1
|
Bianco MI, Ponso MA, Garita-Cambronero J, Conforte VP, Galván TE, Dunger G, Morales GM, Vojnov AA, Romero AM, Cubero J, Yaryura PM. Genomic and phenotypic insight into Xanthomonas vesicatoria strains with different aggressiveness on tomato. Front Microbiol 2023; 14:1185368. [PMID: 37440880 PMCID: PMC10333488 DOI: 10.3389/fmicb.2023.1185368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Xanthomonas vesicatoria is one of the causal agents of bacterial spot, a disease that seriously affects the production of tomato (Solanum lycopersicum) and pepper (Capsicum annum) worldwide. In Argentina, bacterial spot is found in all tomato producing areas, with X. vesicatoria being one of the main species detected in the fields. Previously, we isolated three X. vesicatoria strains BNM 208, BNM 214, and BNM 216 from tomato plants with bacterial spot, and found they differed in their ability to form biofilm and in their degree of aggressiveness. Here, the likely causes of those differences were explored through genotypic and phenotypic studies. The genomes of the three strains were sequenced and assembled, and then compared with each other and also with 12 other publicly available X. vesicatoria genomes. Phenotypic characteristics (mainly linked to biofilm formation and virulence) were studied in vitro. Our results show that the differences observed earlier between BNM 208, BNM 214, and BNM 216 may be related to the structural characteristics of the xanthan gum produced by each strain, their repertoire of type III effectors (T3Es), the presence of certain genes associated with c-di-GMP metabolism and type IV pili (T4P). These findings on the pathogenicity mechanisms of X. vesicatoria could be useful for developing bacterial spot control strategies aimed at interfering with the infection processes.
Collapse
Affiliation(s)
- María Isabel Bianco
- Instituto de Ciencia y Tecnología Dr. César Milstein – Fundación Pablo Cassará – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Investigación en Medicina y Ciencias de la Salud, Facultad de Medicina, Universidad del Salvador, Buenos Aires, Argentina
| | - María Agustina Ponso
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentario y Biotecnológica (IMITAB, UNVM-CONICET), Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | | | - Valeria Paola Conforte
- Instituto de Ciencia y Tecnología Dr. César Milstein – Fundación Pablo Cassará – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Investigación en Medicina y Ciencias de la Salud, Facultad de Medicina, Universidad del Salvador, Buenos Aires, Argentina
| | - Tadeo E. Galván
- Instituto de Ciencia y Tecnología Dr. César Milstein – Fundación Pablo Cassará – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Germán Dunger
- Facultad de Ciencias Agrarias, Instituto de Ciencias Agropecuarias del Litoral, CONICET, Universidad Nacional del Litoral, Esperanza, Argentina
| | - Gustavo M. Morales
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados, Universidad Nacional de Rio Cuarto – CONICET, Rio Cuarto, Argentina
| | - Adrián Alberto Vojnov
- Instituto de Ciencia y Tecnología Dr. César Milstein – Fundación Pablo Cassará – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Investigación en Medicina y Ciencias de la Salud, Facultad de Medicina, Universidad del Salvador, Buenos Aires, Argentina
| | - Ana María Romero
- Cátedra de Fitopatología, Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jaime Cubero
- Laboratorio de Bacteriología, Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria/Consejo Superior de Investigaciones Científicas (INIA/CSIC), Madrid, Spain
| | - Pablo Marcelo Yaryura
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentario y Biotecnológica (IMITAB, UNVM-CONICET), Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| |
Collapse
|
2
|
Osdaghi E, Jones JB, Sharma A, Goss EM, Abrahamian P, Newberry EA, Potnis N, Carvalho R, Choudhary M, Paret ML, Timilsina S, Vallad GE. A centenary for bacterial spot of tomato and pepper. MOLECULAR PLANT PATHOLOGY 2021; 22:1500-1519. [PMID: 34472193 PMCID: PMC8578828 DOI: 10.1111/mpp.13125] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 05/08/2023]
Abstract
DISEASE SYMPTOMS Symptoms include water-soaked areas surrounded by chlorosis turning into necrotic spots on all aerial parts of plants. On tomato fruits, small, water-soaked, or slightly raised pale-green spots with greenish-white halos are formed, ultimately becoming dark brown and slightly sunken with a scabby or wart-like surface. HOST RANGE Main and economically important hosts include different types of tomatoes and peppers. Alternative solanaceous and nonsolanaceous hosts include Datura spp., Hyoscyamus spp., Lycium spp., Nicotiana rustica, Physalis spp., Solanum spp., Amaranthus lividus, Emilia fosbergii, Euphorbia heterophylla, Nicandra physaloides, Physalis pubescens, Sida glomerata, and Solanum americanum. TAXONOMIC STATUS OF THE PATHOGEN Domain, Bacteria; phylum, Proteobacteria; class, Gammaproteobacteria; order, Xanthomonadales; family, Xanthomonadaceae; genus, Xanthomonas; species, X. euvesicatoria, X. hortorum, X. vesicatoria. SYNONYMS (NONPREFERRED SCIENTIFIC NAMES) Bacterium exitiosum, Bacterium vesicatorium, Phytomonas exitiosa, Phytomonas vesicatoria, Pseudomonas exitiosa, Pseudomonas gardneri, Pseudomonas vesicatoria, Xanthomonas axonopodis pv. vesicatoria, Xanthomonas campestris pv. vesicatoria, Xanthomonas cynarae pv. gardneri, Xanthomonas gardneri, Xanthomonas perforans. MICROBIOLOGICAL PROPERTIES Colonies are gram-negative, oxidase-negative, and catalase-positive and have oxidative metabolism. Pale-yellow domed circular colonies of 1-2 mm in diameter grow on general culture media. DISTRIBUTION The bacteria are widespread in Africa, Brazil, Canada and the USA, Australia, eastern Europe, and south-east Asia. Occurrence in western Europe is restricted. PHYTOSANITARY CATEGORIZATION A2 no. 157, EU Annex designation II/A2. EPPO CODES XANTEU, XANTGA, XANTPF, XANTVE.
Collapse
Affiliation(s)
- Ebrahim Osdaghi
- Department of Plant ProtectionCollege of AgricultureUniversity of TehranKarajIran
| | - Jeffrey B. Jones
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Anuj Sharma
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Erica M. Goss
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Peter Abrahamian
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
- Gulf Coast Research and Education CenterUniversity of FloridaWimaumaFloridaUSA
| | - Eric A. Newberry
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Neha Potnis
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Renato Carvalho
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Manoj Choudhary
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Mathews L. Paret
- Department of Plant PathologyNorth Florida Research and Education CenterUniversity of FloridaQuincyFloridaUSA
| | - Sujan Timilsina
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Gary E. Vallad
- Gulf Coast Research and Education CenterUniversity of FloridaWimaumaFloridaUSA
| |
Collapse
|
3
|
Alonso-Reyes DG, Galván FS, Portero LR, Alvarado NN, Farías ME, Vazquez MP, Albarracín VH. Genomic insights into an andean multiresistant soil actinobacterium of biotechnological interest. World J Microbiol Biotechnol 2021; 37:166. [PMID: 34463818 PMCID: PMC8405860 DOI: 10.1007/s11274-021-03129-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/14/2021] [Indexed: 12/01/2022]
Abstract
Central-Andean Ecosystems (between 2000 and 6000 m above sea level (masl) are typical arid-to-semiarid environments suffering from the highest total solar and ultraviolet-B radiation on the planet but displaying numerous salt flats and shallow lakes. Andean microbial ecosystems isolated from these environments are of exceptional biodiversity enduring multiple severe conditions. Furthermore, the polyextremophilic nature of the microbes in such ecosystems indicates the potential for biotechnological applications. Within this context, the study undertaken used genome mining, physiological and microscopical characterization to reveal the multiresistant profile of Nesterenkonia sp. Act20, an actinobacterium isolated from the soil surrounding Lake Socompa, Salta, Argentina (3570 masl). Ultravioet-B, desiccation, and copper assays revealed the strain's exceptional resistance to all these conditions. Act20's genome presented coding sequences involving resistance to antibiotics, low temperatures, ultraviolet radiation, arsenic, nutrient-limiting conditions, osmotic stress, low atmospheric-oxygen pressure, heavy-metal stress, and toxic fluoride and chlorite. Act20 can also synthesize proteins and natural products such as an insecticide, bacterial cellulose, ectoine, bacterial hemoglobin, and even antibiotics like colicin V and aurachin C. We also found numerous enzymes for animal- and vegetal-biomass degradation and applications in other industrial processes. The resilience of Act20 and its biotechnologic potential were thoroughly demonstrated in this work.
Collapse
Affiliation(s)
- Daniel Gonzalo Alonso-Reyes
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica (CIME), Facultad de Agronomía y Zootecnia, UNT y CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Fátima Silvina Galván
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica (CIME), Facultad de Agronomía y Zootecnia, UNT y CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Luciano Raúl Portero
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica (CIME), Facultad de Agronomía y Zootecnia, UNT y CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Natalia Noelia Alvarado
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica (CIME), Facultad de Agronomía y Zootecnia, UNT y CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Martín P Vazquez
- HERITAS-CONICET, Ocampo 210 bis, Predio CCT, 2000, Rosario, Santa Fe, Argentina
| | - Virginia Helena Albarracín
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica (CIME), Facultad de Agronomía y Zootecnia, UNT y CONICET, San Miguel de Tucumán, Tucumán, Argentina.
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina.
- Centro Integral de Microscopía Electrónica (CIME, CONICET, UNT), Camino de Sirga s/n. FAZ, Finca El Manantial, 4107, Yerba Buena, Tucumán, Argentina.
| |
Collapse
|
4
|
Kirubakaran R, ArulJothi KN, Revathi S, Shameem N, Parray JA. Emerging priorities for microbial metagenome research. BIORESOURCE TECHNOLOGY REPORTS 2020; 11:100485. [PMID: 32835181 PMCID: PMC7319936 DOI: 10.1016/j.biteb.2020.100485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
Overwhelming anthropogenic activities lead to deterioration of natural resources and the environment. The microorganisms are considered desirable, due to their suitability for easy genetic manipulation and handling. With the aid of modern biotechnological techniques, the culturable microorganisms have been widely exploited for the benefit of mankind. Metagenomics, a powerful tool to access the abundant biodiversity of the environmental samples including the unculturable microbes, to determine microbial diversity and population structure, their ecological roles and expose novel genes of interest. This review focuses on the microbial adaptations to the adverse environmental conditions, metagenomic techniques employed towards microbial biotechnology. Metagenomic approach helps to understand microbial ecology and to identify useful microbial derivatives like antibiotics, toxins, and enzymes with diverse and enhanced function. It also summarizes the application of metagenomics in clinical diagnosis, improving microbial ecology, therapeutics, xenobiotic degradation and impact on agricultural crops.
Collapse
Affiliation(s)
| | - K N ArulJothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | | | - Nowsheen Shameem
- Department of Environmental Science, Cluster University Srinagar, J&K, India
| | - Javid A Parray
- Department of Environmental Science, Govt SAM Degree College Budgam, J&K, India
| |
Collapse
|
5
|
Yu C, Nguyen DP, Ren Z, Liu J, Yang F, Tian F, Fan S, Chen H. The RpoN2-PilRX regulatory system governs type IV pilus gene transcription and is required for bacterial motility and virulence in Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2020; 21:652-666. [PMID: 32112711 PMCID: PMC7170775 DOI: 10.1111/mpp.12920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
The type IV pilus (T4P), a special class of bacterial surface filament, plays crucial roles in surface adhesion, motility, biofilm formation, and virulence in pathogenic bacteria. However, the regulatory mechanism of T4P and its relationship to bacterial virulence are still little understood in Xanthomonas oryzae pv. oryzae (Xoo), the causal pathogen of bacterial blight of rice. Our previous studies showed that the σ54 factor RpoN2 regulated bacterial virulence on rice in a flagellum-independent manner in Xoo. In this study, both yeast two-hybrid and pull-down assays revealed that RpoN2 directly and specifically interacted with PilRX, a homolog of the response regulator PilR of the two-component system PilS-PilR in the pilus gene cluster. Genomic sequence and reverse transcription PCR (RT-PCR) analysis showed 13 regulons containing 25 genes encoding T4P structural components and putative regulators. A consensus RpoN2-binding sequence GGN10 GC was identified in the promoter sequences of most T4P gene transcriptional units. Electrophoretic mobility shift assays confirmed the direct binding of RpoN2 to the promoter of the major pilin gene pilAX, the inner membrane platform protein gene pilCX, and pilRX. Promoter activity and quantitative RT-PCR assays demonstrated direct and indirect transcriptional regulation by RpoN2 of the T4P genes. In addition, individual deletions of pilAX, pilCX, and pilRX resulted in significantly reduced twitching and swimming motility, biofilm formation, and virulence in rice. Taken together, the findings from the current study suggest that the RpoN2-PilRX regulatory system controls bacterial motility and virulence by regulating T4P gene transcription in Xoo.
Collapse
Affiliation(s)
- Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Doan-Phuong Nguyen
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Zhaoyu Ren
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Jianan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Susu Fan
- Shandong Provincial Key Laboratory of Applied MicrobiologyEcology InstituteQilu University of Technology (Shandong Academy of Sciences)Ji’nanChina
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
6
|
HrpE, the major component of the Xanthomonas type three protein secretion pilus, elicits plant immunity responses. Sci Rep 2018; 8:9842. [PMID: 29959345 PMCID: PMC6026121 DOI: 10.1038/s41598-018-27869-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Like several pathogenic bacteria, Xanthomonas infect host plants through the secretion of effector proteins by the Hrp pilus of the Type Three Protein Secretion System (T3SS). HrpE protein was identified as the major structural component of this pilus. Here, using the Xanthomonas citri subsp. citri (Xcc) HrpE as a model, a novel role for this protein as an elicitor of plant defense responses was found. HrpE triggers defense responses in host and non-host plants revealed by the development of plant lesions, callose deposition, hydrogen peroxide production and increase in the expression levels of genes related to plant defense responses. Moreover, pre-infiltration of citrus or tomato leaves with HrpE impairs later Xanthomonas infections. Particularly, HrpE C-terminal region, conserved among Xanthomonas species, was sufficient to elicit these responses. HrpE was able to interact with plant Glycine-Rich Proteins from citrus (CsGRP) and Arabidopsis (AtGRP-3). Moreover, an Arabidopsis atgrp-3 knockout mutant lost the capacity to respond to HrpE. This work demonstrate that plants can recognize the conserved C-terminal region of the T3SS pilus HrpE protein as a danger signal to defend themselves against Xanthomonas, triggering defense responses that may be mediated by GRPs.
Collapse
|
7
|
Abstract
Many bacteria, both environmental and pathogenic, exhibit the property of autoaggregation. In autoaggregation (sometimes also called autoagglutination or flocculation), bacteria of the same type form multicellular clumps that eventually settle at the bottom of culture tubes. Autoaggregation is generally mediated by self-recognising surface structures, such as proteins and exopolysaccharides, which we term collectively as autoagglutinins. Although a widespread phenomenon, in most cases the function of autoaggregation is poorly understood, though there is evidence to show that aggregating bacteria are protected from environmental stresses or host responses. Autoaggregation is also often among the first steps in forming biofilms. Here, we review the current knowledge on autoaggregation, the role of autoaggregation in biofilm formation and pathogenesis, and molecular mechanisms leading to aggregation using specific examples.
Collapse
Affiliation(s)
- Thomas Trunk
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hawzeen S Khalil
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack C Leo
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Sun YY, Chi H, Sun L. Pseudomonas fluorescens Filamentous Hemagglutinin, an Iron-Regulated Protein, Is an Important Virulence Factor that Modulates Bacterial Pathogenicity. Front Microbiol 2016; 7:1320. [PMID: 27602029 PMCID: PMC4993755 DOI: 10.3389/fmicb.2016.01320] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/10/2016] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas fluorescens is a common bacterial pathogen to a wide range of aquaculture animals including various species of fish. In this study, we employed proteomic analysis and identified filamentous hemagglutinin (FHA) as an iron-responsive protein secreted by TSS, a pathogenic P. fluorescens isolate. In vitro study showed that compared to the wild type, the fha mutant TSSfha (i) exhibited a largely similar vegetative growth profile but significantly retarded in the ability of biofilm growth and producing extracellular matrix, (ii) displayed no apparent flagella and motility, (iii) was defective in the attachment to host cells and unable to form self-aggregation, (iv) displayed markedly reduced capacity of hemagglutination and surviving in host serum. In vivo infection analysis revealed that TSSfha was significantly attenuated in the ability of dissemination in fish tissues and inducing host mortality, and that antibody blocking of the natural FHA produced by the wild type TSS impaired the infectivity of the pathogen. Furthermore, when introduced into turbot as a subunit vaccine, recombinant FHA elicited a significant protection against lethal TSS challenge. Taken together, these results indicate for the first time that P. fluorescens FHA is a key virulence factor essential to multiple biological processes associated with pathogenicity.
Collapse
Affiliation(s)
- Yuan-Yuan Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology - Chinese Academy of SciencesQingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China; University of Chinese Academy of SciencesBeijing, China
| | - Heng Chi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology - Chinese Academy of SciencesQingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology - Chinese Academy of SciencesQingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| |
Collapse
|
9
|
Tomada S, Puopolo G, Perazzolli M, Musetti R, Loi N, Pertot I. Pea Broth Enhances the Biocontrol Efficacy of Lysobacter capsici AZ78 by Triggering Cell Motility Associated with Biogenesis of Type IV Pilus. Front Microbiol 2016; 7:1136. [PMID: 27507963 PMCID: PMC4960238 DOI: 10.3389/fmicb.2016.01136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/07/2016] [Indexed: 12/18/2022] Open
Abstract
Bacterial cells can display different types of motility, due to the presence of external appendages such as flagella and type IV pili. To date, little information on the mechanisms involved in the motility of the Lysobacter species has been available. Recently, L. capsici AZ78, a biocontrol agent of phytopathogenic oomycetes, showed the ability to move on jellified pea broth. Pea broth medium improved also the biocontrol activity of L. capsici AZ78 against Plasmopara viticola under greenhouse conditions. Noteworthy, the quantity of pea residues remaining on grapevine leaves fostered cell motility in L. capsici AZ78. Based on these results, this unusual motility related to the composition of the growth medium was investigated in bacterial strains belonging to several Lysobacter species. The six L. capsici strains tested developed dendrite-like colonies when grown on jellified pea broth, while the development of dendrite-like colonies was not recorded in the media commonly used in motility assays. To determine the presence of genes responsible for biogenesis of the flagellum and type IV pili, the genome of L. capsici AZ78 was mined. Genes encoding structural components and regulatory factors of type IV pili were upregulated in L. capsici AZ78 cells grown on the above-mentioned medium, as compared with the other tested media. These results provide new insight into the motility mechanism of L. capsici members and the role of type IV pili and pea compounds on the epiphytic fitness and biocontrol features of L. capsici AZ78.
Collapse
Affiliation(s)
- Selena Tomada
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy; Agricultural Science and Biotechnology Program, Department of Agricultural, Food, Environmental, and Animal Sciences, University of UdineUdine, Italy
| | - Gerardo Puopolo
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy
| | - Michele Perazzolli
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy
| | - Rita Musetti
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine Udine, Italy
| | - Nazia Loi
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine Udine, Italy
| | - Ilaria Pertot
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy
| |
Collapse
|
10
|
Dunger G, Llontop E, Guzzo CR, Farah CS. The Xanthomonas type IV pilus. Curr Opin Microbiol 2016; 30:88-97. [PMID: 26874963 DOI: 10.1016/j.mib.2016.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 02/07/2023]
Abstract
Type IV pili, a special class of bacterial surface filaments, are key behavioral mediators for many important human pathogens. However, we know very little about the role of these structures in the lifestyles of plant-associated bacteria. Over the past few years, several groups studying the extensive genus of Xanthomonas spp. have gained insights into the roles of played by type IV pili in bacteria-host interactions and pathogenesis, motility, biofilm formation, and interactions with bacteriophages. Protein-protein interaction studies have identified T4P regulators and these, along with structural studies, have begun to reveal some of the possible molecular mechanisms that may control the extension/retraction cycles of these dynamic filaments.
Collapse
Affiliation(s)
- German Dunger
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Edgar Llontop
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Cristiane R Guzzo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, SP CEP 05508-900, Brazil
| | - Chuck S Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
11
|
Wörmann ME, Horien CL, Johnson E, Liu G, Aho E, Tang CM, Exley RM. Neisseria cinerea isolates can adhere to human epithelial cells by type IV pilus-independent mechanisms. MICROBIOLOGY-SGM 2016; 162:487-502. [PMID: 26813911 DOI: 10.1099/mic.0.000248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In pathogenic Neisseria species the type IV pili (Tfp) are of primary importance in host-pathogen interactions. Tfp mediate initial bacterial attachment to cell surfaces and formation of microcolonies via pilus-pilus interactions. Based on genome analysis, many non-pathogenic Neisseria species are predicted to express Tfp, but aside from studies on Neisseria elongata, relatively little is known about the formation and function of pili in these organisms. Here, we have analysed pilin expression and the role of Tfp in Neisseria cinerea. This non-pathogenic species shares a close taxonomic relationship to the pathogen Neisseria meningitidis and also colonizes the human oropharyngeal cavity. Through analysis of non-pathogenic Neisseria genomes we identified two genes with homology to pilE, which encodes the major pilin of N. meningitidis. We show which of the two genes is required for Tfp expression in N. cinerea and that Tfp in this species are required for DNA competence, similar to other Neisseria. However, in contrast to the meningococcus, deletion of the pilin gene did not impact the association of N. cinerea to human epithelial cells, demonstrating that N. cinerea isolates can adhere to human epithelial cells by Tfp-independent mechanisms.
Collapse
Affiliation(s)
- Mirka E Wörmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Corey L Horien
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Guangyu Liu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Ellen Aho
- Department of Biology, Concordia College, Moorhead, MN, USA
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Rachel M Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
12
|
Elhenawy W, Scott NE, Tondo ML, Orellano EG, Foster LJ, Feldman MF. Protein O-linked glycosylation in the plant pathogen Ralstonia solanacearum. Glycobiology 2015; 26:301-11. [PMID: 26531228 DOI: 10.1093/glycob/cwv098] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/27/2015] [Indexed: 12/30/2022] Open
Abstract
Ralstonia solanacearum is one of the most lethal phytopathogens in the world. Due to its broad host range, it can cause wilting disease in many plant species of economic interest. In this work, we identified the O-oligosaccharyltransferase (O-OTase) responsible for protein O-glycosylation in R. solanacearum. An analysis of the glycoproteome revealed that 20 proteins, including type IV pilins are substrates of this general glycosylation system. Although multiple glycan forms were identified, the majority of the glycopeptides were modified with a pentasaccharide composed of HexNAc-(Pen)-dHex(3), similar to the O antigen subunit present in the lipopolysaccharide of multiple R. solanacearum strains. Disruption of the O-OTase led to the total loss of protein glycosylation, together with a defect in biofilm formation and reduced pathogenicity towards tomato plants. Comparative proteomic analysis revealed that the loss of glycosylation is not associated with widespread proteome changes. Only the levels of a single glycoprotein, the type IV pilin, were diminished in the absence of glycosylation. In parallel, disruption of glycosylation triggered an increase in the levels of a surface lectin homologous to Pseudomonas PA-IIL. These results reveal the important role of glycosylation in the pathogenesis of R. solanacearum.
Collapse
Affiliation(s)
- Wael Elhenawy
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Nichollas E Scott
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - M Laura Tondo
- Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOYF-UNR), Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Santa Fe, Argentina
| | - Elena G Orellano
- Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOYF-UNR), Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Santa Fe, Argentina
| | - Leonard J Foster
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Mario F Feldman
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada Department of Molecular Microbiology, Washington University School of Medicine St. Louis, St. Louis, MO, USA
| |
Collapse
|
13
|
Parker JK, Cruz LF, Evans MR, De La Fuente L. Presence of calcium-binding motifs in PilY1 homologs correlates with Ca-mediated twitching motility and evolutionary history across diverse bacteria. FEMS Microbiol Lett 2014; 362:fnu063. [PMID: 25688068 DOI: 10.1093/femsle/fnu063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Twitching motility, involving type IV pili, is essential for host colonization and virulence of many pathogenic bacteria. Studies of PilY1, a tip-associated type IV pili protein, indicate that PilY1 functions as a switch between pilus extension and retraction, resulting in twitching motility. Recent work detected a calcium-binding motif in PilY1 of some animal bacterial pathogens and demonstrated that binding of calcium to PilY1 with this motif regulates twitching. Though studies of PilY1 in non-animal pathogens are limited, our group demonstrated that twitching motility in the plant pathogen Xylella fastidiosa, which contains three PilY1 homologs, is increased by calcium supplementation. A study was conducted to investigate the phylogenetic relationship between multiple PilY1 homologs, the presence of calcium-binding motifs therein, and calcium-mediated twitching motility across diverse bacteria. Strains analyzed contained one to three PilY1 homologs, but phylogenetic analyses indicated that PilY1 homologs containing the calcium-binding motif Dx[DN]xDGxxD are phylogenetically divergent from other PilY1 homologs. Plant-associated bacteria included in these analyses were then examined for a calcium-mediated twitching response. Results indicate that bacteria must have at least one PilY1 homolog containing the Dx[DN]xDGxxD motif to display a calcium-mediated increase in twitching motility, which likely reflects an adaption to environmental calcium concentrations.
Collapse
Affiliation(s)
- Jennifer K Parker
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Luisa F Cruz
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Michael R Evans
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
14
|
Cruz LF, Parker JK, Cobine PA, De La Fuente L. Calcium-Enhanced Twitching Motility in Xylella fastidiosa Is Linked to a Single PilY1 Homolog. Appl Environ Microbiol 2014; 80:7176-85. [PMID: 25217013 PMCID: PMC4249194 DOI: 10.1128/aem.02153-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/08/2014] [Indexed: 11/20/2022] Open
Abstract
The plant-pathogenic bacterium Xylella fastidiosa is restricted to the xylem vessel environment, where mineral nutrients are transported through the plant host; therefore, changes in the concentrations of these elements likely impact the growth and virulence of this bacterium. Twitching motility, dependent on type IV pili (TFP), is required for movement against the transpiration stream that results in basipetal colonization. We previously demonstrated that calcium (Ca) increases the motility of X. fastidiosa, although the mechanism was unknown. PilY1 is a TFP structural protein recently shown to bind Ca and to regulate twitching and adhesion in bacterial pathogens of humans. Sequence analysis identified three pilY1 homologs in X. fastidiosa (PD0023, PD0502, and PD1611), one of which (PD1611) contains a Ca-binding motif. Separate deletions of PD0023 and PD1611 resulted in mutants that still showed twitching motility and were not impaired in attachment or biofilm formation. However, the response of increased twitching at higher Ca concentrations was lost in the pilY1-1611 mutant. Ca does not modulate the expression of any of the X. fastidiosa PilY1 homologs, although it increases the expression of the retraction ATPase pilT during active movement. The evidence presented here suggests functional differences between the PilY1 homologs, which may provide X. fastidiosa with an adaptive advantage in environments with high Ca concentrations, such as xylem sap.
Collapse
Affiliation(s)
- Luisa F Cruz
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Jennifer K Parker
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
15
|
Dunger G, Guzzo CR, Andrade MO, Jones JB, Farah CS. Xanthomonas citri subsp. citri type IV Pilus is required for twitching motility, biofilm development, and adherence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1132-47. [PMID: 25180689 DOI: 10.1094/mpmi-06-14-0184-r] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bacterial type IV pili (T4P) are long, flexible surface filaments that consist of helical polymers of mostly pilin subunits. Cycles of polymerization, attachment, and depolymerization mediate several pilus-dependent bacterial behaviors, including twitching motility, surface adhesion, pathogenicity, natural transformation, escape from immune system defense mechanisms, and biofilm formation. The Xanthomonas citri subsp. citri strain 306 genome codes for a large set of genes involved in T4P biogenesis and regulation and includes several pilin homologs. We show that X. citri subsp. citri can exhibit twitching motility in a manner similar to that observed in other bacteria such as Pseudomonas aeruginosa and Xylella fastidiosa and that this motility is abolished in Xanthomonas citri subsp. citri knockout strains in the genes coding for the major pilin subunit PilAXAC3241, the ATPases PilBXAC3239 and PilTXAC2924, and the T4P biogenesis regulators PilZXAC1133 and FimXXAC2398. Microscopy analyses were performed to compare patterns of bacterial migration in the wild-type and knockout strains and we observed that the formation of mushroom-like structures in X. citri subsp. citri biofilm requires a functional T4P. Finally, infection of X. citri subsp. citri cells by the bacteriophage (ΦXacm4-11 is T4P dependent. The results of this study improve our understanding of how T4P influence Xanthomonas motility, biofilm formation, and susceptibility to phage infection.
Collapse
|
16
|
Burdman S, Bahar O, Parker JK, De La Fuente L. Involvement of Type IV Pili in Pathogenicity of Plant Pathogenic Bacteria. Genes (Basel) 2011; 2:706-35. [PMID: 24710288 PMCID: PMC3927602 DOI: 10.3390/genes2040706] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/08/2011] [Accepted: 10/10/2011] [Indexed: 01/03/2023] Open
Abstract
Type IV pili (T4P) are hair-like appendages found on the surface of a wide range of bacteria belonging to the β-, γ-, and δ-Proteobacteria, Cyanobacteria and Firmicutes. They constitute an efficient device for a particular type of bacterial surface motility, named twitching, and are involved in several other bacterial activities and functions, including surface adherence, colonization, biofilm formation, genetic material uptake and virulence. Tens of genes are involved in T4P synthesis and regulation, with the majority of them being generally named pil/fim genes. Despite the multiple functionality of T4P and their well-established role in pathogenicity of animal pathogenic bacteria, relatively little attention has been given to the role of T4P in plant pathogenic bacteria. Only in recent years studies have begun to examine with more attention the relevance of these surface appendages for virulence of plant bacterial pathogens. The aim of this review is to summarize the current knowledge about T4P genetic machinery and its role in the interactions between phytopathogenic bacteria and their plant hosts.
Collapse
Affiliation(s)
- Saul Burdman
- Department of Plant Pathology and Microbiology and the Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Ofir Bahar
- Department of Plant Pathology and Microbiology and the Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Jennifer K Parker
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA.
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
17
|
Taguchi F, Ichinose Y. Role of type IV pili in virulence of Pseudomonas syringae pv. tabaci 6605: correlation of motility, multidrug resistance, and HR-inducing activity on a nonhost plant. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1001-11. [PMID: 21615203 DOI: 10.1094/mpmi-02-11-0026] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To investigate the role of type IV pili in the virulence of phytopathogenic bacteria, four mutant strains for pilus biogenesis-related genes were generated in Pseudomonas syringae pv. tabaci 6605. PilA encodes the pilin protein as a major subunit of type IV pili, and the pilO product is reported to be required for pilus assembly. The fimU and fimT genes are predicted to produce minor pilins. Western blot analysis revealed that pilA, pilO, and fimU mutants but not the fimT mutant failed to construct type IV pili. Although the swimming motility of all mutant strains was not impaired in liquid medium, they showed remarkably reduced motilities on semisolid agar medium, suggesting that type IV pili are required for surface motilities. Virulence toward host tobacco plants and hypersensitive response-inducing ability in nonhost Arabidopsis leaves of pilA, pilO, and fimU mutant strains were reduced. These results might be a consequence of reduced expression of type III secretion system-related genes in the mutant strains. Further, all mutant strains showed enhanced expression of resistance-nodulation-division family members mexA, mexB, and oprM, and higher tolerance to antimicrobial compounds. These results indicate that type IV pili are an important virulence factor of this pathogen.
Collapse
|
18
|
Mhedbi-Hajri N, Jacques MA, Koebnik R. Adhesion mechanisms of plant-pathogenic Xanthomonadaceae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 715:71-89. [PMID: 21557058 DOI: 10.1007/978-94-007-0940-9_5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The family Xanthomonadaceae is a wide-spread family of bacteria belonging to the gamma subdivision of the Gram-negative proteobacteria, including the two plant-pathogenic genera Xanthomonas and Xylella, and the related genus Stenotrophomonas. Adhesion is a widely conserved virulence mechanism among Gram-negative bacteria, no matter whether they are human, animal or plant pathogens, since attachment to the host tissue is one of the key early steps of the bacterial infection process. Bacterial attachment to surfaces is mediated by surface structures that are anchored in the bacterial outer membrane and cover a broad group of fimbrial and non-fimbrial structures, commonly known as adhesins. In this chapter, we discuss recent findings on candidate adhesins of plant-pathogenic Xanthomonadaceae, including polysaccharidic (lipopolysaccharides, exopolysaccharides) and proteineous structures (chaperone/usher pili, type IV pili, autotransporters, two-partner-secreted and other outer membrane adhesins), their involvement in the formation of biofilms and their mode of regulation via quorum sensing. We then compare the arsenals of adhesins among different Xanthomonas strains and evaluate their mode of selection. Finally, we summarize the sparse knowledge on specific adhesin receptors in plants and the possible role of RGD motifs in binding to integrin-like plant molecules.
Collapse
Affiliation(s)
- Nadia Mhedbi-Hajri
- Pathologie Végétale (UMR077 INRA-Agrocampus Ouest-Université d'Angers), Beaucouzé, France.
| | | | | |
Collapse
|
19
|
Robène-Soustrade I, Legrand D, Gagnevin L, Chiroleu F, Laurent A, Pruvost O. Multiplex nested PCR for detection of Xanthomonas axonopodis pv. allii from onion seeds. Appl Environ Microbiol 2010; 76:2697-703. [PMID: 20208024 PMCID: PMC2863456 DOI: 10.1128/aem.02697-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 02/22/2010] [Indexed: 11/20/2022] Open
Abstract
Bacterial blight of onion (BBO) is an emerging disease that is present in many onion-producing areas. The causal agent, Xanthomonas axonopodis pv. allii, is seed transmitted. A reliable and sensitive diagnostic tool for testing seed health is needed. Detection of X. axonopodis pv. allii was achieved using a multiplex nested PCR assay developed using two randomly amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) sequences corresponding to pilus assembly genes (pilW and pilX) and the avrRxv gene, respectively. The multiplex nested PCR was used with a large collection of X. axonopodis pv. allii strains pathogenic to onion and/or other Allium species isolated in different regions of the world. The internal primers used in the multiplex PCR assay directed amplification for all 86 X. axonopodis pv. allii strains tested, resulting in a 401-bp amplicon, a 444- to 447-bp amplicon, or both amplicons, depending on the strain. No amplification was obtained for 41 unrelated phytopathogenic bacteria and for 14 saprophytic bacteria commonly isolated from onion leaves and seeds. Most Xanthomonas strains also did not produce amplicons, except for nine strains classified in X. axonopodis genetic subgroup 9.1 or 9.2 and not pathogenic to onion. Nevertheless, sequence signatures distinguished most of these strains from X. axonopodis pv. allii. The assay detected X. axonopodis pv. allii in seed lots with contamination levels of 5 x 10(2) CFU g(-1) or higher. The sensitivity threshold of the multiplex nested PCR assay was found to be 1 infected seed in 27,340 seeds. This PCR-based assay should be useful for certifying that commercial seed lots are free of this important seed-borne pathogen.
Collapse
Affiliation(s)
- Isabelle Robène-Soustrade
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7 chemin de l'Irat, Saint Pierre, La Réunion, France.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Plant pathogenic bacteria of the genus Xanthomonas cause a variety of diseases in economically important monocotyledonous and dicotyledonous crop plants worldwide. Successful infection and bacterial multiplication in the host tissue often depend on the virulence factors secreted including adhesins, polysaccharides, LPS and degradative enzymes. One of the key pathogenicity factors is the type III secretion system, which injects effector proteins into the host cell cytosol to manipulate plant cellular processes such as basal defense to the benefit of the pathogen. The coordinated expression of bacterial virulence factors is orchestrated by quorum-sensing pathways, multiple two-component systems and transcriptional regulators such as Clp, Zur, FhrR, HrpX and HpaR. Furthermore, virulence gene expression is post-transcriptionally controlled by the RNA-binding protein RsmA. In this review, we summarize the current knowledge on the infection strategies and regulatory networks controlling secreted virulence factors from Xanthomonas species.
Collapse
Affiliation(s)
- Daniela Büttner
- Genetics Department, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | | |
Collapse
|
21
|
Bahar O, Goffer T, Burdman S. Type IV Pili are required for virulence, twitching motility, and biofilm formation of acidovorax avenae subsp. Citrulli. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:909-20. [PMID: 19589067 DOI: 10.1094/mpmi-22-8-0909] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Acidovorax avenae subsp. citrulli is the causal agent of bacterial fruit blotch (BFB), a threatening disease of watermelon, melon, and other cucurbits. Despite the economic importance of BFB, relatively little is known about basic aspects of the pathogen's biology and the molecular basis of its interaction with host plants. To identify A. avenae subsp. citrulli genes associated with pathogenicity, we generated a transposon (Tn5) mutant library on the background of strain M6, a group I strain of A. avenae subsp. citrulli, and screened it for reduced virulence by seed-transmission assays with melon. Here, we report the identification of a Tn5 mutant with reduced virulence that is impaired in pilM, which encodes a protein involved in assembly of type IV pili (TFP). Further characterization of this mutant revealed that A. avenae subsp. citrulli requires TFP for twitching motility and wild-type levels of biofilm formation. Significant reductions in virulence and biofilm formation as well as abolishment of twitching were also observed in insertional mutants affected in other TFP genes. We also provide the first evidence that group I strains of A. avenae subsp. citrulli can colonize and move through host xylem vessels.
Collapse
Affiliation(s)
- Ofir Bahar
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | | | | |
Collapse
|
22
|
Darsonval A, Darrasse A, Durand K, Bureau C, Cesbron S, Jacques MA. Adhesion and fitness in the bean phyllosphere and transmission to seed of Xanthomonas fuscans subsp. fuscans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:747-57. [PMID: 19445599 DOI: 10.1094/mpmi-22-6-0747] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Deciphering the mechanisms enabling plant-pathogenic bacteria to disperse, colonize, and survive on their hosts provides the necessary basis to set up new control methods. We evaluated the role of bacterial attachment and biofilm formation in host colonization processes for Xanthomonas fuscans subsp. fuscans on its host. This bacterium is responsible for the common bacterial blight of bean (Phaseolus vulgaris), a seedborne disease. The five adhesin genes (pilA, fhab, xadA1, xadA2, and yapH) identified in X. fuscans subsp. fuscans CFBP4834-R strain were mutated. All mutants were altered in their abilities to adhere to polypropylene or seed. PilA was involved in adhesion and transmission to seed, and mutation of pilA led to lower pathogenicity on bean. YapH was required for adhesion to seed, leaves, and abiotic surfaces but not for in planta transmission to seed or aggressiveness on leaves. Transmission to seed through floral structures did not require any of the known adhesins. Conversely, all mutants tested, except in yapH, were altered in their vascular transmission to seed. In conclusion, we showed that adhesins are implicated in the various processes leading to host phyllosphere colonization and transmission to seed by plant-pathogenic bacteria.
Collapse
Affiliation(s)
- A Darsonval
- UMR077 PaVé, INRA, 42, F-49071 Beaucouzé, France
| | | | | | | | | | | |
Collapse
|
23
|
Travensolo RF, Carareto-Alves LM, Costa MVCG, Lopes TJS, Carrilho E, Lemos EGM. Xylella fastidiosa gene expression analysis by DNA microarrays. Genet Mol Biol 2009; 32:340-53. [PMID: 21637690 PMCID: PMC3036931 DOI: 10.1590/s1415-47572009005000038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 11/24/2008] [Indexed: 11/30/2022] Open
Abstract
Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcription reactions and which were obtained from bacteria grown under two different conditions (liquid XDM(2) and liquid BCYE). All data were statistically analyzed to verify which genes were differentially expressed. In addition to exploring conditions for X. fastidiosa genome-wide transcriptome analysis, the present work observed the differential expression of several classes of genes (energy, protein, amino acid and nucleotide metabolism, transport, degradation of substances, toxins and hypothetical proteins, among others). The understanding of expressed genes in these two different media will be useful in comprehending the metabolic characteristics of X. fastidiosa, and in evaluating how important certain genes are for the functioning and survival of these bacteria in plants.
Collapse
Affiliation(s)
- Regiane F Travensolo
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Das A, Rangaraj N, Sonti RV. Multiple adhesin-like functions of Xanthomonas oryzae pv. oryzae are involved in promoting leaf attachment, entry, and virulence on rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:73-85. [PMID: 19061404 DOI: 10.1094/mpmi-22-1-0073] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Xanthomonas oryzae pv. oryzae is the causal agent of bacterial blight of rice. We have used enhanced green fluorescent protein-tagged X. oryzae pv. oryzae cells in conjunction with confocal microscopy to monitor the role of several adhesin-like functions in bacterial adhesion to leaf surface and early stages of leaf entry. Mutations in genes encoding either the Xanthomonas adhesin-like protein A (XadA) or its paralog, Xanthomonas adhesin-like protein B (XadB), as well as the X. oryzae pv. oryzae homolog of Yersinia autotransporter-like protein H (YapH), exhibit deficiencies in leaf attachment or entry. A mutation in the X. oryzae pv. oryzae pilQ gene, which is predicted to encode the type IV pilus secretin, appears to have no effect on leaf attachment or entry. The xadA- mutant is deficient in the ability to cause disease following surface inoculation while the XadB, YapH, and PilQ functions are less important than XadA for this process. The xadA- and xadB- mutants have no effect on virulence following wound inoculation whereas the yapH- and pilQ- mutants are always virulence deficient following wound inoculation. Overall, these results indicate that multiple adhesin-like functions are involved in promoting virulence of X. oryzae pv. oryzae, with preferential involvement of individual functions at different stages of the disease process.
Collapse
Affiliation(s)
- Amit Das
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad-500 007, India
| | | | | |
Collapse
|
25
|
Fröls S, Ajon M, Wagner M, Teichmann D, Zolghadr B, Folea M, Boekema EJ, Driessen AJM, Schleper C, Albers SV. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol Microbiol 2008; 70:938-52. [DOI: 10.1111/j.1365-2958.2008.06459.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Abstract
The indoor atmosphere is an ecological unit that impacts on public health. To investigate the composition of organisms in this space, we applied culture-independent approaches to microbes harvested from the air of two densely populated urban buildings, from which we analyzed 80 megabases genomic DNA sequence and 6000 16S rDNA clones. The air microbiota is primarily bacteria, including potential opportunistic pathogens commonly isolated from human-inhabited environments such as hospitals, but none of the data contain matches to virulent pathogens or bioterror agents. Comparison of air samples with each other and nearby environments suggested that the indoor air microbes are not random transients from surrounding outdoor environments, but rather originate from indoor niches. Sequence annotation by gene function revealed specific adaptive capabilities enriched in the air environment, including genes potentially involved in resistance to desiccation and oxidative damage. This baseline index of air microbiota will be valuable for improving designs of surveillance for natural or man-made release of virulent pathogens.
Collapse
|
27
|
Aho EL, Urwin R, Batcheller AE, Holmgren AM, Havig K, Kulakoski AM, Vomhof EE, Longfors NS, Erickson CB, Anderson ZK, Dawlaty JM, Mueller JJ. Neisserial pilin genes display extensive interspecies diversity. FEMS Microbiol Lett 2005; 249:327-34. [PMID: 16009509 DOI: 10.1016/j.femsle.2005.06.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 06/10/2005] [Accepted: 06/14/2005] [Indexed: 10/25/2022] Open
Abstract
All Neisseria live in association with host cells, however, little is known about the genetic potential of nonpathogenic Neisseria species to express attachment factors such as pili. In this study, we demonstrate that type IV pilin-encoding genes are present in a wide range of Neisseria species. N. sicca, N. subflava, and N. elongata each contain two putative pilE genes arranged in tandem, while single genes were identified in N. polysaccharea, N. mucosa, and N. denitrificans. Neisserial pilE genes are highly diverse and display features consistent with a history of horizontal gene transfer.
Collapse
Affiliation(s)
- Ellen L Aho
- Department of Biology, Concordia College, 901 South 8th Street, Moorhead, MN 56562, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Büttner D, Caldana C, Gaigalat L, Goesmann A, Kay S, Kirchner O, Lanz C, Linke B, McHardy AC, Meyer F, Mittenhuber G, Nies DH, Niesbach-Klösgen U, Patschkowski T, Rückert C, Rupp O, Schneiker S, Schuster SC, Vorhölter FJ, Weber E, Pühler A, Bonas U, Bartels D, Kaiser O. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J Bacteriol 2005; 187:7254-66. [PMID: 16237009 PMCID: PMC1272972 DOI: 10.1128/jb.187.21.7254-7266.2005] [Citation(s) in RCA: 292] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria is the causative agent of bacterial spot disease in pepper and tomato plants, which leads to economically important yield losses. This pathosystem has become a well-established model for studying bacterial infection strategies. Here, we present the whole-genome sequence of the pepper-pathogenic Xanthomonas campestris pv. vesicatoria strain 85-10, which comprises a 5.17-Mb circular chromosome and four plasmids. The genome has a high G+C content (64.75%) and signatures of extensive genome plasticity. Whole-genome comparisons revealed a gene order similar to both Xanthomonas axonopodis pv. citri and Xanthomonas campestris pv. campestris and a structure completely different from Xanthomonas oryzae pv. oryzae. A total of 548 coding sequences (12.2%) are unique to X. campestris pv. vesicatoria. In addition to a type III secretion system, which is essential for pathogenicity, the genome of strain 85-10 encodes all other types of protein secretion systems described so far in gram-negative bacteria. Remarkably, one of the putative type IV secretion systems encoded on the largest plasmid is similar to the Icm/Dot systems of the human pathogens Legionella pneumophila and Coxiella burnetii. Comparisons with other completely sequenced plant pathogens predicted six novel type III effector proteins and several other virulence factors, including adhesins, cell wall-degrading enzymes, and extracellular polysaccharides.
Collapse
Affiliation(s)
- Frank Thieme
- Martin-Luther-Universität, Institut für Genetik, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Guilhabert MR, Kirkpatrick BC. Identification of Xylella fastidiosa antivirulence genes: hemagglutinin adhesins contribute a biofilm maturation to X. fastidios and colonization and attenuate virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:856-68. [PMID: 16134898 DOI: 10.1094/mpmi-18-0856] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Xylella fastidosa, a gram-negative, xylem-limited bacterium, is the causal agent of several economically important plant diseases, including Pierce's disease (PD) and citrus variegated chlorosis (CVC). Until recently, the inability to transform or produce transposon mutants of X. fastidosa had been a major impediment to identifying X. fastidosa genes that mediate pathogen and plant interactions. A random transposon (Tn5) library of X. fastidosa was constructed and screened for mutants showing more severe symptoms and earlier grapevine death (hypervirulence) than did vines infected with the wild type. Seven hypervirulent mutants identified in this screen moved faster and reached higher populations than the wild type in grapevines. These results suggest that X. fastidosa attenuates its virulence in planta and that movement is important in X. fastidosa virulence. The mutated genes were sequenced and none had been described previously as antivirulence genes, although six of them showed similarity with genes of known functions in other organisms. One transposon insertion inactivated a hemagglutinin adhesin gene (PD2118), which we named HxfA. Another mutant in a second putative X. fastidosa hemagglutinin gene, PD1792 (HxfB), was constructed, and further characterization of these hxf mutants suggests that X. fastidosa hemagglutinins mediate contact between X. fastidosa cells, which results in colony formation and biofilm maturation within the xylem vessels.
Collapse
|
30
|
Weber E, Ojanen-Reuhs T, Huguet E, Hause G, Romantschuk M, Korhonen TK, Bonas U, Koebnik R. The type III-dependent Hrp pilus is required for productive interaction of Xanthomonas campestris pv. vesicatoria with pepper host plants. J Bacteriol 2005; 187:2458-68. [PMID: 15774889 PMCID: PMC1065247 DOI: 10.1128/jb.187.7.2458-2468.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria expresses a type III secretion system that is necessary for both pathogenicity in susceptible hosts and the induction of the hypersensitive response in resistant plants. This specialized protein transport system is encoded by a 23-kb hrp (hypersensitive response and pathogenicity) gene cluster. Here we show that X. campestris pv. vesicatoria produces filamentous structures, the Hrp pili, at the cell surface under hrp-inducing conditions. Analysis of purified Hrp pili and immunoelectron microscopy revealed that the major component of the Hrp pilus is the HrpE protein which is encoded in the hrp gene cluster. Sequence homologues of hrpE are only found in other xanthomonads. However, hrpE is syntenic to the hrpY gene from another plant pathogen, Ralstonia solanacearum. Bioinformatic analyses suggest that all major Hrp pilus subunits from gram-negative plant pathogens may share the same structural organization, i.e., a predominant alpha-helical structure. Analysis of nonpolar mutants in hrpE demonstrated that the Hrp pilus is essential for the productive interaction of X. campestris pv. vesicatoria with pepper host plants. Furthermore, a functional Hrp pilus is required for type III-dependent protein secretion. Immunoelectron microscopy revealed that type III-secreted proteins, such as HrpF and AvrBs3, are in close contact with the Hrp pilus during and/or after their secretion. By systematic analysis of nonpolar hrp/hrc (hrp conserved) and hpa (hrp associated) mutants, we found that Hpa proteins as well as the translocon protein HrpF are dispensable for pilus assembly, while all other Hrp and Hrc proteins are required. Hence, there are no other conserved Hrp or Hrc proteins that act downstream of HrpE during type III-dependent protein translocation.
Collapse
Affiliation(s)
- Ernst Weber
- Martin-Luther-Universität, Institut für Genetik, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Guttman DS. Plants as models for the study of human pathogenesis. Biotechnol Adv 2004; 22:363-82. [PMID: 15063457 DOI: 10.1016/j.biotechadv.2003.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Accepted: 11/20/2003] [Indexed: 12/29/2022]
Abstract
There are many common disease mechanisms used by bacterial pathogens of plants and humans. They use common means of attachment, secretion and genetic regulation. They share many virulence factors, such as extracellular polysaccharides and some type III secreted effectors. Plant and human innate immune systems also share many similarities. Many of these shared bacterial virulence mechanisms are homologous, but even more appear to have independently converged on a common function. This combination of homologous and analogous systems reveals conserved and critical steps in the disease process. Given these similarities, and the many experimental advantages of plant biology, including ease of replication, stringent genetic and reproductive control, and high throughput with low cost, it is proposed that plants would make excellent models for the study of human pathogenesis.
Collapse
Affiliation(s)
- David S Guttman
- Department of Botany, University of Toronto, 25 Willcocks St., Toronto, ON, Canada M5S 3B2.
| |
Collapse
|
32
|
Genin S, Boucher C. Lessons learned from the genome analysis of ralstonia solanacearum. ANNUAL REVIEW OF PHYTOPATHOLOGY 2004; 42:107-134. [PMID: 15283662 DOI: 10.1146/annurev.phyto.42.011204.104301] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ralstonia solanacearum is a devastating plant pathogen with a global distribution and an unusually wide host range. This bacterium can also be free-living as a saprophyte in water or in the soil in the absence of host plants. The availability of the complete genome sequence from strain GMI1000 provided the basis for an integrative analysis of the molecular traits determining the adaptation of the bacterium to various environmental niches and pathogenicity toward plants. This review summarizes current knowledge and speculates on some key bacterial functions, including metabolic versatility, resistance to metals, complex and extensive systems for motility and attachment to external surfaces, and multiple protein secretion systems. Genome sequence analysis provides clues about the evolution of essential virulence genes such as those encoding the Type III secretion system and related pathogenicity effectors. It also provided insights into possible mechanisms contributing to the rapid adaptation of the bacterium to its environment in general and to its interaction with plants in particular.
Collapse
Affiliation(s)
- Stéphane Genin
- Laboratoire Interactions Plantes-Microorganismes, CNRS-INRA, Castanet-Tolosan, France.
| | | |
Collapse
|
33
|
de Souza AA, Takita MA, Coletta-Filho HD, Caldana C, Goldman GH, Yanai GM, Muto NH, de Oliveira RC, Nunes LR, Machado MA. Analysis of gene expression in two growth states of Xylella fastidiosa and its relationship with pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:867-875. [PMID: 14558688 DOI: 10.1094/mpmi.2003.16.10.867] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Xylella fastidiosa is a plant pathogen responsible for diseases of economically important crops. Although there is considerable disagreement about its mechanism of pathogenicity, blockage of the vessels is one of the most accepted hypotheses. Loss of virulence by this bacterium was observed after serial passages in axenic culture. To confirm the loss of pathogenicity of X. fastidiosa, the causing agent of citrus variegated chlorosis (CVC), freshly-isolated bacteria (first passage [FP] condition) as well as bacteria obtained after 46 passages in axenic culture (several passage [SP] condition) were inoculated into sweet orange and periwinkle plants. Using real time quantitative polymerase chain reaction, we verified that the colonization of FP cells was more efficient for both hosts. The sequence of the complete X. fastidiosa genome allowed the construction of a DNA microarray that was used to investigate the total changes in gene expression associated with the FP condition. Most genes found to be induced in the FP condition were associated with adhesion and probably with adaptation to the host environment. This report represents the first study of the transcriptome of this pathogen, which has recently gained more importance, since the genome of several strains has been either partially or entirely sequenced.
Collapse
|
34
|
Kang Y, Liu H, Genin S, Schell MA, Denny TP. Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Mol Microbiol 2002; 46:427-37. [PMID: 12406219 DOI: 10.1046/j.1365-2958.2002.03187.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As reported previously for Ralstonia solanacearum strain GMI1000, wild-type strains AW1 and K60 were shown to produce Hrp pili. AW1 and K60 mutants lacking Hrp pili still exhibited twitching motility, which requires type 4 pili (Tfp), and electron microscopy revealed that they still made flexuous polar pili. Twitching-positive cells had an extracellular 17 kDa protein that was associated with piliation, and an internal 43-amino-acid sequence of this protein was typical of type 4 pilins. This amino acid sequence is encoded by an open reading frame, designated pilA, in the genomic sequence of GMI1000. PilA is 46% identical to a Pseudomonas aeruginosa type 4 pilin over its entire length and has all the conserved residues and motifs characteristic of type 4 group A pilins. pilA mutants did not make the 17 kDa PilA protein and did not exhibit twitching motility. When compared with its parent, an AW1 pilA mutant was reduced in virulence on tomato plants and in autoaggregation and biofilm formation in broth culture. Unlike AW1, a pilA mutant did not exhibit polar attachment to tobacco suspension culture cells or to tomato roots; it was also not naturally competent for transformation. We reported previously that twitching motility ceases in maturing AW1 colonies and that inactivation of PhcA, a global transcriptional regulator, results in colonies that continue to exhibit twitching motility. Similarly, in broth culture, expression of a pilA::lacZ fusion in AW1 decreased 10-fold at high cell density, but expression remained high in a phcA mutant. In addition, pilA::lacZ expression was positively regulated 10-fold by PehR, a response regulator that is known to be repressed by PhcA. This signal cascade is sufficient to explain why pilA expression, and thus twitching motility, decreases at high cell densities.
Collapse
Affiliation(s)
- Yaowei Kang
- Department of Plant Pathology, University of Georgia, Athens, GA 30602-7274, USA
| | | | | | | | | |
Collapse
|
35
|
Rojas CM, Ham JH, Deng WL, Doyle JJ, Collmer A. HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Proc Natl Acad Sci U S A 2002; 99:13142-7. [PMID: 12271135 PMCID: PMC130600 DOI: 10.1073/pnas.202358699] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Indexed: 01/12/2023] Open
Abstract
Erwinia chrysanthemi is representative of a broad class of bacterial pathogens that are capable of inducing necrosis in plants. The E. chrysanthemi EC16 hecA gene predicts a 3,850-aa member of the Bordetella pertussis filamentous hemagglutinin family of adhesins. A hecATn7 mutant was reduced in virulence on Nicotiana clevelandii seedlings after inoculation without wounding. Epifluorescence and confocal laser-scanning microscopy observations of hecA and wild-type cells expressing the green fluorescent protein revealed that the mutant is reduced in its ability to attach and then form aggregates on leaves and to cause an aggregate-associated killing of epidermal cells. Cell killing also depended on production of the major pectate lyase isozymes and the type II, but not the type III, secretion pathway in E. chrysanthemi. HecA homologs were found in bacterial pathogens of plants and animals and appear to be unique to pathogens and universal in necrogenic plant pathogens. Phylogenetic comparison of the conserved two-partner secretion domains in the proteins and the 16S rRNA sequences in respective bacteria revealed the two datasets to be fundamentally incongruent, suggesting horizontal acquisition of these genes. Furthermore, hecA and its two homologs in Yersinia pestis had a G+C content that was 10% higher than that of their genomes and similar to that of plant pathogenic Ralstonia, Xylella, and Pseudomonas spp. Our data suggest that filamentous hemagglutinin-like adhesins are broadly important virulence factors in both plant and animal pathogens.
Collapse
Affiliation(s)
- Clemencia M Rojas
- Department of Plant Pathology and L. H. Bailey Hortorium, Cornell University, Ithaca, NY 14853
| | | | | | | | | |
Collapse
|
36
|
Bhattacharyya A, Stilwagen S, Ivanova N, D'Souza M, Bernal A, Lykidis A, Kapatral V, Anderson I, Larsen N, Los T, Reznik G, Selkov E, Walunas TL, Feil H, Feil WS, Purcell A, Lassez JL, Hawkins TL, Haselkorn R, Overbeek R, Predki PF, Kyrpides NC. Whole-genome comparative analysis of three phytopathogenic Xylella fastidiosa strains. Proc Natl Acad Sci U S A 2002; 99:12403-8. [PMID: 12205291 PMCID: PMC129457 DOI: 10.1073/pnas.132393999] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Xylella fastidiosa (Xf) causes wilt disease in plants and is responsible for major economic and crop losses globally. Owing to the public importance of this phytopathogen we embarked on a comparative analysis of the complete genome of Xf pv citrus and the partial genomes of two recently sequenced strains of this species: Xf pv almond and Xf pv oleander, which cause leaf scorch in almond and oleander plants, respectively. We report a reanalysis of the previously sequenced Xf 9a5c (CVC, citrus) strain and the two "gapped" Xf genomes revealing ORFs encoding critical functions in pathogenicity and conjugative transfer. Second, a detailed whole-genome functional comparison was based on the three sequenced Xf strains, identifying the unique genes present in each strain, in addition to those shared between strains. Third, an "in silico" cellular reconstruction of these organisms was made, based on a comparison of their core functional subsystems that led to a characterization of their conjugative transfer machinery, identification of potential differences in their adhesion mechanisms, and highlighting of the absence of a classical quorum-sensing mechanism. This study demonstrates the effectiveness of comparative analysis strategies in the interpretation of genomes that are closely related.
Collapse
|
37
|
Van Sluys MA, Monteiro-Vitorello CB, Camargo LEA, Menck CFM, Da Silva ACR, Ferro JA, Oliveira MC, Setubal JC, Kitajima JP, Simpson AJ. Comparative genomic analysis of plant-associated bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2002; 40:169-189. [PMID: 12147758 DOI: 10.1146/annurev.phyto.40.030402.090559] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This review deals with a comparative analysis of seven genome sequences from plant-associated bacteria. These are the genomes of Agrobacterium tumefaciens, Mesorhizobium loti, Sinorhizobium meliloti, Xanthomonas campestris pv campestris, Xanthomonas axonopodis pv citri, Xylella fastidiosa, and Ralstonia solanacearum. Genome structure and the metabolism pathways available highlight the compromise between the genome size and lifestyle. Despite the recognized importance of the type III secretion system in controlling host compatibility, its presence is not universal in all necrogenic pathogens. Hemolysins, hemagglutinins, and some adhesins, previously reported only for mammalian pathogens, are present in most organisms discussed. Different numbers and combinations of cell wall degrading enzymes and genes to overcome the oxidative burst generally induced by the plant host are characterized in these genomes. A total of 19 genes not involved in housekeeping functions were found common to all these bacteria.
Collapse
Affiliation(s)
- M A Van Sluys
- Depto de Botânica, Instituto de Biociências, Universidade de São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu H, Kang Y, Genin S, Schell MA, Denny TP. Twitching motility of Ralstonia solanacearum requires a type IV pilus system. MICROBIOLOGY (READING, ENGLAND) 2001; 147:3215-29. [PMID: 11739754 DOI: 10.1099/00221287-147-12-3215] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Twitching motility is a form of bacterial translocation over firm surfaces that requires retractile type IV pili. Microscopic colonies of Ralstonia solanacearum strains AW1, K60 and GMI1000 growing on the surface of a rich medium solidified with 1.6% agar appeared to exhibit twitching motility, because early on they divided into motile 'rafts' of cells and later developed protruding 'spearheads' at their margins. Individual motile bacteria were observed only when they were embedded within masses of other cells. Varying degrees of motility were observed for 33 of 35 strains of R. solanacearum in a selected, diverse collection. Timing was more important than culture conditions for observing motility, because by the time wild-type colonies were easily visible by eye (about 48 h) this activity ceased and the spearheads were obscured by continued bacterial multiplication. In contrast, inactivation of PhcA, a transcriptional regulator that is essential for R. solanacearum to cause plant disease, resulted in colonies that continued to expand for at least several additional days. Multiple strains with mutations in regulatory genes important for virulence were tested, but all exhibited wild-type motility. Many of the genes required for production of functional type IV pili, and hence for twitching motility, are conserved among unrelated bacteria, and pilD, pilQ and pilT orthologues were identified in R. solanacearum. Colonies of R. solanacearum pilQ and pilT mutants did not develop spearheads or rafts, confirming that the movement of cells that had been observed was due to twitching motility. Compared to the wild-type parents, both pilQ and pilT mutants caused slower and less severe wilting on susceptible tomato plants. This is the first report of twitching motility by a phytopathogenic bacterium, and the first example where type IV pili appear to contribute significantly to plant pathogenesis.
Collapse
Affiliation(s)
- H Liu
- Departments of Plant Pathology and Microbiology, University of Georgia, Athens, GA 30602, USA. Laboratoire de Biologie Moléculaire des Relations Plantes-Micro-organismes, INRA-CNRS, Toulouse, France
| | | | | | | | | |
Collapse
|
39
|
Park HS, Wolfgang M, van Putten JP, Dorward D, Hayes SF, Koomey M. Structural alterations in a type IV pilus subunit protein result in concurrent defects in multicellular behaviour and adherence to host tissue. Mol Microbiol 2001; 42:293-307. [PMID: 11703655 DOI: 10.1046/j.1365-2958.2001.02629.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of bacteria to establish complex communities on surfaces is believed to require both bacterial-substratum and bacterial-bacterial interactions, and type IV pili appear to play a critical but incompletely defined role in both these processes. Using the human pathogen Neisseria gonorrhoeae, spontaneous mutants defective in bacterial self-aggregative behaviour but quantitatively unaltered in pilus fibre expression were isolated by a unique selective scheme. The mutants, carrying single amino acid substitutions within the conserved amino-terminal domain of the pilus fibre subunit, were reduced in the ability to adhere to a human epithelial cell line. Co-expression of the altered alleles in the context of a wild-type pilE gene confirmed that they were dominant negative with respect to aggregation and human cell adherence. Strains expressing two copies of the altered alleles produced twice as much purifiable pili but retained the aggregative and adherence defects. Finally, the defects in aggregative behaviour and adherence of each of the mutants were suppressed by a loss-of-function mutation in the twitching motility gene pilT. The correlations between self-aggregation and the net capacity of the microbial population to adhere efficiently demonstrates the potential significance of bacterial cell-cell interactions to colonization.
Collapse
Affiliation(s)
- H S Park
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
40
|
van Doorn J, Hollinger TC, Oudega B. Analysis of the type IV fimbrial-subunit gene fimA of Xanthomonas hyacinthi: application in PCR-mediated detection of yellow disease in Hyacinths. Appl Environ Microbiol 2001; 67:598-607. [PMID: 11157222 PMCID: PMC92626 DOI: 10.1128/aem.67.2.598-607.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2000] [Accepted: 11/16/2000] [Indexed: 11/20/2022] Open
Abstract
A sensitive and specific detection method was developed for Xanthomonas hyacinthi; this method was based on amplification of a subsequence of the type IV fimbrial-subunit gene fimA from strain S148. The fimA gene was amplified by PCR with degenerate DNA primers designed by using the N-terminal and C-terminal amino acid sequences of trypsin fragments of FimA. The nucleotide sequence of fimA was determined and compared with the nucleotide sequences coding for the fimbrial subunits in other type IV fimbria-producing bacteria, such as Xanthomonas campestris pv. vesicatoria, Neisseria gonorrhoeae, and Moraxella bovis. In a PCR internal primers JAAN and JARA, designed by using the nucleotide sequences of the variable central and C-terminal region of fimA, amplified a 226-bp DNA fragment in all X. hyacinthi isolates. This PCR was shown to be pathovar specific, as assessed by testing 71 Xanthomonas pathovars and bacterial isolates belonging to other genera, such as Erwinia and Pseudomonas. Southern hybridization experiments performed with the labelled 226-bp DNA amplicon as a probe suggested that there is only one structural type IV fimbrial-gene cluster in X. hyacinthi. Only two Xanthomonas translucens pathovars cross-reacted weakly in PCR. Primers amplifying a subsequence of the fimA gene of X. campestris pv. vesicatoria (T. Ojanen-Reuhs, N. Kalkkinen, B. Westerlund-Wikström, J. van Doorn, K. Haahtela, E.-L. Nurmiaho-Lassila, K. Wengelink, U. Bonas, and T. K. Korhonen, J. Bacteriol. 179: 1280-1290, 1997) were shown to be pathovar specific, indicating that the fimbrial-subunit sequences are more generally applicable in xanthomonads for detection purposes. Under laboratory conditions, approximately 1,000 CFU of X. hyacinthi per ml could be detected. In inoculated leaves of hyacinths the threshold was 5,000 CFU/ml. The results indicated that infected hyacinths with early symptoms could be successfully screened for X. hyacinthi with PCR.
Collapse
Affiliation(s)
- J van Doorn
- Department of Plant Quality, Bulb Research Centre, 2160 AB Lisse, The Netherlands.
| | | | | |
Collapse
|
41
|
Lugtenberg BJ, Dekkers L, Bloemberg GV. Molecular determinants of rhizosphere colonization by Pseudomonas. ANNUAL REVIEW OF PHYTOPATHOLOGY 2001; 39:461-90. [PMID: 11701873 DOI: 10.1146/annurev.phyto.39.1.461] [Citation(s) in RCA: 353] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rhizosphere colonization is one of the first steps in the pathogenesis of soilborne microorganisms. It can also be crucial for the action of microbial inoculants used as biofertilizers, biopesticides, phytostimulators, and bioremediators. Pseudomonas, one of the best root colonizers, is therefore used as a model root colonizer. This review focuses on (a) the temporal-spatial description of root-colonizing bacteria as visualized by confocal laser scanning microscopal analysis of autofluorescent microorganisms, and (b) bacterial genes and traits involved in root colonization. The results show a strong parallel between traits used for the colonization of roots and of animal tissues, indicating the general importance of such a study. Finally, we identify several noteworthy areas for future research.
Collapse
Affiliation(s)
- B J Lugtenberg
- Leiden University, Institute of Molecular Plant Sciences, Clusius Laboratory Wassenaarseweg 64, 2333 AL Leiden, The Netherlands.
| | | | | |
Collapse
|
42
|
Graupner S, Frey V, Hashemi R, Lorenz MG, Brandes G, Wackernagel W. Type IV pilus genes pilA and pilC of Pseudomonas stutzeri are required for natural genetic transformation, and pilA can be replaced by corresponding genes from nontransformable species. J Bacteriol 2000; 182:2184-90. [PMID: 10735861 PMCID: PMC111267 DOI: 10.1128/jb.182.8.2184-2190.2000] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas stutzeri lives in terrestrial and aquatic habitats and is capable of natural genetic transformation. After transposon mutagenesis, transformation-deficient mutants were isolated from a P. stutzeri JM300 strain. In one of them a gene which coded for a protein with 75% amino acid sequence identity to PilC of Pseudomonas aeruginosa, an accessory protein for type IV pilus biogenesis, was inactivated. The presence of type IV pili was demonstrated by susceptibility to the type IV pilus-dependent phage PO4, by occurrence of twitching motility, and by electron microscopy. The pilC mutant had no pili and was defective in twitching motility. Further sequencing revealed that pilC is clustered in an operon with genes homologous to pilB and pilD of P. aeruginosa, which are also involved in pilus formation. Next to these genes but transcribed in the opposite orientation a pilA gene encoding a protein with high amino acid sequence identity to pilin, the structural component of type IV pili, was identified. Insertional inactivation of pilA abolished pilus formation, PO4 plating, twitching motility, and natural transformation. The amounts of (3)H-labeled P. stutzeri DNA that were bound to competent parental cells and taken up were strongly reduced in the pilC and pilA mutants. Remarkably, the cloned pilA genes from nontransformable organisms like Dichelobacter nodosus and the PAK and PAO strains of P. aeruginosa fully restored pilus formation and transformability of the P. stutzeri pilA mutant (along with PO4 plating and twitching motility). It is concluded that the type IV pili of the soil bacterium P. stutzeri function in DNA uptake for transformation and that their role in this process is not confined to the species-specific pilin.
Collapse
Affiliation(s)
- S Graupner
- AG Genetik, Fachbereich Biologie, Universität Oldenburg, D-26111 Oldenburg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
van Doorn J, Ojanen-Reuhs T, Hollinger TC, Reuhs BL, Schots A, Boonekamp PM, Oudega B. Development and application of pathovar-specific monoclonal antibodies that recognize the lipopolysaccharide O antigen and the type IV fimbriae of Xanthomonas hyacinthi. Appl Environ Microbiol 1999; 65:4171-80. [PMID: 10473431 PMCID: PMC99756 DOI: 10.1128/aem.65.9.4171-4180.1999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to develop a specific immunological diagnostic assay for yellow disease in hyacinths, using monoclonal antibodies (MAbs). Mice were immunized with a crude cell wall preparation (shear fraction) from Xanthomonas hyacinthi and with purified type IV fimbriae. Hybridomas were screened for a positive reaction with X. hyacinthi cells or fimbriae and for a negative reaction with X. translucens pv. graminis or Erwinia carotovora subsp. carotovora. Nine MAbs recognized fimbrial epitopes, as shown by immunoblotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and immunoelectron microscopy; however, three of these MAbs had weak cross-reactions with two X. translucens pathovars in immunoblotting experiments. Seven MAbs reacted with lipopolysaccharides and yielded a low-mobility ladder pattern on immunoblots. Subsequent analysis of MAb 2E5 showed that it specifically recognized an epitope on the O antigen, which was found to consist of rhamnose and fucose in a 2:1 molar ratio. The cross-reaction of MAb 2E5 with all X. hyacinthi strains tested showed that this O antigen is highly conserved within this species. MAb 1B10 also reacted with lipopolysaccharides. MAbs 2E5 and 1B10 were further tested in ELISA and immunoblotting experiments with cells and extracts from other pathogens. No cross-reaction was found with 27 other Xanthomonas pathovars tested or with 14 other bacterial species from other genera, such as Erwinia and Pseudomonas, indicating the high specificity of these antibodies. MAbs 2E5 and 1B10 were shown to be useful in ELISA for the detection of X. hyacinthi in infected hyacinths.
Collapse
Affiliation(s)
- J van Doorn
- Department of Plant Quality, Bulb Research Centre, 2160 AB Lisse, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
44
|
Pegden RS, Larson MA, Grant RJ, Morrison M. Adherence of the gram-positive bacterium Ruminococcus albus to cellulose and identification of a novel form of cellulose-binding protein which belongs to the Pil family of proteins. J Bacteriol 1998; 180:5921-7. [PMID: 9811650 PMCID: PMC107666 DOI: 10.1128/jb.180.22.5921-5927.1998] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adherence of Ruminococcus albus 8 to crystalline cellulose was studied, and an affinity-based assay was also used to identify candidate cellulose-binding protein(s). Bacterial adherence in cellulose-binding assays was significantly increased by the inclusion of either ruminal fluid or micromolar concentrations of both phenylacetic and phenylpropionic acids in the growth medium, and the addition of carboxymethylcellulose (CMC) to assays decreased the adherence of the bacterium to cellulose. A cellulose-binding protein with an estimated molecular mass following sodium dodecyl sulfate-polyacrylamide gel electrophoresis of approximately 21 kDa, designated CbpC, was present in both cellobiose- and cellulose-grown cultures, and the relative abundance of this protein increased in response to growth on cellulose. Addition of 0.1% (wt/vol) CMC to the binding assays had an inhibitory effect on CbpC binding to cellulose, consistent with the notion that CbpC plays a role in bacterial attachment to cellulose. The nucleotide sequence of the cbpC gene was determined by a combination of reverse genetics and genomic walking procedures. The cbpC gene encodes a protein of 169 amino acids with a calculated molecular mass of 17,655 Da. The amino-terminal third of the CbpC protein possesses the motif characteristic of the Pil family of proteins, which are most commonly involved with the formation of type 4 fimbriae and other surface-associated protein complexes in gram-negative, pathogenic bacteria. The remainder of the predicted CbpC sequence was found to have significant identity with 72- and 75-amino-acid motifs tandemly repeated in the 190-kDa surface antigen protein of Rickettsia spp., as well as one of the major capsid glycoproteins of the Chlorella virus PBCV-1. Northern blot analysis showed that phenylpropionic acid and ruminal fluid increase cbpC mRNA abundance in cellobiose-grown cells. These results suggest that CbpC is a novel cellulose-binding protein that may be involved in adherence of R. albus to substrate and extends understanding of the distribution of the Pil family of proteins in gram-positive bacteria.
Collapse
Affiliation(s)
- R S Pegden
- Department of Animal Sciences, University of Nebraska, Lincoln, Nebraska 68583-0908, USA
| | | | | | | |
Collapse
|
45
|
Roine E, Raineri DM, Romantschuk M, Wilson M, Nunn DN. Characterization of type IV pilus genes in Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:1048-1056. [PMID: 9805392 DOI: 10.1094/mpmi.1998.11.11.1048] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many strains of Pseudomonas syringae produce retractile pili that act as receptors for lytic bacteriophage phi 6. As these are also characteristics of type IV pili, it was postulated that P. syringae may possess genes for type IV pilus biogenesis. A cosmid clone bank of P. syringae pv. tomato DC3000 genomic DNA was used to complement a mutant of Pseudomonas aeruginosa defective in the PilD (XcpA) prepilin peptidase gene by selection for restoration of extracellular protein secretion, a function also known to require PilD. A cosmid able to complement this mutant was also able to complement mutations in the pilB and pilC genes, suggesting that, if the organization of these genes is similar to that of P. aeruginosa, the cosmid may contain the P. syringae pilA. This was confirmed by sequencing a region from this plasmid that was shown to hybridize at low stringency to the P. aeruginosa pilA gene. The deduced P. syringae PilA polypeptide possesses the characteristic properties of the type IV pilins. Heterologous expression of the P. syringae pilA in P. aeruginosa was also shown, conferring not only phi 6 phage sensitivity to P. aeruginosa pilA mutants but also sensitivity to PO4, a lytic bacteriophage specific for the pilus of P. aeruginosa. This suggests that additional components might be present in the mature pilus of P. aeruginosa that are the true receptors for this phage. Chromosomal mutations in P. syringae pv. tomato DC3000 pilA and pilD genes were shown to abolish its sensitivity to bacteriophage phi 6. To determine the importance of P. syringae pilus in plant leaf interactions, these mutations were tested under laboratory and field conditions. Although little effect was seen on pathogenicity, culturable leaf-associated population sizes of the pilA mutant were significantly different from those of the wild-type parent. In addition, the expression of the DC3000 pilA gene appears to contribute to the UV tolerance of P. syringae and may play a role in survival on the plant leaf surface.
Collapse
Affiliation(s)
- E Roine
- Department of Biosciences, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
46
|
Dörr J, Hurek T, Reinhold-Hurek B. Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol Microbiol 1998; 30:7-17. [PMID: 9786181 DOI: 10.1046/j.1365-2958.1998.01010.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adherence of bacteria to eukaryotic cells is essential for the initiation of infection in many animal and human pathogens, e.g. Neisseria gonorrhoeae and Pseudomonas aeruginosa. Adhesion-mediating type IV pili, filamentous surface appendages formed by pilin subunits, are crucial virulence factors. Here, we report that type IV pilus-dependent adhesion is also involved in plant-bacteria and fungus-bacteria interactions. Nitrogen-fixing, endophytic bacteria, Azoarcus sp., can infect the roots of rice and spread systemically into the shoot without causing symptoms of plant disease. Formation of pili on solid media was dependent on the pilAB locus. PilA encodes an unusually short (6.4 kDa) putative pilin precursor showing 100% homology to the conserved N-terminus of the Pseudomonas aeruginosa type IV pilin. PilB encodes for a 14.2 kDa polypeptide showing similarity to FimF, a component of type I fimbriae of Escherichia coli. It was found to be extruded beyond the cell surface by immunofluorescence studies, and it may, therefore, be part of a pilus assembly complex or the pilus itself. Both genes are involved in the establishment of bacteria on the root surface of rice seedlings, as detected by fluorescence microscopy. Moreover, both genes are necessary for bacterial adhesion to the mycelium of an ascomycete, which was isolated from the same rhizosphere as the bacteria. In co-culture with the fungus, Azoarcus sp. forms complex intracytoplasmic membranes, diazosomes, which are related to efficient nitrogen fixation. Adhesion to the mycelium appears to be crucial for this process, as diazosomes were absent and nitrogen fixation rates were decreased in pilAB mutants in co-culture.
Collapse
Affiliation(s)
- J Dörr
- Max-Planck-Institut für terrestrische Mikrobiologie, Arbeitsgruppe Symbioseforschung, Marburg, Germany
| | | | | |
Collapse
|