1
|
Pajares-Chamorro N, Lensmire JM, Hammer ND, Hardy JW, Chatzistavrou X. Unraveling the mechanisms of inhibition of silver-doped bioactive glass-ceramic particles. J Biomed Mater Res A 2022; 111:975-994. [PMID: 36583930 DOI: 10.1002/jbm.a.37482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
Infections are a major concern in orthopedics. Antibacterial agents such as silver ions are of great interest as broad-spectrum biocides and have been incorporated into bioactive glass-ceramic particles to control the release of ions within a therapeutic concentration and provide tissue regenerative properties. In this work, the antibacterial capabilities of silver-doped bioactive glass (Ag-BG) microparticles were explored to reveal the unedited mechanisms of inhibition against methicillin-resistant Staphylococcus aureus (MRSA). The antibacterial properties were not limited to the delivery of silver ions but rather a combination of antibacterial degradation by-products. For example, nano-sized debris punctured holes in bacteria membranes, osmotic effects, and reactive oxygen species causing oxidative stress and almost 40% of the inhibition. Upon successive Ag-BG treatments, MRSA underwent phenotypic and genomic mutations which were not only insufficient to develop resistance but instead, the clones became more sensitive as the treatment was re-delivered. Additionally, the unprecedented restorative functionality of Ag-BG allowed the effective use of antibiotics that MRSA resists. The synergy mechanism was mainly identified for combinations targeting cell-wall activity and their action was proven in biofilm-like and virulent conditions. Unraveling these mechanisms may offer new insights into how to tailor healthcare materials to prevent or debilitate infections and join the fight against antibiotic resistance in clinical cases.
Collapse
Affiliation(s)
- Natalia Pajares-Chamorro
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Josh M Lensmire
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Jonathan W Hardy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA.,Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, USA
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA.,Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
2
|
Parker MS, Sah R, Balasubramaniam A, Sallee FR, Park EA, Parker SL. On the expansion of ribosomal proteins and RNAs in eukaryotes. Amino Acids 2014; 46:1589-604. [PMID: 24633358 DOI: 10.1007/s00726-014-1704-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 01/11/2023]
Abstract
While the ribosome constitution is similar in all biota, there is a considerable increase in size of both ribosomal proteins (RPs) and RNAs in eukaryotes as compared to archaea and bacteria. This is pronounced in the large (60S) ribosomal subunit (LSU). In addition to enlargement (apparently maximized already in lower eukarya), the RP changes include increases in fraction, segregation and clustering of basic residues, and decrease in hydrophobicity. The acidic fraction is lower in eukaryote as compared to prokaryote RPs. In all eukaryote groups tested, the LSU RPs have significantly higher content of basic residues and homobasic segments than the SSU RPs. The vertebrate LSU RPs have much higher sequestration of basic residues than those of bacteria, archaea and even of the lower eukarya. The basic clusters are highly aligned in the vertebrate, but less in the lower eukarya, and only within families in archaea and bacteria. Increase in the basicity of RPs, besides helping transport to the nucleus, should promote stability of the assembled ribosome as well as the association with translocons and other intracellular matrix proteins. The size and GC nucleotide bias of the expansion segments of large LSU rRNAs also culminate in the vertebrate, and should support ribosome association with the endoplasmic reticulum and other intracellular networks. However, the expansion and nucleotide bias of eukaryote LSU rRNAs do not clearly correlate with changes in ionic parameters of LSU ribosomal proteins.
Collapse
Affiliation(s)
- Michael S Parker
- Department of Microbiology and Molecular Cell Sciences, University of Memphis, Memphis, TN, 38152, USA
| | | | | | | | | | | |
Collapse
|
3
|
Abstract
The assembly of bacterial ribosomes is viewed with increasing interest as a potential target for new antibiotics. The in vivo synthesis and assembly of ribosomes are briefly reviewed here, highlighting the many ways in which assembly can be perturbed. The process is compared with the model in vitro process from which much of our knowledge is derived. The coordinate synthesis of the ribosomal components is essential for their ordered and efficient assembly; antibiotics interfere with this coordination and therefore affect assembly. It has also been claimed that the binding of antibiotics to nascent ribosomes prevents their assembly. These two contrasting models of antibiotic action are compared and evaluated. Finally, the suitability and tractability of assembly as a drug target are assessed.
Collapse
|
4
|
Vila-Sanjurjo A. Modification of the Ribosome and the Translational Machinery during Reduced Growth Due to Environmental Stress. EcoSal Plus 2008; 3. [PMID: 26443727 DOI: 10.1128/ecosalplus.2.5.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Indexed: 06/05/2023]
Abstract
Escherichia coli strains normally used under laboratory conditions have been selected for maximum growth rates and require maximum translation efficiency. Recent studies have shed light on the structural and functional changes undergone by the translational machinery in E. coli during heat and cold shock and upon entry into stationary phase. In these situations both the composition and the partitioning of this machinery into the different pools of cellular ribosomes are modified. As a result, the translational capacity of the cell is dramatically altered. This review provides a comprehensive account of these modifications, regardless of whether or not their underlying mechanisms and their effects on cellular physiology are known. Not only is the composition of the ribosome modified upon entry into stationary phase, but the modification of other components of the translational machinery, such as elongation factor Tu (EFTu) and tRNAs, has also been observed. Hibernation-promoting factor (HPF), paralog protein Y (PY), and ribosome modulation factor (RMF) may also be related to the general protection against environmental stress observed in stationary-phase E. coli cells, a role that would not be revealed necessarily by the viability assays. Even for the best-characterized ribosome-associated factors induced under stress (RMF, PY, and initiation factors), we are far from a complete understanding of their modes of action.
Collapse
|
5
|
Wilhartitz I, Mach RL, Teira E, Reinthaler T, Herndl GJ, Farnleitner AH. Prokaryotic community analysis with CARD-FISH in comparison with FISH in ultra-oligotrophic ground- and drinking water. J Appl Microbiol 2008; 103:871-81. [PMID: 17897189 PMCID: PMC3160464 DOI: 10.1111/j.1365-2672.2007.03319.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS We compared the applicability of catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and FISH to enumerate prokaryotic populations in ultra-oligotrophic alpine groundwaters and bottled mineral water METHODS AND RESULTS Fluorescent oligonucleotide probes EUB338 and EUB338mix (EUB338/EUB338-II/EUB338-III) were used to enumerate bacteria and probes EURY806 and CREN537 for Euryarchaea and Crenarchaea, respectively. Improved detection of Planctomycetales by probe EUB338-II was tested using a different permeabilization step (proteinase K instead of lysozyme). Total detection efficiency of cells in spring water of four different alpine karst aquifers was on average 83% for CARD-FISH and only 15% for FISH. Applying CARD-FISH on bottled natural mineral waters resulted in an average total hybridization efficiency of 89%, with 78% (range 77-96%) bacteria and 11% (range 3-22%) identified as Archaea. CONCLUSIONS CARD-FISH resulted in substantially higher recovery efficiency than FISH. Hence, CARD-FISH appears very suitable for the enumeration of specific prokaryotic groups in ground- and drinking water. SIGNIFICANCE AND IMPACT OF THE STUDY This study represents the first evaluation of CARD-FISH on ultra-oligotrophic ground- and drinking water. Results are relevant for basic research and drinking water distributors. Archaea can comprise a significant fraction of the prokaryotic community in bottled mineral water.
Collapse
Affiliation(s)
- Inés Wilhartitz
- Institute of Chemical Engineering, Department for Applied Biochemistry and Gene Technology, Vienna University of Technology, Getreidemarkt 166-9, A-1060 Vienna
| | - Robert L. Mach
- Institute of Chemical Engineering, Department for Applied Biochemistry and Gene Technology, Vienna University of Technology, Getreidemarkt 166-9, A-1060 Vienna
| | - Eva Teira
- Departamento Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36200-Vigo, Spain
| | - Thomas Reinthaler
- Netherlands Institute for Sea Research, Department of Biological Oceanography, 1790 AB Den Burg, Texel
| | - Gerhard J. Herndl
- Netherlands Institute for Sea Research, Department of Biological Oceanography, 1790 AB Den Burg, Texel
| | - Andreas H. Farnleitner
- Institute of Chemical Engineering, Department for Applied Biochemistry and Gene Technology, Vienna University of Technology, Getreidemarkt 166-9, A-1060 Vienna
- For correspondence. ; +43-1-58801-17252, Institute of Chemical Engineering, Department for Applied Biochemistry and Gene Technology, Vienna University of Technology, Getreidemarkt 166-9, A-1060 Vienna
| |
Collapse
|
6
|
Kalpaxis DL, Theos C, Xaplanteri MA, Dinos GP, Catsiki AV, Leotsinidis M. Biomonitoring of Gulf of Patras, N. Peloponnesus, Greece. Application of a biomarker suite including evaluation of translation efficiency in Mytilus galloprovincialis cells. ENVIRONMENTAL RESEARCH 2004; 94:211-220. [PMID: 14757384 DOI: 10.1016/s0013-9351(03)00048-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Specimens of Mytilus galloprovincialis were placed in bow nets and immersed at 3-10 m depth in a clean coastal region (reference area), Itea, and two marine stations along Gulf of Patras, N. Peloponnesus, Greece. One site is near the estuaries of the Glafkos River, which are influenced by local industrial and urban sources (Station 1); the second site, Agios Vasilios, has no evident organic pollution but is enriched in metals, particularly zinc (Station 2). One month after immersion, digestive glands were removed from the mussels and tested for lysosomal membrane stability, metallothionein content, and translational efficiency of ribosomes. In addition, gill cells were isolated and their micronuclei content was determined. Compared with the reference samples, mussels transplanted to Gulf of Patras showed a significant increased lysosomal membrane permeability and metallothionein content, reduced polysome levels, and increased chromosomal damage in relation to the contamination burden of each sampling area. Also, runoff ribosomes from mussels transplanted to Gulf of Patras (that is, ribosomes stripped of endogenous messengers and peptidyl- or/and aminoacyl-tRNAs) were less efficient at initiating protein synthesis in an in vitro-translation system than those prepared from reference samples. The whole set of data suggests that the degree of Gulf of Patras pollution differs between different sites and depends on the proximity of urban sewage and industrial outfalls. In addition, our results emphasize the importance of protein synthesis regulation as a component of the cellular stress response.
Collapse
Affiliation(s)
- Dimitrios L Kalpaxis
- Laboratory of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece.
| | | | | | | | | | | |
Collapse
|
7
|
MacGregor BJ, Moser DP, Baker BJ, Alm EW, Maurer M, Nealson KH, Stahl DA. Seasonal and spatial variability in Lake Michigan sediment small-subunit rRNA concentrations. Appl Environ Microbiol 2001; 67:3908-22. [PMID: 11525985 PMCID: PMC93109 DOI: 10.1128/aem.67.9.3908-3922.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2001] [Accepted: 06/21/2001] [Indexed: 11/20/2022] Open
Abstract
We have used molecular biological methods to study the distribution of microbial small-subunit rRNAs (SSU rRNAs), in relation to chemical profiles, in offshore Lake Michigan sediments. The sampling site is at a depth of 100 m, with temperatures of 2 to 4 degrees C year-round. RNA extracted from sediment was probed with radiolabeled oligonucleotides targeting bacterial, archaeal, and eukaryotic SSU rRNAs, as well as with a universal probe. The coverage of these probes in relation to the present sequence database is discussed. Because ribosome production is growth rate regulated, rRNA concentrations are an indicator of the microbial populations active in situ. Over a 1-year period, changes in sedimentary SSU rRNA concentrations followed seasonal changes in surface water temperature and SSU rRNA concentration. Sedimentary depth profiles of oxygen, reduced manganese and iron, and sulfate changed relatively little from season to season, but the nitrate concentration was approximately fivefold higher in April and June 1997 than at the other times sampling was done. We propose that sediment microbial SSU rRNA concentrations at our sampling site are influenced by seasonal inputs from the water column, particularly the settling of the spring diatom bloom, and that the timing of this input may be modulated by grazers, such that ammonia becomes available to sediment microbes sooner than fresh organic carbon. Nitrate production from ammonia by autotrophic nitrifying bacteria, combined with low activity of heterotrophic denitrifying bacteria in the absence of readily degradable organic carbon, could account for the cooccurrence of high nitrate and low SSU rRNA concentrations.
Collapse
Affiliation(s)
- B J MacGregor
- Civil Engineering Department, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Amarantos I, Xaplanteri MA, Choli-Papadopoulou T, Kalpaxis DL. Effects of two photoreactive spermine analogues on peptide bond formation and their application for labeling proteins in Escherichia coli functional ribosomal complexes. Biochemistry 2001; 40:7641-50. [PMID: 11412118 DOI: 10.1021/bi010010s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of two photoreactive analogues of spermine, N(1)-azidobenzamidino- (ABA-) spermine and N(1)-azidonitrobenzoyl- (ANB-) spermine, on ribosomal functions was studied in a cell-free system derived from Escherichia coli. In the dark, both analogues stimulated the binding of AcPhe-tRNA to poly(U)-programmed ribosomes, enhanced the stability of the ternary complex AcPhe-tRNA.poly(U).ribosome (complex C), and caused stimulatory and inhibitory effects on peptidyltransferase activity. ABA-spermine exhibited more pronounced effects than ANB-spermine. Each photoprobe was covalently attached after irradiation to both ribosomal subunits and also to free rRNA isolated from 70S ribosomes. Photolabeled complex C showed a reactivity toward puromycin, similar to that exhibited by complex C reacting reversibly with photoprobes free in solution. The distribution of the incorporated radioactivity among the ribosomal components was determined under two experimental conditions, one stimulating and the other inhibiting peptidyltransferase activity. Under both conditions, ABA-spermine was the strongest cross-linker. Upon stimulatory conditions, 14% of ABA-[(14)C]spermine cross-linked to complex C was bound to the protein fraction. The proteins primarily labeled were identified as S3, S4, L2, L3, L6, L15, L17, and L18. Upon inhibitory conditions, a higher percent of the incorporated radioactivity was found in ribosomal proteins, while the pattern of protein labeling was characterized by a remarkable decrease of cross-linked proteins L2, L3, L6, L15, L17. and L18 and by an increase of cross-linked proteins S9, S18, L1, L16, L22, L23, and L27. On the basis of these results and literature data, the involvement of spermine in the conformation and important functions of ribosomes is discussed.
Collapse
Affiliation(s)
- I Amarantos
- Laboratory of Biochemistry, School of Medicine, University of Patras, GR-26500 Patras, Greece
| | | | | | | |
Collapse
|
9
|
Bade K, Manz W, Szewzyk U. Behavior of sulfate reducing bacteria under oligotrophic conditions and oxygen stress in particle-free systems related to drinking water. FEMS Microbiol Ecol 2000; 32:215-223. [PMID: 10858580 DOI: 10.1111/j.1574-6941.2000.tb00714.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The response of sulfate reducing bacteria (SRB) to oxygen stress under oligotrophic conditions in particle-free systems was studied in (i) sterile Berlin drinking water; (ii) mineral medium; and (iii) in coculture experiments with aerobic bacteria. Using a polyphasic approach including anaerobic cultivation, fluorescent in situ hybridization (FISH) and digital image analysis, the behavior of the strains zt3l and zt10e, isolated from Berlin groundwater and affiliated to the family Desulfovibrionaceae, was compared to the type strains Desulfomicrobium baculatum and Desulfovibrio desulfuricans. Anaerobic deep agar dilution series were performed for the determination of cell culturability. FISH and subsequent digital image analysis of probe-conferred fluorescence intensities were used for the assessment of metabolic activity. For the in situ identification of both isolates in coculture tests, two strain-specific oligonucleotides were developed and evaluated. The total cell counts of stressed SRB in drinking water decreased during the course of the assay dependent on the strain. Both environmental isolates could be cultured for a longer period than cells of D. baculatum and D. desulfuricans, respectively. The FISH intensities showed a strain-specific behavior. When exposed to simultaneous oxygen stress and carbon limitation in mineral medium, total cell counts of all four strains remained constant throughout a period of 72 days. The rate of culturability differed between the investigated strains. The decrease of metabolic activity as assessed by FISH was a strain-specific property. Exposure of SRB to oxygen stress and carbon starvation in coculture experiments with Aquabacterium commune resulted in strain dependent prolonged culturability and a delayed decrease of the metabolic activity compared to pure culture tests for all strains tested. Total cell counts of SRB were constant throughout the whole experiment.
Collapse
Affiliation(s)
- K Bade
- Technische Universität Berlin, Institut für Technischen Umweltschutz, Fachgebiet Ökologie der Mikroorganismen, Sekretariat OE 5, Franklinstraße 29, D-10587, Berlin, Germany
| | | | | |
Collapse
|
10
|
Abstract
Molecular methods for studying microbial communities are still under development. Enormous sequence catalogues can be collected; they must now be related to microbial activities. Messenger RNA detection, fluorescent in situ hybridization, cell sorting, and oligonucleotide array technology are currently being explored. Biases are associated with all these methods, but combined approaches offer checks and balances.
Collapse
|