1
|
Growth Dynamics and Survival of Liberibacter crescens BT-1, an Important Model Organism for the Citrus Huanglongbing Pathogen " Candidatus Liberibacter asiaticus". Appl Environ Microbiol 2019; 85:AEM.01656-19. [PMID: 31420343 PMCID: PMC6803310 DOI: 10.1128/aem.01656-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/12/2019] [Indexed: 11/20/2022] Open
Abstract
Liberibacter crescens is a bacterium that is closely related to plant pathogens that have caused billions of dollars in crop losses in recent years. Particularly devastating are citrus losses due to citrus greening disease, also known as Huanglongbing, which is caused by “Candidatus Liberibacter asiaticus” and carried by the Asian citrus psyllid. L. crescens is the only close relative of “Ca. Liberibacter asiaticus” that can currently be grown in culture, and it therefore serves as an important model organism for the growth, genetic manipulation, and biological control of the pathogenic species. Here, we show that one of the greatest limitations to L. crescens growth is the sharp increase in alkaline conditions it produces as a consequence of consumption of its preferred nutrient source. In addition to new information about L. crescens growth and metabolism, we provide new guidelines for culture conditions that improve the survival and yield of L. crescens. Liberibacter crescens is the only cultured member of its genus, which includes the devastating plant pathogen “Candidatus Liberibacter asiaticus,” associated with citrus greening/Huanglongbing (HLB). L. crescens has a larger genome and greater metabolic flexibility than “Ca. Liberibacter asiaticus” and the other uncultured plant-pathogenic Liberibacter species, and it is currently the best model organism available for these pathogens. L. crescens grows slowly and dies rapidly under current culture protocols and this extreme fastidiousness makes it challenging to study. We have determined that a major cause of rapid death of L. crescens in batch culture is its alkalinization of the medium (to pH 8.5 by the end of logarithmic phase). The majority of this alkalinization is due to consumption of alpha-ketoglutaric acid as its primary carbon source, with a smaller proportion of the pH rise due to NH3 production. Controlling the pH rise with higher buffering capacity and lower starting pH improved recoverability of cells from 10-day cultures by >1,000-fold. We have also performed a detailed analysis of L. crescens growth with total cell numbers calibrated to the optical density and the percentage of live and recoverable bacteria determined over 10-day time courses. We modified L. crescens culture conditions to greatly enhance survival and increase maximum culture density. The similarities between L. crescens and the pathogenic liberibacters make this work relevant to efforts to culture the latter organisms. Our results also suggest that growth-dependent pH alteration that overcomes medium buffering should always be considered when growing fastidious bacteria. IMPORTANCELiberibacter crescens is a bacterium that is closely related to plant pathogens that have caused billions of dollars in crop losses in recent years. Particularly devastating are citrus losses due to citrus greening disease, also known as Huanglongbing, which is caused by “Candidatus Liberibacter asiaticus” and carried by the Asian citrus psyllid. L. crescens is the only close relative of “Ca. Liberibacter asiaticus” that can currently be grown in culture, and it therefore serves as an important model organism for the growth, genetic manipulation, and biological control of the pathogenic species. Here, we show that one of the greatest limitations to L. crescens growth is the sharp increase in alkaline conditions it produces as a consequence of consumption of its preferred nutrient source. In addition to new information about L. crescens growth and metabolism, we provide new guidelines for culture conditions that improve the survival and yield of L. crescens.
Collapse
|
2
|
Fanget NVJ, Foley S. Starvation/stationary-phase survival of Rhodococcus erythropolis SQ1: a physiological and genetic analysis. Arch Microbiol 2010; 193:1-13. [DOI: 10.1007/s00203-010-0638-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 09/12/2010] [Accepted: 09/30/2010] [Indexed: 11/24/2022]
|
3
|
Pobigaylo N, Szymczak S, Nattkemper TW, Becker A. Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:219-31. [PMID: 18184066 DOI: 10.1094/mpmi-21-2-0219] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sinorhizobium meliloti enters an endosymbiosis with alfalfa plants through the formation of nitrogen-fixing nodules. In order to identify S. meliloti genes required for symbiosis and competitiveness, a method of signature-tagged mutagenesis was used. Two sets, each consisting of 378 signature-tagged mutants with a known transposon insertion site, were used in an experiment in planta. As a result, 67 mutants showing attenuated symbiotic phenotypes were identified, including most of the exo, fix, and nif mutants in the sets. For 38 mutants in genes previously not described to be involved in competitiveness or symbiosis in S. meliloti, attenuated competitiveness phenotypes were tested individually. A large part of these phenotypes was confirmed. Moreover, additional symbiotic defects were observed for mutants in several novel genes such as infection deficiency phenotypes (ilvI and ilvD2 mutants) or delayed nodulation (pyrE, metA, thiC, thiO, and thiD mutants).
Collapse
Affiliation(s)
- Nataliya Pobigaylo
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany
| | | | | | | |
Collapse
|
4
|
Davey ME, de Bruijn FJ. A homologue of the tryptophan-rich sensory protein TspO and FixL regulate a novel nutrient deprivation-induced Sinorhizobium meliloti locus. Appl Environ Microbiol 2000; 66:5353-9. [PMID: 11097914 PMCID: PMC92468 DOI: 10.1128/aem.66.12.5353-5359.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2000] [Accepted: 10/05/2000] [Indexed: 11/20/2022] Open
Abstract
A nutrient deprivation-induced locus in Sinorhizobium meliloti strain 1021 was identified by use of a Tn5-luxAB reporter gene transposon. The tagged locus is comprised of two open reading frames (ORFs) designated ndiA and ndiB for nutrient deprivation-induced genes A and B. Comparison of the deduced amino acid sequences of both ndiA and ndiB to the protein databases failed to reveal similarity to any known genes. The expression of the ndi locus was found to be induced by carbon and nitrogen deprivation, osmotic stress, and oxygen limitation and during entry into stationary phase. To identify regulatory components involved in the control of ndi gene expression, a second round of mutagenesis was performed on the primary ndiB::Tn5-luxAB-tagged strain (C22) with transposon Tn1721. A double-mutant strain was obtained that lacked ndi locus transcriptional activity under all of the inducing conditions tested. The Tn1721-tagged gene showed a high degree of similarity to tryptophan-rich sensory protein TspO from Rhodobacter sphaeroides, as well as to mitochondrial benzodiazepine receptor pK18 from mammals. Induction of the ndi::Tn5-luxAB reporter gene fusion was restored under all inducing conditions by introducing the tspO coding region, from either S. meliloti or R. sphaeroides, in trans. Furthermore, it was found that, in addition to tspO, fixL, which encodes the sensor protein of an oxygen-sensing two-component system, is required for full expression of the ndi locus, but only under low oxygen tension.
Collapse
Affiliation(s)
- M E Davey
- NSF Center for Microbial Ecology, MSU-DOE Plant Research Laboratory, and Department of Microbiology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
5
|
Keer J, Smeulders MJ, Gray KM, Williams HD. Mutants of Mycobacterium smegmatis impaired in stationary-phase survival. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 9):2209-2217. [PMID: 10974108 DOI: 10.1099/00221287-146-9-2209] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A bank of 600 insertional mutants of Mycobacterium smegmatis was screened for mutants defective in stationary-phase survival. Of 74 mutants picked by the initial screen, 21 had stationary-phase survival defects and 7 of these were studied in more detail. In general, mutants survived stationary phase significantly less well in rich medium than under carbon-starvation conditions. In all cases the loss of viability in stationary phase was not complete even after prolonged incubation. All mutants showed an initial decrease in viability, during the first 40 d in stationary phase, followed by an increase in viable counts that returned viability close to the levels of the wild-type. Southern hybridization experiments showed that recovery of viability was not a consequence of precise excision or movement of the transposon. Two of the survival mutants differed from the wild-type in their colony morphology, and recovery of their viability in stationary phase was coincident with the return of wild-type colony morphology. It is possible that second-site suppressor mutations accumulate that alleviate the effects of the original mutation. For five of the mutants the DNA flanking the site of transposition was amplified by ligation-mediated PCR and sequenced to identify the disrupted locus. In each case, homologous genes were identified in the Mycobacterium tuberculosis genome, three of which have clearly predicted functions in M. tuberculosis as a penicillin-binding protein, in biotin biosynthesis and as a polyketide synthase. This is the first identification of genes implicated in the stationary-phase survival of mycobacteria.
Collapse
Affiliation(s)
- Jacquie Keer
- Department of Biology, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 2AZ, UK1
| | - Marjan J Smeulders
- Department of Biology, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 2AZ, UK1
| | - Kathryn M Gray
- Department of Biology, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 2AZ, UK1
| | - Huw D Williams
- Department of Biology, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 2AZ, UK1
| |
Collapse
|
6
|
Pandolfini T, Storlazzi A, Calabria E, Defez R, Spena A. The spliceosomal intron of the rolA gene of agrobacterium rhizogenes is a prokaryotic promoter. Mol Microbiol 2000; 35:1326-34. [PMID: 10760134 DOI: 10.1046/j.1365-2958.2000.01810.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Agrobacterium rhizogenes transfers DNA (T-DNA) from its Ri plasmid to plant cells. All T-DNA genes are expressed in plant cells. The rolA gene is the only T-DNA gene that contains an intron in the untranslated leader region of its mRNA. This paper shows that (i) the rolA gene is also transcribed in bacteria; (ii) the 85 bp corresponding to the spliceosomal intron drives prokaryotic gene expression in agrobacteria, in free-living rhizobia and in bacteroids within root nodules; and (iii) promoter activity is abolished by the deletion of 63 bp from its 5' end and is reduced by mutations changing its sequence near the putative -10 region. The expression pattern of a chimeric reporter gene shows that, in free-living bacteria, gene expression takes place during the exponential phase of growth and increases at the onset of the stationary phase. Within root nodules, reporter gene expression occurs in the invasion, nitrogen fixing and senescent zones.
Collapse
Affiliation(s)
- T Pandolfini
- Faculty of Science, University of Verona, Verona, Italy
| | | | | | | | | |
Collapse
|
7
|
Vasi FK, Lenski RE. Ecological strategies and fitness tradeoffs inEscherichia coli mutants adapted to prolonged starvation. J Genet 1999. [DOI: 10.1007/bf02994702] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Summers ML, Elkins JG, Elliott BA, McDermott TR. Expression and regulation of phosphate stress inducible genes in Sinorhizobium meliloti. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:1094-1101. [PMID: 9805396 DOI: 10.1094/mpmi.1998.11.11.1094] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sinorhizobium meliloti 104A14 was mutated with transposon Tn5B22, which creates lacZ transcriptional fusions when inserted in the correct orientation relative to the promoter. This promoter reporter allowed us to identify six phosphate stress inducible (psi) genes in S. meliloti that are up-regulated in response to inorganic phosphate (Pi) starvation. The transposon and flanking DNA were cloned from each psi::Tn5B22 reporter mutant and the junction DNA sequenced. High identity/similarity of the inferred peptides with those in major data bases allowed identification of the following genes: dnaK, expC, pssB, ackA, vipC, and prkA. The prkA homolog was also found to be up-regulated in response to carbon starvation and when nitrate replaced ammonium as the nitrogen source. Through allele replacement techniques, PhoB- mutants were generated for the expC, ackA, vipC, and pssB reporter strains. Loss of a functional PhoB resulted in the absence of Pi-sensitive induction in all four genes. These experiments suggest the Pho regulon in S. meliloti includes genes that presumably are not directly linked to Pi acquisition or assimilation. The psi strains were tested for their symbiotic properties under growth conditions that were Pi-limiting or Pi-nonlimiting for the host plant. All were Nod+ and Fix+ except the reporter strain of dnaK transcription, which was less effective than the wild-type strain under both P treatments, indicating DnaK is required for optimum symbiotic function.
Collapse
Affiliation(s)
- M L Summers
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman 59717-3120, USA
| | | | | | | |
Collapse
|
9
|
Milcamps A, Ragatz DM, Lim P, Berger KA, de Bruijin FJ. Isolation of carbon- and nitrogen-deprivation-induced loci of Sinorhizobium meliloti 1021 by Tn5-luxAB mutagenesis. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 11):3205-3218. [PMID: 9846756 DOI: 10.1099/00221287-144-11-3205] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Soil bacteria, such as Sinorhizobium meliloti, are subject to variation in environmental conditions, including carbon- and nitrogen-deprivation. The ability of bacteria to sense changes in their environment and respond accordingly is of vital importance to their survival and persistence in the soil and rhizosphere. A derivative of Tn5 which creates transcriptional fusions to the promoterless luxAB genes was used to mutagenize S. meliloti 1021 and 5000 insertion mutants were subsequently screened for gene fusions induced by selected environmental stresses. The isolation of 21 gene fusions induced by nitrogen-deprivation and 12 induced by carbon-deprivation is described. Cloning and partial DNA sequence analysis of the transposon-tagged loci revealed a variety of novel genes, as well as S. meliloti genes with significant similarity to known bacterial loci. In addition, nodule occupancy studies were carried out with selected Tn5-luxAB insertion mutants to examine the role of the tagged genes in competition.
Collapse
Affiliation(s)
- Anne Milcamps
- MSU-DOE Plant Research Laboratory,Rm 306, Plant Biology Building University, East Lansing, MI 48824,USA
- NSF Center for Microbial Ecology, University,East Lansing, MI 48824,USA
| | - Daniel M Ragatz
- MSU-DOE Plant Research Laboratory,Rm 306, Plant Biology Building University, East Lansing, MI 48824,USA
- NSF Center for Microbial Ecology, University,East Lansing, MI 48824,USA
| | - PyungOk Lim
- MSU-DOE Plant Research Laboratory,Rm 306, Plant Biology Building University, East Lansing, MI 48824,USA
- NSF Center for Microbial Ecology, University,East Lansing, MI 48824,USA
| | - Kelly A Berger
- MSU-DOE Plant Research Laboratory,Rm 306, Plant Biology Building University, East Lansing, MI 48824,USA
| | - Frans J de Bruijin
- NSF Center for Microbial Ecology, University,East Lansing, MI 48824,USA
- Department of Microbiology, Michigan State University,East Lansing, MI 48824,USA
- MSU-DOE Plant Research Laboratory,Rm 306, Plant Biology Building University, East Lansing, MI 48824,USA
| |
Collapse
|
10
|
Watson SP, Antonio M, Foster SJ. Isolation and characterization of Staphylococcus aureus starvation-induced, stationary-phase mutants defective in survival or recovery. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 11):3159-3169. [PMID: 9846752 DOI: 10.1099/00221287-144-11-3159] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ten Staphylococcus aureus mutants, defective in the starvation-induced stationary phase of growth were isolated from two independent Tn917-LTV1 transposon insertion libraries and were designated suv as they had apparent survival defects. Seven of these mutants were defective under amino-acid-limiting conditions alone. Two mutants (suv-3 and suv-20) demonstrated lower plating efficiency when starved for glucose, phosphate or amino acids and one mutant (suv-11) had reduced plating efficiency after amino acid or glucose starvation. All of the mutants tested were as resistant to hydrogen peroxide assault as the parent, but six were more sensitive to low pH conditions. All the mutants were physically mapped on the S. aureus chromosome using PFGE. Chromosomal DNA flanking the Tn917-LTV1 insertion sites was rescued by cloning into Escherichia coli. DNA sequence analysis resulted in the identification of a number of transposon-disrupted ORFs encoding putative components such as superoxide dismutase (suv-1), haem A synthase (suv-3), a component of the SOS response (suv-9) and hypoxanthine-guanine phosphoribosyltransferase (suv-20). The Tn917-LTV1 insertion created lacZ transcriptional fusions for some of the stationary-phase loci. Expression analysis indicated that suv-4 was induced at mid-exponential phase, whereas suv-3 and suv-11 were induced at the onset of stationary phase. The possible roles of these suv components in stationary-phase survival or recovery is discussed.
Collapse
Affiliation(s)
- Sean P Watson
- Department of Molecular Biology and Biotechnology, University of Sheffield,Firth Court, Western Bank, Sheffield 510 2TN,UK
| | - Martin Antonio
- Department of Molecular Biology and Biotechnology, University of Sheffield,Firth Court, Western Bank, Sheffield 510 2TN,UK
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield,Firth Court, Western Bank, Sheffield 510 2TN,UK
| |
Collapse
|
11
|
Clements MO, Foster SJ. Starvation recovery of Staphylococcus aureus 8325-4. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 7):1755-1763. [PMID: 9695909 DOI: 10.1099/00221287-144-7-1755] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nutrient limitation of Staphylococcus aureus induces a starvation-survival state which enables it to survive until sufficient nutrients become available to support growth. The response of starved S. aureus cells to nutritional upshift was analysed to characterize the recovery mechanism which results in the resumption of rapid growth. S. aureus 8325-4 starved for 7 d in a chemically defined medium limited for glucose was able to resume growth upon the addition of complex medium (brain heart infusion broth) or a mixture of amino acids and glucose. The addition of either glucose or amino acids alone did not lead to recovery of cells. Prior to the first cell division event, a lag period of about 120-150 min was observed, the duration of which was independent of the length of starvation survival. During this lag period, RNA synthesis increased immediately upon the addition of nutrients whilst protein synthesis was delayed by approximately 5 min. Cells rapidly enlarged within 30 min of recovery, and initiation of chromosome replication could be detected after 90 min. Changes in the profile of proteins expressed during the recovery period revealed that several starvation-specific proteins were down-regulated within 30 min, whilst other proteins were common to both starvation and recovery. Two proteins were identified which were only transiently expressed during the first 60 min of recovery. Protein synthesis could be detected during recovery even if the cells had been treated with the RNA synthesis inhibitor rifampicin for 30 min prior to the addition of recovery nutrients, demonstrating that several proteins are translated from long-lived mRNA transcripts present in starved cells.
Collapse
|