1
|
Alam MS, Guan P, Zhu Y, Zeng S, Fang X, Wang S, Yusuf B, Zhang J, Tian X, Fang C, Gao Y, Khatun MS, Liu Z, Hameed HMA, Tan Y, Hu J, Liu J, Zhang T. Comparative genome analysis reveals high-level drug resistance markers in a clinical isolate of Mycobacterium fortuitum subsp . fortuitum MF GZ001. Front Cell Infect Microbiol 2023; 12:1056007. [PMID: 36683685 PMCID: PMC9846761 DOI: 10.3389/fcimb.2022.1056007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Infections caused by non-tuberculosis mycobacteria are significantly worsening across the globe. M. fortuitum complex is a rapidly growing pathogenic species that is of clinical relevance to both humans and animals. This pathogen has the potential to create adverse effects on human healthcare. Methods The MF GZ001 clinical strain was collected from the sputum of a 45-year-old male patient with a pulmonary infection. The morphological studies, comparative genomic analysis, and drug resistance profiles along with variants detection were performed in this study. In addition, comparative analysis of virulence genes led us to understand the pathogenicity of this organism. Results Bacterial growth kinetics and morphology confirmed that MF GZ001 is a rapidly growing species with a rough morphotype. The MF GZ001 contains 6413573 bp genome size with 66.18 % high G+C content. MF GZ001 possesses a larger genome than other related mycobacteria and included 6156 protein-coding genes. Molecular phylogenetic tree, collinearity, and comparative genomic analysis suggested that MF GZ001 is a novel member of the M. fortuitum complex. We carried out the drug resistance profile analysis and found single nucleotide polymorphism (SNP) mutations in key drug resistance genes such as rpoB, katG, AAC(2')-Ib, gyrA, gyrB, embB, pncA, blaF, thyA, embC, embR, and iniA. In addition, the MF GZ001strain contains mutations in iniA, iniC, pncA, and ribD which conferred resistance to isoniazid, ethambutol, pyrazinamide, and para-aminosalicylic acid respectively, which are not frequently observed in rapidly growing mycobacteria. A wide variety of predicted putative potential virulence genes were found in MF GZ001, most of which are shared with well-recognized mycobacterial species with high pathogenic profiles such as M. tuberculosis and M. abscessus. Discussion Our identified novel features of a pathogenic member of the M. fortuitum complex will provide the foundation for further investigation of mycobacterial pathogenicity and effective treatment.
Collapse
Affiliation(s)
- Md Shah Alam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Ping Guan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Yuting Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Sanshan Zeng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Xiange Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Shenzhen, China
| | - Buhari Yusuf
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Jingran Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Xirong Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Mst Sumaia Khatun
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| |
Collapse
|
2
|
Abstract
Actinobacteria is a group of diverse bacteria. Most species in this class of bacteria are filamentous aerobes found in soil, including the genus Streptomyces perhaps best known for their fascinating capabilities of producing antibiotics. These bacteria typically have a Gram-positive cell envelope, comprised of a plasma membrane and a thick peptidoglycan layer. However, there is a notable exception of the Corynebacteriales order, which has evolved a unique type of outer membrane likely as a consequence of convergent evolution. In this chapter, we will focus on the unique cell envelope of this order. This cell envelope features the peptidoglycan layer that is covalently modified by an additional layer of arabinogalactan . Furthermore, the arabinogalactan layer provides the platform for the covalent attachment of mycolic acids , some of the longest natural fatty acids that can contain ~100 carbon atoms per molecule. Mycolic acids are thought to be the main component of the outer membrane, which is composed of many additional lipids including trehalose dimycolate, also known as the cord factor. Importantly, a subset of bacteria in the Corynebacteriales order are pathogens of human and domestic animals, including Mycobacterium tuberculosis. The surface coat of these pathogens are the first point of contact with the host immune system, and we now know a number of host receptors specific to molecular patterns exposed on the pathogen's surface, highlighting the importance of understanding how the cell envelope of Actinobacteria is structured and constructed. This chapter describes the main structural and biosynthetic features of major components found in the actinobacterial cell envelopes and highlights the key differences between them.
Collapse
Affiliation(s)
- Kathryn C Rahlwes
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Ian L Sparks
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
3
|
Barnes DD, Lundahl MLE, Lavelle EC, Scanlan EM. The Emergence of Phenolic Glycans as Virulence Factors in Mycobacterium tuberculosis. ACS Chem Biol 2017; 12:1969-1979. [PMID: 28692249 DOI: 10.1021/acschembio.7b00394] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tuberculosis is the leading infectious cause of mortality worldwide. The global epidemic, caused by Mycobacterium tuberculosis, has prompted renewed interest in the development of novel vaccines for disease prevention and control. The cell envelope of M. tuberculosis is decorated with an assortment of glycan structures, including glycolipids, that are involved in disease pathogenesis. Phenolic glycolipids and the structurally related para-hydroxybenzoic acid derivatives display potent immunomodulatory activities and have particular relevance for both understanding the interaction of the bacterium with the host immune system and also in the design of new vaccine and therapeutic candidates. Interest in glycobiology has grown exponentially over the past decade, with advancements paving the way for effective carbohydrate based vaccines. This review highlights recent advances in our understanding of phenolic glycans, including their biosynthesis and role as virulence factors in M. tuberculosis. Recent chemical synthesis approaches and biochemical analysis of synthetic glycans and their conjugates have led to fundamental insights into their roles in host-pathogen interactions. The applications of these synthetic glycans as potential vaccine candidates are discussed.
Collapse
Affiliation(s)
- Danielle D. Barnes
- School of Chemistry
and Trinity Biomedical Sciences Institute, Trinity College, Pearse
St., Dublin 2, Ireland
| | - Mimmi L. E. Lundahl
- School of Chemistry
and Trinity Biomedical Sciences Institute, Trinity College, Pearse
St., Dublin 2, Ireland
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity
Biomedical Sciences Institute, Trinity College Dublin, D02 R590, Dublin 2, Ireland
| | - Ed C. Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity
Biomedical Sciences Institute, Trinity College Dublin, D02 R590, Dublin 2, Ireland
| | - Eoin M. Scanlan
- School of Chemistry
and Trinity Biomedical Sciences Institute, Trinity College, Pearse
St., Dublin 2, Ireland
| |
Collapse
|
4
|
Abstract
This article summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity, and biogenesis of a variety of noncovalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this article include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, noncarotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids, and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides.
Collapse
|
5
|
Quadri LEN. Biosynthesis of mycobacterial lipids by polyketide synthases and beyond. Crit Rev Biochem Mol Biol 2014; 49:179-211. [DOI: 10.3109/10409238.2014.896859] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Onwueme KC, Vos CJ, Zurita J, Ferreras JA, Quadri LEN. The dimycocerosate ester polyketide virulence factors of mycobacteria. Prog Lipid Res 2005; 44:259-302. [PMID: 16115688 DOI: 10.1016/j.plipres.2005.07.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent advances in the study of mycobacterial lipids indicate that the class of outer membrane lipids known as dimycocerosate esters (DIMs) are major virulence factors of clinically relevant mycobacteria including Mycobacterium tuberculosis and Mycobacterium leprae. DIMs are a structurally intriguing class of polyketide synthase-derived wax esters discovered over seventy years ago, yet, little was known until recently about their biosynthesis. Availability of several mycobacterial genomes has accelerated progress toward clarifying steps in the DIM biosynthetic pathway and it is our belief that reviewing the bases of our current knowledge will clarify outstanding issues and help direct future endeavors.
Collapse
Affiliation(s)
- Kenolisa C Onwueme
- Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
7
|
Miltner E, Daroogheh K, Mehta PK, Cirillo SLG, Cirillo JD, Bermudez LE. Identification of Mycobacterium avium genes that affect invasion of the intestinal epithelium. Infect Immun 2005; 73:4214-21. [PMID: 15972512 PMCID: PMC1168615 DOI: 10.1128/iai.73.7.4214-4221.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Invasion of intestinal mucosa of the host by Mycobacterium avium is a critical step in pathogenesis and likely involves several different bacterial proteins, lipids, glycoproteins, and/or glycolipids. Through the screening of an M. avium genomic library in Mycobacterium smegmatis, we have identified a number of M. avium genes that are associated with increased invasion of mucosal epithelial cells. In order to further investigate these genes, we cloned six of them into a plasmid downstream of a strong mycobacterial promoter (L5 mycobacterial phage promoter), resulting in constitutive expression. Bacteria were then evaluated for increased expression and examined for invasion of HT-29 intestinal epithelial cells. The genes identified encode proteins that are similar to (i) M. tuberculosis coenzyme A carboxylase, (ii) M. tuberculosis membrane proteins of unknown function, (iii) M. tuberculosis FadE20, (iv) a Mycobacterium paratuberculosis surface protein, and (v) M. tuberculosis cyclopropane fatty acyl-phopholipid synthase. The constitutive expression of these genes confers to M. avium the ability to invade HT-29 intestinal epithelial cells with a severalfold increase in efficiency compared to both the wild-type M. avium and M. avium containing the vector alone. Using the murine intestinal ligated loop model, it was observed that the constitutive expression of M. avium proteins has a modest impact on the ability to enter the intestinal mucosa when compared with the wild-type control, suggesting that under in vivo conditions these genes are expressed at higher levels. Evaluation of the expression of these invasion-related genes indicated that under conditions similar to the intestinal lumen environment, the genes identified are upregulated. These data suggest that invasion of the intestinal mucosa is an event that requires the participation of several bacterial factors and the expression of the genes that encode them is less observed under standard laboratory growth conditions.
Collapse
Affiliation(s)
- Elizabeth Miltner
- Kuzell Institute for Arthritis & Infectious Diseases, San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
8
|
Tripathi RP, Tewari N, Dwivedi N, Tiwari VK. Fighting tuberculosis: An old disease with new challenges. Med Res Rev 2005; 25:93-131. [PMID: 15389729 DOI: 10.1002/med.20017] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a leading cause of mortality worldwide into 21st century. The mortality and spread of this disease has further been aggravated because of synergy of this disease with HIV. A number of anti-TB drugs are ineffective against this disease because of development of resistance strains. Internationally efforts are being made to develop new anti-tubercular agents. A number of drug targets from cell wall biosynthesis, nucleic acid biosynthesis, and many other biosynthetic pathways are being unraveled throughout the world and are being utilized for drug development. In this review, socioeconomic problems in developing countries, efforts to control this disease in different individuals, the targets (known already and newly discovered), existing anti-tubercular agents including natural products and lead molecules, and the future prospects to develop new anti-TB agents are described.
Collapse
Affiliation(s)
- Rama P Tripathi
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow, 226001, India.
| | | | | | | |
Collapse
|
9
|
Trivedi OA, Arora P, Sridharan V, Tickoo R, Mohanty D, Gokhale RS. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 2004; 428:441-5. [PMID: 15042094 DOI: 10.1038/nature02384] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2003] [Accepted: 02/02/2004] [Indexed: 11/08/2022]
Abstract
The metabolic repertoire in nature is augmented by generating hybrid metabolites from a limited set of gene products. In mycobacteria, several unique complex lipids are produced by the combined action of fatty acid synthases and polyketide synthases (PKSs), although it is not clear how the covalently sequestered biosynthetic intermediates are transferred from one enzymatic complex to another. Here we show that some of the 36 annotated fadD genes, located adjacent to the PKS genes in the Mycobacterium tuberculosis genome, constitute a new class of long-chain fatty acyl-AMP ligases (FAALs). These proteins activate long-chain fatty acids as acyl-adenylates, which are then transferred to the multifunctional PKSs for further chain extension. This mode of activation and transfer of fatty acids is contrary to the previously described universal mechanism involving the formation of acyl-coenzyme A thioesters. Similar mechanisms may operate in the biosynthesis of other lipid-containing metabolites and could have implications in engineering novel hybrid products.
Collapse
Affiliation(s)
- Omita A Trivedi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | | | | | |
Collapse
|
10
|
Sirakova TD, Fitzmaurice AM, Kolattukudy P. Regulation of expression of mas and fadD28, two genes involved in production of dimycocerosyl phthiocerol, a virulence factor of Mycobacterium tuberculosis. J Bacteriol 2002; 184:6796-802. [PMID: 12446629 PMCID: PMC135475 DOI: 10.1128/jb.184.24.6796-6802.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional regulation of genes involved in the biosynthesis of cell wall lipids of Mycobacterium tuberculosis is poorly understood. The gene encoding mycocerosic acid synthase (mas) and fadD28, an adjoining acyl coenzyme A synthase gene, involved in the production of a virulence factor, dimycocerosyl phthiocerol, were cloned from Mycobacterium bovis BCG, and their promoters were analyzed. The putative promoters were fused to the xylE reporter gene, and its expression was measured in Escherichia coli, Mycobacterium smegmatis, and M. bovis BCG. In E. coli, the fadD28 promoter was not functional but the mas promoter was functional. Both fadD28 and mas promoters were functional in M. smegmatis, at approximately two- and sixfold-higher levels, respectively, than the BCG hsp60 promoter. In M. bovis BCG, the fadD28 and mas promoters were functional at three- and fivefold-higher levels, respectively, than the hsp60 promoter. Primer extension analyses identified transcriptional start points 60 and 182 bp upstream of the translational start codons of fadD28 and mas, respectively. Both promoters contain sequences similar to the canonical -10 and -35 hexamers recognized by the sigma(70) subunit of RNA polymerase. Deletions of the upstream regions of both genes indicated that 324 bp of the fadD28 and 228 bp of the mas were essential for promoter activity. Further analysis of the mas promoter showed that a 213-bp region 581 bp upstream of the mas promoter acted as a putative transcriptional enhancer, promoting high-level expression of the mas gene when present in either direction. This represents the identification of a rare example of an enhancer-like element in mycobacteria.
Collapse
Affiliation(s)
- Tatiana D Sirakova
- Department of Biochemistry, The Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
11
|
Minnikin DE, Kremer L, Dover LG, Besra GS. The methyl-branched fortifications of Mycobacterium tuberculosis. CHEMISTRY & BIOLOGY 2002; 9:545-53. [PMID: 12031661 DOI: 10.1016/s1074-5521(02)00142-4] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis continues to be the predominant global infectious agent, annually killing over three million people. Recommended drug regimens have the potential to control tuberculosis, but lack of adherence to such regimens has resulted in the emergence of resistant strains. Mycobacterium tuberculosis has an unusual cell envelope, rich in unique long-chain lipids, that provides a very hydrophobic barrier to antibiotic access. Such lipids, however, can be drug targets, as exemplified by the action of the front-line drug isoniazid on mycolic acid biosynthesis. A number of these lipids are potential key virulence factors and their structures are based on very characteristic methyl-branched long-chain acids and alcohols. This review details the history, structure, and genetic aspects of the biosynthesis of these methyl-branched components, good examples of which are the phthiocerols and the mycocerosic and mycolipenic acids.
Collapse
Affiliation(s)
- David E Minnikin
- School of Biosciences, The University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom.
| | | | | | | |
Collapse
|
12
|
Morsczeck C, Berger S, Plum G. The macrophage-induced gene (mig) of Mycobacterium avium encodes a medium-chain acyl-coenzyme A synthetase. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1521:59-65. [PMID: 11690636 DOI: 10.1016/s0167-4781(01)00287-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The macrophage-induced gene (mig) of Mycobacterium avium has been associated with virulence, but the functions of the gene product were still unknown. Here we have characterized the Mig protein by biochemical methods. A plasmid with a histidine-tagged fusion protein was constructed for expression in Escherichia coli. Mig was detected as a 60 kDa protein after expression and purification of the recombinant gene product. The sequence of the fusion gene and of the parent gene in M. avium were reexamined. This confirmed that the mig gene encodes a 550 amino acid protein (58 kDa) instead of a 295 amino acid protein (30 kDa) as predicted before. The 550 amino acid Mig exhibits a high degree of homology to bacterial acyl-CoA synthetases. Two artificial 30 kDa derivatives of Mig were expressed and purified as histidine-tagged fusion proteins in E. coli. These proteins and the 58.6 kDa histidine-tagged Mig protein were analysed for activity with an acyl-CoA synthetase assay. Among the three investigated proteins, only the 58.6 kDa Mig exhibited detectable activity as an acyl-CoA synthetase (EC 6.2.1.3) with saturated medium-chain fatty acids, unsaturated long-chain fatty acid and some aromatic carbon acids as substrates. Enzymatic activity could be inhibited by 2-hydroxydodecanoic acid, a typical inhibitor of medium-chain acyl-CoA synthetases. We postulate a novel medium-chain acyl-CoA synthetase motif. We have investigated the biochemical properties of Mig and suggest that this enzyme is involved in the metabolism of fatty acid during mycobacterial survival in macrophages.
Collapse
Affiliation(s)
- C Morsczeck
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Universität zu Köln, Goldenfelsstrasse 19-21, 50935, Cologne, Germany
| | | | | |
Collapse
|
13
|
Du L, Sánchez C, Chen M, Edwards DJ, Shen B. The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase. CHEMISTRY & BIOLOGY 2000; 7:623-42. [PMID: 11048953 DOI: 10.1016/s1074-5521(00)00011-9] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The structural and catalytic similarities between modular nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) inspired us to search for a hybrid NRPS-PKS system. The antitumor drug bleomycin (BLM) is a natural hybrid peptide-polyketide metabolite, the biosynthesis of which provides an excellent opportunity to investigate intermodular communication between NRPS and PKS modules. Here, we report the cloning, sequencing, and characterization of the BLM biosynthetic gene cluster from Streptomyces verticillus ATCC15003. RESULTS A set of 30 genes clustered with the previously characterized blmAB resistance genes were defined by sequencing a 85-kb contiguous region of DNA from S. verticillus ATCC15003. The sequenced gene cluster consists of 10 NRPS genes encoding nine NRPS modules, a PKS gene encoding one PKS module, five sugar biosynthesis genes, as well as genes encoding other biosynthesis, resistance, and regulatory proteins. The substrate specificities of individual NRPS and PKS modules were predicted based on sequence analysis, and the amino acid specificities of two NRPS modules were confirmed biochemically in vitro. The involvement of the cloned genes in BLM biosynthesis was demonstrated by bioconversion of the BLM aglycones into BLMs in Streptomyces lividans expressing a part of the gene cluster. CONCLUSION The blm gene cluster is characterized by a hybrid NRPS-PKS system, supporting the wisdom of combining individual NRPS and PKS modules for combinatorial biosynthesis. The availability of the blm gene cluster has set the stage for engineering novel BLM analogs by genetic manipulation of genes governing BLM biosynthesis and for investigating the molecular basis for intermodular communication between NRPS and PKS in the biosynthesis of hybrid peptide-polyketide metabolites.
Collapse
Affiliation(s)
- L Du
- Department of Chemistry, University of California, Davis 95616, USA
| | | | | | | | | |
Collapse
|
14
|
Cox JS, Chen B, McNeil M, Jacobs WR. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999; 402:79-83. [PMID: 10573420 DOI: 10.1038/47042] [Citation(s) in RCA: 574] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tuberculosis is the leading cause of death in the world resulting from a single bacterial infection. Despite its enormous burden on world health, little is known about the molecular mechanisms of pathogenesis of Mycobacterium tuberculosis. Bacterial multiplication and concomitant tissue damage within an infected host, including experimentally infected mice, occurs primarily in the lungs-the favoured niche of M. tuberculosis. Although it has been proposed that the distinctive cell wall of M. tuberculosis is important for virulence, rigorous genetic proof has been lacking. Here, using signature-tagged mutagenesis, we isolated three attenuated M. tuberculosis mutants that cannot synthesize or transport a complex, cell wall-associated lipid called phthiocerol dimycocerosate (PDIM) which is found only in pathogenic mycobacteria. Two mutants have transposon insertions affecting genes implicated in PDIM synthesis; the third has a disruption in a gene encoding a large transmembrane protein required for proper subcellular localization of PDIM. Synthesis and transport of this complex lipid is only required for growth in the lung; all three mutants are unaffected for growth in the liver and spleen. This clearly shows that a lipid is required for M. tuberculosis virulence.
Collapse
Affiliation(s)
- J S Cox
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
15
|
Camacho LR, Ensergueix D, Perez E, Gicquel B, Guilhot C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 1999; 34:257-67. [PMID: 10564470 DOI: 10.1046/j.1365-2958.1999.01593.x] [Citation(s) in RCA: 479] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tuberculosis remains the greatest cause of death worldwide due to a single pathogen. In order to identify the genes required for the pathogenicity of Mycobacterium tuberculosis, a functional genomic approach was developed. A library of signature-tagged transposon mutants of this bacterium was constructed and screened for those affected in their multiplication within the lungs of mice. From 1927 mutants tested, 16 were attenuated for their virulence. The insertions harboured by the selected mutants were mapped on the M. tuberculosis genome and most of the mutated loci appeared to be involved in lipid metabolism or transport across the membrane. Four independent mutations identified a cluster of virulence genes located on a 50 kb chromosomal region. These genes might be involved in the production of phthiocerol and phenolphthiocerol derivatives, a group of molecules restricted to eight mycobacterial species, seven of them being either strict or opportunistic pathogens. The interaction of five mutant strains with mouse bone marrow macrophages was investigated. These five mutants were still able to multiply in this cell type. However, in three cases, there was a growth defect in comparison with the wild-type strain. The other two strains exhibited no clear difference from the virulent strain, MT103, in this model. This study, which is the first global research of virulence factors of M. tuberculosis, opens the way to a better understanding of the molecules that are key players in the interaction of this pathogen with its host.
Collapse
Affiliation(s)
- L R Camacho
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
16
|
Fitzmaurice AM, Kolattukudy PE. An acyl-CoA synthase (acoas) gene adjacent to the mycocerosic acid synthase (mas) locus is necessary for mycocerosyl lipid synthesis in Mycobacterium tuberculosis var. bovis BCG. J Biol Chem 1998; 273:8033-9. [PMID: 9525903 DOI: 10.1074/jbc.273.14.8033] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An open reading frame, ORF3, first identified adjacent to the mycocerosic acid synthase gene in Mycobacterium bovis BCG encodes a protein with acyl-CoA synthase (ACoAS) activity. Genes homologous to acoas are found adjacent to other multifunctional polyketide synthase genes in the mycobacterial genome. To test whether these gene products are necessary to esterify the fatty acids generated by the adjacent polyketide synthase gene products, the acoas gene was disrupted in M. bovis BCG using a suicide vector containing the acoas gene with an internal deletion and the hygromycin-resistant gene as selection marker. Allelic exchange at the acoas locus was confirmed by Southern hybridization and polymerase chain reaction amplification of both flanking regions expected from homologous recombination. Immunoblot analysis indicated that the 65-kDa ACoAS protein product was absent in the mutant. Chromatographic analysis of lipids derived from [1-14C]propionate showed that the mutant did not produce mycocerosyl lipids, although it produced normal levels of mycocerosic acid synthase. These results suggest that ACoAS is involved in the synthesis of mycocerosyl lipids of the mycobacterial cell wall.
Collapse
Affiliation(s)
- A M Fitzmaurice
- Neurobiotechnology Center and Departments of Biochemistry and Medical Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|