1
|
Extremophile Metal Resistance: Plasmid-Encoded Functions in Streptomyces mirabilis. Appl Environ Microbiol 2022; 88:e0008522. [PMID: 35604229 PMCID: PMC9195940 DOI: 10.1128/aem.00085-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The extreme metal tolerance of up to 130 mM NiSO4 in Streptomyces mirabilis P16B-1 was investigated. Genome sequencing revealed the presence of a large linear plasmid, pI. To identify plasmid-encoded determinants of metal resistance, a newly established transformation system was used to characterize the predicted plasmid-encoded loci nreB, hoxN, and copYZ. Reintroduction into the plasmid-cured S. mirabilis ΔpI confirmed that the predicted metal transporter gene nreB constitutes a nickel resistance factor, which was further supported by its heterologous expression in Escherichia coli. In contrast, the predicted nickel exporter gene hoxN decreased nickel tolerance, while copper tolerance was enhanced. The predicted copper-dependent transcriptional regulator gene copY did not induce tolerance toward either metal. Since genes for transfer were identified on the plasmid, its conjugational transfer to the metal-sensitive Streptomyces lividans TK24 was checked. This resulted in acquired tolerance toward 30 mM nickel and additionally increased the tolerance toward copper and cobalt, while oxidative stress tolerance remained unchanged. Intracellular nickel concentrations decreased in the transconjugant strain. The high extracellular nickel concentrations allowed for biomineralization. Plasmid transfer could also be confirmed into the co-occurring actinomycete Kribbella spp. in soil microcosms. IMPORTANCE Living in extremely metal-rich environments requires specific adaptations, and often, specific metal tolerance genes are encoded on a transferable plasmid. Here, Streptomyces mirabilis P16B-1, isolated from a former mining area and able to grow with up to 130 mM NiSO4, was investigated. The bacterial chromosome, as well as a giant plasmid, was sequenced. The plasmid-borne gene nreB was confirmed to confer metal resistance. A newly established transformation system allowed us to construct a plasmid-cured S. mirabilis as well as an nreB-rescued strain in addition to confirming nreB encoding nickel resistance if heterologously expressed in E. coli. The potential of intra- and interspecific plasmid transfer, together with the presence of metal resistance factors on that plasmid, underlines the importance of plasmids for transfer of resistance factors within a bacterial soil community.
Collapse
|
2
|
Rui Z, Sandy M, Jung B, Zhang W. Tandem Enzymatic Oxygenations in Biosynthesis of Epoxyquinone Pharmacophore of Manumycin-type Metabolites. ACTA ACUST UNITED AC 2013; 20:879-87. [DOI: 10.1016/j.chembiol.2013.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/23/2013] [Accepted: 05/09/2013] [Indexed: 11/25/2022]
|
3
|
|
4
|
Arakawa K, Mochizuki S, Yamada K, Noma T, Kinashi H. gamma-Butyrolactone autoregulator-receptor system involved in lankacidin and lankamycin production and morphological differentiation in Streptomyces rochei. MICROBIOLOGY-SGM 2007; 153:1817-1827. [PMID: 17526839 DOI: 10.1099/mic.0.2006/002170-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An afsA homologue (srrX) and three gamma-butyrolactone receptor gene homologues (srrA, srrB and srrC) are coded on the giant linear plasmid pSLA2-L in Streptomyces rochei 7434AN4, a producer of two polyketide antibiotics, lankacidin and lankamycin. Construction of gene disruptants and their phenotypic study revealed that srrX and srrA make a gamma-butyrolactone receptor system in this strain. Addition of a gamma-butyrolactone fraction to an srrX-deficient mutant restored the production of lankacidin and lankamycin, indicating that the SrrX protein is not necessary for this event. In addition to a positive effect on antibiotic production, srrX showed a negative effect on morphological differentiation. The receptor gene srrA reversed both effects of srrX, while the second receptor gene homologue srrC had only a positive function in spore formation. Furthermore, disruption of the third homologue srrB greatly increased the production of lankacidin and lankamycin. Electron microscopic analysis showed that aerial mycelium formation stopped at a different stage in the srrA and srrC mutants. Overall, these results indicated that srrX, srrA, srrB and srrC constitute a complex regulatory system for antibiotic production and morphological differentiation in S. rochei.
Collapse
Affiliation(s)
- Kenji Arakawa
- Department of Molecular Biotechnology, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Susumu Mochizuki
- Department of Molecular Biotechnology, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Kohei Yamada
- Department of Molecular Biotechnology, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Takenori Noma
- Department of Molecular Biotechnology, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Haruyasu Kinashi
- Department of Molecular Biotechnology, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|
5
|
Garrido LM, Lombó F, Baig I, Nur-e-Alam M, Furlan RLA, Borda CC, Braña A, Méndez C, Salas JA, Rohr J, Padilla G. Insights in the glycosylation steps during biosynthesis of the antitumor anthracycline cosmomycin: characterization of two glycosyltransferase genes. Appl Microbiol Biotechnol 2006; 73:122-31. [PMID: 16810496 PMCID: PMC2879347 DOI: 10.1007/s00253-006-0453-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 03/28/2006] [Accepted: 03/30/2006] [Indexed: 11/26/2022]
Abstract
Glycosylation pattern in cosmomycins is a distinctive feature among anthracyclines. These antitumor compounds possess two trisaccharide chains attached at C-7 and C-10, each of them with structural variability, mainly at the distal deoxysugar moieties. We have characterized a 14-kb chromosomal region from Streptomyces olindensis containing 13 genes involved in cosmomycin biosynthesis. Two of the genes, cosG and cosK, coding for glycosyltransferase were inactivated with the generation of five new derivatives. Structural elucidation of these compounds showed altered glycosylation patterns indicating the capability of both glycosyltransferases of transferring deoxysugars to both sides of the aglycone and the flexibility of CosK with respect to the deoxysugar donor. A model is proposed for the glycosylation steps during cosmomycins biosynthesis.
Collapse
Affiliation(s)
- Leandro M. Garrido
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, CEP 005508-900, Brazil
| | - Felipe Lombó
- Departamento de Biología Funcional e Instituto Universitario, de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo 33006, Spain
| | - Irfan Baig
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA
| | - Mohammad Nur-e-Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA
| | - Renata L. A. Furlan
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, CEP 005508-900, Brazil
| | - Charlotte C. Borda
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, CEP 005508-900, Brazil
| | - Alfredo Braña
- Departamento de Biología Funcional e Instituto Universitario, de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo 33006, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario, de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo 33006, Spain
| | - José A. Salas
- Departamento de Biología Funcional e Instituto Universitario, de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo 33006, Spain
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA
| | - Gabriel Padilla
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, CEP 005508-900, Brazil
| |
Collapse
|
6
|
Marineo S, Lecat E, Cusimano MG, Giardina A, Di Caro V, Puglia AM. Identification of SCP2165, a new SCP2-derived plasmid of Streptomyces coelicolor A3(2). Lett Appl Microbiol 2005; 41:350-4. [PMID: 16162143 DOI: 10.1111/j.1472-765x.2005.01739.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Characterization of SCP2165, a plasmid identified in the Gram-positive bacterium Streptomyces coelicolor A3(2). METHODS AND RESULTS Pulsed-field gel electrophoresis (PFGE) of mycelia of a S. coelicolor strain embedded in low melting agarose revealed the presence of a plasmid. Restriction enzyme mapping and sequence analysis of a 2.1 kb fragment revealed that this plasmid could be SCP2. SCP2 and its spontaneous derivative SCP2* are self-transmissible plasmids and have chromosome mobilizing ability (c.m.a.). SCP2* has a c. 1000-fold increased c.m.a. compared with SCP2. Interestingly the plasmid, named SCP2165, shows a c.m.a. from 5x10(-2) to 1x10(-1) which is 50-100-fold higher than that described for crosses involving SCP2*. CONCLUSIONS SCP2165 is a SCP2 derivative plasmid with the highest c.m.a. so far described for SCP2 derivative plasmids. PFGE, under conditions we used, seems to be a fast way to identify large circular plasmids in Streptomyces strains. SIGNIFICANCE AND IMPACT OF THE STUDY Further knowledge of the SCP2 family may allow the construction of improved SCP2-derived cloning vectors. SCP2165 could be a potential tool for conjugational transfer of gene clusters between different Streptomyces species.
Collapse
Affiliation(s)
- S Marineo
- Department of Cellular and Developmental Biology, Viale delle Scienze, University of Palermo, Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
7
|
Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 2005; 69:326-56. [PMID: 15944459 PMCID: PMC1197418 DOI: 10.1128/mmbr.69.2.326-356.2005] [Citation(s) in RCA: 848] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a general profile for the proteins of the TetR family of repressors. The stretch that best defines the profile of this family is made up of 47 amino acid residues that correspond to the helix-turn-helix DNA binding motif and adjacent regions in the three-dimensional structures of TetR, QacR, CprB, and EthR, four family members for which the function and three-dimensional structure are known. We have detected a set of 2,353 nonredundant proteins belonging to this family by screening genome and protein databases with the TetR profile. Proteins of the TetR family have been found in 115 genera of gram-positive, alpha-, beta-, and gamma-proteobacteria, cyanobacteria, and archaea. The set of genes they regulate is known for 85 out of the 2,353 members of the family. These proteins are involved in the transcriptional control of multidrug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity. The regulatory network in which the family member is involved can be simple, as in TetR (i.e., TetR bound to the target operator represses tetA transcription and is released in the presence of tetracycline), or more complex, involving a series of regulatory cascades in which either the expression of the TetR family member is modulated by another regulator or the TetR family member triggers a cell response to react to environmental insults. Based on what has been learned from the cocrystals of TetR and QacR with their target operators and from their three-dimensional structures in the absence and in the presence of ligands, and based on multialignment analyses of the conserved stretch of 47 amino acids in the 2,353 TetR family members, two groups of residues have been identified. One group includes highly conserved positions involved in the proper orientation of the helix-turn-helix motif and hence seems to play a structural role. The other set of less conserved residues are involved in establishing contacts with the phosphate backbone and target bases in the operator. Information related to the TetR family of regulators has been updated in a database that can be accessed at www.bactregulators.org.
Collapse
Affiliation(s)
- Juan L Ramos
- Department of Plant Biochemistry and Molecular and Cellular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas, Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gust B, Chandra G, Jakimowicz D, Yuqing T, Bruton CJ, Chater KF. Lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces. ADVANCES IN APPLIED MICROBIOLOGY 2004; 54:107-28. [PMID: 15251278 DOI: 10.1016/s0065-2164(04)54004-2] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Bertolt Gust
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, United Kingdom
| | | | | | | | | | | |
Collapse
|
9
|
Yamasaki M, Kinashi H. Two chimeric chromosomes of Streptomyces coelicolor A3(2) generated by single crossover of the wild-type chromosome and linear plasmid scp1. J Bacteriol 2004; 186:6553-9. [PMID: 15375137 PMCID: PMC516589 DOI: 10.1128/jb.186.19.6553-6559.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 07/09/2004] [Indexed: 11/20/2022] Open
Abstract
Streptomyces coelicolor A3(2) strain 2106 carries a 1.85-Mb linear plasmid, SCP1'-cysD, in addition to a 7.2-Mb linear chromosome. Macrorestriction analysis indicated that both linear DNAs are hybrids of the wild-type chromosome and the linear plasmid SCP1 on each side. Nucleotide sequencing of the fusion junctions revealed no homology between the recombination regions. SCP1'-cysD contains an SCP1 telomere and a chromosomal telomere at each end and therefore does not have terminal inverted repeats. In addition, SCP1'-cysD could not be eliminated from strain 2106 by various mutagenic treatments. Thus, we concluded that both the 7.2-Mb chromosome and SCP1'-cysD are chimeric chromosomes generated by a single crossover of the wild-type chromosome and SCP1. This may be regarded as a model of chromosomal duplication in genome evolution.
Collapse
Affiliation(s)
- Masayuki Yamasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | | |
Collapse
|
10
|
Shi L, Zhang W. Comparative analysis of eukaryotic-type protein phosphatases in two streptomycete genomes. MICROBIOLOGY-SGM 2004; 150:2247-2256. [PMID: 15256567 DOI: 10.1099/mic.0.27057-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inspection of the genomes of Streptomyces coelicolor A3(2) and Streptomyces avermitilis reveals that each contains 55 putative eukaryotic-type protein phosphatases (PPs), the largest number ever identified from any single prokaryotic organism. Unlike most other prokaryotic genomes that have only one or two superfamilies of eukaryotic-type PPs, the streptomycete genomes possess the eukaryotic-type PPs that belong to four superfamilies: 2 phosphoprotein phosphatases and 2 low-molecular-mass protein tyrosine phosphatases in each species, 49 Mg(2+)- or Mn(2+)-dependent protein phosphatases (PPMs) and 2 conventional protein tyrosine phosphatases (CPTPs) in S. coelicolor A3(2), and 48 PPMs and 3 CPTPs in S. avermitilis. Sixty-four percent of the PPs found in S. coelicolor A3(2) have orthologues in S. avermitilis, indicating that they originated from a common ancestor and might be involved in the regulation of more conserved metabolic activities. The genes of eukaryotic-type PP unique to each surveyed streptomycete genome are mainly located in two arms of the linear chromosomes and their evolution might be involved in gene acquisition or duplication to adapt to the extremely variable soil environments where these organisms live. In addition, 56 % of the PPs from S. coelicolor A3(2) and 65 % of the PPs from S. avermitilis possess at least one additional domain having a putative biological function. These include the domains involved in the detection of redox potential, the binding of cyclic nucleotides, mRNA, DNA and ATP, and the catalysis of phosphorylation reactions. Because they contained multiple functional domains, most of them were assigned functions other than PPs in previous annotations. Although few studies have been conducted on the physiological functions of the PPs in streptomycetes, the existence of large numbers of putative PPs in these two streptomycete genomes strongly suggests that eukaryotic-type PPs play important regulatory roles in primary or secondary metabolic pathways. The identification and analysis of such a large number of putative eukaryotic-type PPs from S. coelicolor A3(2) and S. avermitilis constitute a basis for further exploration of the signal transduction pathways mediated by these phosphatases in industrially important strains of streptomycetes.
Collapse
Affiliation(s)
- Liang Shi
- Microbiology Group, Pacific Northwest National Laboratory, 902 Battelle Blvd, PO Box 999, MSIN: P7-50, Richland, WA 99352, USA
| | - Weiwen Zhang
- Microbiology Group, Pacific Northwest National Laboratory, 902 Battelle Blvd, PO Box 999, MSIN: P7-50, Richland, WA 99352, USA
| |
Collapse
|
11
|
Bentley SD, Brown S, Murphy LD, Harris DE, Quail MA, Parkhill J, Barrell BG, McCormick JR, Santamaria RI, Losick R, Yamasaki M, Kinashi H, Chen CW, Chandra G, Jakimowicz D, Kieser HM, Kieser T, Chater KF. SCP1, a 356 023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol Microbiol 2004; 51:1615-28. [PMID: 15009889 DOI: 10.1111/j.1365-2958.2003.03949.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sequencing of the entire genetic complement of Streptomyces coelicolor A3(2) has been completed with the determination of the 365,023 bp sequence of the linear plasmid SCP1. Remarkably, the functional distribution of SCP1 genes somewhat resembles that of the chromosome: predicted gene products/functions include ECF sigma factors, antibiotic biosynthesis, a gamma-butyrolactone signalling system, members of the actinomycete-specific Wbl class of regulatory proteins and 14 secreted proteins. Some of these genes are among the 18 that contain a TTA codon, making them targets for the developmentally important tRNA encoded by the bldA gene. RNA analysis and gene fusions showed that one of the TTA-containing genes is part of a large bldA-dependent operon, the gene products of which include three proteins isolated from the spore surface by detergent washing (SapC, D and E), and several probable metabolic enzymes. SCP1 shows much evidence of recombinational interactions with other replicons and transposable elements during its history. For example, it has two sets of partitioning genes (which may explain why an integrated copy of SCP1 partially suppressed the defective partitioning of a parAB-deleted chromosome during sporulation). SCP1 carries a cluster of probable transfer determinants and genes encoding likely DNA polymerase III subunits, but it lacks an obvious candidate gene for the terminal protein associated with its ends. This may be related to atypical features of its end sequences.
Collapse
Affiliation(s)
- S D Bentley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Stecker C, Johann A, Herzberg C, Averhoff B, Gottschalk G. Complete nucleotide sequence and genetic organization of the 210-kilobase linear plasmid of Rhodococcus erythropolis BD2. J Bacteriol 2003; 185:5269-74. [PMID: 12923100 PMCID: PMC180976 DOI: 10.1128/jb.185.17.5269-5274.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete nucleotide sequence of the linear plasmid pBD2 from Rhodococcus erythropolis BD2 comprises 210,205 bp. Sequence analyses of pBD2 revealed 212 putative open reading frames (ORFs), 97 of which had an annotatable function. These ORFs could be assigned to six functional groups: plasmid replication and maintenance, transport and metalloresistance, catabolism, transposition, regulation, and protein modification. Many of the transposon-related sequences were found to flank the isopropylbenzene pathway genes. This finding together with the significant sequence similarities of the ipb genes to genes of the linear plasmid-encoded biphenyl pathway in other rhodococci suggests that the ipb genes were acquired via transposition events and subsequently distributed among the rhodococci via horizontal transfer.
Collapse
Affiliation(s)
- Christiane Stecker
- Department Biologie I, Bereich Genetik und Mikrobiologie, Ludwig-Maximilians-Universität München, Maria-Ward-Strasse 1a, D-80638 Munich, Germany
| | | | | | | | | |
Collapse
|
13
|
Mochizuki S, Hiratsu K, Suwa M, Ishii T, Sugino F, Yamada K, Kinashi H. The large linear plasmid pSLA2-L of Streptomyces rochei has an unusually condensed gene organization for secondary metabolism. Mol Microbiol 2003; 48:1501-10. [PMID: 12791134 DOI: 10.1046/j.1365-2958.2003.03523.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complete nucleotide sequence of the large linear plasmid pSLA2-L in Streptomyces rochei strain 7434AN4 has been determined. pSLA2-L was found to be 210 614 bp long with a GC content of 72.8% and carries 143 open reading frames. It is especially noteworthy that three-quarters of the pSLA2-L DNA is occupied by secondary metabolism-related genes, namely two type I polyketide synthase (PKS) gene clusters for lankacidin and lankamycin, a mithramycin synthase-like type II PKS gene cluster, a carotenoid biosynthetic gene cluster and many regulatory genes. In particular, the lankacidin PKS is unique, because it may be a mixture of modular- and iterative-type PKSs and carries a fusion protein of non-ribosomal peptide synthetase and PKS. It is also interesting that all the homologues of the afsA, arpA, adpA and strR genes in the A-factor regulatory cascade in Streptomyces griseus were found on pSLA2-L, and disruption of the afsA homologue caused non-production of both lankacidin and lankamycin. These results, together with the finding of three possible replication origins at 50-63 kb from the right end, suggest that the present form of pSLA2-L might have been generated by a series of insertions of the biosynthetic gene clusters into the left side of the original plasmid.
Collapse
Affiliation(s)
- Susumu Mochizuki
- Department of Molecular Biotechnology, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Yamasaki M, Ikuto Y, Ohira A, Chater K, Kinashi H. Limited regions of homology between linear and circular plasmids encoding methylenomycin biosynthesis in two independently isolated streptomycetes. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1351-1356. [PMID: 12724396 DOI: 10.1099/mic.0.26102-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
pSV1 is a plasmid in Streptomyces violaceoruber SANK95570 that carries the methylenomycin biosynthetic (mmy) gene cluster. An ordered cosmid map and an EcoRI map have been constructed for pSV1, confirming that pSV1 is a 163 kb circular plasmid. The mmy gene cluster has been found on three different replicon structures; the circular plasmid pSV1, the 356 kb linear plasmid SCP1 and, via SCP1 integration, the linear chromosome of Streptomyces coelicolor A3(2). Comparison of pSV1 and SCP1 sequences revealed that the two plasmids have homology to each other only around the mmy and parAB regions, eliminating models in which pSV1 was generated by circularization of SCP1 or vice versa. It is likely that the mmy gene cluster was horizontally transferred as a set together with the parAB region in the comparatively recent evolutionary past.
Collapse
Affiliation(s)
- Masayuki Yamasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Yasuhiro Ikuto
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Akiyo Ohira
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Keith Chater
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Haruyasu Kinashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|
15
|
Núñez LE, Méndez C, Braña AF, Blanco G, Salas JA. The biosynthetic gene cluster for the beta-lactam carbapenem thienamycin in Streptomyces cattleya. CHEMISTRY & BIOLOGY 2003; 10:301-11. [PMID: 12725858 DOI: 10.1016/s1074-5521(03)00069-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
beta-lactam ring formation in carbapenem and clavam biosynthesis proceeds through an alternative mechanism to the biosynthetic pathway of classic beta-lactam antibiotics. This involves the participation of a beta-lactam synthetase. Using available information from beta-lactam synthetases, we generated a probe for the isolation of the thienamycin cluster from Streptomyces cattleya. Genes homologous to carbapenem and clavulanic acid biosynthetic genes have been identified. They would participate in early steps of thienamycin biosynthesis leading to the formation of the beta-lactam ring. Other genes necessary for the biosynthesis of thienamycin have also been identified in the cluster (methyltransferases, cysteinyl transferases, oxidoreductases, hydroxylase, etc.) together with two regulatory genes, genes involved in exportation and/or resistance, and a quorum sensing system. Involvement of the cluster in thienamycin biosynthesis was demonstrated by insertional inactivation of several genes generating thienamycin nonproducing mutants.
Collapse
Affiliation(s)
- Luz Elena Núñez
- Departamento de Biología Funcional and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | | | |
Collapse
|
16
|
Spatz K, Köhn H, Redenbach M. Characterization of the Streptomyces violaceoruber SANK95570 plasmids pSV1 and pSV2. FEMS Microbiol Lett 2002; 213:87-92. [PMID: 12127493 DOI: 10.1111/j.1574-6968.2002.tb11290.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We have analyzed the structure of two extrachromosomal elements of the methylenomycin producing actinomycete Streptomyces violaceoruber SANK95570. The presence of the circular plasmid pSV1 which was supposed to contain the genes for methylenomycin biosynthesis could be verified. Physical mapping of pSV1 revealed a size of 175.35 kb for this plasmid. In addition we generated a restriction map for the 100-kb linear plasmid pSV2. Cloning and sequencing of the terminal ends of pSV2 indicated the presence of 426-bp terminal inverted repeats. Both pSV2 termini show significant homology to the chromosome ends of Streptomyces coelicolor A3(2) which is a closely related strain to S. violaceoruber SANK95570.
Collapse
Affiliation(s)
- Kerstin Spatz
- Department of Genetics, Genome Research Unit, Kaiserslautern University, Kaiserslautern, Germany
| | | | | |
Collapse
|
17
|
Gust B, Spatz K, Spychaj A, Redenbach M. Region-specific transcriptional activity in the genome of Streptomyces coelicolor A3(2). Appl Environ Microbiol 2001; 67:3598-602. [PMID: 11472936 PMCID: PMC93060 DOI: 10.1128/aem.67.8.3598-3602.2001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional analysis of microbial genomes is an important component of functional genomics. Strategies such as hybridization of labeled total RNA against ordered clone libraries or differential-display approaches have already been carried out to identify expressed genes. We describe here an additional method which applies subtractive hybridization between genome-specific DNA and total RNA followed by a PCR approach to identify expressed microbial genes. With the new strategy, the expression of genes in the terminal regions of the linear Streptomyces coelicolor A3(2) chromosome and the accessory linear plasmid SCP1 was analyzed. The results indicate that the method is useful for the identification of expressed genes in actinomycetes and other microbial systems. We demonstrate for the first time that at least 24 genes in the chromosome end regions (silent regions) of S. coelicolor are actively expressed. In addition, several expressed SCP1 genes were identified, including a gene which shows high similarity to microbial dnaN genes and which seems to play a role in SCP1 maintenance.
Collapse
Affiliation(s)
- B Gust
- Genome Research Unit, Department of Genetics, Kaiserslautern University, 67663 Kaiserslautern, Germany
| | | | | | | |
Collapse
|
18
|
Wang ZX, Li SM, Heide L. Identification of the coumermycin A(1) biosynthetic gene cluster of Streptomyces rishiriensis DSM 40489. Antimicrob Agents Chemother 2000; 44:3040-8. [PMID: 11036020 PMCID: PMC101600 DOI: 10.1128/aac.44.11.3040-3048.2000] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biosynthetic gene cluster of the aminocoumarin antibiotic coumermycin A(1) was cloned by screening of a cosmid library of Streptomyces rishiriensis DSM 40489 with heterologous probes from a dTDP-glucose 4,6-dehydratase gene, involved in deoxysugar biosynthesis, and from the aminocoumarin resistance gyrase gene gyrB(r). Sequence analysis of a 30.8-kb region upstream of gyrB(r) revealed the presence of 28 complete open reading frames (ORFs). Fifteen of the identified ORFs showed, on average, 84% identity to corresponding ORFs in the biosynthetic gene cluster of novobiocin, another aminocoumarin antibiotic. Possible functions of 17 ORFs in the biosynthesis of coumermycin A(1) could be assigned by comparison with sequences in GenBank. Experimental proof for the function of the identified gene cluster was provided by an insertional gene inactivation experiment, which resulted in an abolishment of coumermycin A(1) production.
Collapse
Affiliation(s)
- Z X Wang
- Pharmazeutische Biologie, Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany
| | | | | |
Collapse
|
19
|
Yamasaki M, Miyashita K, Cullum J, Kinashi H. A complex insertion sequence cluster at a point of interaction between the linear plasmid SCP1 and the linear chromosome of Streptomyces coelicolor A3(2). J Bacteriol 2000; 182:3104-10. [PMID: 10809688 PMCID: PMC94495 DOI: 10.1128/jb.182.11.3104-3110.2000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2000] [Accepted: 03/13/2000] [Indexed: 11/20/2022] Open
Abstract
The giant linear plasmid SCP1 can integrate into the central region of the linear chromosome of Streptomyces coelicolor A3(2). Nucleotide sequence analysis around the target site for SCP1 integration in strain M145 identified a total of five copies of four insertion sequences (ISs) in a 6.5-kb DNA stretch. Three of the four (IS468, IS469, and IS470) are new IS elements, and the other is IS466. All of these elements contain one open reading frame which encodes a transposase-like protein. Two copies of IS468 (IS468A and -B) are tandemly aligned at the left end of the cluster. Following these, IS469 and IS466 are located in a tail-to-tail orientation with 69.3% identity to each other. IS470 is located at the right end of the cluster. The activities of IS466 and IS468 were demonstrated by transposition experiments and sequence comparison of several copies, respectively.
Collapse
Affiliation(s)
- M Yamasaki
- Department of Molecular Biotechnology, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | | | | | | |
Collapse
|
20
|
Steffensky M, Mühlenweg A, Wang ZX, Li SM, Heide L. Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891. Antimicrob Agents Chemother 2000; 44:1214-22. [PMID: 10770754 PMCID: PMC89847 DOI: 10.1128/aac.44.5.1214-1222.2000] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/1999] [Accepted: 01/29/2000] [Indexed: 11/20/2022] Open
Abstract
The novobiocin biosynthetic gene cluster from Streptomyces spheroides NCIB 11891 was cloned by using homologous deoxynucleoside diphosphate (dNDP)-glucose 4,6-dehydratase gene fragments as probes. Double-stranded sequencing of 25.6 kb revealed the presence of 23 putative open reading frames (ORFs), including the gene for novobiocin resistance, gyrB(r), and at least 11 further ORFs to which a possible role in novobiocin biosynthesis could be assigned. An insertional inactivation experiment with a dNDP-glucose 4, 6-dehydratase fragment resulted in abolishment of novobiocin production, since biosynthesis of the deoxysugar moiety of novobiocin was blocked. Heterologous expression of a key enzyme of novobiocin biosynthesis, i.e., novobiocic acid synthetase, in Streptomyces lividans TK24 further confirmed the involvement of the analyzed genes in the biosynthesis of the antibiotic.
Collapse
Affiliation(s)
- M Steffensky
- Pharmazeutische Biologie, Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
21
|
Suwa M, Sugino H, Sasaoka A, Mori E, Fujii S, Shinkawa H, Nimi O, Kinashi H. Identification of two polyketide synthase gene clusters on the linear plasmid pSLA2-L in Streptomyces rochei. Gene 2000; 246:123-31. [PMID: 10767533 DOI: 10.1016/s0378-1119(00)00060-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The 200kb linear plasmid pSLA2-L was suggested to be involved in the production of two macrolide antibiotics, lankamycin (Lm) and lankacidin (Lc), in Streptomyces rochei 7434AN4. Hybridization experiments with the polyketide synthase (PKS) genes for erythromycin and actinorhodin identified two eryAI-homologous regions and an actI-homologous region on pSLA2-L. The nucleotide sequence of a 3.6kb SacI fragment carrying one of the eryAI-homologs revealed that it codes for part of a large protein with four domains for ketoreductase, acyl carrier protein, ketosynthase, and acyltransferase. Gene disruption confirmed that the two eryAI-homologs are parts of a large type-I PKS gene cluster for Lm. A 4.8kb DNA carrying the actI-homologous region contains four open reading frames (ORF1-ORF4) as well as an additional ORF, i.e. ORF5, which might code for a thioesterase. Deletion of the ORF2-ORF4 region showed that it is not involved in the synthesis of Lm or Lc. Thus, it was confirmed that pSLA2-L contains two PKS gene clusters for Lm and an unknown type-II polyketide.
Collapse
Affiliation(s)
- M Suwa
- Department of Molecular Biotechnology, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Maercker C, Kortwig H, Lipps HJ. Separation of micronuclear DNA of Stylonychia lemnae by pulsed-field electrophoresis and identification of a DNA molecule with a high copy number. Genome Res 1999; 9:654-61. [PMID: 10413404 PMCID: PMC310795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
DNA from the hypotrichous ciliatae Stylonychia lemnae was separated by PFGE. In addition to the separation of the macronuclear DNA molecules with a size up to approximately 40 kb, we were able to separate the micronuclear DNA with a size between approximately 90 kb and 2 Mb. One very prominent 90-kb DNA band appeared on the pulsed-field gels. We propose that this 90-kb DNA fragment represents a linear plasmid residing in the micronucleus in a very high copy number. About 10% of the micronuclear DNA consists of the 90-kb DNA molecule. It appears in the micronucleus as well as in the macronuclear anlagen during macronuclear development but not in the mature macronucleus. Thus, the multicopy DNA is eliminated during fragmentation of the macronuclear anlagen DNA in the course of macronuclear development. Therefore, this 90-kb DNA molecule might serve as an excellent tool to study the recognition and elimination of DNA during nuclear differentiation of hypotrichous ciliates.
Collapse
Affiliation(s)
- C Maercker
- Institute for Cell Biology, University of Witten/Herdecke, D-58448 Witten, Germany.
| | | | | |
Collapse
|
23
|
Maercker C, Kortwig H, Lipps HJ. Separation of Micronuclear DNA of Stylonychia lemnae by Pulsed-Field Electrophoresis and Identification of a DNA Molecule with a High Copy Number. Genome Res 1999. [DOI: 10.1101/gr.9.7.654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
DNA from the hypotrichous ciliatae Stylonychia lemnae was separated by PFGE. In addition to the separation of the macronuclear DNA molecules with a size up to ∼40 kb, we were able to separate the micronuclear DNA with a size between ∼90 kb and 2 Mb. One very prominent 90-kb DNA band appeared on the pulsed-field gels. We propose that this 90-kb DNA fragment represents a linear plasmid residing in the micronucleus in a very high copy number. About 10% of the micronuclear DNA consists of the 90-kb DNA molecule. It appears in the micronucleus as well as in the macronuclear anlagen during macronuclear development but not in the mature macronucleus. Thus, the multicopy DNA is eliminated during fragmentation of the macronuclear anlagen DNA in the course of macronuclear development. Therefore, this 90-kb DNA molecule might serve as an excellent tool to study the recognition and elimination of DNA during nuclear differentiation of hypotrichous ciliates.
Collapse
|