1
|
Bellanger T, Weidmann S. Is the lipochaperone activity of sHSP a key to the stress response encoded in its primary sequence? Cell Stress Chaperones 2023; 28:21-33. [PMID: 36367671 PMCID: PMC9877275 DOI: 10.1007/s12192-022-01308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Several strategies have been put in place by organisms to adapt to their environment. One of these strategies is the production of stress proteins such as sHSPs, which have been widely described over the last 30 years for their role as molecular chaperones. Some sHSPs have, in addition, the particularity to exert a lipochaperone role by interacting with membrane lipids to maintain an optimal membrane fluidity. However, the mechanisms involved in this sHSP-lipid interaction remain poorly understood and described rather sporadically in the literature. This review gathers the information concerning the structure and function of these proteins available in the literature in order to highlight the mechanism involved in this interaction. In addition, analysis of primary sequence data of sHSPs available in database shows that sHSPs can interact with lipids via certain amino acid residues present on some β sheets of these proteins. These residues could have a key role in the structure and/or oligomerization dynamics of sHPSs, which is certainly essential for interaction with membrane lipids and consequently for maintaining optimal cell membrane fluidity.
Collapse
Affiliation(s)
- Tiffany Bellanger
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Stéphanie Weidmann
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| |
Collapse
|
2
|
Ursem R, Swarge B, Abhyankar WR, Buncherd H, de Koning LJ, Setlow P, Brul S, Kramer G. Identification of Native Cross-Links in Bacillus subtilis Spore Coat Proteins. J Proteome Res 2021; 20:1809-1816. [PMID: 33596081 PMCID: PMC7944565 DOI: 10.1021/acs.jproteome.1c00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The resistance properties of the bacterial spores are partially due to spore surface proteins, ∼30% of which are said to form an insoluble protein fraction. Previous research has also identified a group of spore coat proteins affected by spore maturation, which exhibit an increased level of interprotein cross-linking. However, the proteins and the types of cross-links involved, previously proposed based on indirect evidence, have yet to be confirmed experimentally. To obtain more insight into the structural basis of the proteinaceous component of the spore coat, we attempted to identify coat cross-links and the proteins involved using new peptide fractionation and bioinformatic methods. Young (day 1) and matured (day 5) Bacillus subtilis spores of wild-type and transglutaminase mutant strains were digested with formic acid and trypsin, and cross-linked peptides were enriched using strong cation exchange chromatography. The enriched cross-linked peptide fractions were subjected to Fourier-transform ion cyclotron resonance tandem mass spectrometry, and the high-quality fragmentation data obtained were analyzed using two specialized software tools, pLink2 and XiSearch, to identify cross-links. This analysis identified specific disulfide bonds between coat proteins CotE-CotE and CotJA-CotJC, obtained evidence of disulfide bonds in the spore crust proteins CotX, CotY, and CotZ, and identified dityrosine and ε-(γ)-glutamyl-lysine cross-linked coat proteins. The findings in this Letter are the first direct biochemical data on protein cross-linking in the spore coat and the first direct evidence of the cross-linked building blocks of the highly ordered and resistant structure called the spore coat.
Collapse
Affiliation(s)
| | | | | | - Hansuk Buncherd
- Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| | | | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut 06030-3305, United States
| | | | | |
Collapse
|
3
|
Aronson A. Regulation of expression of a select group of Bacillus anthracis spore coat proteins. FEMS Microbiol Lett 2019; 365:4942285. [PMID: 29562329 DOI: 10.1093/femsle/fny063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/16/2018] [Indexed: 12/30/2022] Open
Abstract
The spore coat of Bacilli is a relatively complex structure comprised of about 70 species of proteins in 2 or 3 layers. While some are involved in assembly or protection, the regulation of many are not well defined so lacZ transcriptional fusions were constructed to six Bacillus anthracis spore coat genes in order to gain insight into their possible functions. The genes were selected on the basis of the location of the encoded proteins within the coat and distribution among spore forming species. Conditions tested were temperature and media either as solid or liquid. The most extensive differences were for the relatively well expressed fusions to the cotH and cotM genes, which were greatest at 30°C on plates of a nutrient rich medium. The cotJ operon was moderately expressed under all conditions although somewhat higher on enriched plates at 30°C. Cot S was low under all conditions except for a substantial increase in biofilm medium. Cot∝ and cotF were essentially invariant with a somewhat greater expression in the more enriched medium. The capacity of a subset of coat genes to respond to various conditions reflects a flexibility in spore coat structure that may be necessary for adaptation to environmental challenges. This could account, at least in part, for the complexity of this structure.
Collapse
Affiliation(s)
- Arthur Aronson
- Department of Biological Sciences, Purdue University, 915 W. State St, West Lafayette 47907, USA
| |
Collapse
|
4
|
Santarriaga S, Fikejs A, Scaglione J, Scaglione KM. A Heat Shock Protein 48 (HSP48) Biomolecular Condensate Is Induced during Dictyostelium discoideum Development. mSphere 2019; 4:e00314-19. [PMID: 31217303 PMCID: PMC6584373 DOI: 10.1128/msphere.00314-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/04/2019] [Indexed: 11/20/2022] Open
Abstract
The social amoeba Dictyostelium discoideum's proteome contains a vast array of simple sequence repeats, providing a unique model to investigate proteostasis. Upon conditions of cellular stress, D. discoideum undergoes a developmental process, transitioning from a unicellular amoeba to a multicellular fruiting body. Little is known about how proteostasis is maintained during D. discoideum's developmental process. Here, we have identified a novel α-crystallin domain-containing protein, heat shock protein 48 (HSP48), that is upregulated during D. discoideum development. HSP48 functions in part by forming a biomolecular condensate via its highly positively charged intrinsically disordered carboxy terminus. In addition to HSP48, the highly negatively charged primordial chaperone polyphosphate is also upregulated during D. discoideum development, and polyphosphate functions to stabilize HSP48. Upon germination, levels of both HSP48 and polyphosphate dramatically decrease, consistent with a role for HSP48 and polyphosphate during development. Together, our data demonstrate that HSP48 is strongly induced during Dictyostelium discoideum development. We also demonstrate that HSP48 forms a biomolecular condensate and that polyphosphate is necessary to stabilize the HSP48 biomolecular condensate.IMPORTANCE During cellular stress, many microbes undergo a transition to a dormant state. This includes the social amoeba Dictyostelium discoideum that transitions from a unicellular amoeba to a multicellular fruiting body upon starvation. In this work, we identify heat shock protein 48 (HSP48) as a chaperone that is induced during development. We also show that HSP48 forms a biomolecular condensate and is stabilized by polyphosphate. The findings here identify Dictyostelium discoideum as a novel microbe to investigate protein quality control pathways during the transition to dormancy.
Collapse
Affiliation(s)
| | - Alicia Fikejs
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jamie Scaglione
- Department of Computational and Physical Sciences, Carroll University, Waukesha, Wisconsin, USA
| | - K Matthew Scaglione
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
Shuster B, Khemmani M, Abe K, Huang X, Nakaya Y, Maryn N, Buttar S, Gonzalez AN, Driks A, Sato T, Eichenberger P. Contributions of crust proteins to spore surface properties in Bacillus subtilis. Mol Microbiol 2019; 111:825-843. [PMID: 30582883 DOI: 10.1111/mmi.14194] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/27/2022]
Abstract
Surface properties, such as adhesion and hydrophobicity, constrain dispersal of bacterial spores in the environment. In Bacillus subtilis, these properties are influenced by the outermost layer of the spore, the crust. Previous work has shown that two clusters, cotVWXYZ and cgeAB, encode the protein components of the crust. Here, we characterize the respective roles of these genes in surface properties using Bacterial Adherence to Hydrocarbons assays, negative staining of polysaccharides by India ink and Transmission Electron Microscopy. We showed that inactivation of crust genes caused increases in spore relative hydrophobicity, disrupted the spore polysaccharide layer, and impaired crust structure and attachment to the rest of the coat. We also found that cotO, previously identified for its role in outer coat formation, is necessary for proper encasement of the spore by the crust. In parallel, we conducted fluorescence microscopy experiments to determine the full network of genetic dependencies for subcellular localization of crust proteins. We determined that CotZ is required for the localization of most crust proteins, while CgeA is at the bottom of the genetic interaction hierarchy.
Collapse
Affiliation(s)
- Bentley Shuster
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Mark Khemmani
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Kimihiro Abe
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Xiaoyu Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Yusei Nakaya
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Nina Maryn
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Sally Buttar
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Adriana N Gonzalez
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Adam Driks
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Tsutomu Sato
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan.,Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Patrick Eichenberger
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| |
Collapse
|
6
|
Hantke I, Schäfer H, Janczikowski A, Turgay K. YocM a small heat shock protein can protect Bacillus subtilis cells during salt stress. Mol Microbiol 2018; 111:423-440. [PMID: 30431188 DOI: 10.1111/mmi.14164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2018] [Indexed: 12/17/2022]
Abstract
Small heat shock proteins (sHsp) occur in all domains of life. By interacting with misfolded or aggregated proteins these chaperones fulfill a protective role in cellular protein homeostasis. Here, we demonstrate that the sHsp YocM of the Gram-positive model organism Bacillus subtilis is part of the cellular protein quality control system with a specific role in salt stress response. In the absence of YocM the survival of salt shocked cells is impaired, and increased levels of YocM protect B. subtilis exposed to heat or salt. We observed a salt and heat stress-induced localization of YocM to intracellular protein aggregates. Interestingly, purified YocM appears to accelerate protein aggregation of different model substrates in vitro. In addition, the combined presence of YocM and chemical chaperones, which accumulate in salt stressed cells, can facilitate in vitro a synergistic protective effect on protein misfolding. Therefore, the beneficial role of YocM during salt stress could be related to a mutual functional relationship with chemical chaperones and adds a new possible functional aspect to sHsp chaperone activities.
Collapse
Affiliation(s)
- Ingo Hantke
- Institut für Mikrobiologie der Universität Hannover, Leibniz-Universität Hannover, Hannover, Germany
| | - Heinrich Schäfer
- Institut für Mikrobiologie der Universität Hannover, Leibniz-Universität Hannover, Hannover, Germany
| | - Armgard Janczikowski
- Institut für Mikrobiologie der Universität Hannover, Leibniz-Universität Hannover, Hannover, Germany
| | - Kürşad Turgay
- Institut für Mikrobiologie der Universität Hannover, Leibniz-Universität Hannover, Hannover, Germany
| |
Collapse
|
7
|
Abstract
Spores of Clostridiales and Bacillales are encased in a complex series of concentric shells that provide protection, facilitate germination, and mediate interactions with the environment. Analysis of diverse spore-forming species by thin-section transmission electron microscopy reveals that the number and morphology of these encasing shells vary greatly. In some species, they appear to be composed of a small number of discrete layers. In other species, they can comprise multiple, morphologically complex layers. In addition, spore surfaces can possess elaborate appendages. For all their variability, there is a consistent architecture to the layers encasing the spore. A hallmark of all Clostridiales and Bacillales spores is the cortex, a layer made of peptidoglycan. In close association with the cortex, all species examined possess, at a minimum, a series of proteinaceous layers, called the coat. In some species, including Bacillus subtilis, only the coat is present. In other species, including Bacillus anthracis, an additional layer, called the exosporium, surrounds the coat. Our goals here are to review the present understanding of the structure, composition, assembly, and functions of the coat, primarily in the model organism B. subtilis, but also in the small but growing number of other spore-forming species where new data are showing that there is much to be learned beyond the relatively well-developed basis of knowledge in B. subtilis. To help summarize this large field and define future directions for research, we will focus on key findings in recent years.
Collapse
|
8
|
Vishnyakov IE, Levitskii SA, Borchsenius SN. The effect of heat shock on phytopathogenic mycoplasma Acholeplasma laidlawii PG-8A. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s1990519x15020108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Chang Z. Understanding What Small Heat Shock Proteins Do for Bacterial Cells. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Vishnyakov IE, Borchsenius SN. Mycoplasma heat shock proteins and their genes. Microbiology (Reading) 2014. [DOI: 10.1134/s002626171306012x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
11
|
Faille C, Ronse A, Dewailly E, Slomianny C, Maes E, Krzewinski F, Guerardel Y. Presence and function of a thick mucous layer rich in polysaccharides around Bacillus subtilis spores. BIOFOULING 2014; 30:845-858. [PMID: 25115519 DOI: 10.1080/08927014.2014.939073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study was designed to establish the presence and function of the mucous layer surrounding spores of Bacillus subtilis. First, an external layer of variable thickness and regularity was often observed on B. subtilis spores. Further analyses were performed on B. subtilis 98/7 spores surrounded by a thick layer. The mechanical removal of the layer did not affect their resistance to heat or their ability to germinate but rendered the spore less hydrophilic, more adherent to stainless steel, and more resistant to cleaning. This layer was mainly composed of 6-deoxyhexoses, ie rhamnose, 3-O-methyl-rhamnose and quinovose, but also of glucosamine and muramic lactam, known also to be a part of the bacterial peptidoglycan. The specific hydrolysis of the peptidoglycan using lysozyme altered the structure of the required mucous layer and affected the physico-chemical properties of the spores. Such an outermost mucous layer has also been seen on spores of B. licheniformis and B. clausii isolated from food environments.
Collapse
Affiliation(s)
- Christine Faille
- a INRA, UR638 Interface Processes and Hygiene of Materials , F-59651 Villeneuve d'Ascq , France
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Bacterial endospores are the most resistant cell type known to humans, as they are able to withstand extremes of temperature, pressure, chemical injury, and time. They are also of interest because the endospore is the infective particle in a variety of human and livestock diseases. Endosporulation is characterized by the morphogenesis of an endospore within a mother cell. Based on the genes known to be involved in endosporulation in the model organism Bacillus subtilis, a conserved core of about 100 genes was derived, representing the minimal machinery for endosporulation. The core was used to define a genomic signature of about 50 genes that are able to distinguish endospore-forming organisms, based on complete genome sequences, and we show this 50-gene signature is robust against phylogenetic proximity and other artifacts. This signature includes previously uncharacterized genes that we can now show are important for sporulation in B. subtilis and/or are under developmental control, thus further validating this genomic signature. We also predict that a series of polyextremophylic organisms, as well as several gut bacteria, are able to form endospores, and we identified 3 new loci essential for sporulation in B. subtilis: ytaF, ylmC, and ylzA. In all, the results support the view that endosporulation likely evolved once, at the base of the Firmicutes phylum, and is unrelated to other bacterial cell differentiation programs and that this involved the evolution of new genes and functions, as well as the cooption of ancestral, housekeeping functions.
Collapse
|
13
|
McKenney PT, Driks A, Eichenberger P. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol 2013; 11:33-44. [PMID: 23202530 PMCID: PMC9910062 DOI: 10.1038/nrmicro2921] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sporulation in Bacillus subtilis involves an asymmetric cell division followed by differentiation into two cell types, the endospore and the mother cell. The endospore coat is a multilayered shell that protects the bacterial genome during stress conditions and is composed of dozens of proteins. Recently, fluorescence microscopy coupled with high-resolution image analysis has been applied to the dynamic process of coat assembly and has shown that the coat is organized into at least four distinct layers. In this Review, we provide a brief summary of B. subtilis sporulation, describe the function of the spore surface layers and discuss the recent progress that has improved our understanding of the structure of the endospore coat and the mechanisms of coat assembly.
Collapse
Affiliation(s)
- Peter T. McKenney
- Center for Genomics and Systems Biology, Department of
Biology, New York University, New York, New York 10003, USA
| | - Adam Driks
- Department of Microbiology and Immunology, Stritch School
of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Patrick Eichenberger
- Center for Genomics and Systems Biology, Department of
Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
14
|
Bürmann F, Sawant P, Bramkamp M. Identification of interaction partners of the dynamin-like protein DynA from Bacillus subtilis. Commun Integr Biol 2012; 5:362-9. [PMID: 23060960 PMCID: PMC3460841 DOI: 10.4161/cib.20215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Membrane dynamics are involved in crucial processes in eukaryotic and prokaryotic cells. Membrane fusion and fission events are often catalyzed by proteins that belong to the dynamin family of large GTPases. It has recently been shown that members of the dynamin superfamily are also present in many bacterial species. Although structural information about full length bacterial dynamin-like proteins is available, their molecular role remains unclear. We have shown previously that DynA, a dynamin-like protein found in the firmicute Bacillus subtilis is able to fuse membranes in vitro. In contrast to other members of the dynamin family this membrane remodeling activity was not dependent on guanosine nucleotides, but required magnesium. DynA assemblies localize in foci that are often enriched at sites of septation and hence a potential role during bacterial cytokinesis was discussed. In order to identify potential interaction partners we constructed a bacterial-two hybrid (B2H) library and screened for DynA interacting proteins. Three potential interaction partner have been identified, YneK, RNaseY (YmdA), and YwpG. Localization of these proteins phenocopies that of DynA, supporting the potential interaction in vivo.
Collapse
Affiliation(s)
- Frank Bürmann
- Institute for Biochemistry; University of Cologne; Köln, Germany
| | | | | |
Collapse
|
15
|
Sirec T, Strazzulli A, Isticato R, De Felice M, Moracci M, Ricca E. Adsorption of β-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutants spores of Bacillus subtilis. Microb Cell Fact 2012; 11:100. [PMID: 22863452 PMCID: PMC3465195 DOI: 10.1186/1475-2859-11-100] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/28/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Bacillus subtilis spore has long been used as a surface display system with potential applications in a variety of fields ranging from mucosal vaccine delivery, bioremediation and biocatalyst development. More recently, a non-recombinant approach of spore display has been proposed and heterologous proteins adsorbed on the spore surface. We used the well-characterized β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius as a model to study enzyme adsorption, to analyze whether and how spore-adsorption affects the properties of the enzyme and to improve the efficiency of the process. RESULTS We report that purified β-galactosidase molecules were adsorbed to purified spores of a wild type strain of B. subtilis retaining ca. 50% of their enzymatic activity. Optimal pH and temperature of the enzyme were not altered by the presence of the spore, that protected the adsorbed β-galactosidase from exposure to acidic pH conditions. A collection of mutant strains of B. subtilis lacking a single or several spore coat proteins was compared to the isogenic parental strain for the adsorption efficiency. Mutants with an altered outermost spore layer (crust) were able to adsorb 60-80% of the enzyme, while mutants with a severely altered or totally lacking outer coat adsorbed 100% of the β-galactosidase molecules present in the adsorption reaction. CONCLUSION Our results indicate that the spore surface structures, the crust and the outer coat layer, have an negative effect on the adhesion of the β-galactosidase. Electrostatic forces, previously suggested as main determinants of spore adsorption, do not seem to play an essential role in the spore-β-galactosidase interaction. The analysis of mutants with altered spore surface has shown that the process of spore adsorption can be improved and has suggested that such improvement has to be based on a better understanding of the spore surface structure. Although the molecular details of spore adsorption have not been fully elucidated, the efficiency of the process and the pH-stability of the adsorbed molecules, together with the well documented robustness and safety of spores of B. subtilis, propose the spore as a novel, non-recombinant system for enzyme display.
Collapse
Affiliation(s)
- Teja Sirec
- Department of Structural and Functional Biology, Federico II University of Naples, Naples, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Abhyankar W, Beek AT, Dekker H, Kort R, Brul S, de Koster CG. Gel-free proteomic identification of the Bacillus subtilis insoluble spore coat protein fraction. Proteomics 2011; 11:4541-50. [PMID: 21905219 DOI: 10.1002/pmic.201100003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 08/25/2011] [Accepted: 08/31/2011] [Indexed: 11/11/2022]
Abstract
Species from the genus Bacillus have the ability to form endospores, dormant cellular forms that are able to survive heat and acid preservation techniques commonly used in the food industry. Resistance characteristics of spores towards various environmental stresses are in part attributed to their coat proteins. Previously, 70 proteins have been assigned to the spore coat of Bacillus subtilis using SDS-PAGE, 2-DE gel approaches, protein localization studies and genome-wide transcriptome studies. Here, we present a "gel-free" protocol that is capable of comprehensive B. subtilis spore coat protein extraction and addresses the insoluble coat fraction. Using LC-MS/MS we identified 55 proteins from the insoluble B. subtilis spore coat protein fraction, of which 21 are putative novel spore coat proteins not assigned to the spore coat until now. Identification of spore coat proteins from a B. subtilis food-spoilage isolate corroborated a generic and "applied" use of our protocol. To develop specific and sensitive spore detection and/or purification systems from food stuff or patient material, suitable protein targets can be derived from our proteomic approach. Finally, the protocol can be extended to study cross-linking among the spore coat proteins as well as for their quantification.
Collapse
Affiliation(s)
- Wishwas Abhyankar
- Swammerdam Institute for Life Sciences, Department of Mass Spectrometry of Biomacromolecules, University of Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
17
|
Wang KH, Isidro AL, Domingues L, Eskandarian HA, McKenney PT, Drew K, Grabowski P, Chua MH, Barry SN, Guan M, Bonneau R, Henriques AO, Eichenberger P. The coat morphogenetic protein SpoVID is necessary for spore encasement in Bacillus subtilis. Mol Microbiol 2009; 74:634-49. [PMID: 19775244 DOI: 10.1111/j.1365-2958.2009.06886.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endospores formed by Bacillus subtilis are encased in a tough protein shell known as the coat, which consists of at least 70 different proteins. We investigated the process of spore coat morphogenesis using a library of 40 coat proteins fused to green fluorescent protein and demonstrate that two successive steps can be distinguished in coat assembly. The first step, initial localization of proteins to the spore surface, is dependent on the coat morphogenetic proteins SpoIVA and SpoVM. The second step, spore encasement, requires a third protein, SpoVID. We show that in spoVID mutant cells, most coat proteins assembled into a cap at one side of the developing spore but failed to migrate around and encase it. We also found that SpoIVA directly interacts with SpoVID. A domain analysis revealed that the N-terminus of SpoVID is required for encasement and is a structural homologue of a virion protein, whereas the C-terminus is necessary for the interaction with SpoIVA. Thus, SpoVM, SpoIVA and SpoVID are recruited to the spore surface in a concerted manner and form a tripartite machine that drives coat formation and spore encasement.
Collapse
Affiliation(s)
- Katherine H Wang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Immunogenicity of self-adjuvanticity oral vaccine candidate based on use of Bacillus subtilis spore displaying Schistosoma japonicum 26 KDa GST protein. Parasitol Res 2009; 105:1643-51. [DOI: 10.1007/s00436-009-1606-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 08/21/2009] [Indexed: 12/16/2022]
|
19
|
Mah JH, Kang DH, Tang J. Morphological study of heat-sensitive and heat-resistant spores of Clostridium sporogenes, using transmission electron microscopy. J Food Prot 2008; 71:953-8. [PMID: 18522029 DOI: 10.4315/0362-028x-71.5.953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To investigate the primary structural determinants affecting heat resistance of Clostridium sporogenes spores, electron micrographs of heat-sensitive (D121 degrees C = 0.56 min) and heat-resistant (D121 degrees C = 0.93 min) spores of C. sporogenes were taken with a transmission electron microscope. The mean thickness (+/- standard deviation [SD]) of coat layers and cortex regions of heat-sensitive spores were 82.9 +/- 14.5 and 86.0 +/- 22.7 nm, while those of heat-resistant spores were 106.9 +/- 45.7 and 111.7 +/- 32.1 nm, respectively. The thickness of coat (P = 0.031) and cortex (P = 0.006) showed statistically significant differences, suggesting that heat-resistant spores have a thicker coat and cortex than do heat-sensitive spores. The mean sizes (+/- SD) of cores were 467.0 +/- 88.7 nm for heat-sensitive spores and 460.2 +/- 98.5 nm for heat-resistant spores, respectively, which showed no statistically significant differences. The ratios (+/- SD) of the core size to the sporoplast size were 0.84 +/- 0.05 for heat-sensitive spores and 0.80 +/- 0.07 for heat-resistant spores, respectively, showing statistically significant differences (P = 0.030), which indicated that the ratio is negatively related to heat resistance. Accordingly, the structural components of heat-sensitive spores were severely damaged by heat treatment, whereas those of heat-resistant spores were unlysed under the same conditions. Based on the structural analyses of spores, it was elucidated that the thickness of coat layer and cortex region are significantly correlated with heat resistance of C. sporogenes spores, and that cortex region plays a major role in protecting the spore from heat damage.
Collapse
Affiliation(s)
- Jae-Hyung Mah
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, USA
| | | | | |
Collapse
|
20
|
Barnes AGC, Cerovic V, Hobson PS, Klavinskis LS. Bacillus subtilis spores: a novel microparticle adjuvant which can instruct a balanced Th1 and Th2 immune response to specific antigen. Eur J Immunol 2007; 37:1538-47. [PMID: 17474150 DOI: 10.1002/eji.200636875] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
There is a current need for safe, cheap, and effective vaccine adjuvants, to combine with sub-unit antigens to enhance their immunogenicity. In this study we have used probiotic Bacillus subtilis spores, known to be safe and fully tolerated by ingestion in man, and explored their ability to influence the magnitude and diversity of immune responses induced against two model antigens, tetanus toxoid fragment C (TT) and ovalbumin (OVA) in mice. The results show that B. subtilis spores not only increased antibody and T cell responses to a co-administered soluble antigen, but also broadened them, to include both antigen-specific CD4+ and CD8+ T cell responses as well as complement and non-complement fixing antibody isotypes. Furthermore, following intranasal immunization, spores augmented specific IgA to co-administered antigen both in the local respiratory and distal vaginal mucosa, as well as increased antigen-specific IgG antibody in draining LN and blood. Collectively, these data demonstrate that naturally occurring, non-pathogenic, non-commensal spores of B. subtilis both instruct and augment polyvalent immune responses and highlight their clinical potential in future vaccines to generate broad-based immunity.
Collapse
Affiliation(s)
- Andrew G C Barnes
- Peter Gorer Department of Immunobiology, Guys Hospital, Kings College London, London, UK
| | | | | | | |
Collapse
|
21
|
Costa T, Serrano M, Steil L, Völker U, Moran CP, Henriques AO. The timing of cotE expression affects Bacillus subtilis spore coat morphology but not lysozyme resistance. J Bacteriol 2006; 189:2401-10. [PMID: 17172339 PMCID: PMC1899386 DOI: 10.1128/jb.01353-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The synthesis of structural components and morphogenetic factors required for the assembly of the Bacillus subtilis spore coat is governed by a mother cell-specific transcriptional cascade. The first two temporal classes of gene expression, which involve RNA polymerase sigma sigma(E) factor and the ancillary regulators GerR and SpoIIID, are deployed prior to engulfment of the prespore by the mother cell. The two last classes rely on sigma(K), whose activation follows engulfment completion, and GerE. The cotE gene codes for a morphogenetic protein essential for the assembly of the outer coat layer and spore resistance to lysozyme. cotE is expressed first from a sigma(E)-dependent promoter and, in a second stage, from a promoter that additionally requires SpoIIID and that remains active under sigma(K) control. CotE localizes prior to engulfment completion close to the surface of the developing spore, but formation of the outer coat is a late, sigma(K)-controlled event. We have transplanted cotE to progressively later classes of mother cell gene expression. This created an early class of mutants in which cotE is expressed prior to engulfment completion and a late class in which expression of cotE follows the complete engulfment of the prespore. Mutants of the early class assemble a nearly normal outer coat structure, whereas mutants of the late class do not. Hence, the early expression of CotE is essential for outer coat assembly. Surprisingly, however, all mutants were fully resistant to lysozyme. The results suggest that CotE has genetically separable functions in spore resistance to lysozyme and spore outer coat assembly.
Collapse
Affiliation(s)
- Teresa Costa
- Instituto de Tecnologia Quimica e Biológica, Universidade Nova de Lisboa, Avenida da República, Apartado 127, 2781-901 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
22
|
Costa T, Isidro AL, Moran CP, Henriques AO. Interaction between coat morphogenetic proteins SafA and SpoVID. J Bacteriol 2006; 188:7731-41. [PMID: 16950916 PMCID: PMC1636312 DOI: 10.1128/jb.00761-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Morphogenetic proteins such as SpoVID and SafA govern assembly of the Bacillus subtilis endospore coat by guiding the various protein structural components to the surface of the developing spore. Previously, a screen for peptides able to interact with SpoVID led to the identification of a PYYH motif present in the C-terminal half of the SafA protein and to the subsequent demonstration that SpoVID and SafA directly interact. spoVID and safA spores show deficiencies in coat assembly and are lysozyme susceptible. Both proteins, orthologs of which are found in all Bacillus species, have LysM domains for peptidoglycan binding and localize to the cortex-coat interface. Here, we show that the interaction between SafA and SpoVID involves the PYYH motif (region B) but also a 13-amino-acid region (region A) just downstream of the N-terminal LysM domain of SafA. We show that deletion of region B does not block the interaction of SafA with SpoVID, nor does it bring about spore susceptibility to lysozyme. Nevertheless, it appears to reduce the interaction and affects the complex. In contrast, lesions in region A impaired the interaction of SafA with SpoVID in vitro and, while not affecting the accumulation of SafA in vivo, interfered with the localization of SafA around the developing spore, causing aberrant assembly of the coat and lysozyme sensitivity. A peptide corresponding to region A interacts with SpoVID, suggesting that residues within this region directly contact SpoVID. Since region A is highly conserved among SafA orthologs, this motif may be an important determinant of coat assembly in the group of Bacillus spore formers.
Collapse
Affiliation(s)
- Teresa Costa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, EAN, 2781-157 Oeiras, Portugal
| | | | | | | |
Collapse
|
23
|
Monroe A, Setlow P. Localization of the transglutaminase cross-linking sites in the Bacillus subtilis spore coat protein GerQ. J Bacteriol 2006; 188:7609-16. [PMID: 16936016 PMCID: PMC1636287 DOI: 10.1128/jb.01116-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis spore coat protein GerQ is necessary for the proper localization of CwlJ, an enzyme important in the hydrolysis of the peptidoglycan cortex during spore germination. GerQ is cross-linked into high-molecular-mass complexes in the spore coat late in sporulation, and this cross-linking is largely due to a transglutaminase. This enzyme forms an epsilon-(gamma-glutamyl) lysine isopeptide bond between a lysine donor from one protein and a glutamine acceptor from another protein. In the current work, we have identified the residues in GerQ that are essential for transglutaminase-mediated cross-linking. We show that GerQ is a lysine donor and that any one of three lysine residues near the amino terminus of the protein (K2, K4, or K5) is necessary to form cross-links with binding partners in the spore coat. This leads to the conclusion that all Tgl-dependent GerQ cross-linking takes place via these three lysine residues. However, while the presence of any of these three lysine residues is essential for GerQ cross-linking, they are not essential for the function of GerQ in CwlJ localization.
Collapse
Affiliation(s)
- Alicia Monroe
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, 06030, USA
| | | |
Collapse
|
24
|
Real G, Henriques AO. Localization of the Bacillus subtilis murB gene within the dcw cluster is important for growth and sporulation. J Bacteriol 2006; 188:1721-32. [PMID: 16484183 PMCID: PMC1426548 DOI: 10.1128/jb.188.5.1721-1732.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis murB gene, encoding UDP-N-acetylenolpyruvoylglucosamine reductase, a key enzyme in the peptidoglycan (PG) biosynthetic pathway, is embedded in the dcw (for "division and cell wall") cluster immediately upstream of divIB. Previous attempts to inactivate murB were unsuccessful, suggesting its essentiality. Here we show that the cell morphology, growth rate, and resistance to cell wall-active antibiotics of murB conditional mutants is a function of the expression level of murB. In one mutant, in which murB was insertionally inactivated in a merodiploid bearing a second xylose-inducible PxylA-murB allele, DivIB levels were reduced and a normal growth rate was achieved only if MurB levels were threefold that of the wild-type strain. However, expression of an extra copy of divIB restored normal growth at wild-type levels of MurB. In contrast, DivIB levels were normal in a second mutant containing an in-frame deletion of murB (DeltamurB) in the presence of the PxylA-murB gene. Furthermore, this strain grew normally with wild-type levels of MurB. During sporulation, the levels of MurB were highest at the time of synthesis of the spore cortex PG. Interestingly, the DeltamurB PxylA-murB mutant did not sporulate efficiently even at high concentrations of inducer. Since high levels of inducer did not interfere with sporulation of a murB(+)PxylA-murB strain, it appears that ectopic expression of murB fails to support efficient sporulation. These data suggest that coordinate expression of divIB and murB is important for growth and sporulation. The genetic context of the murB gene within the dcw cluster is unique to the Bacillus group and, taken together with our data, suggests that in these species it contributes to the optimal expression of cell division and PG biosynthetic functions during both vegetative growth and spore development.
Collapse
Affiliation(s)
- Gonçalo Real
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Apartado 127, 2781-901 Oeiras Codex, Portugal.
| | | |
Collapse
|
25
|
Hu Y, Movahedzadeh F, Stoker NG, Coates ARM. Deletion of the Mycobacterium tuberculosis alpha-crystallin-like hspX gene causes increased bacterial growth in vivo. Infect Immun 2006; 74:861-8. [PMID: 16428728 PMCID: PMC1360292 DOI: 10.1128/iai.74.2.861-868.2006] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypervirulent mutants of Mycobacterium tuberculosis, whose growth rates are higher in vivo, have now been reported to have mutations in both regulatory and structural genes, but the basis for this unusual phenotype is not understood. One hypervirulence gene, dosR (devR, Rv2031c), activates transcription of approximately 50 genes in this pathogen in response to hypoxia and nitric oxide stress. The most dramatic activation (approximately 80-fold) is activation of the hspX (acr, Rv2031c) gene, which encodes a 16-kDa alpha-crystallin-like protein that is a major antigen. In this study we found that a Deltaacr mutant exhibited increased growth following infection of BALB/c mice in vivo and in both resting and activated macrophages in vitro (as measured by the number of CFU). The increased growth in macrophages was equal to that of a DeltadosR mutant, while introduction of a constitutively expressed hspX gene reduced the DeltadosR virulence to wild-type levels. These results suggest that the increased number of CFU of the DeltadosR mutant was largely due to loss of hspX expression. We also confirmed that constitutive expression of hspX slows growth in vitro, and we propose that hspX plays an active role in slowing the growth of M. tuberculosis in vivo immediately following infection.
Collapse
Affiliation(s)
- Yanmin Hu
- Medical Microbiology, Department of Cellular and Molecular Sciences, St. George's Hospital Medical School, London SW17 0RE, United Kingdom.
| | | | | | | |
Collapse
|
26
|
McPherson DC, Kim H, Hahn M, Wang R, Grabowski P, Eichenberger P, Driks A. Characterization of the Bacillus subtilis spore morphogenetic coat protein CotO. J Bacteriol 2006; 187:8278-90. [PMID: 16321932 PMCID: PMC1317010 DOI: 10.1128/jb.187.24.8278-8290.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus spores are protected by a structurally and biochemically complex protein shell composed of over 50 polypeptide species, called the coat. Coat assembly in Bacillus subtilis serves as a relatively tractable model for the study of the formation of more complex macromolecular structures and organelles. It is also a critical model for the discovery of strategies to decontaminate B. anthracis spores. In B. subtilis, a subset of coat proteins is known to have important roles in assembly. Here we show that the recently identified B. subtilis coat protein CotO (YjbX) has an especially important morphogenetic role. We used electron and atomic force microscopy to show that CotO controls assembly of the coat layers and coat surface topography as well as biochemical and cell-biological analyses to identify coat proteins whose assembly is CotO dependent. cotO spores are defective in germination and partially sensitive to lysozyme. As a whole, these phenotypes resemble those resulting from a mutation in the coat protein gene cotH. Nonetheless, the roles of CotH and CotO and the proteins whose assembly they direct are not identical. Based on fluorescence and electron microscopy, we suggest that CotO resides in the outer coat (although not on the coat surface). We propose that CotO and CotH participate in a late phase of coat assembly. We further speculate that an important role of these proteins is ensuring that polymerization of the outer coat layers occurs in such a manner that contiguous shells, and not unproductive aggregates, are formed.
Collapse
Affiliation(s)
- D C McPherson
- Department of Microbiology and Immunology, Loyola University Medical Center, 2160 S. 1st Ave., Maywood, IL 60153, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Zilhão R, Isticato R, Martins LO, Steil L, Völker U, Ricca E, Moran CP, Henriques AO. Assembly and function of a spore coat-associated transglutaminase of Bacillus subtilis. J Bacteriol 2005; 187:7753-64. [PMID: 16267299 PMCID: PMC1280291 DOI: 10.1128/jb.187.22.7753-7764.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly of a multiprotein coat around the Bacillus subtilis spore confers resistance to lytic enzymes and noxious chemicals and ensures normal germination. Part of the coat is cross-linked and resistant to solubilization. The coat contains epsilon-(gamma-glutamyl)lysyl cross-links, and the expression of the gene (tgl) for a spore-associated transglutaminase was shown before to be required for the cross-linking of coat protein GerQ. Here, we have investigated the assembly and function of Tgl. We found that Tgl associates, albeit at somewhat reduced levels, with the coats of mutants that are unable to assemble the outer coat (cotE), that are missing the inner coat and with a greatly altered outer coat (gerE), or that are lacking discernible inner and outer coat structures (cotE gerE double mutant). This suggests that Tgl is present at various levels within the coat lattice. The assembly of Tgl occurs independently of its own activity, as a single amino acid substitution of a cysteine to an alanine (C116A) at the active site of Tgl does not affect its accumulation or assembly. However, like a tgl insertional mutation, the tglC116A allele causes increased extractability of polypeptides of about 40, 28, and 16 kDa in addition to GerQ (20 kDa) and affects the structural integrity of the coat. We show that most Tgl is assembled onto the spore surface soon after its synthesis in the mother cell under sigma(K) control but that the complete insolubilization of at least two of the Tgl-controlled polypeptides occurs several hours later. We also show that a multicopy allele of tgl causes increased assembly of Tgl and affects the assembly, structure, and functional properties of the coat.
Collapse
Affiliation(s)
- Rita Zilhão
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras Codex, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Real G, Pinto SM, Schyns G, Costa T, Henriques AO, Moran CP. A gene encoding a holin-like protein involved in spore morphogenesis and spore germination in Bacillus subtilis. J Bacteriol 2005; 187:6443-53. [PMID: 16159778 PMCID: PMC1236627 DOI: 10.1128/jb.187.18.6443-6453.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here studies of expression and functional analysis of a Bacillus subtilis gene, ywcE, which codes for a product with features of a holin. Primer extension analysis of ywcE transcription revealed that a single transcript accumulated from the onset of sporulation onwards, produced from a sigma(A)-type promoter bearing the TG dinucleotide motif of "extended" -10 promoters. No primer extension product was detected in vivo during growth. However, specific runoff products were produced in vitro from the ywcE promoter by purified sigma(A)-containing RNA polymerase (Esigma(A)), and the in vivo and in vitro transcription start sites were identical. These results suggested that utilization of the ywcE promoter by Esigma(A) during growth was subjected to repression. Studies with a lacZ fusion revealed that the transition-state regulator AbrB repressed the transcription of ywcE during growth. This repression was reversed at the onset of sporulation in a Spo0A-dependent manner, but Spo0A did not appear to contribute otherwise to ywcE transcription. We found ywcE to be required for proper spore morphogenesis. Spores of the ywcE mutant showed a reduced outer coat which lacked the characteristic striated pattern, and the outer coat failed to attach to the underlying inner coat. The mutant spores also accumulated reduced levels of dipicolinic acid. ywcE was also found to be important for spore germination.
Collapse
Affiliation(s)
- Gonçalo Real
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
29
|
Barbosa TM, Serra CR, La Ragione RM, Woodward MJ, Henriques AO. Screening for bacillus isolates in the broiler gastrointestinal tract. Appl Environ Microbiol 2005; 71:968-78. [PMID: 15691955 PMCID: PMC546680 DOI: 10.1128/aem.71.2.968-978.2005] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 09/28/2004] [Indexed: 11/20/2022] Open
Abstract
Spores from a number of different Bacillus species are currently being used as human and animal probiotics, although their mechanisms of action remain poorly understood. Here we describe the isolation of 237 presumptive gut-associated Bacillus spp. isolates that were obtained by heat and ethanol treatment of fecal material from organically reared broilers followed by aerobic plating. Thirty-one representative isolates were characterized according to their morphological, physiological, and biochemical properties as well as partial 16S rRNA gene sequences and screening for the presence of plasmid DNA. The Bacillus species identified included B. subtilis, B. pumilus, B. licheniformis, B. clausii, B. megaterium, B. firmus, and species of the B. cereus group, whereas a number of our isolates could not be classified. Intrinsic properties of potential importance for survival in the gut that could be advantageous for spore-forming probiotics were further investigated for seven isolates belonging to five different species. All isolates sporulated efficiently in the laboratory, and the resulting spores were tolerant to simulated gastrointestinal tract conditions. They also exhibited antimicrobial activity against a broad spectrum of bacteria, including food spoilage and pathogenic organisms such as Bacillus spp., Clostridium perfringens, Staphylococcus aureus, and Listeria monocytogenes. Importantly, the isolates were susceptible to most of the antibiotics tested, arguing that they would not act as donors for resistance determinants if introduced in the form of probiotic preparations. Together, our results suggest that some of the sporeformers isolated in this study have the potential to persist in or transiently associate with the complex gut ecosystem.
Collapse
Affiliation(s)
- Teresa M Barbosa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Apartado 127, 2781-901 Oeiras Codex, Portugal
| | | | | | | | | |
Collapse
|
30
|
Ragkousi K, Setlow P. Transglutaminase-mediated cross-linking of GerQ in the coats of Bacillus subtilis spores. J Bacteriol 2004; 186:5567-75. [PMID: 15317760 PMCID: PMC516844 DOI: 10.1128/jb.186.17.5567-5575.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spores of Bacillus subtilis show remarkable resistance to many environmental stresses, due in part to the presence of an outer proteinaceous structure known as the spore coat. GerQ is a spore coat protein essential for the presence of CwlJ, an enzyme involved in the hydrolysis of the cortex during spore germination, in the spore coat. Here we show that GerQ is cross-linked into higher-molecular-mass forms due in large part to a transglutaminase. GerQ is the only substrate for this transglutaminase identified to date. In addition, we show that cross-linking of GerQ into high-molecular-mass forms occurs only very late in sporulation, after mother cell lysis. These findings, as well as studies of GerQ cross-linking in mutant strains where spore coat assembly is perturbed, lead us to suggest that coat proteins must assemble first and that their cross-linking follows as a final step in the spore coat formation pathway.
Collapse
Affiliation(s)
- Katerina Ragkousi
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | |
Collapse
|
31
|
Serrano M, Neves A, Soares CM, Moran CP, Henriques AO. Role of the anti-sigma factor SpoIIAB in regulation of sigmaG during Bacillus subtilis sporulation. J Bacteriol 2004; 186:4000-13. [PMID: 15175314 PMCID: PMC419951 DOI: 10.1128/jb.186.12.4000-4013.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 02/16/2004] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase sigma factor sigma(F) initiates the prespore-specific program of gene expression during Bacillus subtilis sporulation. sigma(F) governs transcription of spoIIIG, encoding the late prespore-specific regulator sigma(G). However, transcription of spoIIIG is delayed relative to other genes under the control of sigma(F), and after synthesis, sigma(G) is initially kept in an inactive form. Activation of sigma(G) requires the complete engulfment of the prespore by the mother cell and expression of the spoIIIA and spoIIIJ loci. We screened for random mutations in spoIIIG that bypassed the requirement for spoIIIA for the activation of sigma(G). We found a mutation (spoIIIGE156K) that resulted in an amino acid substitution at position 156, which is adjacent to the position of a mutation (E155K) previously shown to prevent interaction of SpoIIAB with sigma(G). Comparative modelling techniques and in vivo studies suggested that the spoIIIGE156K mutation interferes with the interaction of SpoIIAB with sigma(G). The sigma(GE156K) isoform restored sigma(G)-directed gene expression to spoIIIA mutant cells. However, expression of sspE-lacZ in the spoIIIA spoIIIGE156K double mutant was delayed relative to completion of the engulfment process and was not confined to the prespore. Rather, beta-galactosidase accumulated throughout the entire cell at late times in development. This suggests that the activity of sigma(GE156K) is still regulated in the prespore of a spoIIIA mutant, but not by SpoIIAB. In agreement with this suggestion, we also found that expression of spoIIIGE156K from the promoter for the early prespore-specific gene spoIIQ still resulted in sspE-lacZ induction at the normal time during sporulation, coincidently with completion of the engulfment process. In contrast, transcription of spoIIIGE156K, but not of the wild-type spoIIIG gene, from the mother cell-specific spoIID promoter permitted the rapid induction of sspE-lacZ expression. Together, the results suggest that SpoIIAB is either redundant or has no role in the regulation of sigma(G) in the prespore.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Apartado 127, 2781-901 Oeiras Codex, Portugal
| | | | | | | | | |
Collapse
|
32
|
Costa T, Steil L, Martins LO, Völker U, Henriques AO. Assembly of an oxalate decarboxylase produced under sigmaK control into the Bacillus subtilis spore coat. J Bacteriol 2004; 186:1462-74. [PMID: 14973022 PMCID: PMC344410 DOI: 10.1128/jb.186.5.1462-1474.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Over 30 polypeptides are synthesized at various times during sporulation in Bacillus subtilis, and they are assembled at the surface of the developing spore to form a multilayer protein structure called the coat. The coat consists of three main layers, an amorphous undercoat close to the underlying spore cortex peptidoglycan, a lamellar inner layer, and an electron-dense striated outer layer. The product of the B. subtilis oxdD gene was previously shown to have oxalate decarboxylase activity when it was produced in Escherichia coli and to be a spore constituent. In this study, we found that OxdD specifically associates with the spore coat structure, and in this paper we describe regulation of its synthesis and assembly. We found that transcription of oxdD is induced during sporulation as a monocistronic unit under the control of sigma(K) and is negatively regulated by GerE. We also found that localization of a functional OxdD-green fluorescent protein (GFP) at the surface of the developing spore depends on the SafA morphogenetic protein, which localizes at the interface between the spore cortex and coat layers. OxdD-GFP localizes around the developing spore in a cotE mutant, which does not assemble the spore outer coat layer, but it does not persist in spores produced by the mutant. Together, the data suggest that OxdD-GFP is targeted to the interior layers of the coat. Additionally, we found that expression of a multicopy allele of oxdD resulted in production of spores with increased levels of OxdD that were able to degrade oxalate but were sensitive to lysozyme.
Collapse
Affiliation(s)
- Teresa Costa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras Codex, Portugal
| | | | | | | | | |
Collapse
|
33
|
Zilhão R, Serrano M, Isticato R, Ricca E, Moran CP, Henriques AO. Interactions among CotB, CotG, and CotH during assembly of the Bacillus subtilis spore coat. J Bacteriol 2004; 186:1110-9. [PMID: 14762006 PMCID: PMC344205 DOI: 10.1128/jb.186.4.1110-1119.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spores formed by wild-type Bacillus subtilis are encased in a multilayered protein structure (called the coat) formed by the ordered assembly of over 30 polypeptides. One polypeptide (CotB) is a surface-exposed coat component that has been used as a vehicle for the display of heterologous antigens at the spore surface. The cotB gene was initially identified by reverse genetics as encoding an abundant coat component. cotB is predicted to code for a 43-kDa polypeptide, but the form that prevails in the spore coat has a molecular mass of about 66 kDa (herein designated CotB-66). Here we show that in good agreement with its predicted size, expression of cotB in Escherichia coli results in the accumulation of a 46-kDa protein (CotB-46). Expression of cotB in sporulating cells of B. subtilis also results in a 46-kDa polypeptide which appears to be rapidly converted into CotB-66. These results suggest that soon after synthesis, CotB undergoes a posttranslational modification. Assembly of CotB-66 has been shown to depend on expression of both the cotH and cotG loci. We found that CotB-46 is the predominant form found in extracts prepared from sporulating cells or in spore coat preparations of cotH or cotG mutants. Therefore, both cotH and cotG are required for the efficient conversion of CotB-46 into CotB-66 but are dispensable for the association of CotB-46 with the spore coat. We also show that CotG does not accumulate in sporulating cells of a cotH mutant, suggesting that CotH (or a CotH-controlled factor) stabilizes the otherwise unstable CotG. Thus, the need for CotH for formation of CotB-66 results in part from its role in the stabilization of CotG. We also found that CotB-46 is present in complexes with CotG at the time when formation of CotB-66 is detected. Moreover, using a yeast two-hybrid system, we found evidence that CotB directly interacts with CotG and that both CotB and CotG self-interact. We suggest that an interaction between CotG and CotB is required for the formation of CotB-66, which may represent a multimeric form of CotB.
Collapse
Affiliation(s)
- Rita Zilhão
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras Codex, Portugal
| | | | | | | | | | | |
Collapse
|
34
|
Isticato R, Esposito G, Zilhão R, Nolasco S, Cangiano G, De Felice M, Henriques AO, Ricca E. Assembly of multiple CotC forms into the Bacillus subtilis spore coat. J Bacteriol 2004; 186:1129-35. [PMID: 14762008 PMCID: PMC344207 DOI: 10.1128/jb.186.4.1129-1135.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report evidence that the CotC polypeptide, a previously identified component of the Bacillus subtilis spore coat, is assembled into at least four distinct forms. Two of these, having molecular masses of 12 and 21 kDa, appeared 8 h after the onset of sporulation and were probably assembled on the forming spore immediately after their synthesis, since no accumulation of either of them was detected in the mother cell compartment, where their synthesis occurs. The other two components, 12.5 and 30 kDa, were generated 2 h later and were probably the products of posttranslational modifications of the two early forms occurring directly on the coat surface during spore maturation. None of the CotC forms was found either on the spore coat or in the mother cell compartment of a cotH mutant. This indicates that CotH serves a dual role of stabilizing the early forms of CotC and promoting the assembly of both early and late forms on the spore surface.
Collapse
Affiliation(s)
- Rachele Isticato
- Dipartimento di Fisiologia Generale ed Ambientale, Università Federico II, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zotzel J, Keller P, Fuchsbauer HL. Transglutaminase from Streptomyces mobaraensis is activated by an endogenous metalloprotease. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3214-22. [PMID: 12869197 DOI: 10.1046/j.1432-1033.2003.03703.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptomyces mobaraensis secretes a Ca2+-independent transglutaminase (TGase) that is activated by removing an N-terminal peptide from a precursor protein during submerged culture in a complex medium [Pasternack, R., Dorsch, S., Otterbach, J. T., Robenek, I. R., Wolf, S. & Fuchsbauer, H.-L. (1998) Eur. J. Biochem. 257, 570-576]. However, an activating protease could not be identified, probably because of the presence of a 14-kDa protein (P14) belonging to the Streptomyces subtilisin inhibitor family. In contrast, if the microorganism was allowed to grow on a minimal medium, several soluble proteases were extracted, among them the TGase-activating protease (TAMEP). TAMEP was purified by sequential chromatography on DEAE- and Arg-Sepharose and used to determine the cleavage site of TGase. It was clearly shown that the peptide bond between Phe(-4) and Ser(-5) was hydrolyzed, indicating that at least one additional peptidase is necessary to complete TGase processing, even if TAMEP cleavage was sufficient to obtain total activity. Sequence analysis from the N-terminus of TAMEP revealed the close relationship to a zinc endo-protease from S. griseus. The S. griseus protease differs from other members of the M4 protease family, such as thermolysin, in that it may be inhibited by the Streptomyces subtilisin inhibitor. P14 likewise inhibits TAMEP in approximately equimolar concentrations, suggesting its important role in regulating TGase activity.
Collapse
Affiliation(s)
- J Zotzel
- Fachbereich Chemie- und Biotechnologie, Fachhochschule Darmstadt, Germany
| | | | | |
Collapse
|
36
|
Serrano M, Côrte L, Opdyke J, Moran CP, Henriques AO. Expression of spoIIIJ in the prespore is sufficient for activation of sigma G and for sporulation in Bacillus subtilis. J Bacteriol 2003; 185:3905-17. [PMID: 12813085 PMCID: PMC161587 DOI: 10.1128/jb.185.13.3905-3917.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During sporulation in Bacillus subtilis, the prespore-specific developmental program is initiated soon after asymmetric division of the sporangium by the compartment-specific activation of RNA polymerase sigma factor sigma(F). sigma(F) directs transcription of spoIIIG, encoding the late forespore-specific regulator sigma(G). Following synthesis, sigma(G) is initially kept in an inactive form, presumably because it is bound to the SpoIIAB anti-sigma factor. Activation of sigma(G) occurs only after the complete engulfment of the prespore by the mother cell. Mutations in spoIIIJ arrest sporulation soon after conclusion of the engulfment process and prevent activation of sigma(G). Here we show that sigma(G) accumulates but is mostly inactive in a spoIIIJ mutant. We also show that expression of the spoIIIGE155K allele, encoding a form of sigma(G) that is not efficiently bound by SpoIIAB in vitro, restores sigma(G)-directed gene expression to a spoIIIJ mutant. Expression of spoIIIJ occurs during vegetative growth. However, we show that expression of spoIIIJ in the prespore is sufficient for sigma(G) activation and for sporulation. Mutations in the mother cell-specific spoIIIA locus are known to arrest sporulation just after completion of the engulfment process. Previous work has also shown that sigma(G) accumulates in an inactive form in spoIIIA mutants and that the need for spoIIIA expression for sigma(G) activation can be circumvented by the spoIIIGE155K allele. However, in contrast to the case for spoIIIJ, we show that expression of spoIIIA in the prespore does not support efficient sporulation. The results suggest that the activation of sigma(G) at the end of the engulfment process involves the action of spoIIIA from the mother cell and of spoIIIJ from the prespore.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras Codex, Portugal
| | | | | | | | | |
Collapse
|
37
|
O'Toole R, Smeulders MJ, Blokpoel MC, Kay EJ, Lougheed K, Williams HD. A two-component regulator of universal stress protein expression and adaptation to oxygen starvation in Mycobacterium smegmatis. J Bacteriol 2003; 185:1543-54. [PMID: 12591871 PMCID: PMC148059 DOI: 10.1128/jb.185.5.1543-1554.2003] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified a response regulator in Mycobacterium smegmatis which plays an important role in adaptation to oxygen-starved stationary phase. The regulator exhibits strong sequence similarity to DevR/Rv3133c of M. tuberculosis. The structural gene is present on a multigene locus, which also encodes a sensor kinase. A devR mutant of M. smegmatis was adept at surviving growth arrest initiated by either carbon or nitrogen starvation. However, its culturability decreased several orders of magnitude below that of the wild type under oxygen-starved stationary-phase conditions. Two-dimensional gel analysis revealed that a number of oxygen starvation-inducible proteins were not expressed in the devR mutant. Three of these proteins are universal stress proteins, one of which is encoded directly upstream of devR. Another protein closely resembles a proposed nitroreductase, while a fifth protein corresponds to the alpha-crystallin (HspX) orthologue of M. smegmatis. None of the three universal stress proteins or nitroreductase, and a considerably lower amount of HspX was detected in carbon-starved wild-type cultures. A fusion of the hspX promoter to gfp demonstrated that DevR directs gene expression when M. smegmatis enters stationary phase brought about, in particular, by oxygen starvation. To our knowledge, this is the first time a role for a two-component response regulator in the control of universal stress protein expression has been shown. Notably, the devR mutant was 10(4)-fold more sensitive than wild type to heat stress. We conclude that DevR is a stationary-phase regulator required for adaptation to oxygen starvation and resistance to heat stress in M. smegmatis.
Collapse
Affiliation(s)
- Ronan O'Toole
- Department of Biological Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
38
|
Kuwana R, Kasahara Y, Fujibayashi M, Takamatsu H, Ogasawara N, Watabe K. Proteomics characterization of novel spore proteins of Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3971-3982. [PMID: 12480901 DOI: 10.1099/00221287-148-12-3971] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The spores of Bacillus subtilis have characteristic properties and consist of complex structures including various types of proteins. To perform comprehensive analysis of the protein composition of the spores, the proteins extracted from the spore were analysed by a combination of one-dimensional PAGE and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) using Turboquest SEQUEST software interfaced with the DNA sequence database of B. subtilis. A total of 154 proteins were identified, and 69 of them were novel. The remaining 85 proteins have been previously reported as sporulation-specific proteins or as proteins that are synthesized in vegetative cells. The expression pattern of each gene deduced to encode novel spore proteins was analysed using a series of strains carrying a lacZ reporter gene. The results revealed that the expression of 26 genes was dependent on sporulation-specific sigma factors, namely sigma(F), sigma(E), sigma(G) and sigma(K). In this study, it is demonstrated that the combination of the techniques of SDS-PAGE and LC-MS/MS, with the mutant library of B. subtilis, is an effective tool for the analysis of complicated cellular structures.
Collapse
Affiliation(s)
- Ritsuko Kuwana
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan1
| | - Yasuhiro Kasahara
- Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan2
| | - Machiko Fujibayashi
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan1
| | - Hiromu Takamatsu
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan1
| | - Naotake Ogasawara
- Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan2
| | - Kazuhito Watabe
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan1
| |
Collapse
|
39
|
Kappé G, Leunissen JAM, de Jong WW. Evolution and diversity of prokaryotic small heat shock proteins. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 28:1-17. [PMID: 11908054 DOI: 10.1007/978-3-642-56348-5_1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Guido Kappé
- Department of Biochemistry, University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
40
|
Van Montfort R, Slingsby C, Vierling E. Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:105-56. [PMID: 11868270 DOI: 10.1016/s0065-3233(01)59004-x] [Citation(s) in RCA: 300] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- R Van Montfort
- Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | | | | |
Collapse
|
41
|
Barnett TC, Scott JR. Differential recognition of surface proteins in Streptococcus pyogenes by two sortase gene homologs. J Bacteriol 2002; 184:2181-91. [PMID: 11914350 PMCID: PMC134975 DOI: 10.1128/jb.184.8.2181-2191.2002] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The interaction of Streptococcus pyogenes (group A streptococcus [GAS]) with its human host requires several surface proteins. In this study, we isolated mutations in a gene required for the surface localization of protein F by transposon mutagenesis of the M6 strain JRS4. This gene (srtA) encodes a protein homologous to Staphylococcus aureus sortase, which covalently links proteins containing an LPXTG motif to the cell wall. The GAS srtA mutant was defective in anchoring the LPXTG-containing proteins M6, protein F, ScpA, and GRAB to the cell surface. This phenotype was complemented when a wild-type srtA gene was provided in trans. The surface localization of T6, however, was unaffected by the srtA mutation. The M1 genome sequence contains a second open reading frame with a motif characteristic of sortase proteins. Inactivation of this gene (designated srtB) in strain JRS4 affected the surface localization of T6 but not M6, protein F, ScpA, or GRAB. This phenotype was complemented by srtB in trans. An srtA probe hybridized with DNA from all GAS strains tested (M types 1, 3, 4, 5, 6, 18, 22, and 50 and nontypeable strain 64/14) and from streptococcal groups C and G, while srtB hybridized with DNA from only a few GAS strains. We conclude that srtA and srtB encode sortase enzymes required for anchoring different subsets of proteins to the cell wall. It seems likely that the multiple sortase homologs in the genomes of other gram-positive bacteria have a similar substrate-specific role.
Collapse
Affiliation(s)
- Timothy C Barnett
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
42
|
Narberhaus F. Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 2002; 66:64-93; table of contents. [PMID: 11875128 PMCID: PMC120782 DOI: 10.1128/mmbr.66.1.64-93.2002] [Citation(s) in RCA: 399] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alpha-crystallins were originally recognized as proteins contributing to the transparency of the mammalian eye lens. Subsequently, they have been found in many, but not all, members of the Archaea, Bacteria, and Eucarya. Most members of the diverse alpha-crystallin family have four common structural and functional features: (i) a small monomeric molecular mass between 12 and 43 kDa; (ii) the formation of large oligomeric complexes; (iii) the presence of a moderately conserved central region, the so-called alpha-crystallin domain; and (iv) molecular chaperone activity. Since alpha-crystallins are induced by a temperature upshift in many organisms, they are often referred to as small heat shock proteins (sHsps) or, more accurately, alpha-Hsps. Alpha-crystallins are integrated into a highly flexible and synergistic multichaperone network evolved to secure protein quality control in the cell. Their chaperone activity is limited to the binding of unfolding intermediates in order to protect them from irreversible aggregation. Productive release and refolding of captured proteins into the native state requires close cooperation with other cellular chaperones. In addition, alpha-Hsps seem to play an important role in membrane stabilization. The review compiles information on the abundance, sequence conservation, regulation, structure, and function of alpha-Hsps with an emphasis on the microbial members of this chaperone family.
Collapse
Affiliation(s)
- Franz Narberhaus
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, CH-8092 Zürich, Switzerland.
| |
Collapse
|
43
|
Abstract
Environmental and hormonal regulators of diapause have been reasonably well defined, but our understanding of the molecular regulation of diapause remains in its infancy. Though many genes are shut down during diapause, others are specifically expressed at this time. Classes of diapause-upregulated genes can be distinguished based on their expression patterns: Some are upregulated throughout diapause, and others are expressed only in early diapause, late diapause, or intermittently throughout diapause. The termination of diapause is accompanied by a rapid decline in expression of the diapause-upregulated genes and, conversely, an elevation in expression of many genes that were downregulated during diapause. A comparison of insect diapause with other forms of dormancy in plants and animals suggests that upregulation of a subset of heat shock protein genes may be one feature common to different types of dormancies.
Collapse
Affiliation(s)
- David L Denlinger
- Department of Entomology, Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
44
|
Abstract
Bacterial spores are surrounded by a multilayered proteinaceous shell called the coat. In Bacillus subtilis, a coat protein called CotE guides the assembly of a major subset of coat proteins. To understand how CotE carries out its role in coat morphogenesis, we subjected its gene to mutagenesis and studied the effects of altered versions of CotE on coat formation. We identified regions within the C-terminal 28 amino acids that direct the deposition of the coat proteins CotA, CotB, CotG, CotSA, CotS and 35 kDa and 49 kDa proteins likely to be the spore proteins CotR (formerly known as YvdO) and YaaH respectively. The timing and genetic dependency of CotR accumulation are consistent with control of its gene by sigmaK and GerE. In addition, we identified a 35-amino-acid internal region involved in targeting of CotE to the forespore. Finally, we found that sequences within this 35-amino-acid region as well as within an 18-amino-acid stretch in the N-terminus of CotE direct the formation of CotE multimers, most probably homooligomers. These results suggest that: (i) most interactions between CotE and the coat proteins assembled under CotE control take place at the CotE C-terminus; (ii) an internal region of CotE connects it with the forespore surface; and (iii) interactions between CotE molecules depend on residues within an 18-amino-acid region in the N-terminal half of CotE.
Collapse
Affiliation(s)
- S Little
- Department of Microbiology and Immunology, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | | |
Collapse
|
45
|
Abstract
The important human pathogen Streptococcus pyogenes (the group A streptococcus or GAS) causes diseases ranging from mild, self-limiting pharyngitis to severe invasive infections. Regulation of the expression of GAS genes in response to specific environmental differences within the host is probably key in determining the course of the infectious process, however, little is known of global regulators of gene expression in GAS. Although secondary RNA polymerase sigma factors act as global regulators of gene expression in many other bacteria, none has yet been isolated from the GAS. The newly available GAS genome sequence indicates that the only candidate secondary sigma factor is encoded by two identical open reading frames (ORFS). These ORFS encode a protein that is 40% identical to the transcription factor ComX, believed to act as an RNA polymerase sigma factor in Streptococcus pneumoniae. To test whether the GAS ComX homologue functions as a sigma factor, we cloned and purified it from Escherichia coli. We found that in vitro, this GAS protein, which we call sigmaX, directed core RNA polymerase from Bacillus subtilis to transcribe from two GAS promoters that contain the cin-box region, required for transcription by S. pneumoniae ComX in vivo. On the other hand, GAS sigmaX did not promote transcription of a GAS promoter (hasA) expected to be dependent on sigmaA, the housekeeping or primary RNA polymerase sigma factor. Addition of monoclonal antibody that inhibited sigmaA-directed transcription had no effect on sigmaX-directed transcription, showing that the latter was not the result of contaminating sigmaA. Transcription of both cin-box-containing promoters initiated downstream of the cin-box and two different single basepair substitutions in the cin-box of the cinA promoter each caused a severe reduction of sigmaX-directed transcription in vitro. Thus, the cin-box is required for sigmaX-directed transcription.
Collapse
Affiliation(s)
- J A Opdyke
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
46
|
Ozin AJ, Samford CS, Henriques AO, Moran CP. SpoVID guides SafA to the spore coat in Bacillus subtilis. J Bacteriol 2001; 183:3041-9. [PMID: 11325931 PMCID: PMC95203 DOI: 10.1128/jb.183.10.3041-3049.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria assemble complex structures by targeting proteins to specific subcellular locations. The protein coat that encases Bacillus subtilis spores is an example of a structure that requires coordinated targeting and assembly of more than 24 polypeptides. The earliest stages of coat assembly require the action of three morphogenetic proteins: SpoIVA, CotE, and SpoVID. In the first steps, a basement layer of SpoIVA forms around the surface of the forespore, guiding the subsequent positioning of a ring of CotE protein about 75 nm from the forespore surface. SpoVID localizes near the forespore membrane where it functions to maintain the integrity of the CotE ring and to anchor the nascent coat to the underlying spore structures. However, it is not known which spore coat proteins interact directly with SpoVID. In this study we examined the interaction between SpoVID and another spore coat protein, SafA, in vivo using the yeast two-hybrid system and in vitro. We found evidence that SpoVID and SafA directly interact and that SafA interacts with itself. Immunofluorescence microscopy showed that SafA localized around the forespore early during coat assembly and that this localization of SafA was dependent on SpoVID. Moreover, targeting of SafA to the forespore was also dependent on SpoIVA, as was targeting of SpoVID to the forespore. We suggest that the localization of SafA to the spore coat requires direct interaction with SpoVID.
Collapse
Affiliation(s)
- A J Ozin
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
47
|
Serrano M, Hövel S, Moran CP, Henriques AO, Völker U. Forespore-specific transcription of the lonB gene during sporulation in Bacillus subtilis. J Bacteriol 2001; 183:2995-3003. [PMID: 11325926 PMCID: PMC95198 DOI: 10.1128/jb.183.10.2995-3003.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis genome encodes two members of the Lon family of prokaryotic ATP-dependent proteases. One, LonA, is produced in response to temperature, osmotic, and oxidative stress and has also been implicated in preventing sigma(G) activity under nonsporulation conditions. The second is encoded by the lonB gene, which resides immediately upstream from lonA. Here we report that transcription of lonB occurs during sporulation under sigma(F) control and thus is restricted to the prespore compartment of sporulating cells. First, expression of a lonB-lacZ transcriptional fusion was abolished in strains unable to produce sigma(F) but remained unaffected upon disruption of the genes encoding the early and late mother cell regulators sigma(E) and sigma(K) or the late forespore regulator sigma(G). Second, the fluorescence of strains harboring a lonB-gfp fusion was confined to the prespore compartment and depended on sigma(F) production. Last, primer extension analysis of the lonB transcript revealed -10 and -35 sequences resembling the consensus sequence recognized by sigma(F)-containing RNA polymerase. We further show that the lonB message accumulated as a single monocistronic transcript during sporulation, synthesis of which required sigma(F) activity. Disruption of the lonB gene did not confer any discernible sporulation phenotype to otherwise wild-type cells, nor did expression of lonB from a multicopy plasmid. In contrast, expression of a fusion of the lonB promoter to the lonA gene severely reduced expression of the sigma(G)-dependent sspE gene and the frequency of sporulation. In confirmation of earlier observations, we found elevated levels of sigma(F)-dependent activity in a spoIIIE47 mutant, in which the lonB region of the chromosome is not translocated into the prespore. Expression of either lonB or the P(lonB)-lonA fusion from a plasmid in the spoIIIE47 mutant reduced sigma(F) -dependent activity to wild-type levels. The results suggest that both LonA and LonB can prevent abnormally high sigma(F) activity but that only LonA can negatively regulate sigma(G).
Collapse
Affiliation(s)
- M Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras Codex, Portugal
| | | | | | | | | |
Collapse
|
48
|
Ducros VM, Lewis RJ, Verma CS, Dodson EJ, Leonard G, Turkenburg JP, Murshudov GN, Wilkinson AJ, Brannigan JA. Crystal structure of GerE, the ultimate transcriptional regulator of spore formation in Bacillus subtilis. J Mol Biol 2001; 306:759-71. [PMID: 11243786 DOI: 10.1006/jmbi.2001.4443] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The small, DNA-binding protein GerE regulates gene transcription in the terminally differentiated mother-cell compartment during late stages of sporulation in Bacillus subtilis. This versatile transcription factor shares sequence homology with the LuxR/FixJ/UhpA family of activators and modulates the expression of a number of genes, in particular those encoding the components of the coat that surrounds the mature spore. GerE orchestrates the final stages of coat deposition and maturation that lead to a spore with remarkable resistance properties but that must be responsive to low levels of germination signals. As this germination process is largely passive and can occur in the absence of de novo protein synthesis, the correct assembly of germination machinery, including germinant receptors and energy storage compounds, is crucial to the survival of the cell. The crystal structure of GerE has been solved at 2.05 A resolution using multi-wavelength anomalous dispersion techniques and reveals the nature of the GerE dimer. Each monomer comprises four alpha-helices, of which the central pair forms a helix-turn-helix DNA-binding motif. Implications for DNA-binding and the structural organisation of the LuxR/FixJ/UhpA family of transcription activator domains are discussed.
Collapse
Affiliation(s)
- V M Ducros
- Structural Biology Laboratory Department of Chemistry, University of York, Heslington, YO10 5DD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ozin AJ, Costa T, Henriques AO, Moran CP. Alternative translation initiation produces a short form of a spore coat protein in Bacillus subtilis. J Bacteriol 2001; 183:2032-40. [PMID: 11222602 PMCID: PMC95099 DOI: 10.1128/jb.183.6.2032-2040.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During endospore formation in Bacillus subtilis, over two dozen polypeptides are localized to the developing spore and coordinately assembled into a thick multilayered structure called the spore coat. Assembly of the coat is initiated by the expression of morphogenetic proteins SpoIVA, CotE, and SpoVID. These morphogenetic proteins appear to guide the assembly of other proteins into the spore coat. For example, SpoVID forms a complex with the SafA protein, which is incorporated into the coat during the early stages of development. At least two forms of SafA are found in the mature spore coat: a full-length form and a shorter form (SafA-C(30)) that begins with a methionine encoded by codon 164 of safA. In this study, we present evidence that the expression of SafA-C(30) arises from translation initiation at codon 164. We found only a single transcript driving expression of SafA. A stop codon engineered just upstream of a predicted ribosome-binding site near codon M164 abolished formation of full-length SafA, but not SafA-C(30). The same effect was observed with an alanine substitution at codon 1 of SafA. Accumulation of SafA-C(30) was blocked by substitution of an alanine codon at codon 164, but not by a substitution at a nearby methionine at codon 161. We found that overproduction of SafA-C(30) interfered with the activation of late mother cell-specific transcription and caused a strong sporulation block.
Collapse
Affiliation(s)
- A J Ozin
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
50
|
Reischl S, Thake S, Homuth G, Schumann W. Transcriptional analysis of three Bacillus subtilis genes coding for proteins with the alpha-crystallin domain characteristic of small heat shock proteins. FEMS Microbiol Lett 2001; 194:99-103. [PMID: 11150673 DOI: 10.1111/j.1574-6968.2001.tb09453.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In silico analysis of the complete Bacillus subtilis genome revealed the presence of three genes whose deduced amino acid sequences exhibit an alpha-crystallin domain characteristic for the family of small heat shock proteins: cotM (which has already been identified [Henriques et al. (1997) J. Bacteriol 179, 1887-1897]), yocM, and cotP (formerly ydfT). Analysis of the expression of all three genes by slot-blot experiments and by transcriptional fusions revealed that none of them was heat-inducible. Transcription of cotP was induced late during sporulation by the sporulation-specific sigma factor sigma(K) and negatively controlled by the GerE repressor. No expression of the yocM gene was found under all standard laboratory conditions tested. Both a cotP knockout mutant as well as a cotM cotP double knockout turned out to be viable and form spores and exhibited no germination defect.
Collapse
Affiliation(s)
- S Reischl
- Institute of Genetics, University of Bayreuth, D-95440, Germany
| | | | | | | |
Collapse
|