1
|
Ares-Arroyo M, Nucci A, Rocha EPC. Expanding the diversity of origin of transfer-containing sequences in mobilizable plasmids. Nat Microbiol 2024; 9:3240-3253. [PMID: 39516559 DOI: 10.1038/s41564-024-01844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Conjugative plasmids are important drivers of bacterial evolution. Most plasmids lack genes for conjugation and characterized origins of transfer (oriT), which has hampered our understanding of plasmid mobility. Here we used bioinformatic analyses to characterize occurrences of known oriT families across 38,057 plasmids, confirming that most conjugative and mobilizable plasmids lack identifiable oriTs. Recognizable oriT sequences tend to be intergenic, upstream of relaxase genes and specifically associated with relaxase types. We used these criteria to develop a computational method to search for and identify 21 additional families of oriT-containing sequences in plasmids from the pathogens Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii. Sequence analyses found 3,072 occurrences of these oriT-containing sequences across 2,976 plasmids, many of which encoded antimicrobial resistance genes. Six candidate oriT-containing sequences were validated experimentally and were shown to facilitate conjugation in E. coli. These findings expand our understanding of plasmid mobility.
Collapse
Affiliation(s)
- Manuel Ares-Arroyo
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France.
| | - Amandine Nucci
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France.
| |
Collapse
|
2
|
Oliva M, Calia C, Ferrara M, D'Addabbo P, Scrascia M, Mulè G, Monno R, Pazzani C. Antimicrobial resistance gene shuffling and a three-element mobilisation system in the monophasic Salmonella typhimurium strain ST1030. Plasmid 2020; 111:102532. [PMID: 32853586 DOI: 10.1016/j.plasmid.2020.102532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/30/2022]
Abstract
In this study we describe the genetic elements and the antimicrobial resistance units (RUs) harboured by the Salmonella Typhimurium monophasic variant 1,4,[5],12:i:- strain ST1030. Of the three identified RUs two were chromosomal, RU1 (IS26-blaTEM-1-IS26-strAB-sul2- IS26) and RU2 (IS26-tetR(B)-tetA(B)-ΔIS26), and one, RU3 (a sul3-associated class 1 integron with cassette array dfrA12-orfF-aadA2-cmlA1-aadA1), was embedded in a Tn21-derived element harboured by the conjugative I1 plasmid pST1030-1A. IS26 elements mediated the antimicrobial resistance gene (ARG) shuffling and this gave rise to pST1030-1A derivatives with different sets of ARGs. ST1030 also harboured two ColE1-like plasmids of which one, pST1030-2A, was mobilisable and the target of an intracellular translocation of the Tn21-derived element; the second (pST1030-3) was an orphan mob-associated oriT plasmid co-transferred with pST1030-1A and pST1030-2A. pST1030-2A and pST1030-3 also carried a parA gene and a type III restriction modification system, respectively. Overall analysis of our data reinforces the role played by IS26, Tn21-derived elements and non-conjugative plasmids in the spread of ARGs and supplies the first evidence, at least in Salmonella, for the identification of a natural isolate harbouring a three-element mobilisation system in the same cell.
Collapse
Affiliation(s)
- M Oliva
- Department of Biology, University of Bari, via Orabona, 4, 70125 Bari, Italy
| | - C Calia
- Department of Biology, University of Bari, via Orabona, 4, 70125 Bari, Italy
| | - M Ferrara
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - P D'Addabbo
- Department of Biology, University of Bari, via Orabona, 4, 70125 Bari, Italy
| | - M Scrascia
- Department of Biology, University of Bari, via Orabona, 4, 70125 Bari, Italy
| | - G Mulè
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - R Monno
- Department of Basic Medical Sciences Neurosciences and Sense Organs Medical Faculty, University of Bari Piazza G. Cesare Policlinico, 70124 Bari, Italy
| | - C Pazzani
- Department of Biology, University of Bari, via Orabona, 4, 70125 Bari, Italy.
| |
Collapse
|
3
|
Verdonk CJ, Sullivan JT, Williman KM, Nicholson L, Bastholm TR, Hynes MF, Ronson CW, Bond CS, Ramsay JP. Delineation of the integrase-attachment and origin-of-transfer regions of the symbiosis island ICEMlSymR7A. Plasmid 2019; 104:102416. [DOI: 10.1016/j.plasmid.2019.102416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/12/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022]
|
4
|
Characteristics of the Conjugative Transfer System of the IncM Plasmid pCTX-M3 and Identification of Its Putative Regulators. J Bacteriol 2018; 200:JB.00234-18. [PMID: 29986941 PMCID: PMC6112013 DOI: 10.1128/jb.00234-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/30/2018] [Indexed: 12/21/2022] Open
Abstract
Horizontal gene transfer is responsible for rapid changes in bacterial genomes, and the conjugative transfer of plasmids has a great impact on the plasticity of bacteria. Here, we present a deletion analysis of the conjugative transfer system genes of the pCTX-M3 plasmid of the IncM group, which is responsible for the dissemination of antibiotic resistance genes in Enterobacteriaceae. We found that the deletion of either of the orf35 and orf36 genes, which are dispensable for conjugative transfer, increased the plasmid mobilization efficiency. Real-time quantitative PCR (RT-qPCR) analysis suggested the involvement of orf35 and orf36 in regulating the expression of transfer genes. We also revised the host range of pCTX-M3 by showing that its conjugative transfer system has a much broader host range than its replicon. Plasmid conjugative transfer systems comprise type IV secretion systems (T4SS) coupled to DNA processing and replication. The T4SSs are divided into two phylogenetic subfamilies, namely, IVA and IVB, or on the basis of the phylogeny of the VirB4 ATPase, into eight groups. The conjugation system of the IncM group plasmid pCTX-M3, from Citrobacter freundii, is classified in the IVB subfamily and in the MPFI group, as are the conjugation systems of IncI1 group plasmids. Although the majority of the conjugative genes of the IncM and IncI1 plasmids display conserved synteny, there are several differences. Here, we present a deletion analysis of 27 genes in the conjugative transfer regions of pCTX-M3. Notably, the deletion of either of two genes dispensable for conjugative transfer, namely, orf35 and orf36, resulted in an increased plasmid mobilization efficiency. Transcriptional analysis of the orf35 and orf36 deletion mutants suggested an involvement of these genes in regulating the expression of conjugative transfer genes. We also revised the host range of the pCTX-M3 replicon by finding that this replicon is unable to support replication in Agrobacterium tumefaciens, Ralstonia eutropha, and Pseudomonas putida, though its conjugation system is capable of introducing plasmids bearing oriTpCTX-M3 into these bacteria, which are representatives of Alpha-, Beta-, and Gammaproteobacteria, respectively. Thus, the conjugative transfer system of pCTX-M3 has a much broader host range than its replicon. IMPORTANCE Horizontal gene transfer is responsible for rapid changes in bacterial genomes, and the conjugative transfer of plasmids has a great impact on the plasticity of bacteria. Here, we present a deletion analysis of the conjugative transfer system genes of the pCTX-M3 plasmid of the IncM group, which is responsible for the dissemination of antibiotic resistance genes in Enterobacteriaceae. We found that the deletion of either of the orf35 and orf36 genes, which are dispensable for conjugative transfer, increased the plasmid mobilization efficiency. Real-time quantitative PCR (RT-qPCR) analysis suggested the involvement of orf35 and orf36 in regulating the expression of transfer genes. We also revised the host range of pCTX-M3 by showing that its conjugative transfer system has a much broader host range than its replicon.
Collapse
|
5
|
Werbowy O, Kaczorowski T. Plasmid pEC156, a Naturally Occurring Escherichia coli Genetic Element That Carries Genes of the EcoVIII Restriction-Modification System, Is Mobilizable among Enterobacteria. PLoS One 2016; 11:e0148355. [PMID: 26848973 PMCID: PMC4743918 DOI: 10.1371/journal.pone.0148355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/19/2016] [Indexed: 11/30/2022] Open
Abstract
Type II restriction-modification systems are ubiquitous in prokaryotes. Some of them are present in naturally occurring plasmids, which may facilitate the spread of these systems in bacterial populations by horizontal gene transfer. However, little is known about the routes of their dissemination. As a model to study this, we have chosen an Escherichia coli natural plasmid pEC156 that carries the EcoVIII restriction modification system. The presence of this system as well as the cis-acting cer site involved in resolution of plasmid multimers determines the stable maintenance of pEC156 not only in Escherichia coli but also in other enterobacteria. We have shown that due to the presence of oriT-type F and oriT-type R64 loci it is possible to mobilize pEC156 by conjugative plasmids (F and R64, respectively). The highest mobilization frequency was observed when pEC156-derivatives were transferred between Escherichia coli strains, Enterobacter cloacae and Citrobacter freundii representing coliform bacteria. We found that a pEC156-derivative with a functional EcoVIII restriction-modification system was mobilized in enterobacteria at a frequency lower than a plasmid lacking this system. In addition, we found that bacteria that possess the EcoVIII restriction-modification system can efficiently release plasmid content to the environment. We have shown that E. coli cells can be naturally transformed with pEC156-derivatives, however, with low efficiency. The transformation protocol employed neither involved chemical agents (e.g. CaCl2) nor temperature shift which could induce plasmid DNA uptake.
Collapse
Affiliation(s)
- Olesia Werbowy
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk, Poland
| | - Tadeusz Kaczorowski
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk, Poland
- * E-mail:
| |
Collapse
|
6
|
Yoshida H, Furuya N, Lin YJ, Güntert P, Komano T, Kainosho M. Structural basis of the role of the NikA ribbon-helix-helix domain in initiating bacterial conjugation. J Mol Biol 2008; 384:690-701. [PMID: 18929573 DOI: 10.1016/j.jmb.2008.09.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/18/2008] [Accepted: 09/23/2008] [Indexed: 11/26/2022]
Abstract
Conjugation is a fundamental process for the rapid evolution of bacteria, enabling them, for example, to adapt to various environmental conditions or to acquire multi-drug resistance. NikA is one of the relaxosomal proteins that initiate the intercellular transfer of the R64 conjugative plasmid with the P-type origin of transfer, oriT. The three-dimensional structure of the N-terminal 51 residue fragment of NikA, NikA(1-51), which binds to the 17-bp repeat A sequence in R64 oriT, was determined by NMR to be a homodimer composed of two identical ribbon-helix-helix (RHH) domains, which are commonly found in transcriptional repressors. The structure determination of NikA(1-51) was achieved using automated NOE assignment with CYANA, without measuring filtered NOESY experiments to distinguish between the intra- and intermolecular NOEs, and without any a priori assumption on the tertiary or quaternary structure of the protein. Mutational experiments revealed that the DNA-binding region of the NikA(1-51) dimer is an anti-parallel beta-sheet composed of one beta-strand from each of the N-terminal ends of the two domains. Various biochemical experiments have indicated that the full length NikA(1-109) exists as a homotetramer formed through an alpha-helical domain at the C-terminus, and that the anti-parallel beta-sheets of both dimeric domains bind to two homologous 5 bp internal repeats within repeat A. As a tetramer, the full length NikA(1-109) showed higher affinity to repeat A and bent the oriT duplex more strongly than NikA(1-51) did. Many RHH proteins are involved in specific DNA recognition and in protein-protein interactions. The discovery of the RHH fold in NikA suggests that NikA binds to oriT and interacts with the relaxase, NikB, which is unable to bind to the nick region in oriT without NikA.
Collapse
Affiliation(s)
- Hitoshi Yoshida
- Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji Tokyo 192-0397, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Liu SY, Su LH, Yeh YL, Chu C, Lai JC, Chiu CH. Characterisation of plasmids encoding CTX-M-3 extended-spectrum β-lactamase from Enterobacteriaceae isolated at a university hospital in Taiwan. Int J Antimicrob Agents 2007; 29:440-5. [PMID: 17275265 DOI: 10.1016/j.ijantimicag.2006.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 11/27/2006] [Accepted: 11/27/2006] [Indexed: 11/21/2022]
Abstract
CTX-M-3 is the most common extended-spectrum beta-lactamase produced by Enterobacteriaceae in Taiwan. The present study was conducted to characterise the genetic environment surrounding bla(CTX-M-3). A total of 11 ceftriaxone-resistant isolates were studied: Escherichia coli (n=4), Klebsiella pneumoniae (n=5) and Salmonella enterica serotypes Anatum (SA831R) and Potsdam (SC72). Molecular methods used included polymerase chain reaction, sequencing, DNA-DNA hybridisation, conjugation, physical mapping and restriction fragment length polymorphism (RFLP) analysis. All isolates examined carried bla(CTX-M-3) on large plasmids (>70kb). The resistance plasmids of the two Salmonella and two K. pneumoniae strains (KP104 and KP116) were confirmed to be conjugative in vitro. RFLP analysis indicated that the plasmids were different. Physical mapping also revealed the difference between the two Salmonella plasmids, pSA831R (82kb) and pSC72 (74kb). An insertion sequence, ISEcp1, was found upstream of each bla(CTX-M-3) gene. However, sequencing of downstream regions of the bla genes showed two different patterns: the presence of orf477 in pSA831R and of orf1-mucA in pSC72, pKP104 and pKP116. IncI1-type oriT and nikA sequences were present in the plasmids of all the clinical isolates tested, except S. Anatum. Different bla(CTX-M-3)-carrying plasmids were identified among the enterobacteria studied. The presence of ISEcp1 in all isolates may be associated with the widespread resistance among Enterobacteriaceae. Although the plasmids were not identical, they appeared to belong to the same incompatibility group (IncI1-like plasmids), suggesting that they are genetically related but may have evolved divergently over time.
Collapse
Affiliation(s)
- S Y Liu
- Department of Molecular Biotechnology, Da-Yeh University, Changhua, Taiwan
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
The nicking of the origin of transfer (oriT) is an essential initial step in the conjugative mobilization of plasmid DNA. In the case of staphylococcal plasmid pC221, nicking by the plasmid-specific MobA relaxase is facilitated by the DNA-binding accessory protein MobC; however, the role of MobC in this process is currently unknown. In this study, the site of MobC binding was determined by DNase I footprinting. MobC interacts with oriT DNA at two directly repeated 9 bp sequences, mcb1 and mcb2, upstream of the oriT nic site, and additionally at a third, degenerate repeat within the mobC gene, mcb3. The binding activity of the conserved sequences was confirmed indirectly by competitive electrophoretic mobility shift assays and directly by Surface Plasmon Resonance studies. Mutation at mcb2 abolished detectable nicking activity, suggesting that binding of this site by MobC is a prerequisite for nicking by MobA. Sequential site-directed mutagenesis of each binding site in pC221 has demonstrated that all three are required for mobilization. The MobA relaxase, while unable to bind to oriT DNA alone, was found to associate with a MobC–oriT complex and alter the MobC binding profile in a region between mcb2 and the nic site. Mutagenesis of oriT in this region defines a 7 bp sequence, sra, which was essential for nicking by MobA. Exchange of four divergent bases between the sra of pC221 and the related plasmid pC223 was sufficient to swap their substrate identity in a MobA-specific nicking assay. Based on these observations we propose a model of layered specificity in the assembly of pC221-family relaxosomes, whereby a common MobC:mcb complex presents the oriT substrate, which is then nicked only by the cognate MobA.
Collapse
|
9
|
Vedantam G, Knopf S, Hecht DW. Bacteroides fragilis mobilizable transposon Tn5520 requires a 71 base pair origin of transfer sequence and a single mobilization protein for relaxosome formation during conjugation. Mol Microbiol 2006; 59:288-300. [PMID: 16359335 DOI: 10.1111/j.1365-2958.2005.04934.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tn5520 is the smallest known bacterial mobilizable transposon and was isolated from an antibiotic resistant Bacteroides fragilis clinical isolate. When a conjugation apparatus is provided in trans, Tn5520 is mobilized (transferred) efficiently within, and from, both Bacteroides spp. and Escherichia coli. Only two genes are present on Tn5520; one encodes an integrase, and the other a multifunctional mobilization (Mob) protein BmpH. BmpH is essential for Tn5520 mobility. The focus of this study was to identify the Tn5520 origin of conjugative transfer (oriT) and to study BmpH-oriT binding. We delimited the functional Tn5520 oriT to a 71 bp sequence upstream of the bmpH gene. A plasmid vector harbouring this minimal 71 bp oriT was mobilized at the same frequency as that of intact Tn5520. The minimal oriT contains one 17 bp inverted repeat (IR) sequence. We constructed and tested multiple IR mutants and showed that the IR was essential in its entirety for mobilization. A nick site sequence (5'-GCTAC-3') was also identified within the minimal oriT; this sequence resembled nick sites found in plasmids of Gram positive origin. We further showed that mutation of a highly conserved GC dinucleotide in the nick site sequence completely abolished mobilization. We also purified BmpH and showed that it specifically bound a Tn5520 oriT fragment in electrophoretic mobility shift assays. We also identified non-nick site sequences within the minimal oriT that were essential for mobilization. We hypothesize that transposon-based single Mob protein systems may contribute to efficient gene dissemination from Bacteroides spp., because fewer DNA processing proteins are required for relaxosome formation.
Collapse
Affiliation(s)
- Gayatri Vedantam
- Department of Medicine, Loyola University Medical Center, Maywood, IL, USA.
| | | | | |
Collapse
|
10
|
Stavrinides J, Guttman DS. Nucleotide sequence and evolution of the five-plasmid complement of the phytopathogen Pseudomonas syringae pv. maculicola ES4326. J Bacteriol 2004; 186:5101-15. [PMID: 15262947 PMCID: PMC451608 DOI: 10.1128/jb.186.15.5101-5115.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Plasmids are transmissible, extrachromosomal genetic elements that are often responsible for environmental or host-specific adaptations. In order to identify the forces driving the evolution of these important molecules, we determined the complete nucleotide sequence of the five-plasmid complement of the radish and Arabidopsis pathogen Pseudomonas syringae pv. maculicola ES4326 and conducted an intraspecific comparative genomic analysis. To date, this is the most complex fully sequenced plasmid complement of any gram-negative bacterium. The plasmid complement comprises two pPT23A-like replicons, pPMA4326A (46,697 bp) and pPMA4326B (40,110 bp); a pPS10-like replicon, pPMA4326C (8,244 bp); and two atypical, replicase-deficient replicons, pPMA4326D (4,833 bp) and pPMA4326E (4,217 bp). A complete type IV secretion system is found on pPMA4326A, while the type III secreted effector hopPmaA is present on pPMA4326B. The region around hopPmaA includes a shorter hopPmaA homolog, insertion sequence (IS) elements, and a three-element cassette composed of a resolvase, an integrase, and an exeA gene that is also present in several human pathogens. We have also identified a novel genetic element (E622) that is present on all but the smallest plasmid (pPMA4326E) that has features of an IS element but lacks an identifiable transposase. This element is associated with virulence-related genes found in a wide range of P. syringae strains. Comparative genomic analyses of these and other P. syringae plasmids suggest a role for recombination and integrative elements in driving plasmid evolution.
Collapse
Affiliation(s)
- John Stavrinides
- Department of Botany, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada.
| | | |
Collapse
|
11
|
Furuya N, Komano T. NikAB- or NikB-dependent intracellular recombination between tandemly repeated oriT sequences of plasmid R64 in plasmid or single-stranded phage vectors. J Bacteriol 2003; 185:3871-7. [PMID: 12813081 PMCID: PMC161590 DOI: 10.1128/jb.185.13.3871-3877.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The origin of transfer (oriT) of a bacterial plasmid plays a key role in both the initiation and termination of conjugative DNA transfer. We have previously shown that a conjugation-dependent recombination between the tandem R64 oriT sequences cloned into pHSG398 occurred, resulting in the deletion of the intervening sequence during DNA transfer. In this study, we tandemly cloned two oriT sequences of IncI1 plasmid R64 into pUC18. Specific recombination between the two oriT sequences in pUC18 was observed within Escherichia coli cells harboring mini-R64. This recombination was found to be independent of both the recA gene and conjugative DNA transfer. The R64 genes nikA and nikB, required for conjugal DNA processing, were essential for this recombination. Although a fully active 92-bp oriT sequence was required at one site for the recombination, the 44-bp oriT core sequence was sufficient at the other site. Furthermore, when two oriT sequences were tandemly cloned into the single-stranded phage vector M13 and propagated within E. coli cells, recombination between the two oriT sequences was observed, depending on the nikB gene. These results suggest that the R64 relaxase protein NikB can execute cleavage and rejoining of single-stranded oriT DNA within E. coli cells, whereas such a reaction in double-stranded oriT DNA requires collaboration of the two relaxosome proteins, NikA and NikB.
Collapse
Affiliation(s)
- Nobuhisa Furuya
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | |
Collapse
|
12
|
Boucher I, Emond E, Parrot M, Moineau S. DNA sequence analysis of three Lactococcus lactis plasmids encoding phage resistance mechanisms. J Dairy Sci 2001; 84:1610-20. [PMID: 11467810 DOI: 10.3168/jds.s0022-0302(01)74595-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The three Lactococcus lactis plasmids pSRQ700, pSRQ800, and pSRQ900 encode the previously described anti-phage resistance mechanisms LlaDCHI, AbiK, and AbiQ, respectively. Since these plasmids are likely to be introduced into industrial Lactococcus lactis strains used to manufacture commercial fermented dairy products, their complete DNA sequences were determined and analyzed. The plasmids pSRQ700 (7784 bp), pSRQ800 (7858 bp), and pSRQ900 (10,836 bp) showed a similar genetic organization including a common lactococcal theta-type replicon. A second replication module showing features of the pMV158 family of rolling circle replicons was also found on pSRQ700. The theta replication regions of the three plasmids were associated with two additional coding regions, one of which encodes for HsdS, the specificity subunit of the type I restriction/modification system. When introduced into L. lactis IL1403, the HsdS of pSRQ800 and pSRQ900 conferred a weak resistance against phage P008 (936 species). These results indicated that both HsdS subunits can complement the chromosomally encoded type I restriction/modification system in IL1403. The genes involved in the phage resistance systems LlaDCHI, AbiK, and AbiQ were found in close proximity to and downstream of the replication modules. In pSRQ800 and pSRQ900, transfer origins and putative tyrosine recombinases were found upstream of the theta replicons. Genes encoding recombination proteins were also found on pSRQ700. Finally, open reading frames associated with bacteriocin production were found on pSRQ900, but no anti-lactococcal activity was detected. Based on our current knowledge, these three plasmids are safe and suitable for food-grade applications.
Collapse
Affiliation(s)
- I Boucher
- Department of Biochemistry and Microbiology, Faculté des Sciences et de Génie, Faculté de Médecine Dentaire, Université Laval, Quebec, Canada
| | | | | | | |
Collapse
|
13
|
Emond E, Lavallée R, Drolet G, Moineau S, LaPointe G. Molecular characterization of a theta replication plasmid and its use for development of a two-component food-grade cloning system for Lactococcus lactis. Appl Environ Microbiol 2001; 67:1700-9. [PMID: 11282624 PMCID: PMC92788 DOI: 10.1128/aem.67.4.1700-1709.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
pCD4, a small, highly stable theta-replicating lactococcal plasmid, was used to develop a food-grade cloning system. Sequence analysis revealed five open reading frames and two putative cis-acting regions. None appears to code for undesirable phenotypes with regard to food applications. Functional analysis of the replication module showed that only the cis-acting ori region and the repB gene coding for the replication initiator protein were needed for the stable replication and maintenance of pCD4 derivatives in Lactococcus lactis. A two-component food-grade cloning system was derived from the pCD4 replicon. The vector pVEC1, which carries the functional pCD4 replicon, is entirely made up of L. lactis DNA and has no selection marker. The companion pCOM1 is a repB-deficient pCD4 derivative that carries an erythromycin resistance gene as a dominant selection marker. The pCOM1 construct can only replicate in L. lactis if trans complemented by the RepB initiator provided by pVEC1. Since only the cotransformants that carry both pVEC1 and pCOM1 can survive on plates containing erythromycin, pCOM1 can be used transiently to select cells that have acquired pVEC1. Due to the intrinsic incompatibility between these plasmids, pCOM1 can be readily cured from the cells grown on an antibiotic-free medium after the selection step. The system was used to introduce a phage resistance mechanism into the laboratory strain MG1363 of L. lactis and two industrial strains. The introduction of the antiphage barrier did not alter the wild-type plasmid profile of the industrial strains. The phenotype was stable after 100 generations and conferred an effective resistance phenotype against phages of the 936 and c2 species.
Collapse
Affiliation(s)
- E Emond
- Centre de recherche STELA, Département des sciences des aliments et de nutrition, Université Laval, Québec, Canada G1K 7P4.
| | | | | | | | | |
Collapse
|
14
|
Furuya N, Komano T. Initiation and termination of DNA transfer during conjugation of IncI1 plasmid R64: roles of two sets of inverted repeat sequences within oriT in termination of R64 transfer. J Bacteriol 2000; 182:3191-6. [PMID: 10809699 PMCID: PMC94506 DOI: 10.1128/jb.182.11.3191-3196.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intercellular transfer of plasmid DNA during bacterial conjugation initiates and terminates at a specific origin of transfer, oriT. We have investigated the oriT structure of conjugative plasmid R64 with regard to the initiation and termination of DNA transfer. Using recombinant plasmids containing two tandemly repeated R64 oriT sequences with or without mutations, the subregions required for initiation and termination were determined by examining conjugation-mediated deletion between the repeated oriTs. The oriT subregion required for initiation was found to be identical to the 44-bp oriT core sequence consisting of two units, the conserved nick region sequence and the 17-bp repeat A sequence, that are recognized by R64 relaxosome proteins NikB and NikA, respectively. In contrast, the nick region sequence and two sets of inverted repeat sequences within the 92-bp minimal oriT sequence were required for efficient termination. Mutant repeat A sequences lacking NikA-binding ability were found to be sufficient for termination, suggesting that the inverted repeat structures are involved in the termination process. A duplication of the DNA segment between the repeated oriTs was also found after mobilization of the plasmid carrying initiation-deficient but termination-proficient oriT and initiation-proficient but termination-deficient oriT, suggesting that the 3' terminus of the transferred strand is elongated by rolling-circle-DNA synthesis.
Collapse
Affiliation(s)
- N Furuya
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | |
Collapse
|
15
|
van Kranenburg R, de Vos WM. Characterization of multiple regions involved in replication and mobilization of plasmid pNZ4000 coding for exopolysaccharide production in Lactococcus lactis. J Bacteriol 1998; 180:5285-90. [PMID: 9765557 PMCID: PMC107574 DOI: 10.1128/jb.180.20.5285-5290.1998] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We characterized the regions involved in replication and mobilization of the 40-kb plasmid pNZ4000, encoding exopolysaccharide (EPS) production in Lactococcus lactis NIZO B40. The plasmid contains four highly conserved replication regions with homologous rep genes (repB1, repB2, repB3, and repB4) that belong to the lactococcal theta replicon family. Subcloning of each replicon individually showed that all are functional and compatible in L. lactis. Plasmid pNZ4000 and genetically labeled derivatives could be transferred to different L. lactis strains by conjugation, and pNZ4000 was shown to be a mobilization plasmid. Two regions involved in mobilization were identified near two of the replicons; both included an oriT sequence rich in inverted repeats. Conjugative mobilization of the nonmobilizable plasmid pNZ124 was promoted by either one of these oriT sequences, demonstrating their functionality. One oriT sequence was followed by a mobA gene, coding for a trans-acting protein, which increased the frequency of conjugative transfer 100-fold. The predicted MobA protein and the oriT sequences show protein and nucleotide similarity, respectively, with the relaxase and with the inverted repeat and nic site of the oriT from the Escherichia coli plasmid R64. The presence on pNZ4000 of four functional replicons, two oriT sequences, and several insertion sequence-like elements strongly suggests that this EPS plasmid is a naturally occurring cointegrate.
Collapse
Affiliation(s)
- R van Kranenburg
- Microbial Ingredients Section, NIZO Food Research, Ede, The Netherlands
| | | |
Collapse
|