1
|
Tymoszewska A, Aleksandrzak-Piekarczyk T. Subclass IId bacteriocins targeting mannose phosphotransferase system-Structural diversity and implications for receptor interaction and antimicrobial activity. PNAS NEXUS 2024; 3:pgae381. [PMID: 39285931 PMCID: PMC11403280 DOI: 10.1093/pnasnexus/pgae381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/29/2024] [Indexed: 09/19/2024]
Abstract
The bacterial mannose phosphotransferase system (Man-PTS) mediates uptake of selected monosaccharides. Simultaneously, it is a receptor for diverse bacteriocins such as subclass IIa pediocin-like bacteriocins and some subclass IId ones (garvicins ABCQ, lactococcins ABZ, BacSJ, ubericin K, and angicin). So far, no attempt has been made to categorize this ever-expanding group of bacteriocins. Here, we identified Man-PTS as a receptor for a number of previously uncharacterized bacteriocins, and demonstrated that they all belong to a large family of Man-PTS-binding nonpediocin-like peptides, providing new insights into their structure and function. Based on amino acid sequence similarities between members of this family, we propose their classification into five groups. This classification conveniently distinguishes bacteriocins with specific structures and properties regarding their spectrum of antimicrobial activity and pattern of interaction with Man-PTS. With respect to the latter, we indicate individual amino acid residues or regions of Man-PTS and the bacteriocin responsible for their interaction. In Man-PTS, these residues localize to the exterior of the transport complex, specifically the extracellular loop of the so-called Vmotif domain-containing regions γ and/or γ+, and to the interior of the transport complex, specifically the interface between the Core and Vmotif domains. Finally, we propose that while the bacteriocins from separate groups display specific binding patterns to Man-PTS, the general mechanism of their interaction with the receptor is universal despite significant differences in their predicted structures, i.e. after initial docking on the bacterial cell through an interaction with the Man-PTS regions γ and/or γ+, they pull away its Core and Vmotif from one another to form a pore across the membrane.
Collapse
Affiliation(s)
- Aleksandra Tymoszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (IBB PAS), 02-106 Warsaw, Poland
| | | |
Collapse
|
2
|
Mizutani T, Hara R, Takeuchi M, Yamagishi K, Hirao Y, Mori K, Hibi M, Ueda M, Ogawa J. l-Tryptophan-starved cultivation enhances S-allyl-l-cysteine synthesis in various food-related microorganisms. Biosci Biotechnol Biochem 2022; 86:792-799. [PMID: 35388878 DOI: 10.1093/bbb/zbac044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022]
Abstract
S-Allyl-l-cysteine (SAC) has received much interest due to its beneficial effects on human health. To satisfy the increasing demand for SAC, this study aims to develop a valuable culturing method for microbial screening synthesizing SAC from readily available materials. Although tryptophan synthase is a promising enzyme for SAC synthesis, its expression in microorganisms is strictly regulated by environmental l-tryptophan. Thus, we constructed a semisynthetic medium lacking l-tryptophan using casamino acids. This medium successfully enhanced the SAC-synthesizing activity of Lactococcus lactis ssp. cremoris NBRC 100676. In addition, microorganisms with high SAC-synthesizing activity were screened by the same medium. Food-related Klebsiella pneumoniae K-15 and Pantoea agglomerans P-3 were found to have a significantly increased SAC-synthesizing activity. The SAC-producing process established in this study is shorter in duration than the conventional garlic aging method. Furthermore, this study proposes a promising alternative strategy for producing food-grade SAC by microorganisms.
Collapse
Affiliation(s)
- Taku Mizutani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Ryotaro Hara
- Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Michiki Takeuchi
- Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Kazuo Yamagishi
- Research Institute for Bioscience Products and Fine Chemicals, AJINOMOTO CO., INC., Kawasaki, Kanagawa, Japan
| | - Yoshinori Hirao
- Research Institute for Bioscience Products and Fine Chemicals, AJINOMOTO CO., INC., Kawasaki, Kanagawa, Japan
| | - Kenichi Mori
- Research Institute for Bioscience Products and Fine Chemicals, AJINOMOTO CO., INC., Kawasaki, Kanagawa, Japan
| | - Makoto Hibi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Makoto Ueda
- Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan.,Department of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College, Oyama, Tochigi, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
3
|
Correa Deza MA, Rodríguez de Olmos A, Suárez NE, Font de Valdez G, Salva S, Gerez CL. Inorganic polyphosphate from the immunobiotic Lactobacillus rhamnosus CRL1505 prevents inflammatory response in the respiratory tract. Saudi J Biol Sci 2021; 28:5684-5692. [PMID: 34588880 PMCID: PMC8459082 DOI: 10.1016/j.sjbs.2021.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Lactobacillus (L.) rhamnosus CRL1505 accumulates inorganic polyphosphate (polyP) in its cytoplasm in response to environmental stress. The aim of this study was to evaluate the potential effects of polyP from the immunobiotic CRL1505 on an acute respiratory inflammation murine animal model induced by lipopolysaccharide (LPS). First, the presence of polyP granules in the cytoplasm of CRL1505 strain was evidenced by specific staining. Then, it was demonstrated in the intracellular extracts (ICE) of CRL1505 that polyP chain length is greater than 45 phosphate residues. In addition, the functionality of the genes involved in the polyP metabolism (ppk, ppx1 and ppx2) was corroborated by RT-PCR. Finally, the possible effect of the ICE of CRL1505 strain containing polyP and a synthetic polyP was evaluated in vivo using a murine model of acute lung inflammation. It was observed that the level of cytokines pro-inflammatory (IL-17, IL-6, IL-2, IL-4, INF-γ) in serum was normalized in mice treated with ICE, which would indicate that polyP prevents the local inflammatory response in the respiratory tract. The potential application of ICE from L. rhamnosus CRL1505 as a novel bioproduct for the treatment of respiratory diseases is one of the projections of this work.
Collapse
Affiliation(s)
- María A Correa Deza
- Centro de Referencia para Lactobacilos (CERELA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Antonieta Rodríguez de Olmos
- Centro de Referencia para Lactobacilos (CERELA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Nadia E Suárez
- Centro de Referencia para Lactobacilos (CERELA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Graciela Font de Valdez
- Centro de Referencia para Lactobacilos (CERELA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Susana Salva
- Centro de Referencia para Lactobacilos (CERELA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Carla L Gerez
- Centro de Referencia para Lactobacilos (CERELA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
4
|
Tymoszewska A, Walczak P, Aleksandrzak-Piekarczyk T. BacSJ-Another Bacteriocin with Distinct Spectrum of Activity that Targets Man-PTS. Int J Mol Sci 2020; 21:ijms21217860. [PMID: 33113989 PMCID: PMC7660280 DOI: 10.3390/ijms21217860] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023] Open
Abstract
Lactic acid bacteria produce diverse antimicrobial peptides called bacteriocins. Most bacteriocins target sensitive bacteria by binding to specific receptors. Although a plethora of bacteriocins have been identified, for only a few of them the receptors they recognize are known. Here, we identified permease IIC and surface protein IID, two membrane subunits of the mannose-specific quaternary phosphotransferase system (Man-PTS), as a receptor for BacSJ, a subclass IId bacteriocin produced by Lactobacillus paracasei subsp. paracasei BGSJ2-8. BacSJ shares 45% identity with another Man-PTS binding bacteriocin, garvicin Q (GarQ). Similarly to GarQ, BacSJ has a relatively broad activity spectrum acting against several Gram-positive bacteria, such as Lactococcus lactis and Listeria monocytogenes, harboring fairly similar Man-PTSs, but not against Lactococcus garvieae. To identify specific Man-PTS amino acids responsible for the L.lactis sensitivity to BacSJ, and thus likely involved in the interaction with this bacteriocin, we generated eight independent BacSJ resistant L.lactis mutants harboring five distinct missense mutations in the ptnC or ptnD genes encoding the IIC and IID subunits. Concurrently with the resistance to BacSJ, the mutants efficiently utilized mannose as a carbon source, which indicated functionality of their mutated Man-PTS. The amino acid substitutions in the mutants localized to the intracellular region of the IIC permease or to the extracellular parts of IID. This localization coincides with regions targeted by GarQ and some other Man-PTS-binding garvicins, pointing to similarities between all these bacteriocins in the mechanism of their interaction with Man-PTS. During the attack by these bacteriocins, subunits IID and IIC are assumed to function sequentially as a docking and an entry module allowing the toxic peptide to bind the cell and then open the pore. However, since not all of the BacSJ-resistant mutants exhibited cross-resistance to GarQ, we propose that BacSJ interacts with Man-PTS in a manner slightly different from that of GarQ.
Collapse
|
5
|
The extracellular loop of Man-PTS subunit IID is responsible for the sensitivity of Lactococcus garvieae to garvicins A, B and C. Sci Rep 2018; 8:15790. [PMID: 30361679 PMCID: PMC6202411 DOI: 10.1038/s41598-018-34087-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/07/2018] [Indexed: 11/23/2022] Open
Abstract
Mannose phosphotransferase system (Man-PTS) serves as a receptor for several bacteriocins in sensitive bacterial cells, namely subclass IIa bacteriocins (pediocin-like; pediocins) and subclass IId ones - lactococcin A (LcnA), lactococcin B (LcnB) and garvicin Q (GarQ). Here, to identify the receptor for three other narrow-spectrum subclass IId bacteriocins - garvicins A, B and C (GarA-C) Lactococcus garvieae mutants resistant to bacteriocins were generated and sequenced to look for mutations responsible for resistance. Spontaneous mutants had their whole genome sequenced while in mutants obtained by integration of pGhost9::ISS1 regions flanking the integration site were sequenced. For both types of mutants mutations were found in genes encoding Man-PTS components IIC and IID indicating that Man-PTS likely serves as the receptor for these bacteriocins as well. This was subsequently confirmed by deletion of the man-PTS operon in the bacteriocin-sensitive L. garvieae IBB3403, which resulted in resistant cells, and by heterologous expression of appropriate man-PTS genes in the resistant Lactococcus lactis strains, which resulted in sensitive cells. GarA, GarB, GarC and other Man-PTS-targeting bacteriocins differ in the amino acid sequence and activity spectrum, suggesting that they interact with the receptor through distinct binding patterns. Comparative analyses and genetic studies identified a previously unrecognized extracellular loop of Man-PTS subunit IID (γ+) implicated in the L. garvieae sensitivity to the bacteriocins studied here. Additionally, individual amino acids localized mostly in the sugar channel-forming transmembrane parts of subunit IIC or in the extracellular parts of IID likely involved in the interaction with each bacteriocin were specified. Finally, template-based 3D models of Man-PTS subunits IIC and IID were built to allow a deeper insight into the Man-PTS structure and functioning.
Collapse
|
6
|
Tymoszewska A, Diep DB, Wirtek P, Aleksandrzak-Piekarczyk T. The Non-Lantibiotic Bacteriocin Garvicin Q Targets Man-PTS in a Broad Spectrum of Sensitive Bacterial Genera. Sci Rep 2017; 7:8359. [PMID: 28827688 PMCID: PMC5566476 DOI: 10.1038/s41598-017-09102-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022] Open
Abstract
Mannose phosphotransferase system (Man-PTS) is the main mannose permease in bacteria but it is also a known receptor for subclass IIa bacteriocins (pediocin-like group) as well as subclass IId lactococcin A (LcnA) and lactococcin B (LcnB) (LcnA-like group). Subclass IIa bacteriocins exhibit a strong activity against Listeria spp. but they are not against Lactococcus spp. In contrast, the LcnA-like bacteriocins act only against Lactococcus lactis strains. Garvicin Q (GarQ) is a subclass IId bacteriocin with minor similarity to LcnA-like bacteriocins and a relatively broad antimicrobial spectrum including, among others, Listeria and Lactococcus spp. To identify the GarQ receptor, we obtained GarQ-resistant mutants of Lactococcus garvieae IBB3403 and L. lactis IL1403 and sequenced their genomes that revealed mutations in genes encoding the membrane-bound Man-PTS IIC or IID subunits encoded by ptnCD in L. lactis and manCD in L. garvieae. This is the first time that a bacteriocin outside the pediocin- and LcnA-like groups is shown to target Man-PTS. The interaction between GarQ and Man-PTS may occur through a new binding pattern involving specific amino acids highly conserved among the GarQ-sensitive bacterial species located in the N-terminal part and extracellular loops of subunit IID and in transmembrane region of IIC.
Collapse
Affiliation(s)
- Aleksandra Tymoszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (IBB PAS), Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Paulina Wirtek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (IBB PAS), Pawińskiego 5a, 02-106, Warsaw, Poland
| | | |
Collapse
|
7
|
YebC, a putative transcriptional factor involved in the regulation of the proteolytic system of Lactobacillus. Sci Rep 2017; 7:8579. [PMID: 28819300 PMCID: PMC5561223 DOI: 10.1038/s41598-017-09124-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
The proteolytic system of Lactobacillus plays an essential role in bacterial growth, contributes to the flavor development of fermented products, and can release bioactive health-beneficial peptides during milk fermentation. In this work, a genomic analysis of all genes involved in the proteolytic system of L. delbrueckii subsp. lactis CRL 581 was performed. Genes encoding the cell envelope-associated proteinase, two peptide transport systems, and sixteen peptidases were identified. The influence of the peptide supply on the transcription of 23 genes involved in the proteolytic system of L. delbrueckii subsp. lactis was examined after cell growth in a chemically defined medium (CDM) and CDM supplemented with Casitone. prtL, oppA 1, optS, optA genes as well as oppDFBC and optBCDF operons were the most highly expressed genes in CDM; their expression being repressed 6- to 115-fold by the addition of peptides. The transcriptional analysis was confirmed by proteomics; the up-regulation of the PrtL, PepG, OppD and OptF proteins in the absence of peptides was observed while the DNA-binding protein YebC was up-regulated by peptides. Binding of YebC to the promoter region of prtL, oppA 1, and optS, demonstrated by electrophoretic mobility shift assays, showed that YebC acts as a transcriptional repressor of key proteolytic genes.
Collapse
|
8
|
Sakacin G is the main responsible bacteriocin for the anti-listerial activity of meat-borne Lactobacillus curvatus ACU-1. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1288-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
9
|
Proteomic analysis of the probiotic Lactobacillus reuteri CRL1098 reveals novel tolerance biomarkers to bile acid-induced stress. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Pyruvate decarboxylase and alcohol dehydrogenase overexpression in Escherichia coli resulted in high ethanol production and rewired metabolic enzyme networks. World J Microbiol Biotechnol 2014; 30:2871-83. [DOI: 10.1007/s11274-014-1713-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
|
11
|
Picard F, Milhem H, Loubière P, Laurent B, Cocaign-Bousquet M, Girbal L. Bacterial translational regulations: high diversity between all mRNAs and major role in gene expression. BMC Genomics 2012; 13:528. [PMID: 23036066 PMCID: PMC3543184 DOI: 10.1186/1471-2164-13-528] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/25/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In bacteria, the weak correlations at the genome scale between mRNA and protein levels suggest that not all mRNAs are translated with the same efficiency. To experimentally explore mRNA translational level regulation at the systemic level, the detailed translational status (translatome) of all mRNAs was measured in the model bacterium Lactococcus lactis in exponential phase growth. RESULTS Results demonstrated that only part of the entire population of each mRNA species was engaged in translation. For transcripts involved in translation, the polysome size reached a maximum of 18 ribosomes. The fraction of mRNA engaged in translation (ribosome occupancy) and ribosome density were not constant for all genes. This high degree of variability was analyzed by bioinformatics and statistical modeling in order to identify general rules of translational regulation. For most of the genes, the ribosome density was lower than the maximum value revealing major control of translation by initiation. Gene function was a major translational regulatory determinant. Both ribosome occupancy and ribosome density were particularly high for transcriptional regulators, demonstrating the positive role of translational regulation in the coordination of transcriptional networks. mRNA stability was a negative regulatory factor of ribosome occupancy and ribosome density, suggesting antagonistic regulation of translation and mRNA stability. Furthermore, ribosome occupancy was identified as a key component of intracellular protein levels underlining the importance of translational regulation. CONCLUSIONS We have determined, for the first time in a bacterium, the detailed translational status for all mRNAs present in the cell. We have demonstrated experimentally the high diversity of translational states allowing individual gene differentiation and the importance of translation-level regulation in the complex process linking gene expression to protein synthesis.
Collapse
Affiliation(s)
- Flora Picard
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, Toulouse, F-31077, France
| | | | | | | | | | | |
Collapse
|
12
|
Heuston S, Begley M, Davey MS, Eberl M, Casey PG, Hill C, Gahan CGM. HmgR, a key enzyme in the mevalonate pathway for isoprenoid biosynthesis, is essential for growth of Listeria monocytogenes EGDe. MICROBIOLOGY-SGM 2012; 158:1684-1693. [PMID: 22504435 DOI: 10.1099/mic.0.056069-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Isoprenoids may be synthesized via one of two pathways, the classical mevalonate pathway or the alternative 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. While the majority of bacteria utilize a single pathway for isoprenoid biosynthesis, Listeria monocytogenes is unusual in possessing the complete set of genes for both pathways. Here, we utilized new molecular tools to create precise gene deletions in selected genes encoding enzymes of both pathways, gcpE, lytB (encoding proteins in the MEP pathway) and hmgR (encoding a protein in the mevalonate pathway). We demonstrate that the hmgR gene can only be deleted when the growth medium is supplemented with exogenous mevalonate. Furthermore, full growth of the mutant in the absence of mevalonate was only possible when the intact hmgR gene was supplied in trans using an IPTG-inducible expression system. Murine competitive index assays performed via the oral and intraperitoneal routes of infection revealed that the mevalonate hmgR mutant could not be recovered from livers and spleens 3 days post-infection. We propose that HmgR in L. monocytogenes EGDe is involved in essential metabolic functions and that an intact MEP pathway is not capable of sustaining growth.
Collapse
Affiliation(s)
- Sinead Heuston
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| | - Máire Begley
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Martin S Davey
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, UK
| | - Matthias Eberl
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, UK
| | - Pat G Casey
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| | - Cormac G M Gahan
- School of Pharmacy, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
McLaughlin HP, Xiao Q, Rea RB, Pi H, Casey PG, Darby T, Charbit A, Sleator RD, Joyce SA, Cowart RE, Hill C, Klebba PE, Gahan CGM. A putative P-type ATPase required for virulence and resistance to haem toxicity in Listeria monocytogenes. PLoS One 2012; 7:e30928. [PMID: 22363518 PMCID: PMC3283593 DOI: 10.1371/journal.pone.0030928] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 12/26/2011] [Indexed: 11/18/2022] Open
Abstract
Regulation of iron homeostasis in many pathogens is principally mediated by the ferric uptake regulator, Fur. Since acquisition of iron from the host is essential for the intracellular pathogen Listeria monocytogenes, we predicted the existence of Fur-regulated systems that support infection. We examined the contribution of nine Fur-regulated loci to the pathogenicity of L. monocytogenes in a murine model of infection. While mutating the majority of the genes failed to affect virulence, three mutants exhibited a significantly compromised virulence potential. Most striking was the role of the membrane protein we designate FrvA (Fur regulated virulence factor A; encoded by frvA [lmo0641]), which is absolutely required for the systemic phase of infection in mice and also for virulence in an alternative infection model, the Wax Moth Galleria mellonella. Further analysis of the ΔfrvA mutant revealed poor growth in iron deficient media and inhibition of growth by micromolar concentrations of haem or haemoglobin, a phenotype which may contribute to the attenuated growth of this mutant during infection. Uptake studies indicated that the ΔfrvA mutant is unaffected in the uptake of ferric citrate but demonstrates a significant increase in uptake of haem and haemin. The data suggest a potential role for FrvA as a haem exporter that functions, at least in part, to protect the cell against the potential toxicity of free haem.
Collapse
Affiliation(s)
- Heather P. McLaughlin
- Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - Qiaobin Xiao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Rosemarie B. Rea
- Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Cork, Ireland
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Hualiang Pi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Pat G. Casey
- Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - Trevor Darby
- Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - Alain Charbit
- Université Paris Descartes, Faculté de Médecine Necker-Enfants Malades, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Roy D. Sleator
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Susan A. Joyce
- Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - Richard E. Cowart
- Division of Biological Science, Department of Natural and Applied Sciences, University of Dubuque, Dubuque, Iowa, United States of America
| | - Colin Hill
- Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Cork, Ireland
- * E-mail:
| | - Phillip E. Klebba
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Cormac G. M. Gahan
- Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
14
|
Dowd GC, Casey PG, Begley M, Hill C, Gahan CG. Investigation of the role of ZurR in the physiology and pathogenesis of Listeria monocytogenes. FEMS Microbiol Lett 2011; 327:118-25. [DOI: 10.1111/j.1574-6968.2011.02472.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 10/21/2011] [Accepted: 11/15/2011] [Indexed: 12/18/2022] Open
Affiliation(s)
| | | | - Maire Begley
- Department of Microbiology; University College Cork; Cork; Ireland
| | | | | |
Collapse
|
15
|
Lactococcus lactis ZitR is a zinc-responsive repressor active in the presence of low, nontoxic zinc concentrations in vivo. J Bacteriol 2011; 193:1919-29. [PMID: 21317326 DOI: 10.1128/jb.01109-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the family Streptococcaceae, the genes encoding zinc ABC uptake systems (called zit or adc) are regulated by a coencoded MarR family member (i.e., ZitR or AdcR), whereas in the great majority of bacteria, these genes are regulated by Zur, the Fur-like zinc-responsive repressor. We studied the zit operon from Lactococcus lactis and its regulation in response to Zn(II) in vivo. zit transcription is repressed by Zn(II) in a wide concentration range starting from nontoxic micromolar levels and is derepressed at nanomolar concentrations. The level of zit promoter downregulation by environmental Zn(II) is correlated with the intracellular zinc content. The helix-turn-helix domain of ZitR is required for downregulation. In vitro, the purified protein is a dimer that complexes up to two zinc ligands per monomer and specifically binds two intact palindromic operator sites overlapping the -35 and -10 boxes of the zit promoter. DNA binding is abolished by the chelator EDTA or TPEN and fully restored by Zn(II) addition, indicating that the active repressor complexes Zn(II) with high affinity. These results suggest that derepression under starvation conditions could be an essential emergency mechanism for preserving Zn(II) homeostasis by uptake; under Zn(II)-replete conditions, the function of ZitR repression could be to help save energy rather than to avoid Zn(II) toxicity. The characterization of a MarR family zinc-responsive repressor in this report gives insight into the way Streptococcaceae efficiently adapt to Zn(II) fluctuations in their diverse ecological niches.
Collapse
|
16
|
Martinez MA, de Mendoza D, Schujman GE. Transcriptional and functional characterization of the gene encoding acyl carrier protein in Bacillus subtilis. MICROBIOLOGY-SGM 2009; 156:484-495. [PMID: 19850612 DOI: 10.1099/mic.0.033316-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Acyl carrier protein (ACP) is a universal and highly conserved carrier of acyl intermediates during fatty acid biosynthesis. The molecular mechanisms of regulation of the acpP structural gene, as well as the function of its gene product, are poorly characterized in Bacillus subtilis and other Gram-positive organisms. Here, we report that transcription of acpP takes place from two different promoters: PfapR and PacpP. Expression of acpP from PfapR is coordinated with a cluster of genes involved in lipid synthesis (the fapR operon); the operon consists of fapR-plsX-fabD-fabG-acpP. PacpP is located immediately upstream of the acpP coding sequence, and is necessary and sufficient for normal fatty acid synthesis. We also report that acpP is essential for growth and differentiation, and that ACP localizes in the mother-cell compartment of the sporangium during spore formation. These results provide the first detailed characterization of the expression of the ACP-encoding gene in a Gram-positive bacterium, and highlight the importance of this protein in B. subtilis physiology.
Collapse
Affiliation(s)
- Mariano A Martinez
- Instituto de Biología Molecular y Celular de Rosario, and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario, and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gustavo E Schujman
- Instituto de Biología Molecular y Celular de Rosario, and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
17
|
Multiple control of the acetate pathway in Lactococcus lactis under aeration by catabolite repression and metabolites. Appl Microbiol Biotechnol 2009; 82:1115-22. [PMID: 19214497 DOI: 10.1007/s00253-009-1897-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 01/25/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
Abstract
To explore the factors controlling metabolite formation under aeration in Lactococcus lactis, metabolic patterns, enzymatic activities, and transcriptional profiles of genes involved in the aerobic pathway for acetate anabolism were compared between a parental L. lactis strain and its NADH-oxidase-overproducer derivative. Deregulated catabolite repression mutans in the ccpA or pstH genes, encoding CcpA or its co-activator HPr, respectively, were compared with a parental strain, as well. Although the NADH-oxidase activity was derepressed in ccpA, but not in the pstH background, a mixed fermentation was displayed by either mutant, with a higher acetate production in the pstH variant. Moreover, transcription of genes encoding phosphotransacetylase and acetate kinase were derepressed, and the corresponding enzymatic activities increased, in both catabolite repression mutants. These results and the dependence on carbon source for acetate production in the NADH-oxidase-overproducer support the conclusion that catabolite repression, rather than NADH oxidation, plays a critical role to control acetate production. Furthermore, fructose 1,6-bisphosphate influenced the in vitro phosphotransacetylase and acetate kinase activities, while the former was sensitive to diacetyl. Our study strongly supports the model that, under aerobic conditions, the homolactic fermentation in L. lactis MG1363 is maintained by CcpA-mediated repression of mixed acid fermentation.
Collapse
|
18
|
AbiV, a novel antiphage abortive infection mechanism on the chromosome of Lactococcus lactis subsp. cremoris MG1363. Appl Environ Microbiol 2008; 74:6528-37. [PMID: 18776030 DOI: 10.1128/aem.00780-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Insertional mutagenesis with pGhost9::ISS1 resulted in independent insertions in a 350-bp region of the chromosome of Lactococcus lactis subsp. cremoris MG1363 that conferred phage resistance to the integrants. The orientation and location of the insertions suggested that the phage resistance phenotype was caused by a chromosomal gene turned on by a promoter from the inserted construct. Reverse transcription-PCR analysis confirmed that there were higher levels of transcription of a downstream open reading frame (ORF) in the phage-resistant integrants than in the phage-sensitive strain L. lactis MG1363. This gene was also found to confer phage resistance to L. lactis MG1363 when it was cloned into an expression vector. A subsequent frameshift mutation in the ORF completely eliminated the phage resistance phenotype, confirming that the ORF was necessary for phage resistance. This ORF provided resistance against virulent lactococcal phages belonging to the 936 and c2 species with an efficiency of plaquing of 10(-4), but it did not protect against members of the P335 species. A high level of expression of the ORF did not affect the cellular growth rate. Assays for phage adsorption, DNA ejection, restriction/modification activity, plaque size, phage DNA replication, and cell survival showed that the ORF encoded an abortive infection (Abi) mechanism. Sequence analysis revealed a deduced protein consisting of 201 amino acids which, in its native state, probably forms a dimer in the cytosol. Similarity searches revealed no homology to other phage resistance mechanisms, and thus, this novel Abi mechanism was designated AbiV. The mode of action of AbiV is unknown, but the activity of AbiV prevented cleavage of the replicated phage DNA of 936-like phages.
Collapse
|
19
|
Impact of aeration and heme-activated respiration on Lactococcus lactis gene expression: identification of a heme-responsive operon. J Bacteriol 2008; 190:4903-11. [PMID: 18487342 DOI: 10.1128/jb.00447-08] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Lactococcus lactis is a widely used food bacterium mainly characterized for its fermentation metabolism. However, this species undergoes a metabolic shift to respiration when heme is added to an aerobic medium. Respiration results in markedly improved biomass and survival compared to fermentation. Whole-genome microarrays were used to assess changes in L. lactis expression under aerobic and respiratory conditions compared to static growth, i.e., nonaerated. We observed the following. (i) Stress response genes were affected mainly by aerobic fermentation. This result underscores the differences between aerobic fermentation and respiration environments and confirms that respiration growth alleviates oxidative stress. (ii) Functions essential for respiratory metabolism, e.g., genes encoding cytochrome bd oxidase, menaquinone biosynthesis, and heme uptake, are similarly expressed under the three conditions. This indicates that cells are prepared for respiration once O(2) and heme become available. (iii) Expression of only 11 genes distinguishes respiration from both aerobic and static fermentation cultures. Among them, the genes comprising the putative ygfCBA operon are strongly induced by heme regardless of respiration, thus identifying the first heme-responsive operon in lactococci. We give experimental evidence that the ygfCBA genes are involved in heme homeostasis.
Collapse
|
20
|
Ryan E, Gahan C, Hill C. A significant role for Sigma B in the detergent stress response of Listeria monocytogenes. Lett Appl Microbiol 2007; 46:148-54. [DOI: 10.1111/j.1472-765x.2007.02280.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Muglia CI, Grasso DH, Aguilar OM. Rhizobium tropici response to acidity involves activation of glutathione synthesis. MICROBIOLOGY-SGM 2007; 153:1286-1296. [PMID: 17379738 DOI: 10.1099/mic.0.2006/003483-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rhizobium tropici CIAT899 displays intrinsic tolerance to acidity, and efficiently nodulates Phaseolus vulgaris at low pH. By characterizing a gshB mutant strain, glutathione has been previously demonstrated to be essential for R. tropici tolerance to acid stress. The wild-type gshB gene region has been cloned and its transcription profile has been characterized by using quantitative real-time PCR and transcriptional gene fusions. Activation of the gshB gene under acid-stress conditions was demonstrated. gshB is also induced by UV irradiation. Upstream from gshB a putative sigma(70) promoter element and an inverted repeat sequence were identified, which are proposed to be involved in expression under neutral and acidic conditions, respectively. Gel retardation assays indicate that transcription in acid conditions may involve protein binding to an upstream regulatory region.
Collapse
Affiliation(s)
- Cecilia I Muglia
- Instituto de Bioquímica y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - Daniel H Grasso
- Instituto de Bioquímica y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - O Mario Aguilar
- Instituto de Bioquímica y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| |
Collapse
|
22
|
Stack HM, Gahan CGM, Hill C. A novel promoter trap identifies Listeria monocytogenes promoters expressed at a low pH within the macrophage phagosome. FEMS Microbiol Lett 2007; 274:139-47. [PMID: 17608802 DOI: 10.1111/j.1574-6968.2007.00832.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The Gram-positive pathogen Listeria monocytogenes encounters acid environments in low-pH foods, during passage through the stomach and within the macrophage phagosome during systemic infection. A novel promoter-trap system termed pGAD-HLY was developed, based on a plasmid containing a promoterless copy of gadB (required for survival at low pH) and hly (whose product facilitates escape from the macrophage phagosome) to identify loci that are induced under different stress conditions in vitro as well as identifying in vivo inducible promoters expressed during intracellular infection. This system facilitated the identification of 11 acid-inducible genes in L. monocytogenes. Transcriptional analysis and acid tolerance response assays confirmed the low-pH induction of these loci, validating this promoter-trap system. Macrophage assays revealed the phagosomal induction of three clones, corresponding to lmo0095, lmo2565 and lmo2371, with two of these clones (lmo0095 and lmo2565) also being induced during murine infection. However, virulence studies did not show any significant difference between strains carrying insertional mutations in these genes and the wild type strain. Although the loci that were identified by this screening procedure do not appear to be central to listerial pathogenesis, it is evident from studies that they contribute to the 'fitness' of this pathogen in adverse acid conditions.
Collapse
Affiliation(s)
- Helena M Stack
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
23
|
Larsen N, Boye M, Siegumfeldt H, Jakobsen M. Differential expression of proteins and genes in the lag phase of Lactococcus lactis subsp. lactis grown in synthetic medium and reconstituted skim milk. Appl Environ Microbiol 2006; 72:1173-9. [PMID: 16461664 PMCID: PMC1392913 DOI: 10.1128/aem.72.2.1173-1179.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated protein and gene expression in the lag phase of Lactococcus lactis subsp. lactis CNRZ 157 and compared it to the exponential and stationary phases. By means of two-dimensional polyacrylamide gel electrophoresis, 28 highly expressed lag-phase proteins, implicated in nucleotide metabolism, glycolysis, stress response, translation, transcription, cell division, amino acid metabolism, and coenzyme synthesis, were identified. Among the identified proteins, >2-fold induction and down-regulation in the lag phase were determined for 12 proteins in respect to the exponential phase and for 18 proteins in respect to the stationary phase. Transcriptional changes of the lag-phase proteins in L. lactis were studied by oligonucleotide microarrays. Good correlation between protein and gene expression studies was demonstrated for several differentially expressed proteins, including nucleotide biosynthetic enzymes, adenylosuccinate synthase (PurA), IMP dehydrogenase (GuaB), and aspartate carbamoyl transferase (PyrB); heat-shock protein DnaK; serine hydroxymethyl transferase (GlyA); carbon catabolite control protein (CcpA); elongation factor G (FusA); and cell division protein (FtsZ).
Collapse
Affiliation(s)
- Nadja Larsen
- Department of Dairy and Food Science, The Royal Veterinary and Agricultural University, Rolighedsvej 30, D-1958 Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
24
|
Rea R, Hill C, Gahan CGM. Listeria monocytogenes PerR mutants display a small-colony phenotype, increased sensitivity to hydrogen peroxide, and significantly reduced murine virulence. Appl Environ Microbiol 2006; 71:8314-22. [PMID: 16332818 PMCID: PMC1317367 DOI: 10.1128/aem.71.12.8314-8322.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletion of perR in Listeria monocytogenes results in a small-colony phenotype (DeltaperRsm) that is slow growing and exhibits increased sensitivity to H2O2. At a relatively high frequency, large-colony variants (DeltaperRlg) arise, which are more resistant to H2O2 than the wild-type and ultimately dominate the culture. Transcriptional analysis revealed that the kat gene (catalase) is up-regulated in both types of mutants and that the highest level is apparent in DeltaperRsm mutants, demonstrating PerR regulation of this gene. Overexpression of the catalase gene in the wild-type background resulted in a slower-growing strain with a smaller colony size similar to that of DeltaperRsm. By combining a bioinformatic approach with experimental evidence, other PerR-regulated genes were identified, including fur, lmo0641, fri, lmo1604, hemA, and trxB. The transcriptional profile of these genes in both mutant backgrounds was similar to that of catalase in that a higher level of expression was observed in DeltaperRsm than in the wild type or DeltaperRlg. Murine studies revealed that the virulence potential of the DeltaperRsm mutant is substantially reduced compared to that of the wild-type and DeltaperRlg strains. Collectively, the data demonstrate that the DeltaperRsm mutant represents the true phenotype associated with the absence of PerR, which is linked to overexpression of regulated genes that negatively affect bacterial homeostasis both in vitro and in vivo. A subsequent secondary mutation occurred at a high frequency, which resulted in phenotypic reversion to a large-colony phenotype with increased fitness that may have obstructed the analysis of the role of PerR in the physiology of the bacterial cell.
Collapse
Affiliation(s)
- Rosemarie Rea
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
25
|
Gitton C, Meyrand M, Wang J, Caron C, Trubuil A, Guillot A, Mistou MY. Proteomic signature of Lactococcus lactis NCDO763 cultivated in milk. Appl Environ Microbiol 2005; 71:7152-63. [PMID: 16269754 PMCID: PMC1287624 DOI: 10.1128/aem.71.11.7152-7163.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have compared the proteomic profiles of L. lactis subsp. cremoris NCDO763 growing in the synthetic medium M17Lac, skim milk microfiltrate (SMM), and skim milk. SMM was used as a simple model medium to reproduce the initial phase of growth of L. lactis in milk. To widen the analysis of the cytoplasmic proteome, we used two different gel systems (pH ranges of 4 to 7 and 4.5 to 5.5), and the proteins associated with the cell envelopes were also studied by two-dimensional electrophoresis. In the course of the study, we analyzed about 800 spots and identified 330 proteins by mass spectrometry. We observed that the levels of more than 50 and 30 proteins were significantly increased upon growth in SMM and milk, respectively. The large redeployment of protein synthesis was essentially associated with an activation of pathways involved in the metabolism of nitrogenous compounds: peptidolytic and peptide transport systems, amino acid biosynthesis and interconversion, and de novo biosynthesis of purines. We also showed that enzymes involved in reactions feeding the purine biosynthetic pathway in one-carbon units and amino acids have an increased level in SMM and milk. The analysis of the proteomic data suggested that the glutamine synthetase (GS) would play a pivotal role in the adaptation to SMM and milk. The analysis of glnA expression during growth in milk and the construction of a glnA-defective mutant confirmed that GS is an essential enzyme for the development of L. lactis in dairy media. This analysis thus provides a proteomic signature of L. lactis, a model lactic acid bacterium, growing in its technological environment.
Collapse
Affiliation(s)
- Christophe Gitton
- Unité Biochimie et Structure des Protéines, INRA, Jouy-en-Josas, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Aleksandrzak-Piekarczyk T, Kok J, Renault P, Bardowski J. Alternative lactose catabolic pathway in Lactococcus lactis IL1403. Appl Environ Microbiol 2005; 71:6060-9. [PMID: 16204522 PMCID: PMC1265982 DOI: 10.1128/aem.71.10.6060-6069.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we present a glimpse of the diversity of Lactococcus lactis subsp. lactis IL1403 beta-galactosidase phenotype-negative mutants isolated by negative selection on solid media containing cellobiose or lactose and X-Gal (5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside), and we identify several genes essential for lactose assimilation. Among these are ccpA (encoding catabolite control protein A), bglS (encoding phospho-beta-glucosidase), and several genes from the Leloir pathway gene cluster encoding proteins presumably essential for lactose metabolism. The functions of these genes were demonstrated by their disruption and testing of the growth of resultant mutants in lactose-containing media. By examining the ccpA and bglS mutants for phospho-beta-galactosidase activity, we showed that expression of bglS is not under strong control of CcpA. Moreover, this analysis revealed that although BglS is homologous to a putative phospho-beta-glucosidase, it also exhibits phospho-beta-galactosidase activity and is the major enzyme in L. lactis IL1403 involved in lactose hydrolysis.
Collapse
|
27
|
Stack HM, Sleator RD, Bowers M, Hill C, Gahan CGM. Role for HtrA in stress induction and virulence potential in Listeria monocytogenes. Appl Environ Microbiol 2005; 71:4241-7. [PMID: 16085809 PMCID: PMC1183364 DOI: 10.1128/aem.71.8.4241-4247.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In silico analysis of the Listeria monocytogenes genome revealed lmo0292, a gene predicted to encode a HtrA-like serine protease. A stable insertion mutant was constructed, revealing a requirement for htrA in the listerial response to heat, acid, and penicillin stress. Transcriptional analysis revealed that htrA is not induced in response to heat shock but is induced in response to low pH and penicillin G stress. Furthermore, htrA expression was shown to be dependent upon the LisRK two-component sensor-kinase, a system known to respond to changes in integrity of the cell envelope. In addition, we demonstrated that a second in-frame start codon, upstream of that previously annotated for L. monocytogenes htrA, incorporating a putative signal sequence appears to influence virulence potential. Finally, a significant virulence defect was observed for the htrA mutant, indicating that this gene is required for full virulence in mice. Our findings suggest that L. monocytogenes lmo0292 encodes an HtrA-like serine protease that is not part of the classical heat shock response but is involved in stress responses and virulence.
Collapse
Affiliation(s)
- Helena M Stack
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
28
|
Xie Y, Reeve JN. Regulation of tryptophan operon expression in the archaeon Methanothermobacter thermautotrophicus. J Bacteriol 2005; 187:6419-29. [PMID: 16159776 PMCID: PMC1236654 DOI: 10.1128/jb.187.18.6419-6429.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 07/07/2005] [Indexed: 11/20/2022] Open
Abstract
Conserved trp genes encode enzymes that catalyze tryptophan biosynthesis in all three biological domains, and studies of their expression in Bacteria and eukaryotes have revealed a variety of different regulatory mechanisms. The results reported here provide the first detailed description of an archaeal trp gene regulatory system. We have established that the trpEGCFBAD operon in Methanothermobacter thermautotrophicus is transcribed divergently from a gene (designated trpY) that encodes a tryptophan-sensitive transcription regulator. TrpY binds to TRP box sequences (consensus, TGTACA) located in the overlapping promoter regions between trpY and trpE, inhibiting trpY transcription in the absence of tryptophan and both trpY and trpEGCFBAD transcription in the presence of tryptophan. TrpY apparently inhibits trpY transcription by blocking RNA polymerase access to the site of trpY transcription initiation and represses trpEGCFBAD transcription by preventing TATA box binding protein (TBP) binding to the TATA box sequence. Given that residue 2 (W2) is the only tryptophan in TrpY and in TrpY homologues in other Euryarchaea and that there is only one tryptophan codon in the entire trpEGCFBAD operon (trpB encodes W175), expression of the trp operon may also be regulated in vivo by the supply of charged tRNA(Trp) available to translate the second codon of the trpY mRNA.
Collapse
Affiliation(s)
- Yunwei Xie
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
29
|
Begley M, Sleator RD, Gahan CGM, Hill C. Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect Immun 2005; 73:894-904. [PMID: 15664931 PMCID: PMC546953 DOI: 10.1128/iai.73.2.894-904.2005] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes must resist the deleterious actions of bile in order to infect and subsequently colonize the human gastrointestinal tract. The molecular mechanisms used by the bacterium to resist bile and the influence of bile on pathogenesis are as yet largely unexplored. This study describes the analysis of three genes--bsh, pva, and btlB--previously annotated as bile-associated loci in the sequenced L. monocytogenes EGDe genome (lmo2067, lmo0446, and lmo0754, respectively). Analysis of deletion mutants revealed a role for all three genes in resisting the acute toxicity of bile and bile salts, particularly glycoconjugated bile salts at low pH. Mutants were unaffected in the other stress responses examined (acid, salt, and detergents). Bile hydrolysis assays demonstrate that L. monocytogenes possesses only one bile salt hydrolase gene, namely, bsh. Transcriptional analyses and activity assays revealed that, although it is regulated by both PrfA and sigma(B), the latter appears to play the greater role in modulating bsh expression. In addition to being incapable of bile hydrolysis, a sigB mutant was shown to be exquisitely sensitive to bile salts. Furthermore, increased expression of sigB was detected under anaerobic conditions and during murine infection. A gene previously annotated as a possible penicillin V amidase (pva) or bile salt hydrolase was shown to be required for resistance to penicillin V but not penicillin G but did not demonstrate a role in bile hydrolysis. Finally, animal (murine) studies revealed an important role for both bsh and btlB in the intestinal persistence of L. monocytogenes.
Collapse
Affiliation(s)
- Máire Begley
- Department of Microbiology, University College Cork, College Road, Cork, Ireland
| | | | | | | |
Collapse
|
30
|
Martín MG, Sender PD, Peirú S, de Mendoza D, Magni C. Acid-inducible transcription of the operon encoding the citrate lyase complex of Lactococcus lactis Biovar diacetylactis CRL264. J Bacteriol 2004; 186:5649-60. [PMID: 15317769 PMCID: PMC516808 DOI: 10.1128/jb.186.17.5649-5660.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Lactococcus is one of the most extensively studied lactic acid bacteria and is the paradigm for biochemical studies of citrate metabolism, little information is available on the regulation of the citrate lyase complex. In order to fill this gap, we characterized the genes encoding the subunits of the citrate lyase of Lactococcus lactis CRL264, which are located on an 11.4-kb chromosomal DNA region. Nucleotide sequence analysis revealed a cluster of eight genes in a new type of genetic organization. The citM-citCDEFXG operon (cit operon) is transcribed as a single polycistronic mRNA of 8.6 kb. This operon carries a gene encoding a malic enzyme (CitM, a putative oxaloacetate decarboxylase), the structural genes coding for the citrate lyase subunits (citD, citE, and citF), and the accessory genes required for the synthesis of an active citrate lyase complex (citC, citX, and citG). We have found that the cit operon is induced by natural acidification of the medium during cell growth or by a shift to media buffered at acidic pHs. Between the citM and citC genes is a divergent open reading frame whose expression was also increased at acidic pH, which was designated citI. This inducible response to acid stress takes place at the transcriptional level and correlates with increased activity of citrate lyase. It is suggested that coordinated induction of the citrate transporter, CitP, and citrate lyase by acid stress provides a mechanism to make the cells (more) resistant to the inhibitory effects of the fermentation product (lactate) that accumulates under these conditions.
Collapse
MESH Headings
- Adaptation, Physiological
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Carboxy-Lyases/genetics
- Carrier Proteins/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- Gene Expression Regulation, Bacterial
- Gene Order
- Genes, Bacterial
- Hydrogen-Ion Concentration
- Lactic Acid/metabolism
- Lactococcus lactis/enzymology
- Lactococcus lactis/genetics
- Molecular Sequence Data
- Multienzyme Complexes/genetics
- Multienzyme Complexes/metabolism
- Multigene Family
- Open Reading Frames
- Operon
- Oxo-Acid-Lyases/genetics
- Oxo-Acid-Lyases/metabolism
- Protein Subunits
- RNA, Bacterial/analysis
- RNA, Bacterial/isolation & purification
- RNA, Messenger/analysis
- RNA, Messenger/isolation & purification
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- Mauricio G Martín
- Instituto de Biología Molecular y Celular de Rosario , S2002LRK Rosario, Argentina
| | | | | | | | | |
Collapse
|
31
|
Maldonado A, Jiménez-Díaz R, Ruiz-Barba JL. Induction of plantaricin production in Lactobacillus plantarum NC8 after coculture with specific gram-positive bacteria is mediated by an autoinduction mechanism. J Bacteriol 2004; 186:1556-64. [PMID: 14973042 PMCID: PMC344433 DOI: 10.1128/jb.186.5.1556-1564.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 11/17/2003] [Indexed: 11/20/2022] Open
Abstract
Plantaricin NC8 (PLNC8), a coculture-inducible two-peptide bacteriocin from Lactobacillus plantarum NC8, has recently been purified and genetically characterized. Analysis of an 8.1-kb NC8 DNA region downstream of the PLNC8 operon revealed the presence of at least four operons involved in bacteriocin production, showing high homology to the plantaricin cluster in L. plantarum C11. However, we found a three-component regulatory operon involving a quorum-sensing mechanism. Two of these components, the induction factor (PLNC8IF) and the histidine kinase, are novel, while the response regulator is identical to PlnD from C11. Homologous expression of plNC8IF in NC8 allowed constitutive bacteriocin production. Heterologous expression of this gene in Lactococcus lactis MG1363 produced supernatants which promoted bacteriocin production in NC8. Reverse transcription-PCR studies indicated that cocultivation of NC8 with inducing cells promoted transcription of the bacteriocin and regulatory operons in NC8. An identical result was obtained after addition of an external source of PLNC8IF. We propose that the presence of specific bacteria could act as an environmental signal that is able to switch on bacteriocin production in L. plantarum NC8 via a quorum-sensing mechanism mediated by PLNC8IF.
Collapse
Affiliation(s)
- Antonio Maldonado
- Departamento de Biotecnología de Alimentos, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain.
| | | | | |
Collapse
|
32
|
Xie G, Keyhani NO, Bonner CA, Jensen RA. Ancient origin of the tryptophan operon and the dynamics of evolutionary change. Microbiol Mol Biol Rev 2003; 67:303-42, table of contents. [PMID: 12966138 PMCID: PMC193870 DOI: 10.1128/mmbr.67.3.303-342.2003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The seven conserved enzymatic domains required for tryptophan (Trp) biosynthesis are encoded in seven genetic regions that are organized differently (whole-pathway operons, multiple partial-pathway operons, and dispersed genes) in prokaryotes. A comparative bioinformatics evaluation of the conservation and organization of the genes of Trp biosynthesis in prokaryotic operons should serve as an excellent model for assessing the feasibility of predicting the evolutionary histories of genes and operons associated with other biochemical pathways. These comparisons should provide a better understanding of possible explanations for differences in operon organization in different organisms at a genomics level. These analyses may also permit identification of some of the prevailing forces that dictated specific gene rearrangements during the course of evolution. Operons concerned with Trp biosynthesis in prokaryotes have been in a dynamic state of flux. Analysis of closely related organisms among the Bacteria at various phylogenetic nodes reveals many examples of operon scission, gene dispersal, gene fusion, gene scrambling, and gene loss from which the direction of evolutionary events can be deduced. Two milestone evolutionary events have been mapped to the 16S rRNA tree of Bacteria, one splitting the operon in two, and the other rejoining it by gene fusion. The Archaea, though less resolved due to a lesser genome representation, appear to exhibit more gene scrambling than the Bacteria. The trp operon appears to have been an ancient innovation; it was already present in the common ancestor of Bacteria and Archaea. Although the operon has been subjected, even in recent times, to dynamic changes in gene rearrangement, the ancestral gene order can be deduced with confidence. The evolutionary history of the genes of the pathway is discernible in rough outline as a vertical line of descent, with events of lateral gene transfer or paralogy enriching the analysis as interesting features that can be distinguished. As additional genomes are thoroughly analyzed, an increasingly refined resolution of the sequential evolutionary steps is clearly possible. These comparisons suggest that present-day trp operons that possess finely tuned regulatory features are under strong positive selection and are able to resist the disruptive evolutionary events that may be experienced by simpler, poorly regulated operons.
Collapse
Affiliation(s)
- Gary Xie
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | |
Collapse
|
33
|
Gaudu P, Lamberet G, Poncet S, Gruss A. CcpA regulation of aerobic and respiration growth in Lactococcus lactis. Mol Microbiol 2003; 50:183-92. [PMID: 14507373 DOI: 10.1046/j.1365-2958.2003.03700.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The catabolic control protein CcpA is the highly conserved regulator of carbon metabolism in Gram-positive bacteria. We recently showed that Lactococcus lactis, a fermenting bacterium in the family of Streptococcaceae, is capable of respiration late in growth when haem is added to aerated cultures. As the start of respiration coincides with glucose depletion from the medium, we hypothesized that CcpA is involved in this metabolic switch and investigated its role in lactococcal growth under aeration and respiration conditions. Compared with modest changes observed in fermentation growth, inactivation of ccpA shifts metabolism to mixed acid fermentation under aeration conditions. This shift is due to a modification of the redox balance via derepression of NADH oxidase, which eliminates oxygen and decreases the NADH pool. CcpA also plays a decisive role in respiration metabolism. Haem addition to lag phase ccpA cells results in growth arrest and cell mortality. Toxicity is due to oxidative stress provoked by precocious haem uptake. We identify the repressor of the haem transport system and show that it is a target of CcpA activation. We propose that CcpA-mediated repression of haem uptake is a means of preventing oxidative damage at the start of exponential growth. CcpA thus appears to govern a regulatory network that coordinates oxygen, iron and carbon metabolism.
Collapse
Affiliation(s)
- Philippe Gaudu
- Unité de Recherches Laitières et Génétique Appliquée - URLGA, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas, France.
| | | | | | | |
Collapse
|
34
|
Foucaud-Scheunemann C, Poquet I. HtrA is a key factor in the response to specific stress conditions in Lactococcus lactis. FEMS Microbiol Lett 2003; 224:53-9. [PMID: 12855167 DOI: 10.1016/s0378-1097(03)00419-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the physiological role of Lactococcus lactis housekeeping surface protease HtrA. It is involved in surface properties under regular growth conditions, as the htrA mutant strain forms longer chains in liquid medium. It participates in cellular defence against environmental stress conditions: compared to the wild-type strain, the htrA mutant strain exhibited increased sensitivity to heat, ethanol, puromycin, and NaCl, but not to pH, H2O2, bile salts or to carbon or nitrogen starvation. htrA transcription in the wild-type strain showed a transient increase under stress conditions determined as requiring htrA, but not under overexpression of a secreted heterologous protein. Our results demonstrate that in L. lactis, htrA is a key factor in the response to specific stress conditions.
Collapse
|
35
|
Silvestroni A, Connes C, Sesma F, De Giori GS, Piard JC. Characterization of the melA locus for alpha-galactosidase in Lactobacillus plantarum. Appl Environ Microbiol 2002; 68:5464-71. [PMID: 12406739 PMCID: PMC129937 DOI: 10.1128/aem.68.11.5464-5471.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2002] [Accepted: 08/29/2002] [Indexed: 11/20/2022] Open
Abstract
Alpha-galactosides are abundant sugars in legumes such as soy. Because of the lack of alpha-galactosidase (alpha-Gal) in the digestive tract, humans are unable to digest these sugars, which consequently induce flatulence. To develop the consumption of the otherwise highly nutritional soy products, the use of exogenous alpha-Gal is promising. In this framework, we characterized the melA gene for alpha-Gal in Lactobacillus plantarum. The melA gene encodes a cytoplasmic 84-kDa protein whose enzymatically active form occurs as oligomers. The melA gene was cloned and expressed in Escherichia coli, yielding an active alpha-Gal. We show that melA is transcribed from its own promoter, yielding a monocistronic mRNA, and that it is regulated at the transcriptional level, i.e., it is induced by melibiose but is not totally repressed by glucose. Posttranscriptional regulation by the carbon source could also occur. Upstream of melA, a putative galactoside transporter, designated RafP, was identified that shows high homology to LacS, the unique transporter for both alpha- and beta-galactosides in Streptococcus thermophilus. rafP is also expressed as a monocistronic mRNA. Downstream of melA, the lacL and lacM genes were identified that encode a heterodimeric beta-galactosidase. A putative galM gene identified in the same cluster suggests the presence of a galactose operon. These results indicate that the genes involved in galactoside catabolism are clustered in L. plantarum ATCC 8014. This first genetic characterization of melA and of its putative associated transporter, rafP, in a lactobacillus opens doors to various applications both in the manufacture of soy-derived products and in probiotic and nutraceutical issues.
Collapse
Affiliation(s)
- Aurelio Silvestroni
- Centro de Referencia para Lactobacillos (CERELA-CONICET), Chacabuco 145, 4000 Tucumán, Argentina. INRA-URLGA, Useful Bacterial Surface Proteins, 78352 Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
36
|
Duwat P, Sourice S, Cesselin B, Lamberet G, Vido K, Gaudu P, Le Loir Y, Violet F, Loubière P, Gruss A. Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J Bacteriol 2001; 183:4509-16. [PMID: 11443085 PMCID: PMC95345 DOI: 10.1128/jb.183.15.4509-4516.2001] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxygen is a major determinant of both survival and mortality of aerobic organisms. For the facultative anaerobe Lactococcus lactis, oxygen has negative effects on both growth and survival. We show here that oxygen can be beneficial to L. lactis if heme is present during aerated growth. The growth period is extended and long-term survival is markedly improved compared to results obtained under the usual fermentation conditions. We considered that improved growth and survival could be due to the capacity of L. lactis to undergo respiration. To test this idea, we confirmed that the metabolic behavior of lactococci in the presence of oxygen and hemin is consistent with respiration and is most pronounced late in growth. We then used a genetic approach to show the following. (i) The cydA gene, encoding cytochrome d oxidase, is required for respiration and plays a direct role in oxygen utilization. cydA expression is induced late in growth under respiration conditions. (ii) The hemZ gene, encoding ferrochelatase, which converts protoporphyrin IX to heme, is needed for respiration if the precursor, rather than the final heme product, is present in the medium. Surprisingly, survival improved by respiration is observed in a superoxide dismutase-deficient strain, a result which emphasizes the physiological differences between fermenting and respiring lactococci. These studies confirm respiratory metabolism in L. lactis and suggest that this organism may be better adapted to respiration than to traditional fermentative metabolism.
Collapse
Affiliation(s)
- P Duwat
- Génétique Appliquée-URLGA, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
van de Guchte M, Ehrlich SD, Chopin A. Identity elements in tRNA-mediated transcription antitermination: implication of tRNA D- and T-arms in mRNA recognition. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1223-1233. [PMID: 11320125 DOI: 10.1099/00221287-147-5-1223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
tRNA-mediated transcription antitermination has been shown to control the expression of several amino acid biosynthesis operons and aminoacyl-tRNA-synthetase-encoding genes in Gram-positive bacteria. A model originally put forward by Grundy & Henkin describes the conserved structural features of the leader sequences of these operons and genes. Two sequences of 3 and 4 nt, respectively, take a central position in this model and are thought to be responsible for the binding of the system-specific uncharged tRNA, an interaction which would stabilize the antiterminator conformation of the leader. Here a further evolution of this model is presented based on an analysis of trp regulation in Lactococcus lactis in which a function is assigned to hitherto unexplained conserved structures in the leader sequence. It is postulated that the mRNA-tRNA interaction involves various parts of the tRNA in addition to the anticodon and the acceptor in the original model and that these additional interactions contribute to the recognition of a specific tRNA, and hence to the specificity and efficacy of the regulatory response.
Collapse
Affiliation(s)
- Maarten van de Guchte
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352Jouy-en-Josas Cedex, France1
| | - S Dusko Ehrlich
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352Jouy-en-Josas Cedex, France1
| | - Alain Chopin
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352Jouy-en-Josas Cedex, France1
| |
Collapse
|
38
|
Mansilla MC, Albanesi D, de Mendoza D. Transcriptional control of the sulfur-regulated cysH operon, containing genes involved in L-cysteine biosynthesis in Bacillus subtilis. J Bacteriol 2000; 182:5885-92. [PMID: 11004190 PMCID: PMC94713 DOI: 10.1128/jb.182.20.5885-5892.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms of regulation of the genes involved in the biosynthesis of cysteine are poorly characterized in Bacillus subtilis and other gram-positive bacteria. In this study we describe the expression pattern of the B. subtilis cysH operon in response to sulfur starvation. A 6.1-kb polycistronic transcript which includes the cysH, cysP, ylnB, ylnC, ylnD, ylnE, and ylnF genes was identified. Its synthesis was induced by sulfur limitation and strongly repressed by cysteine. The cysH operon contains a 5' leader portion homologous to that of the S box family of genes involved in sulfur metabolism, which are regulated by a transcription termination control system. Here we show that induction of B. subtilis cysH operon expression is dependent on the promoter and independent of the leader region terminator, indicating that the operon is regulated at the level of transcription initiation rather than controlled at the level of premature termination of transcription. Deletion of a 46-bp region adjacent to the -35 region of the cysH promoter led to high-level expression of the operon, even in the presence of cysteine. We also found that O-acetyl-L-serine (OAS), a direct precursor of cysteine, renders cysH transcription independent of sulfur starvation and insensitive to cysteine repression. We propose that transcription of the cysH operon is negatively regulated by a transcriptional repressor whose activity is controlled by the intracellular levels of OAS. Cysteine is predicted to repress transcription by inhibiting the synthesis of OAS, which would act as an inducer of cysH expression. These novel results provide the first direct evidence that cysteine biosynthesis is controlled at a transcriptional level by both negative and positive effectors in a gram-positive organism.
Collapse
Affiliation(s)
- M C Mansilla
- Instituto de Biología Molecular y Celular de Rosario, Argentina
| | | | | |
Collapse
|
39
|
Aguilar PS, Lopez P, de Mendoza D. Transcriptional control of the low-temperature-inducible des gene, encoding the delta5 desaturase of Bacillus subtilis. J Bacteriol 1999; 181:7028-33. [PMID: 10559169 PMCID: PMC94178 DOI: 10.1128/jb.181.22.7028-7033.1999] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis des gene encodes the cold-inducible Delta5 lipid desaturase involved in the formation of unsaturated fatty acids from saturated phospholipid precursors. Here, we describe the expression pattern of the des gene in response to a temperature downshift from 37 to 20 degrees C. We found that the synthesis of des mRNA is undetectable at 37 degrees C but dramatically induced upon the temperature downshift. Decay characteristics of the des transcript as well as the in vivo decay of B. subtilis bulk mRNA were investigated. The results showed that the stability of the des transcript as well as of bulk mRNA lasted substantially longer at 20 degrees C than at 37 degrees C. Functional expression of des at 37 degrees C was achieved by exchanging its promoter with the non-cold shock spac promoter. These data provide the first direct evidence that temperature-mediated control of transcription is the major mechanism regulating the mRNA levels of the B. subtilis desaturase. The present results also demonstrate that the only component of the desaturation system regulated by temperature is the desaturase enzyme.
Collapse
Affiliation(s)
- P S Aguilar
- Instituto de Biología Molecular y Celular de Rosario (IBR) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000-Rosario, Argentina
| | | | | |
Collapse
|
40
|
Gosalbes MJ, Monedero V, Pérez-Martínez G. Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei. J Bacteriol 1999; 181:3928-34. [PMID: 10383959 PMCID: PMC93881 DOI: 10.1128/jb.181.13.3928-3934.1999] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Lactobacillus casei ATCC 393, the chromosomally encoded lactose operon, lacTEGF, encodes an antiterminator protein (LacT), lactose-specific phosphoenolpyruvate-dependent phosphotransferase system (PTS) elements (LacE and LacF), and a phospho-beta-galactosidase. lacT, lacE, and lacF mutant strains were constructed by double crossover. The lacT strain displayed constitutive termination at a ribonucleic antiterminator (RAT) site, whereas lacE and lacF mutants showed an inducer-independent antiterminator activity, as shown analysis of enzyme activity obtained from transcriptional fusions of lac promoter (lacp) and lacpDeltaRAT with the Escherichia coli gusA gene in the different lac mutants. These results strongly suggest that in vivo under noninducing conditions, the lactose-specific PTS elements negatively modulate LacT activity. Northern blot analysis detected a 100-nucleotide transcript starting at the transcription start site and ending a consensus RAT sequence and terminator region. In a ccpA mutant, transcription initiation was derepressed but no elongation through the terminator was observed in the presence of glucose and the inducing sugar, lactose. Full expression of lacTEGF was found only in a man ccpA double mutant, indicating that PTS elements are involved in the CcpA-independent catabolite repression mechanism probably via LacT.
Collapse
Affiliation(s)
- M J Gosalbes
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, 46100 Burjassot, Valencia, Spain
| | | | | |
Collapse
|
41
|
Delorme C, Ehrlich SD, Renault P. Regulation of expression of the Lactococcus lactis histidine operon. J Bacteriol 1999; 181:2026-37. [PMID: 10094678 PMCID: PMC93613 DOI: 10.1128/jb.181.7.2026-2037.1999] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Lactococcus lactis, the his operon contains all the genes necessary for histidine biosynthesis. It is transcribed from a unique promoter, localized 300 bp upstream of the first gene. The region corresponding to the untranslated 5' end of the transcript, named the his leader region, displays the typical features of the T box transcriptional attenuation mechanism which is involved in the regulation of many amino acid biosynthetic operons and tRNA synthetase genes in gram-positive bacteria. Here we describe the regulation of transcription of the his operon by the level of histidine in the growth medium. In the absence of histidine, two transcripts are present. One covers the entire operon, while the other stops at a terminator situated about 250 bp downstream of the transcription start point. DNA sequences implicated in regulation of the his operon were identified by transcriptional fusion with luciferase genes and site-directed mutagenesis. In addition to the previously defined sequences necessary for effective T-box-mediated regulation, new essential regions were identified. Eighteen percent of the positions of the his leader region were found to differ in seven distantly related strains of L. lactis. Analysis of the variable positions supports the folding model of the central part of the his leader region. Lastly, in addition to the T-box-mediated regulation, the operon is regulated at the level of initiation of transcription, which is repressed in the presence of histidine. An operator site, necessary for full repression, overlaps the terminator involved in the T box attenuation mechanism. The functionality of the operator is altered on plasmids with low and high copy numbers, suggesting that supercoiling may play a role in the expression of the his operon. The extents of regulation at the levels of initiation and attenuation of transcription are 6- to 8-fold and 14-fold, respectively. Together, the two levels of control allow a 120-fold range of regulation of the L. lactis operon by histidine.
Collapse
Affiliation(s)
- C Delorme
- Laboratoire de Génétique Microbienne, Institut National de Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France.
| | | | | |
Collapse
|
42
|
Luo D, Condon C, Grunberg-Manago M, Putzer H. In vitro and in vivo secondary structure probing of the thrS leader in Bacillus subtilis. Nucleic Acids Res 1998; 26:5379-87. [PMID: 9826762 PMCID: PMC148014 DOI: 10.1093/nar/26.23.5379] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Bacillus subtilis thrS gene is a member of the T-box gene family in Gram-positive organisms whose expression is regulated by a tRNA-mediated transcriptional antitermination mechanism involving a direct tRNA:mRNA interaction. The complex leader sequences of these genes share only short stretches of primary sequence homology, but a common secondary structure has been proposed by comparing the leaders of many genes of this family. The proposed mechanism forthe tRNA:mRNA interaction depends heavily on the secondary structure model, but is so far only supported by genetic evidence. We have studied the structure of the B.subtilis thrS leader in solution, in protection experiments using both chemical and enzymatic probes. The thrS leader structure was also probed in vivo using dimethylsulphate and the in vitro and in vivo data are in good accordance. We have organized the thrS leader into three major domains comprising six separate stem-loops. All but one of the short sequences conserved in this gene family are present in loop structures. The ACC specifier codon proposed to interact with the tRNAThrGGUisoacceptor is present in a bulge and probably exists in a stacking conformation. The proposed antiterminator structure is not visible in transcripts containing the terminator, but was probed using a transcript with the 3'-half of the terminator deleted and its folding appears consistent with the regulatory model. The leader sequences, and in particular the specifier domains, of the other genes of this family can be folded similarly to the experimentally solved thrS structure.
Collapse
Affiliation(s)
- D Luo
- UPR 9073, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
43
|
Grundy FJ, Henkin TM. The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in gram-positive bacteria. Mol Microbiol 1998; 30:737-49. [PMID: 10094622 DOI: 10.1046/j.1365-2958.1998.01105.x] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular mechanisms for regulation of the genes involved in the biosynthesis of methionine and cysteine are poorly characterized in Bacillus subtilis. Analyses of the recently completed B. subtilis genome revealed 11 copies of a highly conserved motif. In all cases, this motif was located in the leader region of putative transcriptional units, upstream of coding sequences that included genes involved in methionine or cysteine biosynthesis. Additional copies were identified in Clostridium acetobutylicum and Staphylococcus aureus, indicating conservation in other Gram-positive genera. The motif includes an element resembling an intrinsic transcriptional terminator, suggesting that regulation might be controlled at the level of premature termination of transcription. The 5' portion of all of the leaders could fold into a conserved complex structure. Analysis of the yitJ gene, which is homologous to Escherichia coli metH and metF, revealed that expression was induced by starvation for methionine and that induction was independent of the promoter and dependent on the leader region terminator. Mutation of conserved primary sequence and structural elements supported a model in which the 5' portion of the leader forms an anti-antiterminator structure, which sequesters sequences required for the formation of an antiterminator, which, in turn, sequesters sequences required for the formation of the terminator; the anti-antiterminator is postulated to be stabilized by the binding of some unknown factor when methionine is available. This set of genes is proposed to form a new regulon controlled by a global termination control system, which we designate the S box system, as most of the genes are involved in sulphur metabolism and biosynthesis of methionine and cysteine.
Collapse
Affiliation(s)
- F J Grundy
- Department of Microbiology, The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
44
|
Frenkiel H, Bardowski J, Ehrlich SD, Chopin A. Transcription of the trp operon in Lactococcus lactis is controlled by antitermination in the leader region. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 8):2103-2111. [PMID: 9720031 DOI: 10.1099/00221287-144-8-2103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The regulatory functions of the leader region preceding the Lactococcus lactis trp operon have been studied by mutagenesis analysis. This leader presents striking similarity to 'T-box' leaders found upstream of many Gram-positive aminoacyl-tRNA synthetase genes and some amino acid biosynthesis operons, which are controlled by antitermination through interaction of the leader transcript with cognate uncharged tRNA. A region of the L. lactis leader transcript also contains a series of (G/U) AG repeats which, in Bacillus, are involved in the binding of the trp RNA-binding protein (TRAP) which controls trp transcription. A screen was developed for the isolation of regulatory mutants affected in the leader region. All spontaneous mutants contained deletions; point mutations were only obtained after UV-induced mutagenesis. All mutations affected the putative transcription terminator upstream of the trp operon, demonstrating that trp is indeed controlled by transcription antitermination.
Collapse
Affiliation(s)
- HéléeGne Frenkiel
- Laboratoire de Génètique Microbienne, Institut National de la Recherche Agronomique78352 Jouy-en-Josas CedexFrance
| | - Jacek Bardowski
- Laboratoire de Génètique Microbienne, Institut National de la Recherche Agronomique78352 Jouy-en-Josas CedexFrance
| | - S Dusko Ehrlich
- Laboratoire de Génètique Microbienne, Institut National de la Recherche Agronomique78352 Jouy-en-Josas CedexFrance
| | - Alain Chopin
- Laboratoire de Génètique Microbienne, Institut National de la Recherche Agronomique78352 Jouy-en-Josas CedexFrance
| |
Collapse
|