medicine, 660 South
Euclid Avenue, Box 8103, St. Louis, Missouri 63110, United States
| |
Collapse
|
7
|
Xu XL, Chen S, Grant GA. Kinetic, mutagenic, and structural homology analysis of L-serine dehydratase from Legionella pneumophila. Arch Biochem Biophys 2011; 515:28-36. [PMID: 21878319 DOI: 10.1016/j.abb.2011.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 11/19/2022]
Abstract
A structural database search has revealed that the same fold found in the allosteric substrate binding (ASB) domain of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase (PGDH) is found in l-serine dehydratase from Legionella pneumophila. The M. tuberculosis PGDH ASB domain functions in the control of catalytic activity. Bacterial l-serine dehydratases are 4Fe-4S proteins that convert l-serine to pyruvate and ammonia. Sequence homology reveals two types depending on whether their α and β domains are on the same (Type 2) or separate (Type 1) polypeptides. The α domains contain the catalytic iron-sulfur center while the β domains do not yet have a described function, but the structural homology with PGDH suggests a regulatory role. Type 1 β domains also contain additional sequence homologous to PGDH ACT domains. A continuous assay for l-serine dehydratase is used to demonstrate homotropic cooperativity, a broad pH range, and essential irreversibility. Product inhibition analysis reveals a Uni-Bi ordered mechanism with ammonia dissociating before pyruvate. l-Threonine is a poor substrate and l-cysteine and d-serine are competitive inhibitors with K(i) values that differ by almost 10-fold from those reported for Escherichia colil-serine dehydratase. Mutagenesis identifies the three cysteine residues at the active site that anchor the iron-sulfur complex.
Collapse
Affiliation(s)
- Xiao Lan Xu
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
8
|
Rybniker J, Krumbach K, van Gumpel E, Plum G, Eggeling L, Hartmann P. The cytotoxic early protein 77 of mycobacteriophage L5 interacts with MSMEG_3532, an L-serine dehydratase of Mycobacterium smegmatis. J Basic Microbiol 2011; 51:515-22. [PMID: 21656815 DOI: 10.1002/jobm.201000446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 02/04/2011] [Indexed: 11/06/2022]
Abstract
Mycobacteriophage L5 is a temperate phage infecting a broad range of mycobacterial species. Upon induction of lytic growth, L5 rapidly switches off host protein synthesis. We have recently identified the mycobacteriophage L5 early protein gp77 as a host shut-off protein that acts growth inhibitory in the mycobacterial host when expressed through the corresponding phage promoter. Here we present data showing that this purified phage protein of unknown function specifically binds to protein MSMEG_3532 when incubated with cell lysates of Mycobacterium smegmatis. This interaction was confirmed by pull-down assays using purified MSMEG_3532 as bait which co-purified with gp77. The amino acid sequence of MSMEG_3532 is nearly identical to that of threonine dehydratases, serine dehydratases and an L-threo-3-hydroxyaspartate dehydratase. An enzymatic assay identified this host protein as a pyridoxal-5'-phosphate-dependent L-serine dehydratase (SdhA) which converts L-serine to pyruvate. This is the first biochemical characterization of a SdhA derived from mycobacteria. Though the addition of purified gp77 to the established in vitro assay had no influence on SdhA activity at a saturating L-serine concentration, the specific interaction of phage protein and dehydratase in vivo may well have a role in altering the amino acid pool or the products of amino acid metabolism in favour of phage maturation.
Collapse
Affiliation(s)
- Jan Rybniker
- 1st Department of Internal Medicine, University of Cologne, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
LaSarre B, Federle MJ. Regulation and consequence of serine catabolism in Streptococcus pyogenes. J Bacteriol 2011; 193:2002-12. [PMID: 21317320 PMCID: PMC3133027 DOI: 10.1128/jb.01516-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/07/2011] [Indexed: 11/20/2022] Open
Abstract
The Gram-positive bacterium Streptococcus pyogenes (also called group A Streptococcus [GAS]), is found strictly in humans and is capable of causing a wide variety of infections. Here we demonstrate that serine catabolism in GAS is controlled by the transcriptional regulator Spy49_0126c. We have designated this regulator SerR (for serine catabolism regulator). Microarray and transcriptional reporter data show that SerR acts as a transcriptional repressor of multiple operons, including sloR and sdhBA. Purified recombinant SerR binds to the promoters of both sloR and sdhB, demonstrating that this regulation is direct. Deletion of serR results in a lower culture yield of the mutant than of the wild type when the strains are grown in defined medium unless additional serine is provided, suggesting that regulation of serine metabolism is important for maximizing bacterial growth. Deletion of sloR or sdhB in the ΔserR mutant background restores growth to wild-type levels, suggesting that both operons have roles in serine catabolism. While reports have linked sloR function to streptolysin O expression, transport experiments with radiolabeled l-serine reveal that the sloR operon is required for rapid acquisition of serine, suggesting a novel role for this operon in amino acid metabolism.
Collapse
Affiliation(s)
- Breah LaSarre
- Department of Microbiology and Immunology, College of Medicine
| | - Michael J. Federle
- Department of Microbiology and Immunology, College of Medicine
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
10
|
Bolstad HM, Wood MJ. An in vivo method for characterization of protein interactions within sulfur trafficking systems of E. coli. J Proteome Res 2010; 9:6740-51. [PMID: 20936830 DOI: 10.1021/pr100920r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sulfur trafficking systems are multiprotein systems that synthesize sulfur-containing cofactors such as iron-sulfur clusters. The sulfur is derived enzymatically from cysteine and transferred between nucleophilic cysteine residues within proteins until incorporation into the relevant cofactor. As these systems are poorly understood, we have developed an in vivo method for characterizing these interactions and have applied our method to the SUF system of Escherichia coli, which is responsible for iron-sulfur cluster biogenesis under oxidative stress and iron limitation. Proteins that interact covalently with SufE were trapped in vivo, purified, and identified by mass spectrometry. We identified SufE-SufS and SufE-SufB interactions, interactions previously demonstrated in vitro, indicating that our method has the ability to identify physiologically relevant interactions. The sulfur acceptor function of SufE is likely due to the low pK(a) of its active site C51, which we determined to be 6.3 ± 0.7. We found that SufE interacts with several Fe-S cluster proteins, further supporting the validity of the method, and with tryptophanase, glutaredoxin-3, and glutaredoxin-4, possibly suggesting a role for these enzymes in iron-sulfur biogenesis by the SUF system. Our results indicate that this method could serve as a general tool for the determination of sulfur trafficking mechanisms.
Collapse
Affiliation(s)
- Heather M Bolstad
- Department of Environmental Toxicology, University of California, Davis, California 95616, United States
| | | |
Collapse
|
11
|
Bolstad HM, Botelho DJ, Wood MJ. Proteomic analysis of protein-protein interactions within the Cysteine Sulfinate Desulfinase Fe-S cluster biogenesis system. J Proteome Res 2010; 9:5358-69. [PMID: 20734996 DOI: 10.1021/pr1006087] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fe-S cluster biogenesis is of interest to many fields, including bioenergetics and gene regulation. The CSD system is one of three Fe-S cluster biogenesis systems in E. coli and is comprised of the cysteine desulfurase CsdA, the sulfur acceptor protein CsdE, and the E1-like protein CsdL. The biological role, biochemical mechanism, and protein targets of the system remain uncharacterized. Here we present that the active site CsdE C61 has a lowered pK(a) value of 6.5, which is nearly identical to that of C51 in the homologous SufE protein and which is likely critical for its function. We observed that CsdE forms disulfide bonds with multiple proteins and identified the proteins that copurify with CsdE. The identification of Fe-S proteins and both putative and established Fe-S cluster assembly (ErpA, glutaredoxin-3, glutaredoxin-4) and sulfur trafficking (CsdL, YchN) proteins supports the two-pathway model, in which the CSD system is hypothesized to synthesize both Fe-S clusters and other sulfur-containing cofactors. We suggest that the identified Fe-S cluster assembly proteins may be the scaffold and/or shuttle proteins for the CSD system. By comparison with previous analysis of SufE, we demonstrate that there is some overlap in the CsdE and SufE interactomes.
Collapse
Affiliation(s)
- Heather M Bolstad
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
12
|
Gu H, Zhu H, Lu C. Use of in vivo-induced antigen technology (IVIAT) for the identification of Streptococcus suis serotype 2 in vivo-induced bacterial protein antigens. BMC Microbiol 2009; 9:201. [PMID: 19765272 PMCID: PMC2758882 DOI: 10.1186/1471-2180-9-201] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Accepted: 09/18/2009] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcus suis serotype 2 (SS2) is a zoonotic agent that causes death and disease in both humans and swine. A better understanding of SS2-host molecular interactions is crucial for understanding SS2 pathogenesis and immunology. Conventional genetic and biochemical approaches used to study SS2 virulence factors are unable to take into account the complex and dynamic environmental stimuli associated with the infection process. In this study, in vivo-induced antigen technology (IVIAT), an immunoscreening technique, was used to identify the immunogenic bacterial proteins that are induced or upregulated in vivo during SS2 infection. Results Convalescent-phase sera from pigs infected with SS2 were pooled, adsorbed against in vitro antigens, and used to screen SS2 genomic expression libraries. Upon analysis of the identified proteins, we were able to assign a putative function to 40 of the 48 proteins. These included proteins implicated in cell envelope structure, regulation, molecule synthesis, substance and energy metabolism, transport, translation, and those with unknown functions. The in vivo-induced changes in the expression of 10 of these 40 genes were measured using real-time reverse transcription (RT)-PCR, revealing that the expression of 6 of the 10 genes was upregulated in the in vivo condition. The strain distribution of these 10 genes was analyzed by PCR, and they were found in the most virulent SS2 strains. In addition, protein sequence alignments of the newly identified proteins demonstrate that three are putative virulence-associated proteins. Conclusion Collectively, our results suggest that these in vivo-induced or upregulated genes may contribute to SS2 disease development. We hypothesize that the identification of factors specifically induced or upregulated during SS2 infection will aid in our understanding of SS2 pathogenesis and may contribute to the control SS2 outbreaks. In addition, the proteins identified using IVIAT may be useful potential vaccine candidates or virulence markers.
Collapse
Affiliation(s)
- Hongwei Gu
- Key Lab Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, PR China.
| | | | | |
Collapse
|
13
|
Alhapel A, Darley DJ, Wagener N, Eckel E, Elsner N, Pierik AJ. Molecular and functional analysis of nicotinate catabolism in Eubacterium barkeri. Proc Natl Acad Sci U S A 2006; 103:12341-6. [PMID: 16894175 PMCID: PMC1562527 DOI: 10.1073/pnas.0601635103] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The anaerobic soil bacterium Eubacterium barkeri catabolizes nicotinate to pyruvate and propionate via a unique fermentation. A full molecular characterization of nicotinate fermentation in this organism was accomplished by the following results: (i) A 23.2-kb DNA segment with a gene cluster encoding all nine enzymes was cloned and sequenced, (ii) two chiral intermediates were discovered, and (iii) three enzymes were found, completing the hitherto unknown part of the pathway. Nicotinate dehydrogenase, a (nonselenocysteine) selenium-containing four-subunit enzyme, is encoded by ndhF (FAD subunit), ndhS (2 x [2Fe-2S] subunit), and by the ndhL/ndhM genes. In contrast to all enzymes of the xanthine dehydrogenase family, the latter two encode a two-subunit molybdopterin protein. The 6-hydroxynicotinate reductase, catalyzing reduction of 6-hydroxynicotinate to 1,4,5,6-tetrahydro-6-oxonicotinate, was purified and shown to contain a covalently bound flavin cofactor, one [2Fe-2S](2+/1+) and two [4Fe-4S](2+/1+) clusters. Enamidase, a bifunctional Fe-Zn enzyme belonging to the amidohydrolase family, mediates hydrolysis of 1,4,5,6-tetrahydro-6-oxonicotinate to ammonia and (S)-2-formylglutarate. NADH-dependent reduction of the latter to (S)-2-(hydroxymethyl)glutarate is catalyzed by a member of the 3-hydroxyisobutyrate/phosphogluconate dehydrogenase family. A [4Fe-4S]-containing serine dehydratase-like enzyme is predicted to form 2-methyleneglutarate. After the action of the coenzyme B(12)-dependent 2-methyleneglutarate mutase and 3-methylitaconate isomerase, an aconitase and isocitrate lyase family pair of enzymes, (2R,3S)-dimethylmalate dehydratase and lyase, completes the pathway. Genes corresponding to the first three enzymes of the E. barkeri nicotinate catabolism were identified in nine Proteobacteria.
Collapse
Affiliation(s)
- Ashraf Alhapel
- Laboratorium für Mikrobielle Biochemie, Fachbereich Biologie, Philipps Universität, D-35032 Marburg, Germany
| | - Daniel J. Darley
- Laboratorium für Mikrobielle Biochemie, Fachbereich Biologie, Philipps Universität, D-35032 Marburg, Germany
| | - Nadine Wagener
- Laboratorium für Mikrobielle Biochemie, Fachbereich Biologie, Philipps Universität, D-35032 Marburg, Germany
| | - Elke Eckel
- Laboratorium für Mikrobielle Biochemie, Fachbereich Biologie, Philipps Universität, D-35032 Marburg, Germany
| | - Nora Elsner
- Laboratorium für Mikrobielle Biochemie, Fachbereich Biologie, Philipps Universität, D-35032 Marburg, Germany
| | - Antonio J. Pierik
- Laboratorium für Mikrobielle Biochemie, Fachbereich Biologie, Philipps Universität, D-35032 Marburg, Germany
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Yoshikane Y, Yokochi N, Ohnishi K, Hayashi H, Yagi T. Molecular cloning, expression and characterization of pyridoxamine-pyruvate aminotransferase. Biochem J 2006; 396:499-507. [PMID: 16545075 PMCID: PMC1482817 DOI: 10.1042/bj20060078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pyridoxamine-pyruvate aminotransferase is a PLP (pyridoxal 5'-phosphate) (a coenzyme form of vitamin B6)-independent aminotransferase which catalyses a reversible transamination reaction between pyridoxamine and pyruvate to form pyridoxal and L-alanine. The gene encoding the enzyme has been identified, cloned and overexpressed for the first time. The mlr6806 gene on the chromosome of a symbiotic nitrogen-fixing bacterium, Mesorhizobium loti, encoded the enzyme, which consists of 393 amino acid residues. The primary sequence was identical with those of archaeal aspartate aminotransferase and rat serine-pyruvate aminotransferase, which are PLP-dependent aminotransferases. The results of fold-type analysis and the consensus amino acid residues found around the active-site lysine residue identified in the present study showed that the enzyme could be classified into class V aminotransferases of fold type I or the AT IV subfamily of the alpha family of the PLP-dependent enzymes. Analyses of the absorption and CD spectra of the wild-type and point-mutated enzymes showed that Lys197 was essential for the enzyme activity, and was the active-site lysine residue that corresponded to that found in the PLP-dependent aminotransferases, as had been suggested previously [Hodsdon, Kolb, Snell and Cole (1978) Biochem. J. 169, 429-432]. The K(d) value for pyridoxal determined by means of CD was 100-fold lower than the K(m) value for it, suggesting that Schiff base formation between pyridoxal and the active-site lysine residue is partially rate determining in the catalysis of pyridoxal. The active-site structure and evolutionary aspects of the enzyme are discussed.
Collapse
Affiliation(s)
- Yu Yoshikane
- *Department of Bioresources Science, Faculty of Agriculture, Kochi University, Monobe-Otsu 200, Nankoku, Kochi 783-8502, Japan
| | - Nana Yokochi
- *Department of Bioresources Science, Faculty of Agriculture, Kochi University, Monobe-Otsu 200, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- †Research Institute of Molecular Genetics, Kochi University, Monobe-Otsu 200, Nankoku, Kochi 783-8502, Japan
| | - Hideyuki Hayashi
- ‡Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki-shi, Osaka 569-8686, Japan
| | - Toshiharu Yagi
- *Department of Bioresources Science, Faculty of Agriculture, Kochi University, Monobe-Otsu 200, Nankoku, Kochi 783-8502, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
15
|
Tchong SI, Xu H, White RH. L-cysteine desulfidase: an [4Fe-4S] enzyme isolated from Methanocaldococcus jannaschii that catalyzes the breakdown of L-cysteine into pyruvate, ammonia, and sulfide. Biochemistry 2005; 44:1659-70. [PMID: 15683250 DOI: 10.1021/bi0484769] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A [4Fe-4S] enzyme that decomposes L-cysteine to hydrogen sulfide, ammonia, and pyruvate has been isolated and characterized from Methanocaldococcus jannaschii. The sequence of the isolated enzyme demonstrated that the protein was the product of the M. jannaschii MJ1025 gene. The protein product of this gene was recombinantly produced in Escherichia coli and purified to homogeneity. Both the isolated and recombinant enzymes are devoid of pyridoxal phosphate (PLP) and are rapidly inactivated upon exposure to air. The air-inactivated enzyme is activated by reaction with Fe2+ and dithiothreitol in the absence of air. The air-inactivated enzyme contains 3 mol of iron per subunit (43 kDa, SDS gel electrophoresis), and the native enzyme has a measured molecular mass of 135 kDa (gel filtration), indicating it is a trimer. The enzyme is very specific for L-cysteine, with no activity being detected with D-cysteine, L-homocysteine, 3-mercaptopropionic acid (cysteine without the amino group), cysteamine (cysteine without the carboxylic acid), or mercaptolactate (the hydroxyl analogue of cysteine). The activity of the enzyme was stimulated by 40% when the enzyme was assayed in the presence of methyl viologen (4 mM) and inhibited by 70% when the enzyme was assayed in the presence of EDTA (7.1 mM). Preincubation of the enzyme with iodoacetamide (17 mM) completely abolishes activity. The enzymatic activity has a half-life of 8 or 12 min when the enzyme is treated at room temperature with 0.42 mM N-ethylmaleimide (NEM) or 0.42 mM iodoacetamide, respectively. MALDI analysis of the NEM-inactivated enzyme showed Cys25 as the site of alkylation. Site-directed mutagenesis of each of four of the cysteines conserved in the orthologues of the enzyme reduced the catalytic efficiency and thermal stability of the enzyme. The enzyme was found to catalyze exchange of the C-2 hydrogen of the L-cysteine with solvent. These results are consistent with three of the conserved cysteines being involved in the formation of the [4Fe-4S] center and the thiolate of Cys25 serving as a base to abstract the alpha-hydrogen in the first step of the elimination. Although the enzyme has no sequence homology to any known enzymes, including the non-PLP-dependent serine/threonine dehydratases or aconitases, the mechanisms of action of all of these enzymes are similar, in that each catalyzes an alpha,beta-elimination reaction adjacent to a carboxylate group. It is proposed that the enzyme may be responsible for the production of sulfide required for the biosynthesis of iron-sulfur centers in this archaea. A mechanism of action of the enzyme is proposed.
Collapse
Affiliation(s)
- Shih-I Tchong
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0308, USA
| | | | | |
Collapse
|
16
|
Netzer R, Peters-Wendisch P, Eggeling L, Sahm H. Cometabolism of a nongrowth substrate: L-serine utilization by Corynebacterium glutamicum. Appl Environ Microbiol 2004; 70:7148-55. [PMID: 15574911 PMCID: PMC535176 DOI: 10.1128/aem.70.12.7148-7155.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 07/31/2004] [Indexed: 11/20/2022] Open
Abstract
Despite its key position in central metabolism, L-serine does not support the growth of Corynebacterium glutamicum. Nevertheless, during growth on glucose, L-serine is consumed at rates up to 19.4 +/- 4.0 nmol min(-1) (mg [dry weight])(-1), resulting in the complete consumption of 100 mM L-serine in the presence of 100 mM glucose and an increased growth yield of about 20%. Use of 13C-labeled L-serine and analysis of cellularly derived metabolites by nuclear magnetic resonance spectroscopy revealed that the carbon skeleton of L-serine is mainly converted to pyruvate-derived metabolites such as L-alanine. The sdaA gene was identified in the genome of C. glutamicum, and overexpression of sdaA resulted in (i) functional L-serine dehydratase (L-SerDH) activity, and therefore conversion of L-serine to pyruvate, and (ii) growth of the recombinant strain on L-serine as the single substrate. In contrast, deletion of sdaA decreased the L-serine cometabolism rate with glucose by 47% but still resulted in degradation of L-serine to pyruvate. Cystathionine beta-lyase was additionally found to convert L-serine to pyruvate, and the respective metC gene was induced 2.4-fold under high internal L-serine concentrations. Upon sdaA overexpression, the growth rate on glucose is reduced 36% from that of the wild type, illustrating that even with glucose as a single substrate, intracellular L-serine conversion to pyruvate might occur, although probably the weak affinity of L-SerDH (apparent Km, 11 mM) prevents substantial L-serine degradation.
Collapse
Affiliation(s)
- Roman Netzer
- Institut für Biotechnologie, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | |
Collapse
|
17
|
Cicchillo RM, Baker MA, Schnitzer EJ, Newman EB, Krebs C, Booker SJ. Escherichia coli L-Serine Deaminase Requires a [4Fe-4S] Cluster in Catalysis. J Biol Chem 2004; 279:32418-25. [PMID: 15155761 DOI: 10.1074/jbc.m404381200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L-Serine deaminases catalyze the deamination of L-serine, producing pyruvate and ammonia. Two families of these proteins have been described and are delineated by the cofactor that each employs in catalysis. These are the pyridoxal 5'-phosphate-dependent deaminases and the deaminases that are activated in vitro by iron and dithiothreitol. In contrast to the enzymes that employ pyridoxal 5'-phosphate, detailed physical and mechanistic characterization of the iron-dependent deaminases is limited, primarily because of their extreme instability. We report here the characterization of L-serine deaminase from Escherichia coli, which is the product of the sdaA gene. When purified anaerobically, the isolated protein contains 1.86 +/- 0.46 eq of iron and 0.670 +/- 0.019 eq of sulfide per polypeptide and displays a UV-visible spectrum that is consistent with a [4Fe-4S] cluster. Reconstitution of the protein with iron and sulfide generates considerably more of the cluster, and treatment of the reconstituted protein with dithionite gives rise to an axial EPR spectrum, displaying g axially = 2.03 and g radially = 1.93. Mössbauer spectra of the (57)Fe-reconstituted protein reveal that the majority of the iron is in the form of [4Fe-4S](2+) clusters, as evidenced by the typical Mössbauer parameters-isomer shift, delta = 0.47 mm/s, quadrupole splitting of Delta E(Q) = 1.14 mm/s, and a diamagnetic (S = 0) ground state. Treatment of the dithionite-reduced protein with L-serine results in a slight broadening of the feature at g = 2.03 in the EPR spectrum of the protein, and a dramatic loss in signal intensity, suggesting that the amino acid interacts directly with the cluster.
Collapse
Affiliation(s)
- Robert M Cicchillo
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | | | | | | | | | | |
Collapse
|
18
|
Lan J, Newman EB. A requirement for anaerobically induced redox functions during aerobic growth of Escherichia coli with serine, glycine and leucine as carbon source. Res Microbiol 2003; 154:191-7. [PMID: 12706508 DOI: 10.1016/s0923-2508(03)00032-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Escherichia coli strains with mutations in 3 genes coding for redox functions--torA, nuoM and glpC--are able to grow with pyruvate as carbon source, but are not able to use a combination of serine, glycine and leucine as carbon source, unlike the parent strain which uses either. All three mutants are able to produce and activate L-serine deaminase (L-SD) when grown in glucose minimal medium, and thus should be able to convert serine to pyruvate and grow on it. We suggest that activation of L-SD involves specific chemical reactions, perhaps building an Fe-S cluster. Mutant cells can carry out the necessary reaction to activate L-SD when grown in glucose minimal medium but apparently cannot do so when grown in SGL medium.
Collapse
Affiliation(s)
- Jie Lan
- Biology Department, Concordia University, 1455 de Maisonneuve Avenue, Montreal, Quebec H3G 1M8, Canada
| | | |
Collapse
|
19
|
Xie G, Forst C, Bonner C, Jensen RA. Significance of two distinct types of tryptophan synthase beta chain in Bacteria, Archaea and higher plants. Genome Biol 2002; 3:RESEARCH0004. [PMID: 11806827 PMCID: PMC150451 DOI: 10.1186/gb-2001-3-1-research0004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2001] [Revised: 10/30/2001] [Accepted: 10/30/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tryptophan synthase consists of two subunits, alpha and beta. Two distinct subgroups of beta chain exist. The major group (TrpEb_1) includes the well-studied beta chain of Salmonella typhimurium. The minor group of beta chain (TrpEb_2) is most frequently found in the Archaea. Most of the amino-acid residues important for catalysis are highly conserved between both TrpE subfamilies. RESULTS Conserved amino-acid residues of TrpEb_1 that make allosteric contact with the TrpEa subunit (the alpha chain) are absent in TrpEb_2. Representatives of Archaea, Bacteria and higher plants all exist that possess both TrpEb_1 and TrpEb_2. In those prokaryotes where two trpEb genes coexist, one is usually trpEb_1 and is adjacent to trpEa, whereas the second is trpEb_2 and is usually unlinked with other tryptophan-pathway genes. CONCLUSIONS TrpEb_1 is nearly always partnered with TrpEa in the tryptophan synthase reaction. However, by default at least six lineages of the Archaea are likely to use TrpEb_2 as the functional beta chain, as TrpEb_1 is absent. The six lineages show a distinctive divergence within the overall TrpEa phylogenetic tree, consistent with the lack of selection for amino-acid residues in TrpEa that are otherwise conserved for interfacing with TrpEb_1. We suggest that the standalone function of TrpEb_2 might be to catalyze the serine deaminase reaction, an established catalytic capability of tryptophan synthase beta chains. A coincident finding of interest is that the Archaea seem to use the citramalate pathway, rather than threonine deaminase (IlvA), to initiate the pathway of isoleucine biosynthesis.
Collapse
Affiliation(s)
- Gary Xie
- BioScience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA.
| | | | | | | |
Collapse
|