1
|
Tienda S, Gutiérrez-Barranquero JA, Padilla-Roji I, Arrebola E, de Vicente A, Cazorla FM. Polyhydroxyalkanoate production by the plant beneficial rhizobacterium Pseudomonas chlororaphis PCL1606 influences survival and rhizospheric performance. Microbiol Res 2024; 278:127527. [PMID: 37863020 DOI: 10.1016/j.micres.2023.127527] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Pseudomonas chlororaphis PCL1606 (PcPCL1606) is a model rhizobacterium used to study beneficial bacterial interactions with the plant rhizosphere. Many of its beneficial phenotypes depend on the production of the antifungal compound 2-hexyl, 5-propyl resorcinol (HPR). Transcriptomic analysis of PcPCL1606 and the deletional mutant in HPR production ΔdarB strain, assigned an additional regulatory role to HPR, and allowed the detection of differentially expressed genes during the bacterial interaction with the avocado rhizosphere. Interestingly, the putative genes phaG (PCL1606_46820) and phaI (PCL1606_56560), with a predicted role in polyhydroxyalkanoate biosynthesis, were detected to be under HPR control. Both putative genes were expressed in the HPR-producing wild-type strain, but strongly repressed in the derivative mutant ΔdarB, impaired in HPR production. Thus, a derivative mutant impaired in the phaG gene was constructed, characterized and compared with the wild-type strain PcPCL1606 and with the derivative mutant ΔdarB. The phaG mutant had strongly reduced PHA production by PcPCL1606, and displayed altered phenotypes involved in bacterial survival on the plant roots, such as tolerance to high temperature and hydrogen peroxide, and decreased root survival, in a similar way that the ΔdarB mutant. On the other hand, the phaG mutant does not have altered resistance to desiccation, motility, biofilm formation or adhesion phenotypes, as displayed by the HPR-defective ΔdarB mutant have. Interestingly, the mutant defective in PHA production also lacked a biocontrol phenotype against the soilborne pathogenic fungus Rosellinia necatrix, even when the derivative mutant still produced the antifungal HPR compound, demonstrating that the final biocontrol phenotype of PcPCL1606 first requires bacterial survival and adaptation traits to the soil and rhizosphere environment.
Collapse
Affiliation(s)
- Sandra Tienda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, 29071 Málaga, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, 29010 Málaga, Spain
| | - José Antonio Gutiérrez-Barranquero
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, 29071 Málaga, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, 29010 Málaga, Spain
| | - Isabel Padilla-Roji
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, 29071 Málaga, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, 29010 Málaga, Spain
| | - Eva Arrebola
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, 29071 Málaga, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, 29010 Málaga, Spain
| | - Antonio de Vicente
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, 29071 Málaga, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, 29010 Málaga, Spain
| | - Francisco M Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, 29071 Málaga, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, 29010 Málaga, Spain.
| |
Collapse
|
2
|
Petrova O, Semenova E, Parfirova O, Tsers I, Gogoleva N, Gogolev Y, Nikolaichik Y, Gorshkov V. RpoS-Regulated Genes and Phenotypes in the Phytopathogenic Bacterium Pectobacterium atrosepticum. Int J Mol Sci 2023; 24:17348. [PMID: 38139177 PMCID: PMC10743746 DOI: 10.3390/ijms242417348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The alternative sigma factor RpoS is considered to be one of the major regulators providing stress resistance and cross-protection in bacteria. In phytopathogenic bacteria, the effects of RpoS have not been analyzed with regard to cross-protection, and genes whose expression is directly or indirectly controlled by RpoS have not been determined at the whole-transcriptome level. Our study aimed to determine RpoS-regulated genes and phenotypes in the phytopathogenic bacterium Pectobacterium atrosepticum. Knockout of the rpoS gene in P. atrosepticum affected the long-term starvation response, cross-protection, and virulence toward plants with enhanced immune status. The whole-transcriptome profiles of the wild-type P. atrosepticum strain and its ΔrpoS mutant were compared under different experimental conditions, and functional gene groups whose expression was affected by RpoS were determined. The RpoS promoter motif was inferred within the promoter regions of the genes affected by rpoS deletion, and the P. atrosepticum RpoS regulon was predicted. Based on RpoS-controlled phenotypes, transcriptome profiles, and RpoS regulon composition, the regulatory role of RpoS in P. atrosepticum is discussed.
Collapse
Affiliation(s)
- Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Elizaveta Semenova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Olga Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Ivan Tsers
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yevgeny Nikolaichik
- Department of Molecular Biology, Belarusian State University, 220030 Minsk, Belarus;
| | - Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
3
|
Bernal P, Civantos C, Pacheco-Sánchez D, Quesada JM, Filloux A, Llamas MA. Transcriptional organization and regulation of the Pseudomonas putida K1 type VI secretion system gene cluster. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001295. [PMID: 36748579 PMCID: PMC9993120 DOI: 10.1099/mic.0.001295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The type VI secretion system (T6SS) is an antimicrobial molecular weapon that is widespread in Proteobacteria and offers competitive advantages to T6SS-positive micro-organisms. Three T6SSs have recently been described in Pseudomonas putida KT2440 and it has been shown that one, K1-T6SS, is used to outcompete a wide range of phytopathogens, protecting plants from pathogen infections. Given the relevance of this system as a powerful and innovative mechanism of biological control, it is critical to understand the processes that govern its expression. Here, we experimentally defined two transcriptional units in the K1-T6SS cluster. One encodes the structural components of the system and is transcribed from two adjacent promoters. The other encodes two hypothetical proteins, the tip of the system and the associated adapters, and effectors and cognate immunity proteins, and it is also transcribed from two adjacent promoters. The four identified promoters contain the typical features of σ70-dependent promoters. We have studied the expression of the system under different conditions and in a number of mutants lacking global regulators. P. putida K1-T6SS expression is induced in the stationary phase, but its transcription does not depend on the stationary σ factor RpoS. In fact, the expression of the system is indirectly repressed by RpoS. Furthermore, it is also repressed by RpoN and the transcriptional regulator FleQ, an enhancer-binding protein typically acting in conjunction with RpoN. Importantly, expression of the K1-T6SS gene cluster is positively regulated by the GacS-GacA two-component regulatory system (TCS) and repressed by the RetS sensor kinase, which inhibits this TCS. Our findings identified a complex regulatory network that governs T6SS expression in general and P. putida K1-T6SS in particular, with implications for controlling and manipulating a bacterial agent that is highly relevant in biological control.
Collapse
Affiliation(s)
- Patricia Bernal
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain.,MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Cristina Civantos
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Daniel Pacheco-Sánchez
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - José M Quesada
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK.,Singapore Centre for Environmental Life Sciences Engineering. Nanyang Technological University, Singapore
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| |
Collapse
|
4
|
Santamaría‐Hernando S, De Bruyne L, Höfte M, Ramos‐González M. Improvement of fitness and biocontrol properties of
Pseudomonas putida
via an extracellular heme peroxidase. Microb Biotechnol 2022; 15:2652-2666. [PMID: 35986900 PMCID: PMC9518985 DOI: 10.1111/1751-7915.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022] Open
Abstract
The extracellular 373‐kDa PehA heme peroxidase of Pseudomonas putida KT2440 has two enzymatic domains which depend on heme cofactor for their peroxidase activity. A null pehA mutant was generated to examine the impact of PehA in rhizosphere colonization competence and the induction of plant systemic resistance (ISR). This mutant was not markedly hampered in colonization efficiency. However, increase in pehA dosage enhanced colonization fitness about 30 fold in the root and 900 fold in the root apex. In vitro assays with purified His‐tagged enzymatic domains of PehA indicated that heme‐dependent peroxidase activity was required for the enhancement of root tip colonization. Evaluation of live/dead cells confirmed that overexpression of pehA had a positive effect on bacterial cell viability. Following root colonization of rice plants by KT2440 strain, the incidence of rice blast caused by Magnaporthe oryzae was reduced by 65% and the severity of this disease was also diminished in comparison to non‐treated plants. An increase in the pehA dosage was also beneficial for the control of rice blast as compared with gene inactivation. The results suggest that PehA helps P. putida to cope with the plant‐imposed oxidative stress leading to enhanced colonization ability and concomitant ISR‐elicitation.
Collapse
Affiliation(s)
- Saray Santamaría‐Hernando
- Department of Environmental Protection Estación Experimental de Zaidín‐Consejo Superior de Investigaciones Científicas (CSIC) Granada Spain
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - Lieselotte De Bruyne
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - María‐Isabel Ramos‐González
- Department of Environmental Protection Estación Experimental de Zaidín‐Consejo Superior de Investigaciones Científicas (CSIC) Granada Spain
| |
Collapse
|
5
|
Sudarsan A, Keener K. Inactivation of spoilage organisms on baby spinach leaves using high voltage atmospheric cold plasma (HVACP) and assessment of quality. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Rodriguez A, Escobar S, Gomez E, Santos VE, Garcia-Ochoa F. Behavior of several pseudomonas putida
strains growth under different agitation and oxygen supply conditions. Biotechnol Prog 2018; 34:900-909. [DOI: 10.1002/btpr.2634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/21/2018] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Emilio Gomez
- Chemical Engineering Department; Universidad Complutense; Madrid Spain
| | | | | |
Collapse
|
7
|
Ainelo H, Lahesaare A, Teppo A, Kivisaar M, Teras R. The promoter region of lapA and its transcriptional regulation by Fis in Pseudomonas putida. PLoS One 2017; 12:e0185482. [PMID: 28945818 PMCID: PMC5612765 DOI: 10.1371/journal.pone.0185482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/13/2017] [Indexed: 12/28/2022] Open
Abstract
LapA is the biggest protein in Pseudomonas putida and a key factor for biofilm formation. Its importance and posttranslational regulation is rather thoroughly studied but less is known about the transcriptional regulation. Here we give evidence that transcription of lapA in LB-grown bacteria is initiated from six promoters, three of which display moderate RpoS-dependence. The global transcription regulator Fis binds to the lapA promoter area at six positions in vitro, and Fis activates the transcription of lapA while overexpressed in cells. Two of the six Fis binding sites, Fis-A7 and Fis-A5, are necessary for the positive effect of Fis on the transcription of lapA in vivo. Our results indicate that Fis binding to the Fis-A7 site increases the level of transcription from the most distal promoter of lapA, whereas Fis binding to the Fis-A5 site could be important for modifying the promoter area topology.
Collapse
Affiliation(s)
- Hanna Ainelo
- Chair of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Andrio Lahesaare
- Chair of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Annika Teppo
- Chair of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maia Kivisaar
- Chair of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Riho Teras
- Chair of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
8
|
Li Y, Chen J, Zhao M, Yang Z, Yue L, Zhang X. Promoting resuscitation of viable but nonculturable cells of Vibrio harveyi by a resuscitation-promoting factor-like protein YeaZ. J Appl Microbiol 2016; 122:338-346. [PMID: 27966258 DOI: 10.1111/jam.13342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 12/16/2022]
Abstract
AIMS To demonstrate the resuscitation-promoting activities of recombinant YeaZ from Vibrio harveyi SF-1. METHODS AND RESULTS The gene of resuscitation-promoting factor YeaZ was cloned from genomic DNA of V. harveyi SF-1. The gene was expressed in Escherichia coli, and the expressed protein was purified by Ni2+ -affinity chromatography. A yeaZ mutant was constructed by using the suicide plasmid pNQ705 with homologous recombination. Disruption of yeaZ did not affect cell growth significantly in 2216 E broth at 28°C. The wild-type and mutant viable but nonculturable (VBNC) cells could be resuscitated by temperature upshift method. In addition, the recombinant YeaZ increased the culturable counts from 1·27 × 104 CFU per ml and 1·99 × 104 CFU per ml to 2·88 × 105 CFU per ml and 4·59 × 105 CFU per ml, respectively. After the VBNC cells of wild-type and mutant cells were maintained at 4°C for 120 days, no resuscitation was obtained by temperature upshift method, but addition of the recombinant YeaZ promoted the resuscitation of the wild-type and mutant cells, with the culturable cell counts of 1·13 × 103 and 1·44 × 103 CFU per ml, respectively. Disruption of yeaZ decreased the virulence of V. harveyi in zebrafish. The lethal dose 50% of the yeaZ null mutant was more than 10-fold higher than that of the wild-type cells. CONCLUSIONS The recombinant YeaZ could efficiently promote resuscitation of the wild-type and mutant cells of V. harveyi from VBNC to culturable state. The protein also promoted resuscitation of the VBNC wild-type and mutant cells, which were maintained at 4°C for 120 days and not recovered by temperature upshift method. Disruption of yeaZ decreased the virulence of V. harveyi in zebrafish. SIGNIFICANCE AND IMPACT OF THE STUDY Here, we show clear evidence of a resuscitation-promoting factor YeaZ of V. harveyi and the roles in resuscitation of the VBNC cells and its pathogenicity.
Collapse
Affiliation(s)
- Y Li
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, China.,School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - J Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - M Zhao
- Department of Marine Biology, College of marine Life Science, Ocean University of China, Qingdao, China
| | - Z Yang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, China.,School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - L Yue
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - X Zhang
- Department of Marine Biology, College of marine Life Science, Ocean University of China, Qingdao, China
| |
Collapse
|
9
|
Belda E, van Heck RGA, José Lopez-Sanchez M, Cruveiller S, Barbe V, Fraser C, Klenk HP, Petersen J, Morgat A, Nikel PI, Vallenet D, Rouy Z, Sekowska A, Martins dos Santos VAP, de Lorenzo V, Danchin A, Médigue C. The revisited genome ofPseudomonas putidaKT2440 enlightens its value as a robust metabolicchassis. Environ Microbiol 2016; 18:3403-3424. [DOI: 10.1111/1462-2920.13230] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/16/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Eugeni Belda
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
- Institut Pasteur, Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology; 28, rue du Dr. Roux, Paris, Cedex 15 75724 France
| | - Ruben G. A. van Heck
- Laboratory of Systems and Synthetic Biology, Wageningen University; Dreijenplein 10, Building number 316 6703 HB Wageningen The Netherlands
| | - Maria José Lopez-Sanchez
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière; Paris France
| | - Stéphane Cruveiller
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
| | - Valérie Barbe
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute, National Sequencing Center; 2 rue Gaston Crémieux 91057 Evry France
| | - Claire Fraser
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore MD USA
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures; Braunschweig Germany
- School of Biology, Newcastle University; Newcastle upon Tyne NE1 7RU UK
| | - Jörn Petersen
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures; Braunschweig Germany
| | - Anne Morgat
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics; Geneva CH-1206 Switzerland
| | - Pablo I. Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin 3 28049 Madrid Spain
| | - David Vallenet
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
| | - Zoé Rouy
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
| | - Agnieszka Sekowska
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière; Paris France
| | - Vitor A. P. Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University; Dreijenplein 10, Building number 316 6703 HB Wageningen The Netherlands
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin 3 28049 Madrid Spain
| | - Antoine Danchin
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière; Paris France
| | - Claudine Médigue
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
| |
Collapse
|
10
|
Currie F, Broadhurst DI, Dunn WB, Sellick CA, Goodacre R. Metabolomics reveals the physiological response of Pseudomonas putida KT2440 (UWC1) after pharmaceutical exposure. MOLECULAR BIOSYSTEMS 2016; 12:1367-77. [PMID: 26932201 DOI: 10.1039/c5mb00889a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human pharmaceuticals have been detected in wastewater treatment plants, rivers, and estuaries throughout Europe and the United States. It is widely acknowledged that there is insufficient information available to determine whether prolonged exposure to low levels of these substances is having an impact on the microbial ecology in such environments. In this study we attempt to measure the effects of exposing cultures of Pseudomonas putida KT2440 (UWC1) to six pharmaceuticals by looking at differences in metabolite levels. Initially, we used Fourier transform infrared (FT-IR) spectroscopy coupled with multivariate analysis to discriminate between cell cultures exposed to different pharmaceuticals. This suggested that on exposure to propranolol there were significant changes in the lipid complement of P. putida. Metabolic profiling with gas chromatography-mass spectrometry (GC-MS), coupled with univariate statistical analyses, was used to identify endogenous metabolites contributing to discrimination between cells exposed to the six drugs. This approach suggested that the energy reserves of exposed cells were being expended and was particularly evident on exposure to propranolol. Adenosine triphosphate (ATP) concentrations were raised in P. putida exposed to propranolol. Increased energy requirements may be due to energy dependent efflux pumps being used to remove propranolol from the cell.
Collapse
Affiliation(s)
- Felicity Currie
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7ND, UK.
| | | | | | | | | |
Collapse
|
11
|
Arce-Rodríguez A, Calles B, Nikel PI, de Lorenzo V. The RNA chaperone Hfq enables the environmental stress tolerance super-phenotype ofPseudomonas putida. Environ Microbiol 2015; 18:3309-3326. [DOI: 10.1111/1462-2920.13052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/09/2015] [Accepted: 09/09/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Alejandro Arce-Rodríguez
- Systems Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Campus de Cantoblanco Madrid 28049 Spain
| | - Belén Calles
- Systems Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Campus de Cantoblanco Madrid 28049 Spain
| | - Pablo I. Nikel
- Systems Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Campus de Cantoblanco Madrid 28049 Spain
| | - Víctor de Lorenzo
- Systems Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Campus de Cantoblanco Madrid 28049 Spain
| |
Collapse
|
12
|
Sakil Munna M, Tahera J, Mohibul Hassan Afrad M, Nur IT, Noor R. Survival of Bacillus spp. SUBB01 at high temperatures and a preliminary assessment of its ability to protect heat-stressed Escherichia coli cells. BMC Res Notes 2015; 8:637. [PMID: 26526722 PMCID: PMC4630936 DOI: 10.1186/s13104-015-1631-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
Background The bacterial stressed state upon temperature raise has widely been observed especially in Escherichia coli cells. The current study extended such physiological investigation on Bacillus spp. SUBB01 under aeration at 100 rpm on different culture media along with the high temperature exposure at 48, 50, 52, 53 and 54 °C. Bacterial growth was determined through the enumeration of the viable and culturable cells; i.e., cells capable of producing the colony forming units on Luria–Bertani and nutrient agar plates up to 24 h. Microscopic experiments were conducted to scrutinize the successive physiological changes. Suppression of bacterial growth due to the elevated heat was further confirmed by the observation of non-viability through spot tests. Results As expected, a quick drop in both cell turbidity and colony forming units (~104) along with spores were observed after 12–24 h of incubation period, when cells were grown at 54 °C in both Luria–Bertani and nutrient broth and agar. The critical temperature (the temperature above which it is no longer possible to survive) of Bacillus spp. SUBB01 was estimated to be 53 °C. Furthermore, a positive impact was observed on the inhibited E. coli SUBE01 growth at 45 and 47 °C, upon the supplementation of the extracellular fractions of Bacillus species into the growing culture. Conclusions Overall the present analysis revealed the conversion of the culturable cells into the viable and nonculturable (VBNC) state as a result of heat shock response in Bacillus spp. SUBB01 and the cellular adaptation at extremely high temperature.
Collapse
Affiliation(s)
- Md Sakil Munna
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| | - Jannatun Tahera
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| | - Md Mohibul Hassan Afrad
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| | - Ifra Tun Nur
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| | - Rashed Noor
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| |
Collapse
|
13
|
Martín-Mora D, Reyes-Darias JA, Ortega Á, Corral-Lugo A, Matilla MA, Krell T. McpQ is a specific citrate chemoreceptor that responds preferentially to citrate/metal ion complexes. Environ Microbiol 2015; 18:3284-3295. [DOI: 10.1111/1462-2920.13030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 08/11/2015] [Accepted: 08/15/2015] [Indexed: 02/05/2023]
Affiliation(s)
- David Martín-Mora
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 18008 Granada Spain
| | - Jose-Antonio Reyes-Darias
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 18008 Granada Spain
| | - Álvaro Ortega
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 18008 Granada Spain
| | - Andrés Corral-Lugo
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 18008 Granada Spain
| | - Miguel A. Matilla
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 18008 Granada Spain
| | - Tino Krell
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 18008 Granada Spain
| |
Collapse
|
14
|
Rotureau E, Billard P, Duval JFL. Evaluation of metal biouptake from the analysis of bulk metal depletion kinetics at various cell concentrations: theory and application. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:990-998. [PMID: 25525993 DOI: 10.1021/es505049f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bioavailability of trace metals is a key parameter for assessment of toxicity on living organisms. Proper evaluation of metal bioavailability requires monitoring the various interfacial processes that control metal partitioning dynamics at the biointerface, which includes metal transport from solution to cell membrane, adsorption at the biosurface, internalization, and possible excretion. In this work, a methodology is proposed to quantitatively describe the dynamics of Cd(II) uptake by Pseudomonas putida. The analysis is based on the kinetic measurement of Cd(II) depletion from bulk solution at various initial cell concentrations using electroanalytical probes. On the basis of a recent formalism on the dynamics of metal uptake by complex biointerphases, the cell concentration-dependent depletion time scales and plateau values reached by metal concentrations at long exposure times (>3 h) are successfully rationalized in terms of limiting metal uptake flux, rate of excretion, and metal affinity to internalization sites. The analysis shows the limits of approximate depletion models valid in the extremes of high and weak metal affinities. The contribution of conductive diffusion transfer of metals from the solution to the cell membrane in governing the rate of Cd(II) uptake is further discussed on the basis of estimated resistances for metal membrane transfer and extracellular mass transport.
Collapse
|
15
|
Roles of cyclic Di-GMP and the Gac system in transcriptional control of the genes coding for the Pseudomonas putida adhesins LapA and LapF. J Bacteriol 2014; 196:1484-95. [PMID: 24488315 DOI: 10.1128/jb.01287-13] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
LapA and LapF are large extracellular proteins that play a relevant role in biofilm formation by Pseudomonas putida. Current evidence favors a sequential model in which LapA is first required for the initial adhesion of individual bacteria to a surface, while LapF participates in later stages of biofilm development. In agreement with this model, lapF transcription was previously shown to take place at late times of growth and to respond to the stationary-phase sigma factor RpoS. We have now analyzed the transcription pattern of lapA and other regulatory elements that influence expression of both genes. The lapA promoter shows a transient peak of activation early during growth, with a second increase in stationary phase that is independent of RpoS. The same pattern is observed in biofilms although expression is not uniform in the population. Both lapA and lapF are under the control of the two-component regulatory system GacS/GacA, and their transcription also responds to the intracellular levels of the second messenger cyclic diguanylate (c-di-GMP), although in surprisingly reverse ways. Whereas expression from the lapA promoter increases with high levels of c-di-GMP, the opposite is true for lapF. The transcriptional regulator FleQ is required for the modulation of lapA expression by c-di-GMP but has a minor influence on lapF. This work represents a further step in our understanding of the regulatory interactions controlling biofilm formation in P. putida.
Collapse
|
16
|
García-Contreras R, Lira-Silva E, Jasso-Chávez R, Hernández-González IL, Maeda T, Hashimoto T, Boogerd FC, Sheng L, Wood TK, Moreno-Sánchez R. Isolation and characterization of gallium resistant Pseudomonas aeruginosa mutants. Int J Med Microbiol 2013; 303:574-82. [DOI: 10.1016/j.ijmm.2013.07.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/09/2013] [Accepted: 07/29/2013] [Indexed: 11/15/2022] Open
|
17
|
Kim J, Oliveros JC, Nikel PI, de Lorenzo V, Silva-Rocha R. Transcriptomic fingerprinting of Pseudomonas putida under alternative physiological regimes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:883-891. [PMID: 24249296 DOI: 10.1111/1758-2229.12090] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Abstract
Pseudomonas putida KT2440 is a metabolically versatile soil bacterium useful both as a model biodegradative organism and as a host of catalytic activities of biotechnological interest. In this report, we present the high-resolution transcriptome of P. putida cultured on different carbon sources as revealed by deep sequencing of the corresponding RNA pools. Examination of the data from growth on substrates that are processed through distinct pathways (glucose, fructose, succinate and glycerol) revealed that ≥ 20% of the P. putida genome is differentially expressed depending on the ensuing physiological regime. Changes affected not only metabolic genes but also a suite of global regulators, e.g. the rpoS sigma subunit of RNA polymerase, various cold-shock proteins and the three HU histone-like proteins. Specifically, the genes encoding HU subunit variants hupA, hupB and hupN drastically altered their expression levels (and thus their ability to form heterodimeric combinations) under the diverse growth conditions. Furthermore, we found that two small RNAs, crcZ and crcY, known to inhibit the Crc protein that mediates catabolite repression in P. putida, were both down-regulated by glucose. The raw transcriptomic data generated in this work is made available to the community through the Gene Expression Omnibus database.
Collapse
Affiliation(s)
- Juhyun Kim
- Systems Biology Program, Centro Nacional de Biotecnología CSIC, Cantoblanco-Madrid, 28049, Spain
| | | | | | | | | |
Collapse
|
18
|
Nikel PI, Chavarría M, Martínez-García E, Taylor AC, de Lorenzo V. Accumulation of inorganic polyphosphate enables stress endurance and catalytic vigour in Pseudomonas putida KT2440. Microb Cell Fact 2013; 12:50. [PMID: 23687963 PMCID: PMC3673903 DOI: 10.1186/1475-2859-12-50] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/15/2013] [Indexed: 11/25/2022] Open
Abstract
Background Accumulation of inorganic polyphosphate (polyP), a persistent trait throughout the whole Tree of Life, is claimed to play a fundamental role in enduring environmental insults in a large variety of microorganisms. The share of polyP in the tolerance of the soil bacterium Pseudomonas putida KT2440 to a suite of physicochemical stresses has been studied on the background of its capacity as a host of oxidative biotransformations. Results Cells lacking polyphosphate kinase (Ppk), which expectedly presented a low intracellular polyP level, were more sensitive to a number of harsh external conditions such as ultraviolet irradiation, addition of β-lactam antibiotics and heavy metals (Cd2+ and Cu2+). Other phenotypes related to a high-energy phosphate load (e.g., swimming) were substantially weakened as well. Furthermore, the ppk mutant was consistently less tolerant to solvents and its survival in stationary phase was significantly affected. In contrast, the major metabolic routes were not significantly influenced by the loss of Ppk as diagnosed from respiration patterns of the mutant in phenotypic microarrays. However, the catalytic vigour of the mutant decreased to about 50% of that in the wild-type strain as estimated from the specific growth rate of cells carrying the catabolic TOL plasmid pWW0 for m-xylene biodegradation. The catalytic phenotype of the mutant was restored by over-expressing ppk in trans. Some of these deficits could be explained by the effect of the ppk mutation on the expression profile of the rpoS gene, the stationary phase sigma factor, which was revealed by the analysis of a PrpoS → rpoS‘-’lacZ translational fusion. Still, every stress-related effect of lacking Ppk in P. putida was relatively moderate as compared to some of the conspicuous phenotypes reported for other bacteria. Conclusions While polyP can be involved in a myriad of cellular functions, the polymer seems to play a relatively secondary role in the genetic and biochemical networks that ultimately enable P. putida to endure environmental stresses. Instead, the main value of polyP could be ensuring a reservoire of energy during prolonged starvation. This is perhaps one of the reasons for polyP persistence in live systems despite its apparent lack of essentiality.
Collapse
Affiliation(s)
- Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Sevilla E, Silva-Jiménez H, Duque E, Krell T, Rojo F. The Pseudomonas putida HskA hybrid sensor kinase controls the composition of the electron transport chain. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:291-300. [PMID: 23584971 DOI: 10.1111/1758-2229.12017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/13/2012] [Indexed: 06/02/2023]
Abstract
Sensor kinases play a key role in sensing and responding to environmental and physiological signals in bacteria. In this study we characterized a previously unknown orphan hybrid sensor kinase from Pseudomonas putida, which is conserved in several Pseudomonads. Inactivation of the gene coding for this sensor kinase, which we have named HskA, modified the expression of at least 85 genes in cells growing in a complete medium. HskA showed a strong influence on the composition of the electron transport chain. In cells growing exponentially in a complete medium, the absence of HskA led to a significant reduction in the expression of the genes coding for the bc1 complex and for the CIO and Cbb3-1 terminal oxidases. In stationary phase cells, however, lack of HskA caused a higher expression of the Cyo terminal oxidase and a lower expression of the Aa3 terminal oxidase. The HskA polypeptide shows two PAS (signal-sensing) domains, a transmitter domain containing the invariant phosphorylatable histidine and an ATP binding site, and a receiver domain containing the conserved aspartate capable of transphosphorylation, but lacks an Hpt module. It is therefore a hybrid sensor kinase. Phosphorylation assays showed that purified HskA undergoes autophosphorylation in the presence of ATP.
Collapse
Affiliation(s)
- Emma Sevilla
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
20
|
Silva-Rocha R, de Lorenzo V. The TOL network ofPseudomonas putidamt-2 processes multiple environmental inputs into a narrowresponse space. Environ Microbiol 2012; 15:271-86. [DOI: 10.1111/1462-2920.12014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/23/2012] [Accepted: 09/27/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Rafael Silva-Rocha
- Systems Biology Program; Centro Nacional de Biotecnología CSIC; Cantoblanco-Madrid; 28049; Spain
| | - Víctor de Lorenzo
- Systems Biology Program; Centro Nacional de Biotecnología CSIC; Cantoblanco-Madrid; 28049; Spain
| |
Collapse
|
21
|
van Hoek AH, Aarts HJ, Bouw E, van Overbeek WM, Franz E. The role ofrpoSinEscherichia coliO157 manure-amended soil survival and distribution of allelic variations among bovine, food and clinical isolates. FEMS Microbiol Lett 2012; 338:18-23. [DOI: 10.1111/1574-6968.12024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 12/27/2022] Open
Affiliation(s)
- Angela H.A.M. van Hoek
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| | - Henk J.M. Aarts
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| | - El Bouw
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| | - Wendy M. van Overbeek
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| | - Eelco Franz
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| |
Collapse
|
22
|
Abstract
In their stressful natural environments, bacteria often are in stationary phase and use their limited resources for maintenance and stress survival. Underlying this activity is the general stress response, which in Escherichia coli depends on the σS (RpoS) subunit of RNA polymerase. σS is closely related to the vegetative sigma factor σ70 (RpoD), and these two sigmas recognize similar but not identical promoter sequences. During the postexponential phase and entry into stationary phase, σS is induced by a fine-tuned combination of transcriptional, translational, and proteolytic control. In addition, regulatory "short-cuts" to high cellular σS levels, which mainly rely on the rapid inhibition of σS proteolysis, are triggered by sudden starvation for various nutrients and other stressful shift conditons. σS directly or indirectly activates more than 500 genes. Additional signal input is integrated by σS cooperating with various transcription factors in complex cascades and feedforward loops. Target gene products have stress-protective functions, redirect metabolism, affect cell envelope and cell shape, are involved in biofilm formation or pathogenesis, or can increased stationary phase and stress-induced mutagenesis. This review summarizes these diverse functions and the amazingly complex regulation of σS. At the molecular level, these processes are integrated with the partitioning of global transcription space by sigma factor competition for RNA polymerase core enzyme and signaling by nucleotide second messengers that include cAMP, (p)ppGpp, and c-di-GMP. Physiologically, σS is the key player in choosing between a lifestyle associated with postexponential growth based on nutrient scavenging and motility and a lifestyle focused on maintenance, strong stress resistance, and increased adhesiveness. Finally, research with other proteobacteria is beginning to reveal how evolution has further adapted function and regulation of σS to specific environmental niches.
Collapse
|
23
|
Shuxian W, Jianteng W, Tianbao L. Susceptibility of a Vibrio alginolyticus rpoS mutant to environmental stresses and its expression of OMPs. J Basic Microbiol 2011; 52:467-76. [PMID: 22052546 DOI: 10.1002/jobm.201100249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/15/2011] [Indexed: 01/04/2023]
Abstract
Vibrio alginolyticus, one of the most important opportunistic pathogens, can be detected in human being and marine animals. Like other bacteria, V. alginolyticus is able to adapt to a variety of stressful environmental changes. The alternate sigma factor RpoS, which is a regulator during stationary phase, plays an important role in surviving under these stressful situations in many bacteria. Sequence analysis reveals a 990 bp open reading frame which is predicted to encode a 330-amino-acid protein with 68% to 96% overall identity to other reported sequences. To study the function of rpoS, the rpoS gene of V. alginolyticus VIB283 was cloned and an rpoS mutant was constructed by homologous recombination. Comparison of the study result of the wild type and the mutant showed that the mutant was more sensitive to stress conditions such as high osmolarity, oxidative stress, heat shock, and long-term starvation and that the LD(50) of the mutant strain to the zebra fish was about 2.8 times as that of the control strain. In addition, the SDS-PAGE analysis indicated that the outer membrane proteins (OMPs) existed great differences.
Collapse
Affiliation(s)
- Wang Shuxian
- Mariculture Institute of Shandong Province, Shandong Province Key Laboratory for Disease Control of Mariculture, Qingdao City, Shandong Province, China.
| | | | | |
Collapse
|
24
|
Pini C, Godoy P, Bernal P, Ramos JL, Segura A. Regulation of the cyclopropane synthase cfaB gene in Pseudomonas putida KT2440. FEMS Microbiol Lett 2011; 321:107-14. [DOI: 10.1111/j.1574-6968.2011.02317.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Matilla MA, Travieso ML, Ramos JL, Ramos-González MI. Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in Pseudomonas putida: its role in the rhizosphere and an analysis of its target processes. Environ Microbiol 2011; 13:1745-66. [PMID: 21554519 DOI: 10.1111/j.1462-2920.2011.02499.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GGDEF and EAL/HD-GYP protein domains are responsible for the synthesis and hydrolysis of the bacterial secondary messenger cyclic diguanylate (c-di-GMP) through their diguanylate cyclase and phosphodiesterase activities, respectively. Forty-three genes in Pseudomonas putida KT2440 are putatively involved in the turnover of c-di-GMP. Of them only rup4959 (locus PP4959) encodes a GGDEF/EAL response regulator, which was identified in a genome wide analysis as preferentially induced while this bacterium colonizes roots and adjacent soil areas (the rhizosphere). By using fusions to reporter genes it was confirmed that the rup4959 promoter is active in the rhizosphere and inducible by corn plant root exudates and microaerobiosis. Transcription of rup4959 was strictly dependent on the alternative transcriptional factor σ(S) . The inactivation of the rup4959-4957 operon altered the expression of 22 genes in the rhizosphere and had a negative effect upon oligopeptide utilization and biofilm formation. In multicopy or when overexpressed, rup4959 enhanced adhesin LapA-dependent biofilm formation, the development of wrinkly colony morphology, and increased Calcofluor stainable exopolysaccharides (EPS). Under these conditions the inhibition of swarming motility was total and plant root tip colonization considerably less efficient, whereas swimming was partially diminished. This pleiotropic phenotype, which correlated with an increase in the global level of c-di-GMP, was not acquired with increased levels of Rup4959 catalytic mutant at GGDEF as a proof of this response regulator exhibiting diguanylate cyclase activity. A screen for mutants in putative targets of c-di-GMP led to the identification of a surface polysaccharide specific to KT2440, which is encoded by the genes cluster PP3133-PP3141, as essential for phenotypes associated with increased c-di-GMP. Cellulose and alginate were discarded as the overproduced EPS, and lipopolysaccharide (LPS) core and O-antigen were found to be essential for the development of wrinkly colony morphology.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada 18008, Spain
| | | | | | | |
Collapse
|
26
|
Girard G, Rigali S. Role of the phenazine-inducing protein Pip in stress resistance of Pseudomonas chlororaphis. MICROBIOLOGY-SGM 2010; 157:398-407. [PMID: 21030433 DOI: 10.1099/mic.0.043075-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The triggering of antibiotic production by various environmental stress molecules can be interpreted as bacteria's response to obtain increased fitness to putative danger, whereas the opposite situation - inhibition of antibiotic production - is more complicated to understand. Phenazines enable Pseudomonas species to eliminate competitors for rhizosphere colonization and are typical virulence factors used for model studies. In the present work, we have investigated the negative effect of subinhibitory concentrations of NaCl, fusaric acid and two antibiotics on quorum-sensing-controlled phenazine production by Pseudomonas chlororaphis. The selected stress factors inhibit phenazine synthesis despite sufficient cell density. Subsequently, we have identified connections between known genes of the phenazine-inducing cascade, including PsrA (Pseudomonas sigma regulator), RpoS (alternative sigma factor), Pip (phenazine inducing protein) and PhzI/PhzR (quorum-sensing system). Under all tested conditions, overexpression of Pip or PhzR restored phenazine production while overexpression of PsrA or RpoS did not. This forced restoration of phenazine production in strains overexpressing regulatory genes pip and phzR significantly impairs growth and stress resistance; this is particularly severe with pip overexpression. We suggest a novel physiological explanation for the inhibition of phenazine virulence factors in pseudomonas species responding to toxic compounds. We propose that switching off phenazine-1-carboxamide (PCN) synthesis by attenuating pip expression would favour processes required for survival. In our model, this 'decision' point for promoting PCN production or stress resistance is located downstream of rpoS and just above pip. However, a test with the stress factor rifampicin shows no significant inhibition of Pip production, suggesting that stress factors may also target other and so far unknown protagonists of the PCN signalling cascade.
Collapse
Affiliation(s)
- Geneviève Girard
- University of Leiden, Institute of Biology of Leiden (IBL), Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Sébastien Rigali
- Université de Liège, Centre d'Ingénierie des Protéines, Institut de Chimie B6a, Sart-Tilman, B-4000 Liège, Belgium
| |
Collapse
|
27
|
Martínez-Gil M, Yousef-Coronado F, Espinosa-Urgel M. LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture. Mol Microbiol 2010; 77:549-61. [DOI: 10.1111/j.1365-2958.2010.07249.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Cloning, identification, and characterization of the rpoS-like sigma factor rpoX from Vibrio alginolyticus. J Biomed Biotechnol 2009; 2009:126986. [PMID: 20069110 PMCID: PMC2804039 DOI: 10.1155/2009/126986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 08/05/2009] [Accepted: 09/28/2009] [Indexed: 11/18/2022] Open
Abstract
Vibrio alginolyticus ZJ-51 displays phase variation between opaque/rugose colonies (Op) and translucent/smooth colonies (Tr). These colony variants show great differences in biofilm formation and motility. In this study, a gene encoding for an rpoS-like sigma factor, rpoX, has been cloned and characterized. The absence of rpoX did not affect colony switching rate but did decrease biofilm formation in both the Op and the Tr variants. When challenged with hydrogen peroxide, the DeltarpoX in the Op background showed a slightly higher survival rate compared with the wild type, whereas survival was decreased in the Tr background. Deletion of rpoX in the Tr background resulted in a higher ability to resist ethanol challenges and to survive hyperosmolarity challenges, and in the Op background the opposite phenotype was observed. This indicates that the rpoX gene is involved in biofilm formation and stress response but the effects are controlled by colony phase variation in V. alginolyticus.
Collapse
|
29
|
Ma L, Chen J, Liu R, Zhang XH, Jiang YA. Mutation ofrpoS gene decreased resistance to environmental stresses, synthesis of extracellular products and virulence ofVibrio anguillarum. FEMS Microbiol Ecol 2009; 70:130-6. [DOI: 10.1111/j.1574-6941.2009.00713.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
Joe MM, Jaleel CA, Sivakumar PK, Zhao CX, Karthikeyan B. Co-aggregation in Azospirillum brasilensense MTCC-125 with other PGPR strains: Effect of physical and chemical factors and stress endurance ability. J Taiwan Inst Chem Eng 2009. [DOI: 10.1016/j.jtice.2009.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Complete PHB mobilization in Escherichia coli enhances the stress tolerance: a potential biotechnological application. Microb Cell Fact 2009; 8:47. [PMID: 19719845 PMCID: PMC2746179 DOI: 10.1186/1475-2859-8-47] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 08/31/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Poly-beta-hydroxybutyrate (PHB) mobilization in bacteria has been proposed as a mechanism that can benefit their host for survival under stress conditions. Here we reported for the first time that a stress-induced system enabled E. coli, a non-PHB producer, to mobilize PHB in vivo by mimicking natural PHB accumulation bacteria. RESULTS The successful expression of PHB biosynthesis and PHB depolymerase genes in E. coli was confirmed by PHB production and 3-hydroxybutyrate secretion. Starvation experiment demonstrated that the complete PHB mobilization system in E. coli served as an intracellular energy and carbon storage system, which increased the survival rate of the host when carbon resources were limited. Stress tolerance experiment indicated that E. coli strains with PHB production and mobilization system exhibited an enhanced stress resistance capability. CONCLUSION This engineered E. coli with PHB mobilization has a potential biotechnological application as immobilized cell factories for biocatalysis and biotransformation.
Collapse
|
32
|
Petersen A, Aarestrup FM, Olsen JE. The in vitro fitness cost of antimicrobial resistance in Escherichia coli varies with the growth conditions. FEMS Microbiol Lett 2009; 299:53-9. [PMID: 19694815 DOI: 10.1111/j.1574-6968.2009.01734.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The objective of this study was to investigate the influence of stressful growth conditions on the fitness cost of antimicrobial resistance in Escherichia coli BJ4 caused by chromosomal mutations and plasmid acquisition. The fitness cost of chromosomal streptomycin resistance increased significantly when the bacteria were grown under all stress conditions tested, while the cost in 1/3 Luria-Bertani was not significantly changed in a streptomycin+rifampicin mutant. The increase in the fitness cost depended in a nonregular manner on the strain/stress combination. The fitness cost of plasmid-encoded resistance on R751 did not differ significantly, and was generally less under stressful growth conditions than in rich media. The fitness cost associated with R751 with the multiple drug resistance cassette from Salmonella Typhimurium DT104 increased significantly only under stressful conditions at low pH and at high-salt concentrations. Strains with an impaired rpoS demonstrated a reduced fitness only during growth in a high-salt concentration. In conclusion, it was demonstrated that bacterial fitness cost in association with antimicrobial resistance generally increases under stressful growth conditions. However, the growth potential of bacteria with antimicrobial resistances did not increase in a straightforward manner in these in vitro experiments and is therefore probably even more difficult to predict in vivo.
Collapse
Affiliation(s)
- Andreas Petersen
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | |
Collapse
|
33
|
Joshi H, Dave R, Venugopalan VP. Competition triggers plasmid-mediated enhancement of substrate utilisation in Pseudomonas putida. PLoS One 2009; 4:e6065. [PMID: 19557171 PMCID: PMC2698150 DOI: 10.1371/journal.pone.0006065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 05/23/2009] [Indexed: 11/18/2022] Open
Abstract
Competition between species plays a central role in the activity and structure of communities. Stable co-existence of diverse organisms in communities is thought to be fostered by individual tradeoffs and optimization of competitive strategies along resource gradients. Outside the laboratory, microbes exist as multispecies consortia, continuously interacting with one another and the environment. Survival and proliferation of a particular species is governed by its competitive fitness. Therefore, bacteria must be able to continuously sense their immediate environs for presence of competitors and prevailing conditions. Here we present results of our investigations on a novel competition sensing mechanism in the rhizosphere-inhabiting Pseudomonas putida KT2440, harbouring gfpmut3b-modified Kan(R) TOL plasmid. We monitored benzyl alcohol (BA) degradation rate, along with GFP expression profiling in mono species and dual species cultures. Interestingly, enhanced plasmid expression (monitored using GFP expression) and consequent BA degradation were observed in dual species consortia, irrespective of whether the competitor was a BA degrader (Pseudomonas aeruginosa) or a non-degrader (E. coli). Attempts at elucidation of the mechanistic aspects of induction indicated the role of physical interaction, but not of any diffusible compounds emanating from the competitors. This contention is supported by the observation that greater induction took place in presence of increasing number of competitors. Inert microspheres mimicking competitor cell size and concentration did not elicit any significant induction, further suggesting the role of physical cell-cell interaction. Furthermore, it was also established that cell wall compromised competitor had minimal induction capability. We conclude that P. putida harbouring pWW0 experience a competitive stress when grown as dual-species consortium, irrespective of the counterpart being BA degrader or not. The immediate effect of this stress is a marked increase in expression of TOL, leading to rapid utilization of the available carbon source and massive increase in its population density. The plausible mechanisms behind the phenomenon are hypothesised and practical implications are indicated and discussed.
Collapse
Affiliation(s)
- Hiren Joshi
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, India
| | - Rachna Dave
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, India
| | - Vayalam P. Venugopalan
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, India
- * E-mail:
| |
Collapse
|
34
|
Stockwell VO, Hockett K, Loper JE. Role of RpoS in stress tolerance and environmental fitness of the phyllosphere bacterium Pseudomonas fluorescens strain 122. PHYTOPATHOLOGY 2009; 99:689-695. [PMID: 19453227 DOI: 10.1094/phyto-99-6-0689] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bacteria living epiphytically on aerial plant surfaces encounter severe and rapidly fluctuating environmental conditions, and their capacity to withstand environmental stress contributes to epiphytic fitness. The stationary phase sigma factor RpoS is a key determinant in stress response of gram-negative bacteria, including Pseudomonas spp. This study focused on the role of RpoS in stress response and epiphytic fitness of Pseudomonas fluorescens strain 122 on aerial plant surfaces. RpoS had a significant role in the response of the phyllosphere bacterium P. fluorescens 122 to stresses imposed by desiccation, UV irradiation, starvation, and an oxidative environment. While significant, the difference in stress response between an rpoS mutant and the parental strain was less for strain 122 than for the rhizosphere bacterium P. fluorescens Pf-5. No consistent influence of RpoS on epiphytic population size of strain 122 on pear or apple flowers or leaves was observed in field trials. These data may indicate that P. fluorescens occupies protected microsites on aerial plant surfaces where the bacteria escape exposure to environmental stress, or that redundant stress-response mechanisms are operating in this bacterium, thereby obscuring the role of RpoS in epiphytic fitness of the bacterium.
Collapse
|
35
|
Roca A, Ramos JL. In vivo role of FdhD and FdmE in formate metabolism in Pseudomonas putida: Redundancy and expression in the stationary phase. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:208-213. [PMID: 23765795 DOI: 10.1111/j.1758-2229.2009.00032.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In Pseudomonas putida two open reading frames (ORFs) PP0257 and PP0492 were originally annotated as accessory formate dehydrogenase proteins. The ORF PP0492 (fdmD) is at the 3' end of the ORF PP0489 through PP0491 operon that encodes one of the formate dehydrogenases of P. putida and it is transcribed with this operon preferentially at the stationary phase. The ORF PP0257 (fdhD) is unlinked to formate dehydrogenase clusters and, as to multi-component formate dehydrogenases, PP0257 is also preferentially expressed in the stationary phase, although transcription can be mediated by either RpoD or RpoS. The transcriptional level of expression of fdhD increased in response to formaldehyde/formate or chemicals that yield these cited C1 compounds through their metabolism. In spite of these correlations, inactivation of PP0257 does not produce a significant effect on in vivo formate dehydrogenase activity, while inactivation of PP0492 leads to a 60% decrease in in vivo activity. These results suggest that redundancy in formaldehyde/formate metabolism in P. putida extends to the proteins involved in maturation/location of formate dehydrogenase complexes.
Collapse
Affiliation(s)
- Amalia Roca
- Department of Environmental Protection, Consejo Superior de Investigaciones científicas, Estación Experimental del Zaidín, Granada, Spain
| | | |
Collapse
|
36
|
Hagen MJ, Stockwell VO, Whistler CA, Johnson KB, Loper JE. Stress tolerance and environmental fitness of Pseudomonas fluorescens A506, which has a mutation in RpoS. PHYTOPATHOLOGY 2009; 99:679-688. [PMID: 19453226 DOI: 10.1094/phyto-99-6-0679] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Establishment of suppressive populations of bacterial biological control agents on aerial plant surfaces is a critical phase in biologically based management of floral diseases. Periodically, biocontrol agents encounter inhospitable conditions for growth on plants; consequently, tolerance of environmental stresses may contribute to their fitness. In many gram-negative bacteria, including strains of Pseudomonas spp., the capacity to survive environmental stresses is influenced by the stationary phase sigma factor RpoS. This study focused on the role of RpoS in stress response and epiphytic fitness of Pseudomonas fluorescens A506, a well-studied bacterial biological control agent. We detected a frameshift mutation in the rpoS of A506 and demonstrated that the mutation resulted in a truncated, nonfunctional RpoS. Using site-directed mutagenesis, we deleted a nucleotide from rpoS, which then encoded a full-length, functional RpoS. We compared the stress response and epiphytic fitness of A506 with derivative strains having the functional full-length RpoS or a disrupted, nonfunctional RpoS. RpoS had little effect on stress response of A506 and no consistent influence on epiphytic population size of A506 on pear or apple leaves or flowers. Although the capacity of strain A506 to withstand exposure to environmental stresses was similar to that of other fluorescent pseudomonads, this capacity was largely independent of rpoS.
Collapse
Affiliation(s)
- Mary J Hagen
- Department of Botany, Oregon State University, Corvallis 97331, USA
| | | | | | | | | |
Collapse
|
37
|
Elevated mutation frequency in surviving populations of carbon-starved rpoS-deficient Pseudomonas putida is caused by reduced expression of superoxide dismutase and catalase. J Bacteriol 2009; 191:3604-14. [PMID: 19346306 DOI: 10.1128/jb.01803-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RpoS is a bacterial sigma factor of RNA polymerase which is involved in the expression of a large number of genes to facilitate survival under starvation conditions and other stresses. The results of our study demonstrate that the frequency of emergence of base substitution mutants is significantly increased in long-term-starved populations of rpoS-deficient Pseudomonas putida cells. The increasing effect of the lack of RpoS on the mutation frequency became apparent in both a plasmid-based test system measuring Phe(+) reversion and a chromosomal rpoB system detecting rifampin-resistant mutants. The elevated mutation frequency coincided with the death of about 95% of the cells in a population of rpoS-deficient P. putida. Artificial overexpression of superoxide dismutase or catalase in the rpoS-deficient strain restored the survival of cells and resulted in a decline in the mutation frequency. This indicated that, compared to wild-type bacteria, rpoS-deficient cells are less protected against damage caused by reactive oxygen species. 7,8-Dihydro-8-oxoguanine (GO) is known to be one of the most stable and frequent base modifications caused by oxygen radical attack on DNA. However, the spectrum of base substitution mutations characterized in rpoS-deficient P. putida was different from that in bacteria lacking the GO repair system: it was broader and more similar to that identified in the wild-type strain. Interestingly, the formation of large deletions was also accompanied by a lack of RpoS. Thus, the accumulation of DNA damage other than GO elevates the frequency of mutation in these bacteria. It is known that oxidative damage of proteins and membrane components, but not that of DNA, is a major reason for the death of cells. Since the increased mutation frequency was associated with a decline in the viability of bacteria, we suppose that the elevation of the mutation frequency in the surviving population of carbon-starved rpoS-deficient P. putida may be caused both by oxidative damage of DNA and enzymes involved in DNA replication and repair fidelity.
Collapse
|
38
|
Redundancy of enzymes for formaldehyde detoxification in Pseudomonas putida. J Bacteriol 2009; 191:3367-74. [PMID: 19304846 DOI: 10.1128/jb.00076-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440 exhibits redundant formaldehyde dehydrogenases and formate dehydrogenases that contribute to the detoxification of formaldehyde, a highly toxic compound. Physical and transcriptional analyses showed that the open reading frame (ORF) PP0328, encoding one of the formaldehyde dehydrogenases, is self-sufficient, whereas the other functional formaldehyde dehydrogenase gene (ORF PP3970) forms an operon with another gene of unknown function. Two formate dehydrogenase gene clusters (PP0489 to PP0492 and PP2183 to PP2186) were identified, and genes in these clusters were found to form operons. All four transcriptional promoters were mapped by primer extension and revealed the presence of noncanonical promoters expressed at basal level in the exponential growth phase and at a higher level in the stationary phase regardless of the presence of extracellular formaldehyde or formate. These promoters were characterized by a 5'-AG-CCA-C/A-CT-3' conserved region between -7 and -16. To determine the contribution of the different gene products to formaldehyde and formate mineralization, mutants with single and double mutations of formaldehyde dehydrogenases were generated, and the effect of the mutations on formaldehyde catabolism was tested by measuring (14)CO(2) evolution from (14)C-labeled formaldehyde. The results showed that both enzymes contributed to formaldehyde catabolism. A double mutant lacking these two enzymes still evolved CO(2) from formaldehyde, suggesting the presence of one or more still-unidentified formaldehyde dehydrogenases. Mutants with single and double mutations in the clusters for formate dehydrogenases were also generated, and all of them were able to metabolize [(14)C]formate to (14)CO(2), suggesting a redundancy of functions that was not limited to only the annotated genes. Single and double mutants deficient in formaldehyde dehydrogenases and formate dehydrogenases exhibited longer lag phases than did the parental strain when confronted with concentrations of formaldehyde close to the MICs. This suggests a role for the detoxification system in tolerance to sublethal concentrations of formaldehyde.
Collapse
|
39
|
Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S. Ecological and Agricultural Significance of Bacterial Polyhydroxyalkanoates. Crit Rev Microbiol 2008; 31:55-67. [PMID: 15986831 DOI: 10.1080/10408410590899228] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are a group of carbon andenergy storage compounds that are accumulated during suboptimal growth by many bacteria, and intracellularly deposited in the form of inclusion bodies. Accumulation of PHAs is thought to be used by bacteria to increase survival and stress tolerance in changing environments, and in competitive settings where carbon and energy sources may be limited, such as those encountered in the soil and the rhizosphere. Understanding the role that PHAs play as internal storage polymers is of fundamental importance in microbial ecology, and holds great potential for the improvement of bacterial inoculants for plants and soils. This review summarizes the current knowledge on the ecological function of PHAs, and their strategic role as survival factors in microorganisms under varying environmental stress is emphasized. It also explores the phylogeny of the PHA cycle enzymes, PHA synthase, and PHA depolymerase, suggesting that PHA accumulation was earlier acquired and maintained during evolution, thus contributing to microbial survival in the environment.
Collapse
Affiliation(s)
- Daniel Kadouri
- Department of Plant Pathology and Microbiology, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | |
Collapse
|
40
|
Rio RVM, Anderegg M, Graf J. Characterization of a catalase gene from Aeromonas veronii, the digestive-tract symbiont of the medicinal leech. MICROBIOLOGY-SGM 2007; 153:1897-1906. [PMID: 17526846 DOI: 10.1099/mic.0.2006/003020-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The catalase gene katA of the medicinal leech symbiont Aeromonas veronii bv. sobria was cloned, sequenced, and functionally characterized. Southern hybridization, using an A. veronii katA-specific hybridization probe, suggested the presence of a single gene copy in many Aeromonas species. A. veronii katA consisted of 1446 nt encoding a protein with a high degree of similarity to the small-subunit group III bacterial catalases. A catalase-null mutant (JG186) was constructed through gene-replacement mutagenesis. In the parent strain (HM21R), catalase activity was only detected in extracts of cells grown to early exponential phase following H(2)O(2) induction, in which the ability to induce activity was inversely related to optical density. In contrast, induced JG186 cells were very sensitive to oxidative stress, with survival being affected even at low H(2)O(2) concentrations. In contrast to the findings of previous reports of other symbiotic systems, the catalase mutant was not defective in its ability to competitively colonize or persist within its host, in both co-inoculation and sole-colonization assays. This body of evidence suggests either that oxidative stress, in the form of H(2)O(2) exposure, is not encountered by the microbial partner under the examined symbiotic conditions or that compensatory mechanisms exist. The data suggest that although many colonization factors reoccur, each symbiotic system has also evolved specific mechanisms that affect symbiont-host dynamics.
Collapse
Affiliation(s)
- Rita V M Rio
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Matthias Anderegg
- Institute for Infectious Diseases, University of Berne, Friedbühlstr. 51, CH-3010 Berne, Switzerland
| | - Joerg Graf
- Institute for Infectious Diseases, University of Berne, Friedbühlstr. 51, CH-3010 Berne, Switzerland
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| |
Collapse
|
41
|
Zhao YH, Li HM, Qin LF, Wang HH, Chen GQ. Disruption of the polyhydroxyalkanoate synthase gene in Aeromonas hydrophila reduces its survival ability under stress conditions. FEMS Microbiol Lett 2007; 276:34-41. [PMID: 17888005 DOI: 10.1111/j.1574-6968.2007.00904.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aeromonas hydrophila 4AK4 produces PHBHHx copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyhexanoate. In this paper, the physiological functions of PHBHHx on the bacterial survival ability were systematically studied using a PHBHHx synthase PhaC-disrupted mutant termed A. hydrophila CQ4 and its wild type A. hydrophila 4AK4. It was found that PHBHHx synthesis in A. hydrophila 4AK4 provided improved resistance against environmental stress factors including heat and cold treatments, hydrogen peroxide, UV irradiation, ethanol and high osmotic pressure compared with its PHBHHx synthase negative mutant A. hydrophila CQ4. The above resistant abilities were further confirmed by the different expression levels of sigma factor sigma(S) encoded by rpoS via real-time PCR study. The results suggested that rpoS played an important role in the enhanced resistance of host strain to stresses conferred by PHBHHx.
Collapse
Affiliation(s)
- Yan Hong Zhao
- Multidisciplinary Research Center, Shantou University, Shantou, China
| | | | | | | | | |
Collapse
|
42
|
Muller JF, Stevens AM, Craig J, Love NG. Transcriptome analysis reveals that multidrug efflux genes are upregulated to protect Pseudomonas aeruginosa from pentachlorophenol stress. Appl Environ Microbiol 2007; 73:4550-8. [PMID: 17526777 PMCID: PMC1932803 DOI: 10.1128/aem.00169-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Through chemical contamination of natural environments, microbial communities are exposed to many different types of chemical stressors; however, research on whole-genome responses to this contaminant stress is limited. This study examined the transcriptome response of a common soil bacterium, Pseudomonas aeruginosa, to the common environmental contaminant pentachlorophenol (PCP). Cells were grown in chemostats at a low growth rate to obtain substrate-limited, steady-state, balanced-growth conditions. The PCP stress was administered as a continuous increase in concentration, and samples taken over time were examined for physiological function changes with whole-cell acetate uptake rates (WAURs) and cell viability and for gene expression changes by Affymetrix GeneChip technology and real-time reverse transcriptase PCR. Cell viability, measured by heterotrophic plate counts, showed a moderately steady decrease after exposure to the stressor, but WAURs did not change in response to PCP. In contrast to the physiological data, the microarray data showed significant changes in the expression of several genes. In particular, genes coding for multidrug efflux pumps, including MexAB-OprM, were strongly upregulated. The upregulation of these efflux pumps protected the cells from the potentially toxic effects of PCP, allowing the physiological whole-cell function to remain constant.
Collapse
Affiliation(s)
- Jocelyn Fraga Muller
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
43
|
Chatterjee A, Cui Y, Hasegawa H, Chatterjee AK. PsrA, the Pseudomonas sigma regulator, controls regulators of epiphytic fitness, quorum-sensing signals, and plant interactions in Pseudomonas syringae pv. tomato strain DC3000. Appl Environ Microbiol 2007; 73:3684-94. [PMID: 17400767 PMCID: PMC1932703 DOI: 10.1128/aem.02445-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas syringae pv. tomato strain DC3000, a pathogen of tomato and Arabidopsis, occurs as an epiphyte. It produces N-acyl homoserine lactones (AHLs) which apparently function as quorum-sensing signals. A Tn5 insertion mutant of DC3000, designated PsrA(-) (Psr is for Pseudomonas sigma regulator), overexpresses psyR (a LuxR-type regulator of psyI) and psyI (the gene for AHL synthase), and it produces a ca. 8-fold-higher level of AHL than does DC3000. The mutant is impaired in its ability to elicit the hypersensitive reaction and is attenuated in its virulence in tomato. These phenotypes correlate with reduced expression of hrpL, the gene for an alternate sigma factor, as well as several hrp and hop genes during early stages of incubation in a Hrp-inducing medium. PsrA also positively controls rpoS, the gene for an alternate sigma factor known to control various stress responses. By contrast, PsrA negatively regulates rsmA1, an RNA-binding protein gene known to function as negative regulator, and aefR, a tetR-like gene known to control AHL production and epiphytic fitness in P. syringae pv. syringae. Gel mobility shift assays and other lines of evidence demonstrate a direct interaction of PsrA protein with rpoS promoter DNA and aefR operator DNA. In addition, PsrA negatively autoregulates and binds the psrA operator. In an AefR(-) mutant, the expression of psyR and psyI and AHL production are lower than those in DC3000, the AefR(+) parent. In an RpoS(-) mutant, on the other hand, the levels of AHL and transcripts of psyR and psyI are much higher than those in the RpoS(+) parent, DC3000. We present evidence, albeit indirect, that the RpoS effect occurs via psyR. Thus, AefR positively regulates AHL production, whereas RpoS has a strong negative effect. We show that AefR and RpoS do not regulate PsrA and that the PsrA effect on AHL production is exerted via its cumulative, but independent, effects on both AefR and RpoS.
Collapse
Affiliation(s)
- Asita Chatterjee
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
44
|
Yun JI, Cho KM, Kim JK, Lee SO, Cho K, Lee K. Mutation of rpoS enhances Pseudomonas sp. KL28 growth at higher concentrations of m-cresol and changes its surface-related phenotypes. FEMS Microbiol Lett 2007; 269:97-103. [PMID: 17241240 DOI: 10.1111/j.1574-6968.2006.00610.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A Tn5 transposon mutant was isolated of the alkylphenol degrader Pseudomonas sp. KL28 that showed increased growth at higher levels of m-cresol on solid and in liquid cultures. The transposon was inserted at the 5'-terminus of rpoS, which encodes a stationary-phase sigma factor. When grown on agar plates, the rpoS mutant developed prominent wrinkles, especially at lower temperatures, and spread faster on soft agar. In addition, the rpoS mutant had enhanced biofilm-forming ability that was not due to self-produced diffusible signals.
Collapse
Affiliation(s)
- Ji In Yun
- Department of Microbiology, Changwon National University, Changwon-si, Kyongnam, Korea
| | | | | | | | | | | |
Collapse
|
45
|
Yuste L, Hervás AB, Canosa I, Tobes R, Jiménez JI, Nogales J, Pérez-Pérez MM, Santero E, Díaz E, Ramos JL, de Lorenzo V, Rojo F. Growth phase-dependent expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray. Environ Microbiol 2006; 8:165-77. [PMID: 16343331 DOI: 10.1111/j.1462-2920.2005.00890.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial transcriptional networks are built on a hierarchy of regulators, on top of which lie the components of the RNA polymerase (in particular the sigma factors) and the global control elements, which play a pivotal role. We have designed a genome-wide oligonucleotide-based DNA microarray for Pseudomonas putida KT2440. In combination with real-time reverse transcription polymerase chain reaction (RT-PCR), we have used it to analyse the expression pattern of the genes encoding the RNA polymerase subunits (the core enzyme and the 24 sigma factors), and various proteins involved in global regulation (Crc, Lrp, Fur, Anr, Fis, CsrA, IHF, HupA, HupB, HupN, BipA and several MvaT-like proteins), during the shift from exponential growth in rich medium into starvation and stress brought about by the entry into stationary phase. Expression of the genes encoding the RNA polymerase core and the vegetative sigma factor decreased in stationary phase, while that of sigma(S) increased. Data obtained for sigma(N), sigma(H), FliA and for the 19 extracytoplasmic function (ECF)-like sigma factors suggested that their mRNA levels change little upon entry into stationary phase. Expression of Crc, BipA, Fis, HupB, HupN and the MvaT-like protein PP3693 decreased in stationary phase, while that of HupA and the MvaT-like protein PP3765 increased significantly. Expression of IHF was indicative of post-transcriptional control. These results provide the first global study of the expression of the transcriptional machinery through the exponential stationary-phase shift in P. putida.
Collapse
Affiliation(s)
- Luis Yuste
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 - Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Morales SE, Lewis TA. Transcriptional regulation of the pdt gene cluster of Pseudomonas stutzeri KC involves an AraC/XylS family transcriptional activator (PdtC) and the cognate siderophore pyridine-2,6-bis(thiocarboxylic acid). Appl Environ Microbiol 2006; 72:6994-7002. [PMID: 16936044 PMCID: PMC1636214 DOI: 10.1128/aem.01518-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to gain an understanding of the molecular mechanisms dictating production of the siderophore and dechlorination agent pyridine-2,6-bis(thiocarboxylic acid) (PDTC), we have begun characterization of a gene found in the pdt gene cluster of Pseudomonas stutzeri KC predicted to have a regulatory role. That gene product is an AraC family transcriptional activator, PdtC. Quantitative reverse transcription-PCR and expression of transcriptional reporter fusions were used to assess a role for pdtC in the transcription of pdt genes. PdtC and an upstream, promoter-proximal DNA segment were required for wild-type levels of expression from the promoter of a predicted biosynthesis operon (P(pdtF)). At least two other transcriptional units within the pdt cluster were also dependent upon pdtC for expression at wild-type levels. The use of a heterologous, Pseudomonas putida host demonstrated that pdtC and an exogenously added siderophore were necessary and sufficient for expression from the pdtF promoter, i.e., none of the PDTC utilization genes within the pdt cluster were required for transcriptional signaling. Tests using the promoter of the pdtC gene in transcriptional reporter fusions indicated siderophore-dependent negative autoregulation similar to that seen with other AraC-type regulators of siderophore biosynthesis and utilization genes. The data increase the repertoire of siderophore systems known to be regulated by this type of transcriptional activator and have implications for PDTC signaling.
Collapse
Affiliation(s)
- Sergio E Morales
- Department of Microbiology and Molecular Genetics, University of Vermont, 95 Carrigan Dr., Burlington, VT 05405, USA
| | | |
Collapse
|
47
|
Girard G, van Rij ET, Lugtenberg BJJ, Bloemberg GV. Regulatory roles of psrA and rpoS in phenazine-1-carboxamide synthesis by Pseudomonas chlororaphis PCL1391. MICROBIOLOGY-SGM 2006; 152:43-58. [PMID: 16385114 DOI: 10.1099/mic.0.28284-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Production of the secondary metabolite phenazine-1-carboxamide (PCN) by Pseudomonas chlororaphis PCL1391 is crucial for biocontrol activity against the phytopathogen Fusarium oxysporum f. sp. radicis lycopersici on tomato. Regulation of PCN production involves the two-component signalling system GacS/GacA, the quorum-sensing system PhzI/PhzR and the regulator PsrA. This paper reports that a functional rpoS is required for optimal PCN and N-hexanoyl-L-homoserine lactone (C(6)-HSL) production. Constitutive expression of rpoS is able to complement partially the defect of a psrA mutant for PCN and N-acylhomoserine lactone production. Western blotting shows that rpoS is regulated by gacS. Altogether, these results suggest the existence of a cascade consisting of gacS/gacA upstream of psrA and rpoS, which influence expression of phzI/phzR. Overproduction of phzR complements the effects on PCN and C(6)-HSL production of all mutations tested in the regulatory cascade, which shows that a functional quorum-sensing system is essential and sufficient for PCN synthesis. In addition, the relative amounts of PCN, phenazine-1-carboxylic acid and C(6)-HSL produced by rpoS and psrA mutants harbouring a constitutively expressed phzR indicate an even more complex network of interactions, probably involving other genes. Preliminary microarray analyses of the transcriptomics of the rpoS and psrA mutants support the model of regulation described in this study and allow identification of new genes that might be involved in secondary metabolism.
Collapse
Affiliation(s)
- Geneviève Girard
- Leiden University, Institute of Biology (IBL), Clusius Laboratory, Wassenaarseweg 64, 2333AL Leiden, the Netherlands
| | - E Tjeerd van Rij
- Leiden University, Institute of Biology (IBL), Clusius Laboratory, Wassenaarseweg 64, 2333AL Leiden, the Netherlands
| | - Ben J J Lugtenberg
- Leiden University, Institute of Biology (IBL), Clusius Laboratory, Wassenaarseweg 64, 2333AL Leiden, the Netherlands
| | - Guido V Bloemberg
- Leiden University, Institute of Biology (IBL), Clusius Laboratory, Wassenaarseweg 64, 2333AL Leiden, the Netherlands
| |
Collapse
|
48
|
Muñoz-Rojas J, Bernal P, Duque E, Godoy P, Segura A, Ramos JL. Involvement of cyclopropane fatty acids in the response of Pseudomonas putida KT2440 to freeze-drying. Appl Environ Microbiol 2006; 72:472-7. [PMID: 16391080 PMCID: PMC1352226 DOI: 10.1128/aem.72.1.472-477.2006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440, a saprophytic soil bacterium that colonizes the plant root, is a suitable microorganism for the removal of pollutants and a stable host for foreign genes used in biotransformation processes. Because of its potential use in agriculture and industry, we investigated the conditions for the optimal preservation of the strain and its derivatives for long-term storage. The highest survival rates were achieved with cells that had reached the stationary phase and which had been subjected to freeze-drying in the presence of disaccharides (trehalose, maltose, and lactose) as lyoprotectants. Using fluorescence polarization techniques, we show that cell membranes of KT2440 were more rigid in the stationary phase than in the exponential phase of growth. This is consistent with the fact that cells grown in the stationary phase exhibited a higher proportion of C17:cyclopropane as a fatty acid than cells in the exponential phase. Mutants for the cfaB gene, which encodes the main C17:cyclopropane synthase, and for the cfaA gene, which encodes a minor C17:cyclopropane synthase, were constructed. These mutants were more sensitive to freeze-drying than wild-type cells, particularly the mutant with a knockout in the cfaB gene that produced less than 2% of the amount of C17:cyclopropane produced by the parental strain.
Collapse
Affiliation(s)
- Jesús Muñoz-Rojas
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008 Granada, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Saumaa S, Tarassova K, Tark M, Tover A, Tegova R, Kivisaar M. Involvement of DNA mismatch repair in stationary-phase mutagenesis during prolonged starvation of Pseudomonas putida. DNA Repair (Amst) 2006; 5:505-14. [PMID: 16414311 DOI: 10.1016/j.dnarep.2005.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/05/2005] [Accepted: 12/05/2005] [Indexed: 11/21/2022]
Abstract
One of the popular ideas is that decline in methyl-directed mismatch repair (MMR) in carbon-starved bacteria might facilitate occurrence of stationary-phase mutations. We compared the frequency of accumulation of stationary-phase mutations in carbon-starved Pseudomonas putida wild-type and MMR-defective strains and found that knockout of MMR system increased significantly emergence of base substitutions in starving P. putida. At the same time, the appearance of 1-bp deletion mutations was less affected by MMR in this bacterium. The spectrum of base substitution mutations which occurred in starving populations of P. putida wild-type strain was distinct from mutation spectrum identified in MMR-defective strains. The spectrum of base substitutions differed also in this case when mutants emerged in starved populations of MutS or MutL-defective strains were comparatively analyzed. Based on our results we suppose that other mechanisms than malfunctioning of MMR system in resting cells might be considered to explain the accumulation of stationary-phase mutations in P. putida. To further characterize populations of P. putida starved on selective plates, we stained bacteria with LIVE/DEAD kit in situ on agar plates. We found that although the overall number of colony forming units (CFU) did not decline in long-term-starved populations, these populations were very heterogeneous on the plates and contained many dead cells. Our results imply that slow growth of subpopulation of cells at the expenses of dead cells on selective plates might be important for the generation of stationary-phase mutations in P. putida. Additionally, the different survival patterns of P. putida on the same selective plates hint that competitive interactions taking place under conditions of prolonged starvation of microbial populations on semi-solid surfaces might be more complicated than previously assumed.
Collapse
Affiliation(s)
- Signe Saumaa
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010 Tartu, Estonia
| | | | | | | | | | | |
Collapse
|
50
|
Stockwell VO, Loper JE. The sigma factor RpoS is required for stress tolerance and environmental fitness of Pseudomonas fluorescens Pf-5. Microbiology (Reading) 2005; 151:3001-3009. [PMID: 16151210 DOI: 10.1099/mic.0.28077-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many micro-organisms exist in natural habitats that are subject to severe or dramatically fluctuating environmental conditions. Such is the case for bacteria inhabiting plant surfaces, where they are exposed to UV irradiation, oxygen radicals, and large fluctuations in temperature and moisture. This study focuses on the role of RpoS, a central regulator of stationary-phase gene expression in bacterial cells, in stress response and environmental fitness of Pseudomonas fluorescens Pf-5. Strain Pf-5 is a rhizosphere-inhabiting bacterium that suppresses plant diseases caused by several plant-pathogenic fungi and oomycetes. Previous studies demonstrated that rpoS was required for osmotic and oxidative stress resistance of Pf-5. The results of this study demonstrate a role for rpoS in tolerance of Pf-5 to freezing, starvation, UV irradiation and desiccation stress. In field studies, an rpoS mutant was compromised in rhizosphere colonization of plants in dry soil, whereas similar rhizosphere populations were established by Pf-5 and an rpoS mutant in well-irrigated soils. RpoS is a key determinant in stress response and environmental fitness of the rhizosphere bacterium P. fluorescens Pf-5.
Collapse
Affiliation(s)
- Virginia O Stockwell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Joyce E Loper
- United States Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, 3420 NW Orchard Avenue, Corvallis, OR 97330, USA
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|