1
|
Acton L, Pye HV, Thilliez G, Kolenda R, Matthews M, Turner AK, Yasir M, Holden E, Al-Khanaq H, Webber M, Adriaenssens EM, Kingsley RA. Collateral sensitivity increases the efficacy of a rationally designed bacteriophage combination to control Salmonella enterica. J Virol 2024; 98:e0147623. [PMID: 38376991 PMCID: PMC10949491 DOI: 10.1128/jvi.01476-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
The ability of virulent bacteriophages to lyse bacteria influences bacterial evolution, fitness, and population structure. Knowledge of both host susceptibility and resistance factors is crucial for the successful application of bacteriophages as biological control agents in clinical therapy, food processing, and agriculture. In this study, we isolated 12 bacteriophages termed SPLA phage which infect the foodborne pathogen Salmonella enterica. To determine phage host range, a diverse collection of Enterobacteriaceae and Salmonella enterica was used and genes involved in infection by six SPLA phages were identified using Salmonella Typhimurium strain ST4/74. Candidate host receptors included lipopolysaccharide (LPS), cellulose, and BtuB. Lipopolysaccharide was identified as a susceptibility factor for phage SPLA1a and mutations in LPS biosynthesis genes spontaneously emerged during culture with S. Typhimurium. Conversely, LPS was a resistance factor for phage SPLA5b which suggested that emergence of LPS mutations in culture with SPLA1a represented collateral sensitivity to SPLA5b. We show that bacteria-phage co-culture with SPLA1a and SPLA5b was more successful in limiting the emergence of phage resistance compared to single phage co-culture. Identification of host susceptibility and resistance genes and understanding infection dynamics are critical steps in the rationale design of phage cocktails against specific bacterial pathogens.IMPORTANCEAs antibiotic resistance continues to emerge in bacterial pathogens, bacterial viruses (phage) represent a potential alternative or adjunct to antibiotics. One challenge for their implementation is the predisposition of bacteria to rapidly acquire resistance to phages. We describe a functional genomics approach to identify mechanisms of susceptibility and resistance for newly isolated phages that infect and lyse Salmonella enterica and use this information to identify phage combinations that exploit collateral sensitivity, thus increasing efficacy. Collateral sensitivity is a phenomenon where resistance to one class of antibiotics increases sensitivity to a second class of antibiotics. We report a functional genomics approach to rationally design a phage combination with a collateral sensitivity dynamic which resulted in increased efficacy. Considering such evolutionary trade-offs has the potential to manipulate the outcome of phage therapy in favor of resolving infection without selecting for escape mutants and is applicable to other virus-host interactions.
Collapse
Affiliation(s)
- Luke Acton
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| | - Hannah V. Pye
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| | - Gaëtan Thilliez
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Rafał Kolenda
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Michaela Matthews
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - A. Keith Turner
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Muhammad Yasir
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Emma Holden
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Haider Al-Khanaq
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Mark Webber
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| | | | - Robert A. Kingsley
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
2
|
Zheng X, Chang S, Liu Y, Dai X, You C. Human Mitochondrial Protein HSPD1 Binds to and Regulates the Repair of Deoxyinosine in DNA. J Proteome Res 2023; 22:1339-1346. [PMID: 36852893 DOI: 10.1021/acs.jproteome.2c00854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The generation of deoxyinosine (dI) in DNA is one of the most important sources of genetic mutations, which may lead to cancer and other human diseases. A further understanding of the biological consequences of dI necessitates the identification and functional characterizations of dI-binding proteins. Herein, we employed a mass spectrometry-based proteomics approach to detect the cellular proteins that may sense the presence of dI in DNA. Our results demonstrated that human mitochondrial heat shock protein 60 (HSPD1) can interact with dI-bearing DNA. We further demonstrated the involvement of HSPD1 in the sodium nitrite-induced DNA damage response and in the modulation of dI levels in vitro and in human cells. Together, these findings revealed HSPD1 as a novel dI-binding protein that may play an important role in the mitochondrial DNA damage control in human cells.
Collapse
Affiliation(s)
- Xiaofang Zheng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
| | - Sijia Chang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yini Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xiaoxia Dai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
| | - Changjun You
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
3
|
Lin T, Zhang L, Wu M, Jiang D, Li Z, Yang Z. Repair of Hypoxanthine in DNA Revealed by DNA Glycosylases and Endonucleases From Hyperthermophilic Archaea. Front Microbiol 2021; 12:736915. [PMID: 34531846 PMCID: PMC8438529 DOI: 10.3389/fmicb.2021.736915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Since hyperthermophilic Archaea (HA) thrive in high-temperature environments, which accelerate the rates of deamination of base in DNA, their genomic stability is facing a severe challenge. Hypoxanthine (Hx) is one of the common deaminated bases in DNA. Generally, replication of Hx in DNA before repaired causes AT → GC mutation. Biochemical data have demonstrated that 3-methyladenine DNA glycosylase II (AlkA) and Family V uracil DNA glycosylase (UDG) from HA could excise Hx from DNA, thus triggering a base excision repair (BER) process for Hx repair. Besides, three endonucleases have been reported from HA: Endonuclease V (EndoV), Endonuclease Q (EndoQ), and Endonuclease NucS (EndoNucS), capable of cleaving Hx-containing DNA, thereby providing alternative pathways for Hx repair. Both EndoV and EndoQ could cleave one DNA strand with Hx, thus forming a nick and further initiating an alternative excision repair (AER) process for the follow-up repair. By comparison, EndoNucS cleaves both strands of Hx-containing DNA in a restriction endonuclease manner, thus producing a double-stranded break (DSB). This created DSB might be repaired by homologous recombination (HR) or by a combination activity of DNA polymerase (DNA pol), flap endonuclease 1 (FEN1), and DNA ligase (DNA lig). Herein, we reviewed the most recent advances in repair of Hx in DNA triggered by DNA glycosylases and endonucleases from HA, and proposed future research directions.
Collapse
Affiliation(s)
- Tan Lin
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China
| | - Likui Zhang
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China.,Guangling College, Yangzhou University, Yangzhou, China
| | - Mai Wu
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China
| | - Donghao Jiang
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China
| | - Zheng Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| | - Zhihui Yang
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
4
|
Rao TVP, Kuzminov A. Sources of thymidine and analogs fueling futile damage-repair cycles and ss-gap accumulation during thymine starvation in Escherichia coli. DNA Repair (Amst) 2019; 75:1-17. [PMID: 30684682 PMCID: PMC6382538 DOI: 10.1016/j.dnarep.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/31/2018] [Accepted: 01/06/2019] [Indexed: 10/27/2022]
Abstract
Thymine deprivation in thyA mutant E. coli causes thymineless death (TLD) and is the mode of action of popular antibacterial and anticancer drugs, yet the mechanisms of TLD are still unclear. TLD comprises three defined phases: resistance, rapid exponential death (RED) and survival, with the nature of the resistance phase and of the transition to the RED phase holding key to TLD pathology. We propose that a limited source of endogenous thymine maintains replication forks through the resistance phase. When this source ends, forks undergo futile break-repair cycle during the RED phase, eventually rendering the chromosome non-functional. Two obvious sources of the endogenous thymine are degradation of broken chromosomal DNA and recruitment of thymine from stable RNA. However, mutants that cannot degrade broken chromosomal DNA or lack ribo-thymine, instead of shortening the resistance phase, deepen the RED phase, meaning that only a small fraction of T-starved cells tap into these sources. Interestingly, the substantial chromosomal DNA accumulation during the resistance phase is negated during the RED phase, suggesting futile cycle of incorporation and excision of wrong nucleotides. We tested incorporation of dU or rU, finding some evidence for both, but DNA-dU incorporation accelerates TLD only when intracellular [dUTP] is increased by the dut mutation. In the dut ung mutant, with increased DNA-dU incorporation and no DNA-dU excision, replication is in fact rescued even without dT, but TLD still occurs, suggesting different mechanisms. Finally, we found that continuous DNA synthesis during thymine starvation makes chromosomal DNA increasingly single-stranded, and even the dut ung defect does not completely block this ss-gap accumulation. We propose that instability of single-strand gaps underlies the pathology of thymine starvation.
Collapse
Affiliation(s)
- T V Pritha Rao
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Yang Y, Park SH, Alford-Zappala M, Lee HW, Li J, Cunningham RP, Cao W. Role of endonuclease III enzymes in uracil repair. Mutat Res 2019; 813:20-30. [PMID: 30590231 PMCID: PMC6378108 DOI: 10.1016/j.mrfmmm.2018.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Endonuclease III is a DNA glycosylase previously known for its repair activity on oxidative pyrimidine damage. Uracil is a deamination product derived from cytosine. Uracil DNA N-glycosylase (UNG) and mismatch-specific uracil DNA glycosylase (MUG) are two known repair enzymes with enzymatic activity on uracil in E. coli. Here we report a G/U specific uracil DNA glycosylase activity in E. coli endonuclease III (endo III, Nth), which is comparable to MUG but significantly lower than its thymine glycol DNA glycosylase activity. The possibility that the novel activity is due to contamination is ruled out by expressing the wild type nth gene and an active site mutant in a uracil-repair-deficient genetic background. Consistent with the biochemical analysis, analyses of lac+ reversion and mutation frequencies in the presence of human AID induced cytosine deamination indicate the endo III can play a role in repair of cytosine deamination. In addition to E. coli, UDG activity is found in endo III homologs from other organisms. E. coli nucleoside diphosphate kinase (Ndk) was also tested for UDG activity because it was previously reported as an uracil repair enzyme. Under the assay conditions, very limited UDG activity was detected in single-stranded uracil-containing DNA from E. coli Ndk and no UDG activity was detected in human Ndk homologs. This study provides definitive clarification on uracil repair by endo III and reveals that endonuclease III is a G/U-specific UDG that can be viewed as a prototype for the human MBD4 uracil DNA glycosylase.
Collapse
Affiliation(s)
- Ye Yang
- Department of Genetics and Biochemistry, Clemson University, Room 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Sung-Hyun Park
- Department of Genetics and Biochemistry, Clemson University, Room 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Maria Alford-Zappala
- Department of Biological Sciences, The University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Hyun-Wook Lee
- Department of Genetics and Biochemistry, Clemson University, Room 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Jing Li
- Department of Genetics and Biochemistry, Clemson University, Room 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Richard P Cunningham
- Department of Biological Sciences, The University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, Room 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA.
| |
Collapse
|
6
|
Wang Y, Zhang L, Zhu X, Li Y, Shi H, Oger P, Yang Z. Biochemical characterization of a thermostable endonuclease V from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5. Int J Biol Macromol 2018; 117:17-24. [DOI: 10.1016/j.ijbiomac.2018.05.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 01/13/2023]
|
7
|
Su KY, Lin LI, Goodman SD, Yen RS, Wu CY, Chang WC, Yang YC, Cheng WC, Fang WH. DNA polymerase I proofreading exonuclease activity is required for endonuclease V repair pathway both in vitro and in vivo. DNA Repair (Amst) 2018. [DOI: 10.1016/j.dnarep.2018.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Insights into the role of endonuclease V in RNA metabolism in Trypanosoma brucei. Sci Rep 2017; 7:8505. [PMID: 28819113 PMCID: PMC5561087 DOI: 10.1038/s41598-017-08910-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/14/2017] [Indexed: 01/05/2023] Open
Abstract
Inosine may arise in DNA as a result of oxidative deamination of adenine or misincorporation of deoxyinosine triphosphate during replication. On the other hand, the occurrence of inosine in RNA is considered a normal and essential modification induced by specific adenosine deaminases acting on mRNA and tRNA. In prokaryotes, endonuclease V (EndoV) can recognize and cleave inosine-containing DNA. In contrast, mammalian EndoVs preferentially cleave inosine-containing RNA, suggesting a role in RNA metabolism for the eukaryotic members of this protein family. We have performed a biochemical characterization of EndoV from the protozoan parasite Trypanosoma brucei. In vitro, TbEndoV efficiently processes single-stranded RNA oligonucleotides with inosine, including A to I-edited tRNA-like substrates but exhibits weak activity over DNA, except when a ribonucleotide is placed 3' to the inosine. Immunolocalization studies performed in procyclic forms indicate that TbEndoV is mainly cytosolic yet upon nutritional stress it redistributes and accumulates in stress granules colocalizing with the DEAD-box helicase TbDhh1. RNAi-mediated depletion of TbEndoV results in moderate growth defects in procyclic cells while the two EndoV alleles could be readily knocked out in bloodstream forms. Taken together, these observations suggest an important role of TbEndoV in RNA metabolism in procyclic forms of the parasite.
Collapse
|
9
|
Samara NL, Gao Y, Wu J, Yang W. Detection of Reaction Intermediates in Mg 2+-Dependent DNA Synthesis and RNA Degradation by Time-Resolved X-Ray Crystallography. Methods Enzymol 2017; 592:283-327. [PMID: 28668125 DOI: 10.1016/bs.mie.2017.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Structures of enzyme-substrate/product complexes have been studied for over four decades but have been limited to either before or after a chemical reaction. Recently using in crystallo catalysis combined with X-ray diffraction, we have discovered that many enzymatic reactions in nucleic acid metabolism require additional metal ion cofactors that are not present in the substrate or product state. By controlling metal ions essential for catalysis, the in crystallo approach has revealed unprecedented details of reaction intermediates. Here we present protocols used for successful studies of Mg2+-dependent DNA polymerases and ribonucleases that are applicable to analyses of a variety of metal ion-dependent reactions.
Collapse
Affiliation(s)
- Nadine L Samara
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States; Section on Biological Chemistry, NIDCR, National Institutes of Health, Bethesda, MD, United States
| | - Yang Gao
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Jinjun Wu
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
10
|
Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing. Proc Natl Acad Sci U S A 2015; 112:E5990-9. [PMID: 26460006 DOI: 10.1073/pnas.1512136112] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A complete understanding of evolutionary processes requires that factors determining spontaneous mutation rates and spectra be identified and characterized. Using mutation accumulation followed by whole-genome sequencing, we found that the mutation rates of three widely diverged commensal Escherichia coli strains differ only by about 50%, suggesting that a rate of 1-2 × 10(-3) mutations per generation per genome is common for this bacterium. Four major forces are postulated to contribute to spontaneous mutations: intrinsic DNA polymerase errors, endogenously induced DNA damage, DNA damage caused by exogenous agents, and the activities of error-prone polymerases. To determine the relative importance of these factors, we studied 11 strains, each defective for a major DNA repair pathway. The striking result was that only loss of the ability to prevent or repair oxidative DNA damage significantly impacted mutation rates or spectra. These results suggest that, with the exception of oxidative damage, endogenously induced DNA damage does not perturb the overall accuracy of DNA replication in normally growing cells and that repair pathways may exist primarily to defend against exogenously induced DNA damage. The thousands of mutations caused by oxidative damage recovered across the entire genome revealed strong local-sequence biases of these mutations. Specifically, we found that the identity of the 3' base can affect the mutability of a purine by oxidative damage by as much as eightfold.
Collapse
|
11
|
Crystal structure of E. coli endonuclease V, an essential enzyme for deamination repair. Sci Rep 2015; 5:12754. [PMID: 26244280 PMCID: PMC4650699 DOI: 10.1038/srep12754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/03/2015] [Indexed: 12/26/2022] Open
Abstract
Endonuclease V (EndoV) is a ubiquitous protein present in all three kingdoms of life, responsible for the specific cleavages at the second phosphodiester bond 3’ to inosine. E. coli EndoV (EcEndoV) is the first member discovered in the EndoV family. It is a small protein with a compact gene organization, yet with a wide spectrum of substrate specificities. However, the structural basis of its substrate recognition is not well understood. In this study, we determined the 2.4 Å crystal structure of EcEndoV. The enzyme preserves the general ‘RNase H-like motif’ structure. Two subunits are almost fully resolved in the asymmetric unit, but they are not related by any 2-fold axes. Rather, they establish “head-to-shoulder” contacts with loose interactions between each other. Mutational studies show that mutations that disrupt the association mode of the two subunits also decrease the cleavage efficiencies of the enzyme. Further biochemical studies suggest that EcEndoV is able to bind to single-stranded, undamaged DNA substrates without sequence specificity, and forms two types of complexes in a metal-independent manner, which may explain the wide spectrum of substrate specificities of EcEndoV.
Collapse
|
12
|
Dalhus B, Alseth I, Bjørås M. Structural basis for incision at deaminated adenines in DNA and RNA by endonuclease V. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:134-142. [PMID: 25824682 DOI: 10.1016/j.pbiomolbio.2015.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 01/15/2023]
Abstract
Deamination of the exocyclic amines in adenine, guanine and cytosine forms base lesions that may lead to mutations if not removed by DNA repair proteins. Prokaryotic endonuclease V (EndoV/Nfi) has long been known to incise DNA 3' to a variety of base lesions, including deaminated adenine, guanine and cytosine. Biochemical and genetic data implicate that EndoV is involved in repair of these deaminated bases. In contrast to DNA glycosylases that remove a series of modified/damaged bases in DNA by direct excision of the nucleobase, EndoV cleaves the DNA sugar phosphate backbone at the second phosphodiester 3' to the lesion without removing the deaminated base. Structural investigation of this unusual incision by EndoV has unravelled an enzyme with separate base lesion and active site pockets. A novel wedge motif was identified as a DNA strand-separation feature important for damage detection. Human EndoV appears inactive on DNA, but has been shown to incise various RNA substrates containing inosine. Inosine is the deamination product of adenosine and is frequently found in RNA. The structural basis for discrimination between DNA and RNA by human EndoV remains elusive.
Collapse
Affiliation(s)
- Bjørn Dalhus
- Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, PO Box 4950, Nydalen, N-0424 Oslo, Norway; Department of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424 Oslo, Norway.
| | - Ingrun Alseth
- Department of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424 Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424 Oslo, Norway
| |
Collapse
|
13
|
Costa SB, Campos ACC, Pereira ACM, de Mattos-Guaraldi AL, Júnior RH, Rosa ACP, Asad LMBO. Adherence to abiotic surface induces SOS response in Escherichia coli K-12 strains under aerobic and anaerobic conditions. MICROBIOLOGY-SGM 2014; 160:1964-1973. [PMID: 25012969 DOI: 10.1099/mic.0.075317-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
During the colonization of surfaces, Escherichia coli bacteria often encounter DNA-damaging agents and these agents can induce several defence mechanisms. Base excision repair (BER) is dedicated to the repair of oxidative DNA damage caused by reactive oxygen species (ROS) generated by chemical and physical agents or by metabolism. In this work, we have evaluated whether the interaction with an abiotic surface by mutants derived from E. coli K-12 deficient in some enzymes that are part of BER causes DNA damage and associated filamentation. Moreover, we studied the role of endonuclease V (nfi gene; 1506 mutant strain) in biofilm formation. Endonuclease V is an enzyme that is involved in DNA repair of nitrosative lesions. We verified that endonuclease V is involved in biofilm formation. Our results showed more filamentation in the xthA mutant (BW9091) and triple xthA nfo nth mutant (BW535) than in the wild-type strain (AB1157). By contrast, the mutant nfi did not present filamentation in biofilm, although its wild-type strain (1466) showed rare filaments in biofilm. The filamentation of bacterial cells attaching to a surface was a consequence of SOS induction measured by the SOS chromotest. However, biofilm formation depended on the ability of the bacteria to induce the SOS response since the mutant lexA Ind(-) did not induce the SOS response and did not form any biofilm. Oxygen tension was an important factor for the interaction of the BER mutants, since these mutants exhibited decreased quantitative adherence under anaerobic conditions. However, our results showed that the presence or absence of oxygen did not affect the viability of BW9091 and BW535 strains. The nfi mutant and its wild-type did not exhibit decreased biofilm formation under anaerobic conditions. Scanning electron microscopy was also performed on the E. coli K-12 strains that had adhered to the glass, and we observed the presence of a structure similar to an extracellular matrix that depended on the oxygen tension. In conclusion, it was proven that bacterial interaction with abiotic surfaces can lead to SOS induction and associated filamentation. Moreover, we verified that endonuclease V is involved in biofilm formation.
Collapse
Affiliation(s)
- Suelen B Costa
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Brazil
| | - Ana Carolina C Campos
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Brazil
| | - Ana Claudia M Pereira
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Brazil
| | - Ana Luiza de Mattos-Guaraldi
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Brazil
| | - Raphael Hirata Júnior
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Brazil
| | - Ana Cláudia P Rosa
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Brazil
| | - Lídia M B O Asad
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Kiyonari S, Egashira Y, Ishino S, Ishino Y. Biochemical characterization of endonuclease V from the hyperthermophilic archaeon, Pyrococcus furiosus. J Biochem 2014; 155:325-33. [PMID: 24535600 DOI: 10.1093/jb/mvu010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Endonuclease V (Endo V) is a DNA repair enzyme that recognizes deoxyinosine and cleaves the second phosphodiester bond on the 3' side of the deaminated base lesion. A database search revealed the presence of homologous genes for Endo V in most archaeal species, but the absence in some methanogenic species. We cloned a gene encoding the sequence homologous to Escherichia coli Endo V from the genome of the hyperthermophilic euryarchaeon, Pyrococcus furiosus and purified gene product (PfuEndoV) to homogeneity. In vitro characterization showed that PfuEndoV possesses specific endonuclease activity for the deoxyinosine-containing DNA strand. The activity of the enzyme was maximal at 90°C. Stable complex formation between PfuEndoV and nicked DNA produced by the cleavage reaction was detected by gel mobility shift assays. The molecular mechanisms of the inosine repair pathway including Endo V in the archaeal cells are discussed. Interestingly, PfuEndoV cleaved inosine-containing RNA strands as well as DNA substrates. PfuEndoV may also be involved in RNA metabolism.
Collapse
Affiliation(s)
- Shinichi Kiyonari
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
15
|
Lee CC, Yang YC, Goodman SD, Lin CJ, Chen YA, Wang YT, Cheng WC, Lin LI, Fang WH. The excision of 3' penultimate errors by DNA polymerase I and its role in endonuclease V-mediated DNA repair. DNA Repair (Amst) 2013; 12:899-911. [PMID: 24012058 DOI: 10.1016/j.dnarep.2013.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 11/28/2022]
Abstract
Deamination of adenine can occur spontaneously under physiological conditions, and is enhanced by exposure of DNA to ionizing radiation, UV light, nitrous acid, or heat, generating the highly mutagenic lesion of deoxyinosine in DNA. Such DNA lesions tends to generate A:T to G:C transition mutations if unrepaired. In Escherichia coli, deoxyinosine is primarily removed through a repair pathway initiated by endonuclease V (endo V). In this study, we compared the repair of three mutagenic deoxyinosine lesions of A-I, G-I, and T-I using E. coli cell-free extracts as well as reconstituted protein system. We found that 3'-5' exonuclease activity of DNA polymerase I (pol I) was very important for processing all deoxyinosine lesions. To understand the nature of pol I in removing damaged nucleotides, we systemically analyzed its proofreading to 12 possible mismatches 3'-penultimate of a nick, a configuration that represents a repair intermediate generated by endo V. The results showed all mismatches as well as deoxyinosine at the 3' penultimate site were corrected with similar efficiency. This study strongly supports for the idea that the 3'-5' exonuclease activity of E. coli pol I is the primary exonuclease activity for removing 3'-penultimate deoxyinosines derived from endo V nicking reaction.
Collapse
Affiliation(s)
- Chia-Chia Lee
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100-02, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cao W. Endonuclease V: an unusual enzyme for repair of DNA deamination. Cell Mol Life Sci 2013; 70:3145-56. [PMID: 23263163 PMCID: PMC11114013 DOI: 10.1007/s00018-012-1222-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 11/25/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
Abstract
Endonuclease V (endo V) was first discovered as the fifth endonuclease in Escherichia coli in 1977 and later rediscovered as a deoxyinosine 3' endonuclease. Decades of biochemical and genetic investigations have accumulated rich information on its role as a DNA repair enzyme for the removal of deaminated bases. Structural and biochemical analyses have offered invaluable insights on its recognition capacity, catalytic mechanism, and multitude of enzymatic activities. The roles of endo V in genome maintenance have been validated in both prokaryotic and eukaryotic organisms. The ubiquitous nature of endo V in the three domains of life: Bacteria, Archaea, and Eukaryotes, indicates its existence in the early evolutionary stage of cellular life. The application of endo V in mutation detection and DNA manipulation underscores its value beyond cellular DNA repair. This review is intended to provide a comprehensive account of the historic aspects, biochemical, structural biological, genetic and biotechnological studies of this unusual DNA repair enzyme.
Collapse
Affiliation(s)
- Weiguo Cao
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, Room 049 Life Science Building, 190 Collings Street, Clemson, SC, 29634, USA.
| |
Collapse
|
17
|
Couvé S, Ishchenko AA, Fedorova OS, Ramanculov EM, Laval J, Saparbaev M. Direct DNA Lesion Reversal and Excision Repair in Escherichia coli. EcoSal Plus 2013; 5. [PMID: 26442931 DOI: 10.1128/ecosalplus.7.2.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Indexed: 06/05/2023]
Abstract
Cellular DNA is constantly challenged by various endogenous and exogenous genotoxic factors that inevitably lead to DNA damage: structural and chemical modifications of primary DNA sequence. These DNA lesions are either cytotoxic, because they block DNA replication and transcription, or mutagenic due to the miscoding nature of the DNA modifications, or both, and are believed to contribute to cell lethality and mutagenesis. Studies on DNA repair in Escherichia coli spearheaded formulation of principal strategies to counteract DNA damage and mutagenesis, such as: direct lesion reversal, DNA excision repair, mismatch and recombinational repair and genotoxic stress signalling pathways. These DNA repair pathways are universal among cellular organisms. Mechanistic principles used for each repair strategies are fundamentally different. Direct lesion reversal removes DNA damage without need for excision and de novo DNA synthesis, whereas DNA excision repair that includes pathways such as base excision, nucleotide excision, alternative excision and mismatch repair, proceeds through phosphodiester bond breakage, de novo DNA synthesis and ligation. Cell signalling systems, such as adaptive and oxidative stress responses, although not DNA repair pathways per se, are nevertheless essential to counteract DNA damage and mutagenesis. The present review focuses on the nature of DNA damage, direct lesion reversal, DNA excision repair pathways and adaptive and oxidative stress responses in E. coli.
Collapse
|
18
|
Mi R, Alford-Zappala M, Kow YW, Cunningham RP, Cao W. Human endonuclease V as a repair enzyme for DNA deamination. Mutat Res 2012; 735:12-8. [PMID: 22664237 DOI: 10.1016/j.mrfmmm.2012.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 12/28/2022]
Abstract
The human endonuclease V gene is located in chromosome 17q25.3 and encodes a 282 amino acid protein that shares about 30% sequence identity with bacterial endonuclease V. This study reports biochemical properties of human endonuclease V with respect to repair of deaminated base lesions. Using soluble proteins fused to thioredoxin at the N-terminus, we determined repair activities of human endonuclease V on deoxyinosine (I)-, deoxyxanthosine (X)-, deoxyoxanosine (O)- and deoxyuridine (U)-containing DNA. Human endonuclease V is most active with deoxyinosine-containing DNA but with minor activity on deoxyxanthosine-containing DNA. Endonuclease activities on deoxyuridine and deoxyoxanosine were not detected. The endonuclease activity on deoxyinosine-containing DNA follows the order of single-stranded I>G/I>T/I>A/I>C/I. The preference of the catalytic activity correlates with the binding affinity of these deoxyinosine-containing DNAs. Mg(2+) and to a much less extent, Mn(2+), Ni(2+), Co(2+) can support the endonuclease activity. Introduction of human endonuclease V into Escherichia coli cells deficient in nfi, mug and ung genes caused three-fold reduction in mutation frequency. This is the first report of deaminated base repair activity for human endonuclease V. The relationship between the endonuclease activity and deaminated deoxyadenosine (deoxyinosine) repair is discussed.
Collapse
Affiliation(s)
- Rongjuan Mi
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, Room 219 Biosystems Research Complex, 105 Collings Street, Clemson, SC 29634, United States
| | | | | | | | | |
Collapse
|
19
|
Mi R, Abole AK, Cao W. Dissecting endonuclease and exonuclease activities in endonuclease V from Thermotoga maritima. Nucleic Acids Res 2010; 39:536-44. [PMID: 20852258 PMCID: PMC3025561 DOI: 10.1093/nar/gkq791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Endonuclease V is an enzyme that initiates a conserved DNA repair pathway by making an endonucleolytic incision at the 3'-side 1 nt from a deaminated base lesion. DNA cleavage analysis using mutants defective in DNA binding and Mn(2+) as a metal cofactor reveals a novel 3'-exonuclease activity in endonuclease V [Feng,H., Dong,L., Klutz,A.M., Aghaebrahim,N. and Cao,W. (2005) Defining amino acid residues involved in DNA-protein interactions and revelation of 3'-exonuclease activity in endonuclease V. Biochemistry, 44, 11486-11495.]. This study defines the enzymatic nature of the endonuclease and exonuclease activity in endonuclease V from Thermotoga maritima. In addition to its well-known inosine-dependent endonuclease, Tma endonuclease V also exhibits inosine-dependent 3'-exonuclease activity. The dependence on an inosine site and the exonuclease nature of the 3'-exonuclease activity was demonstrated using 5'-labeled and internally-labeled inosine-containing DNA and a H214D mutant that is defective in non-specific nuclease activity. Detailed kinetic analysis using 3'-labeled DNA indicates that Tma endonuclease V also possesses non-specific 5'-exonuclease activity. The multiplicity of the endonuclease and exonuclease activity is discussed with respect to deaminated base repair.
Collapse
Affiliation(s)
- Rongjuan Mi
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, Clemson, SC 29634, USA
| | | | | |
Collapse
|
20
|
Abasic sites and strand breaks in DNA cause transcriptional mutagenesis in Escherichia coli. Proc Natl Acad Sci U S A 2010; 107:3657-62. [PMID: 20142484 DOI: 10.1073/pnas.0913191107] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA damage occurs continuously, and faithful replication and transcription are essential for maintaining cell viability. Cells in nature are not dividing and replicating DNA often; therefore it is important to consider the outcome of RNA polymerase (RNAP) encounters with DNA damage. Base damage in the DNA can affect transcriptional fidelity, leading to production of mutant mRNA and protein in a process termed transcriptional mutagenesis (TM). Abasic (AP) sites and strand breaks are frequently occurring, spontaneous damages that are also base excision repair (BER) intermediates. In vitro studies have demonstrated that these lesions can be bypassed by RNAP; however this has never been assessed in vivo. This study demonstrates that RNAP is capable of bypassing AP sites and strand breaks in Escherichia coli and results in TM through adenine incorporation in nascent mRNA. Elimination of the enzymes that process these lesions further increases TM; however, such mutants can still complete repair by other downstream pathways. These results show that AP sites and strand breaks can result in mutagenic RNAP bypass and have important implications for the biologic endpoints of DNA damage.
Collapse
|
21
|
Dalhus B, Laerdahl JK, Backe PH, Bjørås M. DNA base repair--recognition and initiation of catalysis. FEMS Microbiol Rev 2009; 33:1044-78. [PMID: 19659577 DOI: 10.1111/j.1574-6976.2009.00188.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endogenous DNA damage induced by hydrolysis, reactive oxygen species and alkylation modifies DNA bases and the structure of the DNA duplex. Numerous mechanisms have evolved to protect cells from these deleterious effects. Base excision repair is the major pathway for removing base lesions. However, several mechanisms of direct base damage reversal, involving enzymes such as transferases, photolyases and oxidative demethylases, are specialized to remove certain types of photoproducts and alkylated bases. Mismatch excision repair corrects for misincorporation of bases by replicative DNA polymerases. The determination of the 3D structure and visualization of DNA repair proteins and their interactions with damaged DNA have considerably aided our understanding of the molecular basis for DNA base lesion repair and genome stability. Here, we review the structural biochemistry of base lesion recognition and initiation of one-step direct reversal (DR) of damage as well as the multistep pathways of base excision repair (BER), nucleotide incision repair (NIR) and mismatch repair (MMR).
Collapse
Affiliation(s)
- Bjørn Dalhus
- Centre for Molecular Biology and Neuroscience (CMBN), Rikshospitalet University Hospital, Oslo, Norway
| | | | | | | |
Collapse
|
22
|
Production of 3-nitrosoindole derivatives by Escherichia coli during anaerobic growth. J Bacteriol 2009; 191:5369-76. [PMID: 19561128 DOI: 10.1128/jb.00586-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When Escherichia coli K-12 is grown anaerobically in medium containing tryptophan and sodium nitrate, it produces red compounds. The reaction requires functional genes for trytophanase (tnaA), a tryptophan permease (tnaB), and a nitrate reductase (narG), as well as a natural drop in the pH of the culture. Mass spectrometry revealed that the purified chromophores had mass/charge ratios that closely match those for indole red, indoxyl red, and an indole trimer. These compounds are known products of chemical reactions between indole and nitrous acid. They are derived from an initial reaction of 3-nitrosoindole with indole. Apparently, nitrite that is produced from the metabolic reduction of nitrate is converted in the acid medium to nitrous acid, which leads to the nitrosation of the indole that is generated by tryptophanase. An nfi (endonuclease V) mutant and a recA mutant were selectively killed during the period of chromophore production, and a uvrA strain displayed reduced growth. These effects depended on the addition of nitrate to the medium and on tryptophanase activity in the cells. Unexpectedly, the killing of a tnaA(+) nfi mutant was not accompanied by marked increases in mutation frequencies for several traits tested. The vulnerability of three DNA repair mutants indicates that a nitrosoindole or a derivative of a nitrosoindole produces lethal DNA damage.
Collapse
|
23
|
Structures of endonuclease V with DNA reveal initiation of deaminated adenine repair. Nat Struct Mol Biol 2009; 16:138-43. [PMID: 19136958 PMCID: PMC3560532 DOI: 10.1038/nsmb.1538] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/21/2008] [Indexed: 01/07/2023]
Abstract
Endonuclease V (EndoV) initiates a major base-repair pathway for nitrosative deamination resulting from endogenous processes and increased by oxidative stress from mitochondrial dysfunction or inflammatory responses. We solved the crystal structures of Thermotoga maritima EndoV in complex with a hypoxanthine lesion substrate and with product DNA. The PYIP wedge motif acts as a minor groove-damage sensor for helical distortions and base mismatches and separates DNA strands at the lesion. EndoV incises DNA with an unusual offset nick 1 nucleotide 3' of the lesion, as the deaminated adenine is rotated approximately 90 degrees into a recognition pocket approximately 8 A from the catalytic site. Tight binding by the lesion-recognition pocket in addition to Mg(2+) and hydrogen-bonding interactions to the DNA ends stabilize the product complex, suggesting an orderly recruitment of downstream proteins in this base-repair pathway.
Collapse
|
24
|
Yonekura SI, Nakamura N, Yonei S, Zhang-Akiyama QM. Generation, biological consequences and repair mechanisms of cytosine deamination in DNA. JOURNAL OF RADIATION RESEARCH 2009; 50:19-26. [PMID: 18987436 DOI: 10.1269/jrr.08080] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Base moieties in DNA are spontaneously threatened by naturally occurring chemical reactions such as deamination, hydrolysis and oxidation. These DNA modifications have been considered to be major causes of cell death, mutations and cancer induction in organisms. Organisms have developed the DNA base excision repair pathway as a defense mechanism to protect them from these threats. DNA glycosylases, the key enzyme in the base excision repair pathway, are highly conserved in evolution. Uracil constantly occurs in DNA. Uracil in DNA arises by spontaneous deamination of cytosine to generate pro-mutagenic U:G mispairs. Uracil in DNA is also produced by the incorporation of dUMP during DNA replication. Uracil-DNA glycosylase (UNG) acts as a major repair enzyme that protects DNA from the deleterious consequences of uracil. The first UNG activity was discovered in E. coli in 1974. This was also the first discovery of base excision repair. The sequence encoded by the ung gene demonstrates that the E. coli UNG is highly conserved in viruses, bacteria, archaea, yeast, mice and humans. In this review, we will focus on central and recent findings on the generation, biological consequences and repair mechanisms of uracil in DNA and on the biological significance of uracil-DNA glycosylase.
Collapse
Affiliation(s)
- Shin-Ichiro Yonekura
- Department of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
25
|
Weiss B. Removal of deoxyinosine from the Escherichia coli chromosome as studied by oligonucleotide transformation. DNA Repair (Amst) 2008; 7:205-12. [PMID: 17981100 PMCID: PMC2743460 DOI: 10.1016/j.dnarep.2007.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 09/24/2007] [Accepted: 09/24/2007] [Indexed: 11/26/2022]
Abstract
Deoxyinosine (dI) is produced in DNA by the hydrolytic or nitrosative deamination of deoxyadenosine. It is excised in a repair pathway that is initiated by endonuclease V, the product of the nfi gene. The repair was studied in vivo using high-efficiency oligonucleotide transformation mediated by the Beta protein of bacteriophage lambda in a mismatch repair-deficient host. Escherichia coli was transformed with oligonucleotides containing a selectable A-G base substitution mutation. When the mutagenic dG was replaced by a dI in the oligonucleotide, it lost 93-99% of its transforming ability in an nfi(+) cell, but it remained fully functional in an nfi mutant. Therefore, endonuclease V is responsible for most of the removal of deoxyinosine from DNA. New nfi mutants were isolated based on the strong selection provided by their tolerance for transformation by dI-containing DNA. The repair patch for dI was then measured by determining how close to the transforming dG residue a dI could be placed in the oligonucleotide before it interferes with transformation. At the endonuclease V cleavage site, three nucleotides were preferentially removed from the 3' end and two nucleotides were removed from the 5' end. dI:dT and dI:dC base pairs gave the same results. Caveats include possible interference by Beta protein and by mispaired bases. Thus, oligonucleotide transformation can be used to determine the relative importance of redundant repair pathways, to isolate new DNA repair mutants, and to determine with high precision the sizes of repair tracts in intact cells.
Collapse
Affiliation(s)
- Bernard Weiss
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Whitehead Building, Atlanta, GA 30322, USA.
| |
Collapse
|
26
|
Yasui M, Suenaga E, Koyama N, Masutani C, Hanaoka F, Gruz P, Shibutani S, Nohmi T, Hayashi M, Honma M. Miscoding properties of 2'-deoxyinosine, a nitric oxide-derived DNA Adduct, during translesion synthesis catalyzed by human DNA polymerases. J Mol Biol 2008; 377:1015-23. [PMID: 18304575 DOI: 10.1016/j.jmb.2008.01.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/10/2008] [Accepted: 01/14/2008] [Indexed: 01/20/2023]
Abstract
Chronic inflammation involving constant generation of nitric oxide (*NO) by macrophages has been recognized as a factor related to carcinogenesis. At the site of inflammation, nitrosatively deaminated DNA adducts such as 2'-deoxyinosine (dI) and 2'-deoxyxanthosine are primarily formed by *NO and may be associated with the development of cancer. In this study, we explored the miscoding properties of the dI lesion generated by Y-family DNA polymerases (pols) using a new fluorescent method for analyzing translesion synthesis. An oligodeoxynucleotide containing a single dI lesion was used as a template in primer extension reaction catalyzed by human DNA pols to explore the miscoding potential of the dI adduct. Primer extension reaction catalyzed by pol alpha was slightly retarded prior to the dI adduct site; most of the primers were extended past the lesion. Pol eta and pol kappaDeltaC (a truncated form of pol kappa) readily bypassed the dI lesion. The fully extended products were analyzed by using two-phased PAGE to quantify the miscoding frequency and specificity occurring at the lesion site. All pols, that is, pol alpha, pol eta, and pol kappaDeltaC, promoted preferential incorporation of 2'-deoxycytidine monophosphate (dCMP), the wrong base, opposite the dI lesion. Surprisingly, no incorporation of 2'-deoxythymidine monophosphate, the correct base, was observed opposite the lesion. Steady-state kinetic studies with pol alpha, pol eta, and pol kappaDeltaC indicated that dCMP was preferentially incorporated opposite the dI lesion. These pols bypassed the lesion by incorporating dCMP opposite the lesion and extended past the lesion. These relative bypass frequencies past the dC:dI pair were at least 3 orders of magnitude higher than those for the dT:dI pair. Thus, the dI adduct is a highly miscoding lesion capable of generating A-->G transition. This ()NO-induced adduct may play an important role in initiating inflammation-driven carcinogenesis.
Collapse
Affiliation(s)
- Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lin J, Gao H, Schallhorn KA, Harris RM, Cao W, Ke PC. Lesion recognition and cleavage by endonuclease V: a single-molecule study. Biochemistry 2007; 46:7132-7. [PMID: 17521169 PMCID: PMC2527690 DOI: 10.1021/bi6024534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endonuclease V (endo V) recognizes and cleaves deoxyinosine in deaminated DNA. These enzymatic activities are precursors of DNA repair and are fueled by metal ions such as Ca2+ and Mg2+, with the former being associated with protein binding and the latter with DNA cleavage. Using the technique of fluorescence resonance energy transfer (FRET), we determined the single-molecule kinetics of endo V in a catalytic cycle using a substrate of deoxyinosine-containing single-stranded DNA (ssDNA). The ssDNA was labeled with TAMRA, a fluorescence donor, while the endo V was labeled with Cy5, a fluorescence acceptor. The time lapses of FRET, resulting from the sequential association, recognition, and dissociation of the deoxyinosine by the endo V, were determined at 5.9, 14.5, and 9.1 s, respectively, in the presence of Mg2+. In contrast, the process of deoxyinosine recognition appeared little affected by the metal type. The prolonged association and dissociation events in the presence of the Ca2+-Mg2+ combination, as compared to that of Mg2+ alone, support the hypothesis that endo V has two metal binding sites to regulate its enzymatic activities.
Collapse
Affiliation(s)
- Jun Lin
- Department of Physics and Astronomy, South Carolina Experiment Station, Room 219 Biosystems Research Complex, 51 New Cherry Street, Clemson University, Clemson, South Carolina 29634, USA
| | | | | | | | | | | |
Collapse
|
28
|
Burgis NE, Cunningham RP. Substrate specificity of RdgB protein, a deoxyribonucleoside triphosphate pyrophosphohydrolase. J Biol Chem 2006; 282:3531-8. [PMID: 17090528 DOI: 10.1074/jbc.m608708200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported the identification of a DNA repair system in Escherichia coli for the prevention of the stable incorporation of noncanonical purine dNTPs into DNA. We hypothesized that the RdgB protein is active on 2'-deoxy-N-6-hydroxylaminopurine triphosphate (dHAPTP) as well as deoxyinosine triphosphate. Here we show that RdgB protein and RdgB homologs from Saccharomyces cerevisiae, mouse, and human all possess deoxyribonucleoside triphosphate pyrophosphohydrolase activity and that all four RdgB homologs have high specificity for dHAPTP and deoxyinosine triphosphate compared with the four canonical dNTPs and several other noncanonical (d)NTPs. Kinetic analysis reveals that the major source of the substrate specificity lies in changes in K(m) for the various substrates. The expression of these enzymes in E. coli complements defects that are caused by the incorporation of HAP and an endogenous noncanonical purine into DNA. Our data support a preemptive role for the RdgB homologs in excluding endogenous and exogenous modified purine dNTPs from incorporation into DNA.
Collapse
Affiliation(s)
- Nicholas E Burgis
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York 12222, USA
| | | |
Collapse
|
29
|
Abstract
Endonuclease V, encoded by the nfi gene, initiates removal of the base analogs hypoxanthine and xanthine from DNA, acting to prevent mutagenesis from purine base deamination within the DNA. On the other hand, the RdgB nucleotide hydrolase in Escherichia coli is proposed to prevent hypoxanthine and xanthine incorporation into DNA by intercepting the noncanonical DNA precursors dITP and dXTP. Because many base analogs are mutagenic when incorporated into DNA, it is intuitive to think of RdgB as acting to prevent similar mutagenesis from deaminated purines in the DNA precursor pools. To test this idea, we used a set of Claire Cupples' strains to detect changes in spontaneous mutagenesis spectra, as well as in nitrous acid-induced mutagenesis spectra, in wild-type cells and in rdgB single, nfi single, and rdgB nfi double mutants. We found neither a significant increase in spontaneous mutagenesis in rdgB and nfi single mutants or the double mutant nor any changes in nitrous acid-induced mutagenesis for rdgB mutant strains. We conclude that incorporation of deaminated purines into DNA is nonmutagenic.
Collapse
Affiliation(s)
- Brian Budke
- B103 C&LSL, 601 South Goodwin Ave., Urbana, IL 61801-3709, USA
| | | |
Collapse
|
30
|
Turner DJ, Pingle MR, Barany F. Harnessing asymmetrical substrate recognition by thermostable EndoV to achieve balanced linear amplification in multiplexed SNP typing. Biochem Cell Biol 2006; 84:232-42. [PMID: 16609704 DOI: 10.1139/o06-025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Multiplexed amplification of specific DNA sequences, by PCR or by strand-displacement amplification, is an intrinsically biased process. The relative abundance of amplified DNA can be altered significantly from the original representation and, in extreme cases, allele dropout can occur. In this paper, we present a method of linear amplification of DNA that relies on the cooperative, sequence-dependent functioning of the DNA mismatch-repair enzyme endonuclease V (EndoV) from Thermotoga maritima (Tma) and Bacillus stearothermophilus (Bst) DNA polymerase. Tma EndoV can nick one strand of unmodified duplex DNA, allowing extension by Bst polymerase. By controlling the bases surrounding a mismatch and the mismatch itself, the efficiency of nicking by EndoV and extension by Bst polymerase can be controlled. The method currently allows 100-fold multiplexed amplification of target molecules to be performed isothermally, with an average change of <1.3-fold in their original representation. Because only a single primer is necessary, primer artefacts and nonspecific amplification products are minimized.
Collapse
Affiliation(s)
- Daniel J Turner
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
31
|
Nunes APM, De Mattos JCP, Ferreira-Machado SC, Nunes RM, Asad NR, Dantas FJS, Bezerra RJAC, Caldeira-de-Araujo A. Biological effects of stevioside on the survival of Escherichia colistrains and plasmid DNA. Mol Cell Biochem 2006; 293:187-92. [PMID: 16804638 DOI: 10.1007/s11010-006-9241-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
Stevioside is widely used daily in many countries as a non-caloric sugar substitute. Its sweetening power is higher than that of sucrose by approximately 250-300 times, being extensively employed as a household sweetener, or added to beverages and food products. The purpose of this study was to ascertain stevioside genotoxic and cytotoxic potentiality in different biological systems, as its use continues to increase. Agarose gel electrophoresis and bacterial transformation were employed to observe the occurrence of DNA lesions. In addition to these assays, Escherichia coli strains were incubated with stevioside so that their survival fractions could be obtained. Results show absence of genotoxic activity through electrophoresis and bacterial transformation assays and drop of survival fraction of E. coli strains deficient in rec A and nth genes, suggesting that stevioside (i) is cytotoxic; (ii) could need metabolization to present deleterious effects on cells; (iii) is capable of generating lesions in DNA and pathways as base excision repair, recombination and SOS system would be important to recover these lesions.
Collapse
Affiliation(s)
- A P M Nunes
- Departamento de Biofísica e Biometria, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Avenida 28 de Setembro #87, Rio de Janeiro, RJ 20551-030, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Brézellec P, Hoebeke M, Hiet MS, Pasek S, Ferat JL. DomainSieve: a protein domain-based screen that led to the identification of dam-associated genes with potential link to DNA maintenance. Bioinformatics 2006; 22:1935-41. [PMID: 16787973 DOI: 10.1093/bioinformatics/btl336] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
MOTIVATION The Dam methyltransferase (DamMT) activity, broadly distributed in association with restriction endonucleases, as part of the restriction-modification defense systems, has evolved to become intimately associated with essential biological functions in a few organisms. In Escherichia coli, DamMT is involved in multiple aspects of DNA maintenance, replication initiation, daughter chromosome segregation, DNA mismatch repair, gene expression control, etc. The participation of DamMT in such a diverse set of functions required that other genes adapted, or emerged through evolution, in response to the DamMT-induced modification of the genomic environment. One example is SeqA, a protein that senses the methylation status of the origin of replication of the chromosome to control the timing of replication initiation. Interestingly, seqA is only present in a few DamMT-specifying proteobacteria. This observation led us to hypothesize that other genes, specifying related functions, might also be found in these organisms. To test this hypothesis, we implemented a large-scale comparative genomic screen meant to identify genes specifying DNA methylation sensing domains, probably involved in DNA maintenance functions. RESULTS We carried out a phylogenetic analysis of DamMT, identifying two contrasting behaviors of the protein. Based on this phylogeny, we defined precisely a set of genomes, in which the protein activity is likely to be involved in DNA maintenance functions, the 'resident' dam genomes. We defined a second set of genomes, in which DamMT is not resident. We developped a new tool, 'DomainSieve', in order to screen these two sets for protein domains that are strictly associated with 'resident' dam genomes. This approach was rewarding and generated a list of genes, among which some, at least, specify activities with clear linkage to DamMT-dependent DNA methylation and DNA maintenance. AVAILABILITY DomainSieve is implemented as a web resource and is accessible at http://stat.genopole.cnrs.fr/ds/.
Collapse
Affiliation(s)
- Pierre Brézellec
- Laboratoire Statistique et Génome du CNRS, Tour Evry 2, 523, Place des Terrasses de l'Agora, 91034 Evry Cedex, France
| | | | | | | | | |
Collapse
|
33
|
Abstract
In Escherichia coli, nitrosative mutagenesis may occur during nitrate or nitrite respiration. The endogenous nitrosating agent N2O3 (dinitrogen trioxide, nitrous anhydride) may be formed either by the condensation of nitrous acid or by the autooxidation of nitric oxide, both of which are metabolic by-products. The purpose of this study was to determine which of these two agents is more responsible for endogenous nitrosative mutagenesis. An nfi (endonuclease V) mutant was grown anaerobically with nitrate or nitrite, conditions under which it has a high frequency of A:T-to-G:C transition mutations because of a defect in the repair of hypoxanthine (nitrosatively deaminated adenine) in DNA. These mutations could be greatly reduced by two means: (i) introduction of an nirB mutation, which affects the inducible cytoplasmic nitrite reductase, the major source of nitric oxide during nitrate or nitrite metabolism, or (ii) flushing the anaerobic culture with argon (which should purge it of nitric oxide) before it was exposed to air. The results suggest that nitrosative mutagenesis occurs during a shift from nitrate/nitrite-dependent respiration under hypoxic conditions to aerobic respiration, when accumulated nitric oxide reacts with oxygen to form endogenous nitrosating agents such as N2O3. In contrast, mutagenesis of nongrowing cells by nitrous acid was unaffected by an nirB mutation, suggesting that this mutagenesis is mediated by N2O3 that is formed directly by the condensation of nitrous acid.
Collapse
Affiliation(s)
- Bernard Weiss
- Department of Pathology and Laboratory Medicine, Emory University, Whitehead Bldg., Rm. 141, 615 Michael St., Atlanta, GA 30322, USA.
| |
Collapse
|
34
|
Nakano T, Katafuchi A, Shimizu R, Terato H, Suzuki T, Tauchi H, Makino K, Skorvaga M, Van Houten B, Ide H. Repair activity of base and nucleotide excision repair enzymes for guanine lesions induced by nitrosative stress. Nucleic Acids Res 2005; 33:2181-91. [PMID: 15831791 PMCID: PMC1079971 DOI: 10.1093/nar/gki513] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide (NO) induces deamination of guanine, yielding xanthine and oxanine (Oxa). Furthermore, Oxa reacts with polyamines and DNA binding proteins to form cross-link adducts. Thus, it is of interest how these lesions are processed by DNA repair enzymes in view of the genotoxic mechanism of NO. In the present study, we have examined the repair capacity for Oxa and Oxa–spermine cross-link adducts (Oxa–Sp) of enzymes involved in base excision repair (BER) and nucleotide excision repair (NER) to delineate the repair mechanism of nitrosative damage to guanine. Oligonucleotide substrates containing Oxa and Oxa–Sp were incubated with purified BER and NER enzymes or cell-free extracts (CFEs), and the damage-excising or DNA-incising activity was compared with that for control (physiological) substrates. The Oxa-excising activities of Escherichia coli and human DNA glycosylases and HeLa CFEs were 0.2–9% relative to control substrates, implying poor processing of Oxa by BER. In contrast, DNA containing Oxa–Sp was incised efficiently by UvrABC nuclease and SOS-induced E.coli CFEs, suggesting a role of NER in ameliorating genotoxic effects associated with nitrosative stress. Analyses of the activity of CFEs from NER-proficient and NER-deficient human cells on Oxa–Sp DNA confirmed further the involvement of NER in the repair of nitrosative DNA damage.
Collapse
Affiliation(s)
| | | | | | | | - Toshinori Suzuki
- Department of Biological Pharmacy, School of Pharmacy, Shujitsu University1-6-1 Nishigawara, Okayama 703-8516, Japan
| | - Hiroshi Tauchi
- Department of Environmental Sciences, Faculty of Science, Ibaraki UniversityMito, Ibaraki 310-8512, Japan
| | - Keisuke Makino
- Institute of Advanced Energy, Kyoto UniversityGokasho, Uji 611-0011, Japan
| | - Milan Skorvaga
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of HealthResearch Triangle Park, NC 27709, USA
| | - Bennett Van Houten
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of HealthResearch Triangle Park, NC 27709, USA
| | - Hiroshi Ide
- To whom correspondence should be addressed. Tel: +81 82 424 7457; Fax: +81 82 424 7457;
| |
Collapse
|
35
|
Aamodt RM, Falnes PØ, Johansen RF, Seeberg E, Bjørås M. The Bacillus subtilis counterpart of the mammalian 3-methyladenine DNA glycosylase has hypoxanthine and 1,N6-ethenoadenine as preferred substrates. J Biol Chem 2004; 279:13601-6. [PMID: 14729667 DOI: 10.1074/jbc.m314277200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The AAG family of 3-methyladenine DNA glycosylases was initially thought to be limited to mammalian cells, but genome sequencing efforts have revealed the presence of homologous proteins in certain prokaryotic species as well. Here, we report the first molecular characterization of a functional prokaryotic AAG homologue, i.e. YxlJ, termed bAag, from Bacillus subtilis. The B. subtilis aag gene was expressed in Escherichia coli, and the protein was purified to homogeneity. As expected, B. subtilis Aag was found to be a DNA glycosylase, which releases 3-alkylated purines and hypoxanthine, as well as the cyclic etheno adduct 1,N(6)-ethenoadenine from DNA. However, kinetic analysis showed that bAag removed hypoxanthine much faster than human AAG with a 10-fold higher value for k(cat), whereas the rate of excision of 1, N(6)-ethenoadenine was found to be similar. In contrast, it was found that bAag removes 3-methyladenine and 3-methylguanine approximately 10-20 times more slowly than human AAG, and there was hardly any detectable excision of 7-methylguanine. It thus appears that bAag has a minor role in the repair of DNA alkylation damage and an important role in preventing the mutagenic effects of deaminated purines and cyclic etheno adducts in Bacillus subtilis.
Collapse
Affiliation(s)
- Randi M Aamodt
- Department of Molecular Biology, Institute of Medical Microbiology, University of Oslo, National Hospital, N-0027 Oslo, Norway
| | | | | | | | | |
Collapse
|
36
|
Abstract
Bacterial RecA protein is required for repair of two-strand DNA lesions that disable whole chromosomes. recA mutants are viable, suggesting a considerable cellular capacity to avoid these chromosome-disabling lesions. recA-dependent mutants reveal chromosomal lesion avoidance pathways. Here we characterize one such mutant, rdgB/yggV, deficient in a putative inosine/xanthosine triphosphatase, conserved throughout kingdoms of life. The rdgB recA lethality is suppressed by inactivation of endonuclease V (gpnfi) specific for DNA-hypoxanthines/xanthines, suggesting that RdgB either intercepts improper DNA precursors dITP/dXTP or works downstream of EndoV in excision repair of incorporated hypoxathines/xanthines. We find that DNA isolated from rdgB mutants contains EndoV-recognizable modifications, whereas DNA from nfi mutants does not, substantiating the dITP/dXTP interception by RdgB. rdgB recBC cells are inviable, whereas rdgB recF cells are healthy, suggesting that chromosomes in rdgB mutants suffer double-strand breaks. Chromosomal fragmentation is indeed observed in rdgB recBC mutants and is suppressed in rdgB recBC nfi mutants. Thus, one way to avoid chromosomal lesions is to prevent hypoxanthine/xanthine incorporation into DNA via interception of dITP/dXTP.
Collapse
Affiliation(s)
- Jill S Bradshaw
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 C&LSL, 601 South Goodwin Ave., 61801-3709, USA
| | | |
Collapse
|
37
|
Abstract
Exposure of Escherichia coli strains deficient in molybdopterin biosynthesis (moa) to the purine base N-6-hydroxylaminopurine (HAP) is mutagenic and toxic. We show that moa mutants exposed to HAP also exhibit elevated mutagenesis, a hyperrecombination phenotype, and increased SOS induction. The E. coli rdgB gene encodes a protein homologous to a deoxyribonucleotide triphosphate pyrophosphatase from Methanococcus jannaschii that shows a preference for purine base analogs. moa rdgB mutants are extremely sensitive to killing by HAP and exhibit increased mutagenesis, recombination, and SOS induction upon HAP exposure. Disruption of the endonuclease V gene, nfi, rescues the HAP sensitivity displayed by moa and moa rdgB mutants and reduces the level of recombination and SOS induction, but it increases the level of mutagenesis. Our results suggest that endonuclease V incision of DNA containing HAP leads to increased recombination and SOS induction and even cell death. Double-strand break repair mutants display an increase in HAP sensitivity, which can be reversed by an nfi mutation. This suggests that cell killing may result from an increase in double-strand breaks generated when replication forks encounter endonuclease V-nicked DNA. We propose a pathway for the removal of HAP from purine pools, from deoxynucleotide triphosphate pools, and from DNA, and we suggest a general model for excluding purine base analogs from DNA. The system for HAP removal consists of a molybdoenzyme, thought to detoxify HAP, a deoxyribonucleotide triphosphate pyrophosphatase that removes noncanonical deoxyribonucleotide triphosphates from replication precursor pools, and an endonuclease that initiates the removal of HAP from DNA.
Collapse
Affiliation(s)
- Nicholas E Burgis
- Department of Biological Sciences, The University at Albany, State University of New York, Albany, New York 12222, USA
| | | | | |
Collapse
|
38
|
Sikora A, Grzesiuk E, Zbieć R, Janion C. Lethality of visible light for Escherichia coli hemH1 mutants influence of defects in DNA repair. DNA Repair (Amst) 2003; 2:61-71. [PMID: 12509268 DOI: 10.1016/s1568-7864(02)00186-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hemH gene encodes ferrochelatase, the final enzyme of the heme biosynthetic pathway. Defects of this enzyme lead to accumulation of protoporphyrin IX and an increase in reactive oxygen species, causing susceptibility to blue and white light in bacteria and protoporphyria in humans. Here we show that the photosensitivity of hemH1 strains is much increased when the bacteria are devoid of ability to repair abasic sites. The sensitivity is increased 10- or 50-fold, in mutants bearing single xth or triple xth-nth-nfo mutations, respectively, but is not changed in mutants bearing nth, fpg, mutY, and mutT that are positive or negative for uvrA. This may indicate that in hemH1 mutants abasic sites are accumulated to a greater degree than oxidised bases, and/or that protoporphyrin, in the presence of abasic sites, increases the photosensitivity of hemH1 cells. It was shown in this work that the level of abasic sites (and/or strand breaks) in DNA of hemH1 strains increases greatly. Abasic sites and oxidative bases are potential mutagenic lesions. Nevertheless, the sensitivity of hemH1 bacteria to the lethal effect of visible light is not accompanied by increase in mutations. One of the possible explanations is that the genotoxic effect due to damage of hemH, shortage of heme and/or accumulating of protoporphyrin IX makes mutagenesis impossible.
Collapse
Affiliation(s)
- Anna Sikora
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
39
|
Terato H, Masaoka A, Asagoshi K, Honsho A, Ohyama Y, Suzuki T, Yamada M, Makino K, Yamamoto K, Ide H. Novel repair activities of AlkA (3-methyladenine DNA glycosylase II) and endonuclease VIII for xanthine and oxanine, guanine lesions induced by nitric oxide and nitrous acid. Nucleic Acids Res 2002; 30:4975-84. [PMID: 12434002 PMCID: PMC137176 DOI: 10.1093/nar/gkf630] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nitrosation of guanine in DNA by nitrogen oxides such as nitric oxide (NO) and nitrous acid leads to formation of xanthine (Xan) and oxanine (Oxa), potentially cytotoxic and mutagenic lesions. In the present study, we have examined the repair capacity of DNA N-glycosylases from Escherichia coli for Xan and Oxa. The nicking assay with the defined substrates containing Xan and Oxa revealed that AlkA [in combination with endonuclease (Endo) IV] and Endo VIII recognized Xan in the tested enzymes. The activity (V(max)/K(m)) of AlkA for Xan was 5-fold lower than that for 7-methylguanine, and that of Endo VIII was 50-fold lower than that for thymine glycol. The activity of AlkA and Endo VIII for Xan was further substantiated by the release of [(3)H]Xan from the substrate. The treatment of E.coli with N-methyl-N'-nitro-N-nitrosoguanidine increased the Xan-excising activity in the cell extract from alkA(+) but not alkA(-) strains. The alkA and nei (the Endo VIII gene) double mutant, but not the single mutants, exhibited increased sensitivity to nitrous acid relative to the wild type strain. AlkA and Endo VIII also exhibited excision activity for Oxa, but the activity was much lower than that for Xan.
Collapse
Affiliation(s)
- Hiroaki Terato
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Deamination of DNA bases can occur spontaneously, generating highly mutagenic lesions such as uracil, hypoxanthine, and xanthine. When cells are under oxidative stress that is induced either by oxidizing agents or by mitochondrial dysfunction, additional deamination products such as 5-hydroxymethyluracil (5-HMU) and 5-hydroxyuracil (5-OH-Ura) are formed. The cellular level of these highly mutagenic lesions is increased substantially when cells are exposed to DNA damaging agent, such as ionizing radiation, redox reagents, nitric oxide, and others. The cellular repair of deamination products is predominantly through the base excision repair (BER) pathway, a major cellular repair pathway that is initiated by lesion specific DNA glycosylases. In BER, the lesions are removed by the combined action of a DNA glycosylase and an AP endonuclease, leaving behind a one-base gap. The gapped product is then further repaired by the sequential action of DNA polymerase and DNA ligase. DNA glycosylases that recognize uracil, 5-OH-Ura, 5-HMU (derived from 5-methylcytosine) and a T/G mismatch (derived from a 5-methylcytosine/G pair) are present in most cells. Many of these glycosylases have been cloned and well characterized. In yeast and mammalian cells, hypoxanthine is efficiently removed by methylpurine N-glycosylase, and it is thought that BER might be an important pathway for the repair of hypoxanthine. In contrast, no glycosylase that can recognize xanthine has been identified in either yeast or mammalian cells. In Escherichia coli, the major enzyme activity that initiates the repair of hypoxanthine and xanthine is endonuclease V. Endonuclease V is an endonuclease that hydrolyzes the second phosphodiester bond 3' to the lesion. It is hypothesized that the cleaved DNA is further repaired through an alternative excision repair (AER) pathway that requires the participation of either a 5' endonuclease or a 3'-5' exonuclease to remove the damaged base. The repair process is then completed by the sequential actions of DNA polymerase and DNA ligase. Endonuclease V sequence homologs are present in all kingdoms, and it is conceivable that endonuclease V might also be a major enzyme that initiates the repair of hypoxanthine and xanthine in mammalian cells.
Collapse
Affiliation(s)
- Yoke W Kow
- Department of Radiation Oncology, Laughlin Radiation Center, Emory University School of Medicine, 145 Edgewood Avenue, Atlanta, GA 30335, USA.
| |
Collapse
|
41
|
Abstract
The appearance over many days of Lac(+) frameshift mutations in Escherichia coli strain FC40 incubated on lactose selection plates is a classic example of apparent "adaptive" mutation in an episomal gene. We show that endogenously overproduced carotenoids reduce adaptive mutation under selective conditions by a factor of around two. Carotenoids are known to scavenge singlet oxygen suggesting that the accumulation of oxidative base damage may be an integral part of the adaptive mutation phenomenon. If so, the lesion cannot be 7,8-dihydro-8-oxoguanine since adaptive mutation in FC40 is unaffected by mutM and mutY mutations. If active oxygen species such as singlet oxygen are involved in adaptive mutation then they should also induce frameshift mutations in FC40 under non-selective conditions. We show that such mutations can be induced under non-selective conditions by protoporphyrin photosensitisation and that this photodynamic induction is reduced by a factor of just over two when endogenous carotenoids are present. We argue that the involvement of oxidative damage would in no way be inconsistent with current understanding of the mechanism of adaptive mutation and the role of DNA polymerases.
Collapse
Affiliation(s)
- B A Bridges
- MRC Cell Mutation Unit, University of Sussex, Falmer, BN1 9RR, Brighton, UK.
| | | | | |
Collapse
|
42
|
Weiss B. Endonuclease V of Escherichia coli prevents mutations from nitrosative deamination during nitrate/nitrite respiration. Mutat Res 2001; 461:301-9. [PMID: 11104906 DOI: 10.1016/s0921-8777(00)00062-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Endonuclease V (Endo V) of Escherichia coli participates in the excision repair of hypoxanthine and xanthine (deaminated adenine and guanine) in DNA. It thereby reduces the mutagenic effects of nitrous acid by attacking lesions caused by nitrosative deamination. Nitrosating agents may be produced endogenously when E. coli is grown in oxygen-poor cultures, during which nitrate and nitrite replace oxygen as preferred electron acceptors. In this study, the protective effect of Endo V was observed under such conditions. During micro-aerobic growth, an nfi (Endo V) mutation enhanced the frequency of nitrate- and nitrite-induced A:T-->G:C and G:C-->A:T transition mutations, which are consistent with a defect in the removal of DNA hypoxanthine and xanthine, respectively. Similar effects were observed in saturated, aerobic cultures but not in well-aerated, logarithmically growing ones. A narG (nitrate reductase) mutation blocked the mutagenesis of the nfi mutant by nitrate but not by nitrite. These results differed from those of previous studies in which cell suspensions generated an exogenous nitrosating agent from nitrite, but not from nitrate, in a reaction that was narG-dependent. Nitrate/nitrite metabolism is also known to generate endogenous alkylating agents through N-nitrosation. However, an nfi mutation did not appreciably enhance mutagenesis by N-methyl-N-nitrosourea, suggesting that the mutator effect of nfi is not due to a defect in alkylation repair. The overall results indicate that Endo V functions during normal growth by helping to repair nitrosatively deaminated bases in DNA, which are by-products of anaerobic nitrate/nitrite respiration.
Collapse
Affiliation(s)
- B Weiss
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
43
|
Liu J, He B, Qing H, Kow YW. A deoxyinosine specific endonuclease from hyperthermophile, Archaeoglobus fulgidus: a homolog of Escherichia coli endonuclease V. Mutat Res 2000; 461:169-77. [PMID: 11056288 DOI: 10.1016/s0921-8777(00)00054-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Deoxyadenosine undergoes spontaneous deamination to deoxyinosine in DNA. Based on amino acids sequence homology, putative homologs of endonuclease V were identified in several organisms including archaebacteria, eubacteria as well as eukaryotes. The translated amino acid sequence of the Archaeoglobus fulgidus nfi gene shows 39% identity and 55% similarity to the E. coli nfi gene. A. fulgidus endonuclease V was cloned and expressed in E. coli as a C-terminal hexa-histidine fusion protein. The C-terminal fusion protein was purified to apparent homogeneity by a combination of Ni(++) affinity and MonoS cation exchange liquid chromatography. The purified C-terminal fusion protein has a molecular weight of about 25kDa and showed endonuclease activity towards DNA containing deoxyinosine. A. fulgidus endonuclease V has an absolute requirement for Mg(2+) and an optimum reaction temperature at 85 degrees C. However, in contrast to E. coli endonuclease V, which has a wide substrate spectrum, endonuclease V from A. fulgidus recognized only deoxyinosine. These data suggest that the deoxyinosine cleavage activity is a primordial activity of endonuclease V and that multiple enzymatic activities of E. coli endonuclease V were acquired later during evolution.
Collapse
Affiliation(s)
- J Liu
- Division of Cancer Biology, Department of Radiation Oncology, Emory University School of Medicine, 145 Edgewood Ave, Atlanta, GA 30335, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Deoxycytidine, deoxyadenosine and deoxyguanosine undergo spontaneous deamination to form deoxyuridine, deoxyinosine and deoxyxanthosine, respectively. In this manuscript, we show that in addition to its known ability to recognize deoxyuridine and deoxyinosine in DNA, Escherichia coli endonuclease V cleaves DNA containing deoxyxanthosine. However, Alk A protein and human methylpurine glycosylase are unable to recognize deoxyxanthosine. Endonuclease V cleaves DNA containing deoxyxanthosine at the second phosphodiester bond 3' to deoxyxanthosine, generating a 3'-hydroxyl and a 5'-phosphoryl group at the nick site. This endonucleolytic activity requires Mg(2+) or Mn(2+), and is highly specific for double stranded DNA. Endonuclease V-catalyzed cleavage of DNA containing deoxyxanthosine is a result of its ability to recognize the altered base and not due to its mismatch-specific endonuclease activity. The ability of endonuclease V to recognize both deoxyinosine and deoxyxanthosine suggests that endonuclease V is important for preventing mutations that might arise as a result of deamination of purines.
Collapse
Affiliation(s)
- B He
- Division of Cancer Biology, Department of Radiation Oncology, Emory University School of Medicine, 145 Edgewood Ave, Atlanta, GA, USA
| | | | | |
Collapse
|
45
|
Schouten KA, Weiss B. Endonuclease V protects Escherichia coli against specific mutations caused by nitrous acid. Mutat Res 1999; 435:245-54. [PMID: 10606815 DOI: 10.1016/s0921-8777(99)00049-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Endonuclease V (deoxyinosine 3'-endonuclease) of Escherichia coli K-12 is a putative DNA repair enzyme that cleaves DNA's containing hypoxanthine, uracil, or mismatched bases. An endonuclease V (nfi) mutation was tested for specific mutator effects on a battery of trp and lac mutant alleles. No marked differences were seen in frequencies of spontaneous reversion. However, when nfi mutants were treated with nitrous acid at a level that was not noticeably mutagenic for nfi(+) strains, they displayed a high frequency of A:T-->G:C, and G:C-->A:T transition mutations. Nitrous acid can deaminate guanine in DNA to xanthine, cytosine to uracil, and adenine to hypoxanthine. The nitrous acid-induced A:T-->G:C transitions were consistent with a role for endonuclease V in the repair of deaminated adenine residues. A confirmatory finding was that the mutagenesis was depressed at a locus containing N(6)-methyladenine, which is known to be relatively resistant to nitrosative deamination. An alkA mutation did not significantly enhance the frequency of A:T-->G:C mutations in an nfi mutant, even though AlkA (3-methyladenine-DNA glycosylase II) has hypoxanthine-DNA glycosylase activity. The nfi mutants also displayed high frequencies of nitrous acid-induced G:C-->A:T transitions. These mutations could not be explained by cytosine deamination because an ung (uracil-DNA N-glycosylase) mutant was not similarly affected. However, these findings are consistent with a role for endonuclease V in the removal of deaminated guanine, i.e., xanthine, from DNA. The results suggest that endonuclease V helps to protect the cell against the mutagenic effects of nitrosative deamination.
Collapse
Affiliation(s)
- K A Schouten
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
46
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|