1
|
Akshay SD, Deekshit VK, Mohan Raj J, Maiti B. Outer Membrane Proteins and Efflux Pumps Mediated Multi-Drug Resistance in Salmonella: Rising Threat to Antimicrobial Therapy. ACS Infect Dis 2023; 9:2072-2092. [PMID: 37910638 DOI: 10.1021/acsinfecdis.3c00408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Despite colossal achievements in antibiotic therapy in recent decades, drug-resistant pathogens have remained a leading cause of death and economic loss globally. One such WHO-critical group pathogen is Salmonella. The extensive and inappropriate treatments for Salmonella infections have led from multi-drug resistance (MDR) to extensive drug resistance (XDR). The synergy between efflux-mediated systems and outer membrane proteins (OMPs) may favor MDR in Salmonella. Differential expression of the efflux system and OMPs (influx) and positional mutations are the factors that can be correlated to the development of drug resistance. Insights into the mechanism of influx and efflux of antibiotics can aid in developing a structurally stable molecule that can be proficient at escaping from the resistance loops in Salmonella. Understanding the strategic responsibilities and developing policies to address the surge of drug resistance at the national, regional, and global levels are the needs of the hour. In this Review, we attempt to aggregate all the available research findings and delineate the resistance mechanisms by dissecting the involvement of OMPs and efflux systems. Integrating major OMPs and the efflux system's differential expression and positional mutation in Salmonella may provide insight into developing strategic therapies for one health application.
Collapse
Affiliation(s)
- Sadanand Dangari Akshay
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Juliet Mohan Raj
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Biswajit Maiti
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore-575018, India
| |
Collapse
|
2
|
Kim M, Foster JC, Moore MD, Chen M. Improving Single-Molecule Antibody Detection Selectivity through Optimization of Peptide Epitope Presentation in OmpG Nanopore. ACS Sens 2023. [PMID: 37379512 DOI: 10.1021/acssensors.3c00528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Outer membrane protein G (OmpG) is a monomeric porin found in Escherichia coli, which possesses seven flexible loops. OmpG has been engineered as a nanopore sensor, where its loops can host affinity epitopes for selective detection of biological molecules. In this study, we investigated various loop positions to incorporate a FLAG peptide antigen epitope in the most flexible loop 6 and tested the efficacy and sensitivity of these nanopore constructs in antibody detection. We observed an OmpG construct containing inserted FLAG sequence, which exhibited strong interaction with anti-FLAG antibodies in flow cytometry; however, it could not translate molecule interactions into a readable signal in current recordings. Further optimization of the peptide presentation strategy by replacing specific sections of loop 6 sequences with the FLAG tag created a construct capable of generating unique and distinct signals when interacting with various monoclonal or polyclonal anti-FLAG clones IgG antibodies in the mixture. The peptide display scheme demonstrated in this study can be generalized for the engineering of OmpG sensors, which can be used for screening and validating positive clones during antibody development, as well as for real-time quality control of cell cultures in monoclonal antibody production.
Collapse
Affiliation(s)
- Minji Kim
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Joshua C Foster
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Matthew D Moore
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Min Chen
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
3
|
Cell-sized asymmetric phospholipid-amphiphilic protein vesicles with growth, fission, and molecule transportation. iScience 2023; 26:106086. [PMID: 36843838 PMCID: PMC9950948 DOI: 10.1016/j.isci.2023.106086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/2022] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
Lipid vesicles, which mimic cell membranes in structure and components, have been used to study the origin of life and artificial cell construction. A different approach to developing cell-mimicking systems focuses on the formation of protein- or polypeptide-based vesicles. However, micro-sized protein vesicles that are similar in membrane dynamics to the cell and that reconstitute membrane proteins are difficult to form. In this study, we generated cell-sized asymmetric phospholipid-amphiphilic protein (oleosin) vesicles that allow the reconstitution of membrane proteins and the growth and fission of vesicles. These vesicles are composed of a lipid membrane on the outer leaflet and an oleosin membrane on the inner leaflet. Further, we elucidated a mechanism for the growth and fission of cell-sized asymmetric phospholipid-oleosin vesicles by feeding phospholipid micelles. Our asymmetric phospholipid-oleosin vesicles with the advantages of the lipid leaflet and the protein leaflet will potentially promote understanding of biochemistry and synthetic biology.
Collapse
|
4
|
Abstract
SignificanceOuter membrane porins play a crucial role in processes as varied as energy production, photosynthesis, and nutrient transport. They act as the gatekeepers between a gram-negative bacterium and its environment. Understanding how these proteins fold and function is important in improving our understanding and control of these processes. Here we use single-molecule methods to help resolve the apparent differences between the fast folding expected on a molecular scale and the slow kinetics observed in ensemble measurements in the laboratory.
Collapse
|
5
|
Yılmaz İ, Korkmaz F. Investigations of pH-dependent dynamic properties of OmpG-16SL, an outer membrane protein G mutant by ATR-FTIR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140780. [PMID: 35405324 DOI: 10.1016/j.bbapap.2022.140780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
In this paper, the dynamic properties of outer membrane protein G mutant (OmpG-16SL) are investigated with ATR-FTIR spectroscopy. While OmpG-WT has 14 β-strands in its structure, the mutant is designed to have 16 β-strands with the intention of creating an enlarged pore. Loop L6 is elongated by introducing six residues, two of which are negatively charged. The solvent accessibility of the OmpG-16SL mutant is compared with WT and a previously reported mutant OmpG-16S by tracking the 1H/2H exchange kinetics in acidic and neutral buffer conditions. The exchange kinetics and dynamics in the fast and slow exchange phases are separately investigated using the 2DCOS technique, which enables the tracking of the structural changes at each phase of the exchange process. The results suggest that the mutant OmpG-16SL is equally exposed to buffer in both acidic and neutral pH conditions. Additionally, the time range in the fast phase is very short - one-tenth of that for WT - and most of the exchange is completed in this phase. This fast exchange within minutes is also indicative of the presence of highly flexible and/or unstructured regions. In all, the fast exchange rates independent of the buffer pH justify the assumption that there is an altered interaction among the charged residues, which leads to a steadily-open pore. The role of the side-chain interactions within the pore and between the loops involving the loop L6 is also discussed.
Collapse
Affiliation(s)
- İrem Yılmaz
- Physics Unit, Biophysics Laboratory, Atilim University, 06836 Ankara, Turkey
| | - Filiz Korkmaz
- Physics Unit, Biophysics Laboratory, Atilim University, 06836 Ankara, Turkey.
| |
Collapse
|
6
|
Lourenço M, Chaffringeon L, Lamy-Besnier Q, Titécat M, Pédron T, Sismeiro O, Legendre R, Varet H, Coppée JY, Bérard M, De Sordi L, Debarbieux L. The gut environment regulates bacterial gene expression which modulates susceptibility to bacteriophage infection. Cell Host Microbe 2022; 30:556-569.e5. [PMID: 35421351 DOI: 10.1016/j.chom.2022.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/14/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022]
Abstract
Abundance and diversity of bacteria and their viral predators, bacteriophages (phages), in the digestive tract are associated with human health. Particularly intriguing is the long-term coexistence of these two antagonistic populations. We performed genome-wide RNA sequencing on a human enteroaggregative Escherichia coli isolate to identify genes differentially expressed between in vitro conditions and in murine intestines. We experimentally demonstrated that four of these differentially expressed genes modified the interactions between E. coli and three virulent phages by either increasing or decreasing its susceptibility/resistance pattern and also by interfering with biofilm formation. Therefore, the regulation of bacterial genes expression during the colonization of the digestive tract influences the coexistence of phages and bacteria, highlighting the intricacy of tripartite relationships between phages, bacteria, and the animal host in intestinal homeostasis.
Collapse
Affiliation(s)
- Marta Lourenço
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Lorenzo Chaffringeon
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Sorbonne Université, INSERM, Centre de Recherche St Antoine, UMRS_938, Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - Quentin Lamy-Besnier
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Marie Titécat
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Université de Lille, INSERM, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, 59000 Lille, France
| | - Thierry Pédron
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Odile Sismeiro
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Rachel Legendre
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France; Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Hugo Varet
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France; Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Jean-Yves Coppée
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Marion Bérard
- Institut Pasteur, Université Paris Cité, DT, Animalerie Centrale, Centre de Gnotobiologie, 75724 Paris, France
| | - Luisa De Sordi
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Sorbonne Université, INSERM, Centre de Recherche St Antoine, UMRS_938, Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France.
| |
Collapse
|
7
|
Mohanty BK, Kushner SR. Inactivation of RNase P in Escherichia coli significantly changes post-transcriptional RNA metabolism. Mol Microbiol 2022; 117:121-142. [PMID: 34486768 PMCID: PMC8766891 DOI: 10.1111/mmi.14808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/03/2023]
Abstract
Ribonuclease P (RNase P), which is required for the 5'-end maturation of tRNAs in every organism, has been shown to play a limited role in other aspects of RNA metabolism in Escherichia coli. Using RNA-sequencing (RNA-seq), we demonstrate that RNase P inactivation affects the abundances of ~46% of the expressed transcripts in E. coli and provide evidence that its essential function is its ability to generate pre-tRNAs from polycistronic tRNA transcripts. The RNA-seq results agreed with the published data and northern blot analyses of 75/83 transcripts (mRNAs, sRNAs, and tRNAs). Changes in transcript abundances in the RNase P mutant also correlated with changes in their half-lives. Inactivating the stringent response did not alter the rnpA49 phenotype. Most notably, increases in the transcript abundances were observed for all genes in the cysteine regulons, multiple toxin-antitoxin modules, and sigma S-controlled genes. Surprisingly, poly(A) polymerase (PAP I) modulated the abundances of ~10% of the transcripts affected by RNase P. A comparison of the transcriptomes of RNase P, RNase E, and RNase III mutants suggests that they affect distinct substrates. Together, our work strongly indicates that RNase P is a major player in all aspects of post-transcriptional RNA metabolism in E. coli.
Collapse
Affiliation(s)
| | - Sidney R. Kushner
- Department of Genetics, University of Georgia, Athens, GA 30602,Department of Microbiology, University of Georgia, Athens, GA 30602,To whom correspondence should be addressed.
| |
Collapse
|
8
|
Bhatti H, Jawed R, Ali I, Iqbal K, Han Y, Lu Z, Liu Q. Recent advances in biological nanopores for nanopore sequencing, sensing and comparison of functional variations in MspA mutants. RSC Adv 2021; 11:28996-29014. [PMID: 35478559 PMCID: PMC9038099 DOI: 10.1039/d1ra02364k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Biological nanopores are revolutionizing human health by the great myriad of detection and diagnostic skills. Their nano-confined area and ingenious shape are suitable to investigate a diverse range of molecules that were difficult to identify with the previous techniques. Additionally, high throughput and label-free detection of target analytes instigated the exploration of new bacterial channel proteins such as Fragaceatoxin C (FraC), Cytolysin A (ClyA), Ferric hydroxamate uptake component A (FhuA) and Curli specific gene G (CsgG) along with the former ones, like α-hemolysin (αHL), Mycobacterium smegmatis porin A (MspA), aerolysin, bacteriophage phi 29 and Outer membrane porin G (OmpG). Herein, we discuss some well-known biological nanopores but emphasize on MspA and compare the effects of site-directed mutagenesis on the detection ability of its mutants in view of the surface charge distribution, voltage threshold and pore-analyte interaction. We also discuss illustrious and latest advances in biological nanopores for past 2-3 years due to limited space. Last but not the least, we elucidate our perspective for selecting a biological nanopore and propose some future directions to design a customized nanopore that would be suitable for DNA sequencing and sensing of other nontrivial molecules in question.
Collapse
Affiliation(s)
- Huma Bhatti
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China +86-25-83793283 +86-25-83793283
| | - Rohil Jawed
- School of Life Science and Technology, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China
| | - Irshad Ali
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China +86-25-83793283 +86-25-83793283
| | - Khurshid Iqbal
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China +86-25-83793283 +86-25-83793283
| | - Yan Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China +86-25-83793283 +86-25-83793283
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China +86-25-83793283 +86-25-83793283
| | - Quanjun Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China +86-25-83793283 +86-25-83793283
| |
Collapse
|
9
|
Rybenkov VV, Zgurskaya HI, Ganguly C, Leus IV, Zhang Z, Moniruzzaman M. The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux. Chem Rev 2021; 121:5597-5631. [PMID: 33596653 PMCID: PMC8369882 DOI: 10.1021/acs.chemrev.0c01137] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell envelope plays a dual role in the life of bacteria by simultaneously protecting it from a hostile environment and facilitating access to beneficial molecules. At the heart of this ability lie the restrictive properties of the cellular membrane augmented by efflux transporters, which preclude intracellular penetration of most molecules except with the help of specialized uptake mediators. Recently, kinetic properties of the cell envelope came into focus driven on one hand by the urgent need in new antibiotics and, on the other hand, by experimental and theoretical advances in studies of transmembrane transport. A notable result from these studies is the development of a kinetic formalism that integrates the Michaelis-Menten behavior of individual transporters with transmembrane diffusion and offers a quantitative basis for the analysis of intracellular penetration of bioactive compounds. This review surveys key experimental and computational approaches to the investigation of transport by individual translocators and in whole cells, summarizes key findings from these studies and outlines implications for antibiotic discovery. Special emphasis is placed on Gram-negative bacteria, whose envelope contains two separate membranes. This feature sets these organisms apart from Gram-positive bacteria and eukaryotic cells by providing them with full benefits of the synergy between slow transmembrane diffusion and active efflux.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Inga V Leus
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zhen Zhang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
10
|
Pham B, Chisholm CM, Foster J, Friis E, Fahie MA, Chen M. A pH-independent quiet OmpG pore with enhanced electrostatic repulsion among the extracellular loops. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183485. [PMID: 33058855 DOI: 10.1016/j.bbamem.2020.183485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022]
Abstract
Membrane protein pores have emerged as powerful nanopore sensors for single-molecule detection. OmpG, a monomeric nanopore, is comprised of fourteen β-strands connected by seven flexible extracellular loops. The OmpG nanopore exhibits pH-dependent gating as revealed by planar lipid bilayer studies. Current evidence strongly suggests that the dynamic movement of loop 6 is responsible for the gating mechanism. In this work, we have shown that enhancing the electrostatic repulsion forces between extracellular loops suppressed the pH-dependent gating. Our mutant containing additional negative charges in loop 6 and loop 1 exhibited minimal spontaneous gating and reduced sensitivity to pH changes compared to the wild type OmpG. These results provide new evidence to support the mechanism of OmpG gating controlled by the complex electrostatic network around the gating loop 6. The pH-independent quiet OmpG pores could potentially be used as a sensing platform that operates at a broad range of pH conditions.
Collapse
Affiliation(s)
- Bach Pham
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Christina M Chisholm
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Joshua Foster
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Emily Friis
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Monifa A Fahie
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Min Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States; Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| |
Collapse
|
11
|
Mabanglo MF, Huddleston JP, Mukherjee K, Taylor ZW, Raushel FM. Structure and Reaction Mechanism of YcjR, an Epimerase That Facilitates the Interconversion of d-Gulosides to d-Glucosides in Escherichia coli. Biochemistry 2020; 59:2069-2077. [PMID: 32437133 PMCID: PMC7509853 DOI: 10.1021/acs.biochem.0c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
YcjR from Escherichia coli K-12 MG1655 catalyzes the manganese-dependent reversible epimerization of 3-keto-α-d-gulosides to the corresponding 3-keto-α-d-glucosides as a part of a proposed catabolic pathway for the transformation of d-gulosides to d-glucosides. The three-dimensional structure of the manganese-bound enzyme was determined by X-ray crystallography. The divalent manganese ion is coordinated to the enzyme by ligation to Glu-146, Asp-179, His-205, and Glu-240. When either of the two active site glutamate residues is mutated to glutamine, the enzyme loses all catalytic activity for the epimerization of α-methyl-3-keto-d-glucoside at C4. However, the E240Q mutant can catalyze hydrogen-deuterium exchange of the proton at C4 of α-methyl-3-keto-d-glucoside in solvent D2O. The E146Q mutant does not catalyze this exchange reaction. These results indicate that YcjR catalyzes the isomerization of 3-keto-d-glucosides via proton abstraction at C4 by Glu-146 to form a cis-enediolate intermediate that is subsequently protonated on the opposite face by Glu-240 to generate the corresponding 3-keto-d-guloside. This conclusion is supported by docking of the cis-enediolate intermediate into the active site of YcjR based on the known binding orientation of d-fructose and d-psicose in the active site of d-psicose-3-epimerase.
Collapse
Affiliation(s)
- Mark F. Mabanglo
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | | | - Keya Mukherjee
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, 77843, USA
| | - Zane W. Taylor
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, 77843, USA
| | - Frank M. Raushel
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, 77843, USA
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
12
|
Vanuytsel S, Carniello J, Wallace MI. Artificial Signal Transduction across Membranes. Chembiochem 2019; 20:2569-2580. [DOI: 10.1002/cbic.201900254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/09/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Steven Vanuytsel
- Department of ChemistryKing's College London Britannia House 7 Trinity Street London SE1 1DB UK
- London Centre for Nanotechnology Strand London WC2R 2LS UK
| | - Joanne Carniello
- Department of ChemistryKing's College London Britannia House 7 Trinity Street London SE1 1DB UK
- London Centre for Nanotechnology Strand London WC2R 2LS UK
| | - Mark Ian Wallace
- Department of ChemistryKing's College London Britannia House 7 Trinity Street London SE1 1DB UK
- London Centre for Nanotechnology Strand London WC2R 2LS UK
| |
Collapse
|
13
|
Overcoming Iron Deficiency of an Escherichia coli tonB Mutant by Increasing Outer Membrane Permeability. J Bacteriol 2019; 201:JB.00340-19. [PMID: 31235517 DOI: 10.1128/jb.00340-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/21/2019] [Indexed: 01/20/2023] Open
Abstract
The intake of certain nutrients, including ferric ion, is facilitated by the outer membrane-localized transporters. Due to ferric insolubility at physiological pH, Escherichia coli secretes a chelator, enterobactin, outside the cell and then transports back the enterobactin-ferric complex via an outer membrane receptor protein, FepA, whose activity is dependent on the proton motive force energy transduced by the TonB-ExbBD complex of the inner membrane. Consequently, ΔtonB mutant cells grow poorly on a medium low in iron. Prolonged incubation of ΔtonB cells on low-iron medium yields faster-growing colonies that acquired suppressor mutations in the yejM (pbgA) gene, which codes for a putative inner-to-outer membrane cardiolipin transporter. Further characterization of suppressors revealed that they display hypersusceptibility to vancomycin, a large hydrophilic antibiotic normally precluded from entering E. coli cells, and leak periplasmic proteins into the culture supernatant, indicating a compromised outer membrane permeability barrier. All phenotypes were reversed by supplying the wild-type copy of yejM on a plasmid, suggesting that yejM mutations are solely responsible for the observed phenotypes. The deletion of all known cardiolipin synthase genes (clsABC) did not produce the phenotypes similar to mutations in the yejM gene, suggesting that the absence of cardiolipin from the outer membrane per se is not responsible for increased outer membrane permeability. Elevated lysophosphatidylethanolamine levels and the synthetic growth phenotype without pldA indicated that defective lipid homeostasis in the yejM mutant compromises outer membrane lipid asymmetry and permeability barrier to allow enterobactin intake, and that YejM has additional roles other than transporting cardiolipin.IMPORTANCE The work presented here describes a positive genetic selection strategy for isolating mutations that destabilize the outer membrane permeability barrier of E. coli Given the importance of the outer membrane in restricting the entry of antibiotics, characterization of the genes and their products that affect outer membrane integrity will enhance the understanding of bacterial membranes and the development of strategies to bypass the outer membrane barrier for improved drug efficacy.
Collapse
|
14
|
Schmitt C, Bafna JA, Schmid B, Klingl S, Baier S, Hemmis B, Wagner R, Winterhalter M, Voll LM. Manipulation of charge distribution in the arginine and glutamate clusters of the OmpG pore alters sugar specificity and ion selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183021. [PMID: 31306626 DOI: 10.1016/j.bbamem.2019.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023]
Abstract
OmpG is a general diffusion pore in the E. coli outer membrane with a molecular architecture comprising a 14-stranded β-barrel scaffold and unique structural features. In contrast to other non-specific porins, OmpG lacks a central constriction zone and has an exceptionally wide pore diameter of about 13 Å. The equatorial plane of OmpG harbors an annulus of four alternating basic and acidic patches whose function is only poorly characterized. We have investigated the role of charge distribution for ion selectivity and sugar transport with the help of OmpG variants mutated in the annulus. Substituting the glutamate residues of the annulus for histidines or alanines led to a strong reduction in cation selectivity. Replacement of the glutamates in the annulus by histidine residues also disfavored the passage of pentoses and hexoses relative to disaccharides. Our results demonstrate that despite the wide pore diameter, an annulus only consisting of two opposing basic patches confers reduced cation and monosaccharide transport compared to OmpG wild type. Furthermore, randomization of charged residues in the annulus had the potential to abolish pH-dependency of sugar transport. Our results indicate that E15, E31, R92, R111 and R211 in the annulus form electrostatic interactions with R228, E229 and D232 in loop L6 that influence pH-dependency of sugar transport.
Collapse
Affiliation(s)
- Christine Schmitt
- Division of Biochemistry and Applied Protein Center Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany; Department Biology, Division of Plant Physiology, Philipps-University Marburg, D-35043 Marburg, Germany.
| | - Jayesh Arun Bafna
- Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28719 Bremen, Germany.
| | - Benedikt Schmid
- Division of Biotechnology and Applied Protein Center Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany.
| | - Stefan Klingl
- Division of Biotechnology and Applied Protein Center Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany.
| | - Steffen Baier
- Division of Biochemistry and Applied Protein Center Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Birgit Hemmis
- Department of Biology and Chemistry, University of Osnabrück, D-49069 Osnabrück, Germany
| | - Richard Wagner
- Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28719 Bremen, Germany; Department of Biology and Chemistry, University of Osnabrück, D-49069 Osnabrück, Germany.
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28719 Bremen, Germany.
| | - Lars M Voll
- Division of Biochemistry and Applied Protein Center Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany; Department Biology, Division of Plant Physiology, Philipps-University Marburg, D-35043 Marburg, Germany.
| |
Collapse
|
15
|
Yılmaz İ, Yıldız Ö, Korkmaz F. Structural properties of an engineered outer membrane protein G mutant, OmpG-16SL, investigated with infrared spectroscopy. J Biomol Struct Dyn 2019; 38:2104-2115. [PMID: 31157607 DOI: 10.1080/07391102.2019.1624617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The structural and functional differences between wild type (WT) outer membrane protein G and its two mutants are investigated with Fourier transform infrared spectroscopy. Both mutants have a long extension to the primary sequence to increase the number of β-strands from 14 (wild type) to 16 in an attempt to enlarge the pore diameter. The comparison among proteins is made in terms of pH-dependent conformational changes and thermal stability. Results show that all proteins respond to pH change but at different degrees. At acidic environment, all proteins contain the same number of residues participated in β-sheet structure. However, at neutral pH, the mutants have less ordered structure compared to WT porin. Thermal stability tests show that mutants differ significantly from WT porin at neutral pH. Although the transition temperature is directly proportional with the amount of β-sheet content, the changes in the pre-transition phase that pave the way to structural breakdown are shown to involve interactions among charged residues by two-dimensional correlation spectroscopy analysis. Results of the analysis show that side chain interactions play an active role under increasing temperature. Both mutants have more unordered secondary structure but they respond to pH change in tertiary structure level. Findings of this study provided deeper insight on the active players in structural stability of the WT porin.Communicated by Ramaswamy H. Sarma [Formula: see text].
Collapse
Affiliation(s)
- İrem Yılmaz
- Department of Physics, Middle East Technical University, Ankara, Turkey
| | - Özkan Yıldız
- Department of Structural Biology, Max Planck Institute for Biophysics, Frankfurt am Main, Germany
| | - Filiz Korkmaz
- Physics Unit, Biophysics Laboratory, Atilim University, Ankara, Turkey
| |
Collapse
|
16
|
Thoma J, Sapra KT, Müller DJ. Single-Molecule Force Spectroscopy of Transmembrane β-Barrel Proteins. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:375-395. [PMID: 29894225 DOI: 10.1146/annurev-anchem-061417-010055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Single-molecule force spectroscopy (SMFS) has been widely applied to study the mechanical unfolding and folding of transmembrane proteins. Here, we review the recent progress in characterizing bacterial and human transmembrane β-barrel proteins by SMFS. First, we describe the mechanical unfolding of transmembrane β-barrels, which follows a general mechanism dictated by the sequential unfolding and extraction of individual β-strands and β-hairpins from membranes. Upon force relaxation, the unfolded polypeptide can insert stepwise into the membrane as single β-strands or β-hairpins to fold as the native β-barrel. The refolding can be followed at a high spatial and temporal resolution, showing that small β-barrels are able to fold without assistance, whereas large and complex β-barrels require chaperone cofactors. Applied in the dynamic mode, SMFS can quantify the kinetic and mechanical properties of single β-hairpins and reveal complementary insight into the membrane protein structure and function relationship. We further outline the challenges that SMFS experiments must overcome for a comprehensive understanding of the folding and function of transmembrane β-barrel proteins.
Collapse
Affiliation(s)
- Johannes Thoma
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland;
| | | | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland;
| |
Collapse
|
17
|
Mukherjee K, Narindoshvili T, Raushel FM. Discovery of a Kojibiose Phosphorylase in Escherichia coli K-12. Biochemistry 2018; 57:2857-2867. [PMID: 29684280 DOI: 10.1021/acs.biochem.8b00392] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The substrate profiles for three uncharacterized enzymes (YcjM, YcjT, and YcjU) that are expressed from a cluster of 12 genes ( ycjM-W and ompG) of unknown function in Escherichia coli K-12 were determined. Through a comprehensive bioinformatic and steady-state kinetic analysis, the catalytic function of YcjT was determined to be kojibiose phosphorylase. In the presence of saturating phosphate and kojibiose (α-(1,2)-d-glucose-d-glucose), this enzyme catalyzes the formation of d-glucose and β-d-glucose-1-phosphate ( kcat = 1.1 s-1, Km = 1.05 mM, and kcat/ Km = 1.12 × 103 M-1 s-1). Additionally, it was also shown that in the presence of β-d-glucose-1-phosphate, YcjT can catalyze the formation of other disaccharides using 1,5-anhydro-d-glucitol, l-sorbose, d-sorbitol, or l-iditol as a substitute for d-glucose. Kojibiose is a component of cell wall lipoteichoic acids in Gram-positive bacteria and is of interest as a potential low-calorie sweetener and prebiotic. YcjU was determined to be a β-phosphoglucomutase that catalyzes the isomerization of β-d-glucose-1-phosphate ( kcat = 21 s-1, Km = 18 μM, and kcat/ Km = 1.1 × 106 M-1 s-1) to d-glucose-6-phosphate. YcjU was also shown to exhibit catalytic activity with β-d-allose-1-phosphate, β-d-mannose-1-phosphate, and β-d-galactose-1-phosphate. YcjM catalyzes the phosphorolysis of α-(1,2)-d-glucose-d-glycerate with a kcat = 2.1 s-1, Km = 69 μM, and kcat/ Km = 3.1 × 104 M-1 s-1.
Collapse
Affiliation(s)
- Keya Mukherjee
- Department of Biochemistry & Biophysics , Texas A&M University , College Station , Texas 77844 , United States
| | - Tamari Narindoshvili
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Frank M Raushel
- Department of Biochemistry & Biophysics , Texas A&M University , College Station , Texas 77844 , United States.,Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
18
|
Perez-Rathke A, Fahie MA, Chisholm C, Liang J, Chen M. Mechanism of OmpG pH-Dependent Gating from Loop Ensemble and Single Channel Studies. J Am Chem Soc 2018; 140:1105-1115. [PMID: 29262680 DOI: 10.1021/jacs.7b11979] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Outer membrane protein G (OmpG) from Escherichia coli has exhibited pH-dependent gating that can be employed by bacteria to alter the permeability of their outer membranes in response to environmental changes. We developed a computational model, Protein Topology of Zoetic Loops (Pretzel), to investigate the roles of OmpG extracellular loops implicated in gating. The key interactions predicted by our model were verified by single-channel recording data. Our results indicate that the gating equilibrium is primarily controlled by an electrostatic interaction network formed between the gating loop and charged residues in the lumen. The results shed light on the mechanism of OmpG gating and will provide a fundamental basis for the engineering of OmpG as a nanopore sensor. Our computational Pretzel model could be applied to other outer membrane proteins that contain intricate dynamic loops that are functionally important.
Collapse
Affiliation(s)
- Alan Perez-Rathke
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | | | | | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | | |
Collapse
|
19
|
Kahlstatt J, Reiß P, Halbritter T, Essen LO, Koert U, Heckel A. A light-triggered transmembrane porin. Chem Commun (Camb) 2018; 54:9623-9626. [DOI: 10.1039/c8cc05221b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porins are ideal model systems for channel engineering. Here, we present a photocaged diethylaminocoumarin (DEACM) hybrid of the transmembrane porin OmpG.
Collapse
Affiliation(s)
- J. Kahlstatt
- Goethe University Frankfurt
- Institute for Organic Chemistry and Chemical Biology
- 60438 Frankfurt am Main
- Germany
| | - P. Reiß
- Philipps-University Marburg
- Department of Chemistry
- 35032 Marburg
- Germany
| | - T. Halbritter
- Goethe University Frankfurt
- Institute for Organic Chemistry and Chemical Biology
- 60438 Frankfurt am Main
- Germany
| | - L.-O. Essen
- Philipps-University Marburg
- Department of Chemistry
- 35032 Marburg
- Germany
- Philipps-University Marburg
| | - U. Koert
- Philipps-University Marburg
- Department of Chemistry
- 35032 Marburg
- Germany
| | - A. Heckel
- Goethe University Frankfurt
- Institute for Organic Chemistry and Chemical Biology
- 60438 Frankfurt am Main
- Germany
| |
Collapse
|
20
|
Abstract
β-barrel proteins mediate nutrient uptake in bacteria and serve vital functions in cell signaling and adhesion. For the 14-strand outer membrane protein G of Escherichia coli, opening and closing is pH-dependent. Different roles of the extracellular loops in this process were proposed, and X-ray and solution NMR studies were divergent. Here, we report the structure of outer membrane protein G investigated in bilayers of E. coli lipid extracts by magic-angle-spinning NMR. In total, 1847 inter-residue 1H–1H and 13C–13C distance restraints, 256 torsion angles, but no hydrogen bond restraints are used to calculate the structure. The length of β-strands is found to vary beyond the membrane boundary, with strands 6–8 being the longest and the extracellular loops 3 and 4 well ordered. The site of barrel closure at strands 1 and 14 is more disordered than most remaining strands, with the flexibility decreasing toward loops 3 and 4. Loop 4 presents a well-defined helix. Porins, like OmpG, are embedded in the outer membrane of bacteria and facilitate uptake and secretion of nutrients and ions. Here the authors present a protocol for solid state NMR structure determination of proteins larger than 25 kDa and use it to structurally characterize membrane embedded OmpG.
Collapse
|
21
|
Shlar I, Droby S, Choudhary R, Rodov V. The mode of antimicrobial action of curcumin depends on the delivery system: monolithic nanoparticles vs. supramolecular inclusion complex. RSC Adv 2017. [DOI: 10.1039/c7ra07303h] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Formulation determines curcumin antimicrobial effect: curcumin–cyclodextrin complexes are bactericidal, induce ROS, and target electron transport; monolithic nanoparticles are bacteriostatic, and target membranes and ATP.
Collapse
Affiliation(s)
- Ilya Shlar
- Institute of Postharvest and Food Sciences
- Agricultural Research Organization
- The Volcani Center
- Rishon LeZion 7528809
- Israel
| | - Samir Droby
- Institute of Postharvest and Food Sciences
- Agricultural Research Organization
- The Volcani Center
- Rishon LeZion 7528809
- Israel
| | - Ruplal Choudhary
- Department of Plant
- Soil and Agricultural Systems
- Southern Illinois University
- Carbondale
- USA
| | - Victor Rodov
- Institute of Postharvest and Food Sciences
- Agricultural Research Organization
- The Volcani Center
- Rishon LeZion 7528809
- Israel
| |
Collapse
|
22
|
In Silico Structure and Sequence Analysis of Bacterial Porins and Specific Diffusion Channels for Hydrophilic Molecules: Conservation, Multimericity and Multifunctionality. Int J Mol Sci 2016; 17:ijms17040599. [PMID: 27110766 PMCID: PMC4849052 DOI: 10.3390/ijms17040599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 12/18/2022] Open
Abstract
Diffusion channels are involved in the selective uptake of nutrients and form the largest outer membrane protein (OMP) family in Gram-negative bacteria. Differences in pore size and amino acid composition contribute to the specificity. Structure-based multiple sequence alignments shed light on the structure-function relations for all eight subclasses. Entropy-variability analysis results are correlated to known structural and functional aspects, such as structural integrity, multimericity, specificity and biological niche adaptation. The high mutation rate in their surface-exposed loops is likely an important mechanism for host immune system evasion. Multiple sequence alignments for each subclass revealed conserved residue positions that are involved in substrate recognition and specificity. An analysis of monomeric protein channels revealed particular sequence patterns of amino acids that were observed in other classes at multimeric interfaces. This adds to the emerging evidence that all members of the family exist in a multimeric state. Our findings are important for understanding the role of members of this family in a wide range of bacterial processes, including bacterial food uptake, survival and adaptation mechanisms.
Collapse
|
23
|
Knopp M, Andersson DI. Amelioration of the Fitness Costs of Antibiotic Resistance Due To Reduced Outer Membrane Permeability by Upregulation of Alternative Porins. Mol Biol Evol 2015; 32:3252-63. [DOI: 10.1093/molbev/msv195] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Speer A, Sun J, Danilchanka O, Meikle V, Rowland JL, Walter K, Buck BR, Pavlenok M, Hölscher C, Ehrt S, Niederweis M. Surface hydrolysis of sphingomyelin by the outer membrane protein Rv0888 supports replication of Mycobacterium tuberculosis in macrophages. Mol Microbiol 2015; 97:881-97. [PMID: 26036301 DOI: 10.1111/mmi.13073] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2015] [Indexed: 12/19/2022]
Abstract
Sphingomyelinases secreted by pathogenic bacteria play important roles in host-pathogen interactions ranging from interfering with phagocytosis and oxidative burst to iron acquisition. This study shows that the Mtb protein Rv0888 possesses potent sphingomyelinase activity cleaving sphingomyelin, a major lipid in eukaryotic cells, into ceramide and phosphocholine, which are then utilized by Mtb as carbon, nitrogen and phosphorus sources, respectively. An Mtb rv0888 deletion mutant did not grow on sphingomyelin as a sole carbon source anymore and replicated poorly in macrophages indicating that Mtb utilizes sphingomyelin during infection. Rv0888 is an unusual membrane protein with a surface-exposed C-terminal sphingomyelinase domain and a putative N-terminal channel domain that mediated glucose and phosphocholine uptake across the outer membrane in an M. smegmatis porin mutant. Hence, we propose to name Rv0888 as SpmT (sphingomyelinase of Mycobacterium tuberculosis). Erythrocyte membranes contain up to 27% sphingomyelin. The finding that Rv0888 accounts for half of Mtb's hemolytic activity is consistent with its sphingomyelinase activity and the observation that Rv0888 levels are increased in the presence of erythrocytes and sphingomyelin by 5- and 100-fold, respectively. Thus, Rv0888 is a novel outer membrane protein that enables Mtb to utilize sphingomyelin as a source of several essential nutrients during intracellular growth.
Collapse
Affiliation(s)
- Alexander Speer
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jim Sun
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olga Danilchanka
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Virginia Meikle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer L Rowland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kerstin Walter
- Infection Immunology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Borstel, Germany
| | - Bradford R Buck
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mikhail Pavlenok
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christoph Hölscher
- Infection Immunology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Borstel, Germany.,Cluster of Excellence 'Inflammation at Interfaces', Christian-Albrechts-University, Kiel, Germany
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
25
|
Purification, Refolding, and Crystallization of the Outer Membrane Protein OmpG from Escherichia coli. Methods Enzymol 2015. [PMID: 25950964 DOI: 10.1016/bs.mie.2015.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
OmpG is a pore-forming protein from E. coli outer membranes. Unlike the classical outer membrane porins, which are trimers, the OmpG channel is a monomeric β-barrel made of 14 antiparallel β-strands with short periplasmic turns and longer extracellular loops. The channel activity of OmpG is pH dependent and the channel is gated by the extracellular loop L6. At neutral/high pH, the channel is open and permeable for substrate molecules with a size up to 900 Da. At acidic pH, loop L6 folds across the channel and blocks the pore. The channel blockage at acidic pH appears to be triggered by the protonation of a histidine pair on neighboring β-strands, which repel one another, resulting in the rearrangement of loop L6 and channel closure. OmpG was purified by refolding from inclusion bodies and crystallized in two and three dimensions. Crystallization and analysis by electron microscopy and X-ray crystallography revealed the fundamental mechanisms essential for the channel activity.
Collapse
|
26
|
Barbet-Massin E, Pell AJ, Retel JS, Andreas LB, Jaudzems K, Franks WT, Nieuwkoop AJ, Hiller M, Higman V, Guerry P, Bertarello A, Knight MJ, Felletti M, Le Marchand T, Kotelovica S, Akopjana I, Tars K, Stoppini M, Bellotti V, Bolognesi M, Ricagno S, Chou JJ, Griffin RG, Oschkinat H, Lesage A, Emsley L, Herrmann T, Pintacuda G. Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J Am Chem Soc 2014; 136:12489-97. [PMID: 25102442 PMCID: PMC4156866 DOI: 10.1021/ja507382j] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
Using a set of six 1H-detected
triple-resonance NMR
experiments, we establish a method for sequence-specific backbone
resonance assignment of magic angle spinning (MAS) nuclear magnetic
resonance (NMR) spectra of 5–30 kDa proteins. The approach
relies on perdeuteration, amide 2H/1H exchange,
high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling
the use of automated analysis. The method is validated with five examples
of proteins in different condensed states, including two microcrystalline
proteins, a sedimented virus capsid, and two membrane-embedded systems.
In comparison to contemporary 13C/15N-based
methods, this approach facilitates and accelerates the MAS NMR assignment
process, shortening the spectral acquisition times and enabling the
use of unsupervised state-of-the-art computational data analysis protocols
originally developed for solution NMR.
Collapse
Affiliation(s)
- Emeline Barbet-Massin
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon , 69100 Villeurbanne, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rösner HI, Kragelund BB. Structure and dynamic properties of membrane proteins using NMR. Compr Physiol 2013; 2:1491-539. [PMID: 23798308 DOI: 10.1002/cphy.c110036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Integral membrane proteins are one of the most challenging groups of macromolecules despite their apparent conformational simplicity. They manage and drive transport, circulate information, and participate in cellular movements via interactions with other proteins and through intricate conformational changes. Their structural and functional decoding is challenging and has imposed demanding experimental development. Solution nuclear magnetic resonance (NMR) spectroscopy is one of the techniques providing the capacity to make a significant difference in the deciphering of the membrane protein structure-function paradigm. The method has evolved dramatically during the last decade resulting in a plethora of new experiments leading to a significant increase in the scientific repertoire for studying membrane proteins. Besides solving the three-dimensional structures using state-of-the-art approaches, a large variety of developments of well-established techniques are available providing insight into membrane protein flexibility, dynamics, and interactions. Inspired by the speed of development in the application of new strategies, by invention of methods to measure solvent accessibility and describe low-populated states, this review seeks to introduce the vast possibilities solution NMR can offer to the study of membrane protein structure-function analyses with special focus on applicability.
Collapse
Affiliation(s)
- Heike I Rösner
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
28
|
Zhuang T, Chisholm C, Chen M, Tamm LK. NMR-based conformational ensembles explain pH-gated opening and closing of OmpG channel. J Am Chem Soc 2013; 135:15101-13. [PMID: 24020969 DOI: 10.1021/ja408206e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The outer membrane protein G (OmpG) is a monomeric 33 kDa 14-stranded β-barrel membrane protein functioning as a nonspecific porin for the uptake of oligosaccharides in Escherichia coli. Two different crystal structures of OmpG obtained at different values of pH suggest a pH-gated pore opening mechanism. In these structures, extracellular loop 6 extends away from the barrel wall at neutral pH but is folded back into the pore lumen at low pH, blocking transport through the pore. Loop 6 was invisible in a previously published solution NMR structure of OmpG in n-dodecylphosphocholine micelles, presumably due to conformational exchange on an intermediate NMR time scale. Here we present an NMR paramagnetic relaxation enhancement (PRE)-based approach to visualize the conformational dynamics of loop 6 and to calculate conformational ensembles that explain the pH-gated opening and closing of the OmpG channel. The different loop conformers detected by the PRE ensemble calculations were validated by disulfide cross-linking of strategically engineered cysteines and electrophysiological single channel recordings. The results indicate a more dynamically regulated channel opening and closing than previously thought and reveal additional membrane-associated conformational ensembles at pH 6.3 and 7.0. We anticipate this approach to be generally applicable to detect and characterize functionally important conformational ensembles of membrane proteins.
Collapse
Affiliation(s)
- Tiandi Zhuang
- Department of Molecular Physiology and Biological Physics and Center for Membrane Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| | | | | | | |
Collapse
|
29
|
Yu M, Sun P, He Y, Xiao L, Sun D, Zhang L, Tian C. Mutation of the critical pH-gating residues histidine 231 to glutamate increase open probability of outer membrane protein G in planar lipid bilayer. Protein Cell 2013; 4:803-6. [PMID: 24018649 DOI: 10.1007/s13238-013-3070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Mu Yu
- High Magnetic Field Laboratory, Chinese Academic of Sciences, Hefei, 230031, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Korkmaz F, Köster S, Yildiz O, Mäntele W. In situ opening/closing of OmpG from E. coli and the splitting of β-sheet signals in ATR-FTIR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 91:395-401. [PMID: 22402479 DOI: 10.1016/j.saa.2012.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/04/2012] [Accepted: 01/16/2012] [Indexed: 05/31/2023]
Abstract
The pH dependent opening and closure of Escherichia coli OmpG is driven by the formation and breaking of hydrogen bridges in β-strands S11-S13. We have investigated the in situ secondary structural changes of OmpG with ATR-FTIR difference spectroscopy in order to detect the signals associated with the newly established interactions. Curve-fitting of OmpG in two pH conditions revealed the splitting and shifting of β-sheet signals upon opening of the channel. Besides secondary structure changes, there are also amino acid side chain signals that play active role in opening/closing of the channel. An interaction among positively charged arginines and negatively charged aspartic and glutamic acid residues is suggested upon closure of the channel while this interaction is abolished when the channel opens at higher pH.
Collapse
Affiliation(s)
- Filiz Korkmaz
- Atilim University, Physics Unit, Biophysics Laboratory, Kizilcasar Mah., 06836 Ankara, Turkey.
| | | | | | | |
Collapse
|
31
|
Andrade IDS, Vianez-Júnior JL, Goulart CL, Homblé F, Ruysschaert JM, Almeida von Krüger WM, Bisch PM, de Souza W, Mohana-Borges R, Motta MCM. Characterization of a porin channel in the endosymbiont of the trypanosomatid protozoan Crithidia deanei. MICROBIOLOGY-SGM 2011; 157:2818-2830. [PMID: 21757490 DOI: 10.1099/mic.0.049247-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Crithidia deanei is a trypanosomatid protozoan that harbours a symbiotic bacterium. The partners maintain a mutualistic relationship, thus constituting an excellent model for studying metabolic exchanges between the host and the symbiont, the origin of organelles and cellular evolution. According to molecular analysis, symbionts of different trypanosomatid species share high identity and descend from a common ancestor, a β-proteobacterium of the genus Bordetella. The endosymbiont is surrounded by two membranes, like Gram-negative bacteria, but its envelope presents special features, since phosphatidylcholine is a major membrane component and the peptidoglycan layer is highly reduced, as described in other obligate intracellular bacteria. Like the process that generated mitochondria and plastids, the endosymbiosis in trypanosomatids depends on pathways that facilitate the intensive metabolic exchanges between the bacterium and the host protozoan. A search of the annotated symbiont genome database identified one sequence with identity to porin-encoding genes of the genus Bordetella. Considering that the symbiont outer membrane has a great accessibility to cytoplasm host factors, it was important to characterize this single porin-like protein using biochemical, molecular, computational and ultrastructural approaches. Antiserum against the recombinant porin-like molecule revealed that it is mainly located in the symbiont envelope. Secondary structure analysis and comparative modelling predicted the protein 3D structure as an 18-domain β-barrel, which is consistent with porin channels. Electrophysiological measurements showed that the porin displays a slight preference for cations over anions. Taken together, the data presented herein suggest that the C. deanei endosymbiont porin is phylogenetically and structurally similar to those described in Gram-negative bacteria, representing a diffusion channel that might contribute to the exchange of nutrients and metabolic precursors between the symbiont and its host cell.
Collapse
Affiliation(s)
- Iamara da Silva Andrade
- Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil.,Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil.,Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| | - João Lídio Vianez-Júnior
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| | - Carolina Lage Goulart
- Laboratoire de Structure et Fonction des Membranes Biologiques (SFMB), Université Libre de Bruxelles, Campus Plaine (CP 206/2), B-1050 Bruxelles, Belgium.,Unidade Multidisciplinar de Genômica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Fabrice Homblé
- Laboratoire de Structure et Fonction des Membranes Biologiques (SFMB), Université Libre de Bruxelles, Campus Plaine (CP 206/2), B-1050 Bruxelles, Belgium
| | - Jean-Marie Ruysschaert
- Laboratoire de Structure et Fonction des Membranes Biologiques (SFMB), Université Libre de Bruxelles, Campus Plaine (CP 206/2), B-1050 Bruxelles, Belgium
| | - Wanda Maria Almeida von Krüger
- Unidade Multidisciplinar de Genômica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Paulo Mascarello Bisch
- Unidade Multidisciplinar de Genômica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil.,Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Instituto Nacional de Metrologia, Normalização e Qualidade Industrial, Inmetro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil.,Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil.,Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| | - Maria Cristina Machado Motta
- Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil.,Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B. Festkörper-NMR-Spektroskopie mit Protonendetektion an fibrillären Proteinen und Membranproteinen. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201008244] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B. Proton-detected solid-state NMR spectroscopy of fibrillar and membrane proteins. Angew Chem Int Ed Engl 2011; 50:4508-12. [PMID: 21495136 DOI: 10.1002/anie.201008244] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Indexed: 01/12/2023]
Affiliation(s)
- Rasmus Linser
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Reyes LH, Almario MP, Kao KC. Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli. PLoS One 2011; 6:e17678. [PMID: 21408113 PMCID: PMC3050900 DOI: 10.1371/journal.pone.0017678] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/05/2011] [Indexed: 01/08/2023] Open
Abstract
Background n-Butanol is a promising emerging biofuel, and recent metabolic engineering efforts have demonstrated the use of several microbial hosts for its production. However, most organisms have very low tolerance to n-butanol (up to 2% (v/v)), limiting the economic viability of this biofuel. The rational engineering of more robust n-butanol production hosts relies upon understanding the mechanisms involved in tolerance. However, the existing knowledge of genes involved in n-butanol tolerance is limited. The goal of this study is therefore to identify E. coli genes that are involved in n-butanol tolerance. Methodology/Principal Findings Using a genomic library enrichment strategy, we identified approximately 270 genes that were enriched or depleted in n-butanol challenge. The effects of these candidate genes on n-butanol tolerance were experimentally determined using overexpression or deletion libraries. Among the 55 enriched genes tested, 11 were experimentally shown to confer enhanced tolerance to n-butanol when overexpressed compared to the wild-type. Among the 84 depleted genes tested, three conferred increased n-butanol resistance when deleted. The overexpressed genes that conferred the largest increase in n-butanol tolerance were related to iron transport and metabolism, entC and feoA, which increased the n-butanol tolerance by 32.8±4.0% and 49.1±3.3%, respectively. The deleted gene that resulted in the largest increase in resistance to n-butanol was astE, which enhanced n-butanol tolerance by 48.7±6.3%. Conclusions/Significance We identified and experimentally verified 14 genes that decreased the inhibitory effect of n-butanol tolerance on E. coli. From the data, we were able to expand the current knowledge on the genes involved in n-butanol tolerance; the results suggest that an increased iron transport and metabolism and decreased acid resistance may enhance n-butanol tolerance. The genes and mechanisms identified in this study will be helpful in the rational engineering of more robust biofuel producers.
Collapse
Affiliation(s)
- Luis H. Reyes
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Maria P. Almario
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Katy C. Kao
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Comparative analysis of the biochemical and functional properties of C-terminal domains of autotransporters. J Bacteriol 2010; 192:5588-602. [PMID: 20802036 DOI: 10.1128/jb.00432-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Autotransporters (ATs) are the largest group of proteins secreted by Gram-negative bacteria and include many virulence factors from human pathogens. ATs are synthesized as large precursors with a C-terminal domain that is inserted in the outer membrane (OM) and is essential for the translocation of an N-terminal passenger domain to the extracellular milieu. Several mechanisms have been proposed for AT secretion. Self-translocation models suggest transport across a hydrophilic channel formed by an internal pore of the β-barrel or by the oligomerization of C-terminal domains. Alternatively, an assisted-translocation model suggests that transport employs a conserved machinery of the bacterial OM such as the Bam complex. In this work we have investigated AT secretion by carrying out a comparative study to analyze the conserved biochemical and functional features of different C-terminal domains selected from ATs of gammaproteobacteria, betaproteobacteria, alphaproteobacteria, and epsilonproteobacteria. Our results indicate that C-terminal domains having an N-terminal α-helix and a β-barrel constitute functional transport units for the translocation of peptides and immunoglobulin domains with disulfide bonds. In vivo and in vitro analyses show that multimerization is not a conserved feature in AT C-terminal domains. Furthermore, we demonstrate that the deletion of the conserved α-helix severely impairs β-barrel folding and OM insertion and thereby blocks passenger domain secretion. These observations suggest that the AT β-barrel without its α-helix cannot form a stable hydrophilic channel in the OM for protein translocation. The implications of our data for an understanding of AT secretion are discussed.
Collapse
|
36
|
Korkmaz-Ozkan F, Köster S, Kühlbrandt W, Mäntele W, Yildiz O. Correlation between the OmpG secondary structure and its pH-dependent alterations monitored by FTIR. J Mol Biol 2010; 401:56-67. [PMID: 20561532 DOI: 10.1016/j.jmb.2010.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/01/2010] [Accepted: 06/08/2010] [Indexed: 11/16/2022]
Abstract
The channel activity of the outer-membrane protein G (OmpG) from Escherichia coli is pH-dependent. To investigate the role of the histidine pair His231/His261 in triggering channel opening and closing, we mutated both histidines to alanines and cysteines. Fourier transform infrared spectra revealed that the OmpG mutants stay-independent of pH-in an open conformation. Temperature ramp experiments indicate that the mutants are as stable as the open state of wild-type OmpG. The X-ray structure of the alanine-substituted OmpG mutant obtained at pH 6.5 confirms the constitutively open conformation. Compared to previous structures of the wild-type protein in the open and closed conformation, the mutant structure shows a difference in the extracellular loop L6 connecting beta-strands S12 and S13. A deletion of amino acids 220-228, which are thought to block the channel at low pH in wild-type OmpG, indicates conformational changes, which might be triggered by His231/His261.
Collapse
Affiliation(s)
- Filiz Korkmaz-Ozkan
- Institute of Biophysics, Goethe-University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
37
|
pH-Induced Conformational Change of the β-Barrel-Forming Protein OmpG Reconstituted into Native E. coli Lipids. J Mol Biol 2010; 396:610-6. [DOI: 10.1016/j.jmb.2009.12.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/11/2009] [Accepted: 12/17/2009] [Indexed: 11/18/2022]
|
38
|
Chen M, Li QH, Bayley H. Orientation of the monomeric porin OmpG in planar lipid bilayers. Chembiochem 2009; 9:3029-36. [PMID: 19012294 DOI: 10.1002/cbic.200800444] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Outer membrane protein G (OmpG) is a non-selective porin from Escherichia coli. OmpG is a monomer, which makes it unusual among porins, and suggests that it may be useful in biotechnology. In planar lipid bilayers, individual OmpG pores reconstituted by insertion from detergent exhibit pronounced asymmetry in current-voltage relationships and voltage-dependent gating. Here, this asymmetry is used to deduce the orientation of OmpG in the bilayers. We introduced two cysteines into the extracellular loops of OmpG. Cleavage of the disulfide bond formed by these residues significantly increases spontaneous gating of the pore. By adding DTT to one side of the bilayer or the other, we demonstrated that pores showing a quiet trace at negative potentials have a "trans" conformation (extracellular loops on the trans side of the bilayer), while pores showing a quiet trace at positive potentials have a "cis" conformation (extracellular loops on the cis side). With this knowledge, we examined the binding of a cyclodextrin to OmpG. When the cyclodextrin was presented to the extracellular face of the pore, transient multisite interactions were observed. In contrast, when the cyclodextrin was presented to the periplasmic face, a more stable single-site interaction occurred. Because the cyclodextrin can act as a molecular adapter by binding analytes, this information serves to advance the use of OmpG as a biosensor.
Collapse
Affiliation(s)
- Min Chen
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
39
|
Anbazhagan V, Qu J, Kleinschmidt JH, Marsh D. Incorporation of outer membrane protein OmpG in lipid membranes: protein-lipid interactions and beta-barrel orientation. Biochemistry 2008; 47:6189-98. [PMID: 18473482 DOI: 10.1021/bi800203g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OmpG is an intermediate size, monomeric, outer membrane protein from Escherichia coli, with n beta = 14 beta-strands. It has a large pore that is amenable to modification by protein engineering. The stoichiometry ( N b = 20) and selectivity ( K r = 0.7-1.2) of lipid-protein interaction with OmpG incorporated in dimyristoyl phosphatidylcholine bilayer membranes was determined with various 14-position spin-labeled lipids by using EPR spectroscopy. The limited selectivity for different lipid species is consistent with the disposition of charged residues in the protein. The conformation and orientation (beta-strand tilt and beta-barrel order parameters) of OmpG in disaturated phosphatidylcholines of odd and even chain lengths from C(12:0) to C(17:0) was determined from polarized infrared spectroscopy of the amide I and amide II bands. A discontinuity in the protein orientation (deduced from the beta-barrel order parameters) is observed at the point of hydrophobic matching of the protein with lipid chain length. Compared with smaller (OmpA; n beta = 8) and larger (FhuA; n beta = 22) monomeric E. coli outer membrane proteins, the stoichiometry of motionally restricted lipids increases linearly with the number of beta-strands, the tilt (beta approximately 44 degrees ) of the beta-strands is comparable for the three proteins, and the order parameter of the beta-barrel increases regularly with n beta. These systematic features of the integration of monomeric beta-barrel proteins in lipid membranes could be useful for characterizing outer membrane proteins of unknown structure.
Collapse
Affiliation(s)
- V Anbazhagan
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany
| | | | | | | |
Collapse
|
40
|
Malek K, van Santen RA. Chiral separation in modified silica nanotube membranes: A molecular simulation study. J Memb Sci 2008. [DOI: 10.1016/j.memsci.2007.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Hiller M, Higman VA, Jehle S, van Rossum BJ, Kühlbrandt W, Oschkinat H. [2,3-13C]-labeling of Aromatic ResiduesGetting a Head Start in the Magic-Angle-Spinning NMR Assignment of Membrane Proteins. J Am Chem Soc 2007; 130:408-9. [DOI: 10.1021/ja077589n] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthias Hiller
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany, and Max-Planck-Institut für Biophysik, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Victoria A. Higman
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany, and Max-Planck-Institut für Biophysik, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Stefan Jehle
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany, and Max-Planck-Institut für Biophysik, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Barth-Jan van Rossum
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany, and Max-Planck-Institut für Biophysik, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany, and Max-Planck-Institut für Biophysik, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany, and Max-Planck-Institut für Biophysik, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
42
|
Mendu DR, Dasari VR, Cai M, Kim KS. Protein folding intermediates of invasin protein IbeA from Escherichia coli. FEBS J 2007; 275:458-69. [PMID: 18167139 DOI: 10.1111/j.1742-4658.2007.06213.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
IbeA of Escherichia coli K1 was cloned, expressed and purified as a His(6)-tag fusion protein. The purified fusion protein inhibited E. coli K1 invasion of human brain microvascular endothelial cells and was heat-modifiable. The structural and functional aspects, along with equilibrium unfolding of IbeA, were studied in solution. The far-UV CD spectrum of IbeA at pH 7.0 has a strong negative peak at 215 nm, indicating the existence of beta-sheet-like structure. The acidic unfolding curve of IbeA at pH 2.0 shows the existence of a partially unfolded molecule (molten globule-like structure) with beta-sheet-like structure and displays strong 8-anilino-2-naphthyl sulfonic acid (ANS) binding. The pH dependent intrinsic fluorescence of IbeA was biphasic. At pH 2.0, IbeA exists in a partially unfolded state with characteristics of a molten globule-like state, and the protein is in extended beta-sheet conformation and exhibits strong ANS binding. Guanidine hydrochloride denaturation of IbeA in the molten globule-like state is noncooperative, contrary to the cooperativity seen with the native protein, suggesting the presence of two domains (possibly) in the molecular structure of IbeA, with differential unfolding stabilities. Furthermore, tryptophan quenching studies suggested the exposure of aromatic residues to solvent in this state. Acid denatured unfolding of IbeA monitored by far-UV CD is non-cooperative with two transitions at pH 3.0-1.5 and 1.5-0.5. At lower pH, IbeA unfolds to the acid-unfolded state, and a further decrease in pH to 2.0 drives the protein to the A state. The presence of 0.5 m KCl in the solvent composition directs the transition to the A state by bypassing the acid-unfolded state. Additional guanidine hydrochloride induced conformational changes in IbeA from the native to the A-state, as monitored by near- and far-UV CD and ANS-fluorescence.
Collapse
Affiliation(s)
- Damodara R Mendu
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
43
|
Shiba Y, Matsumoto K, Hara H. DjlA negatively regulates the Rcs signal transduction system in Escherichia coli. Genes Genet Syst 2007; 81:51-6. [PMID: 16607041 DOI: 10.1266/ggs.81.51] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The Rcs signal transduction system of Escherichia coli regulating capsular polysaccharide synthesis (cps) genes is activated by overexpression of the djlA gene encoding a cytoplasmic membrane-anchored DnaJ-like protein. However, by monitoring the expression of a cpsB'-lac fusion in pgsA- and mdoH-null mutants in which the Rcs system is activated, we found that the Rcs activity was further increased by deletion of djlA and decreased by low-level extrachromosomal expression of djlA. Furthermore, deletion of djlA in a wild-type strain led to small but significant increase of the basal-level activity of the Rcs system. These results demonstrate that DjlA functions as a negative regulator of the Rcs system unless abnormally overproduced.
Collapse
Affiliation(s)
- Yasuhiro Shiba
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Japan
| | | | | |
Collapse
|
44
|
Liang B, Tamm LK. Structure of outer membrane protein G by solution NMR spectroscopy. Proc Natl Acad Sci U S A 2007; 104:16140-5. [PMID: 17911261 PMCID: PMC2042175 DOI: 10.1073/pnas.0705466104] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial outer membrane protein G (OmpG), a monomeric pH-gated porin, was overexpressed in Escherichia coli and refolded in beta-octyl glucoside micelles. After transfer into dodecylphosphocholine micelles, the solution structure of OmpG was determined by solution NMR spectroscopy at pH 6.3. Complete backbone assignments were obtained for 234 of 280 residues based on CA, CB, and CO connection pathways determined from a series of TROSY-based 3D experiments at 800 MHz. The global fold of the 14-stranded beta-barrel was determined based on 133 long-range NOEs observed between neighboring strands and local chemical shift and NOE information. The structure of the barrel is very similar to previous crystal structures, but the loops of the solution structure are quite flexible.
Collapse
Affiliation(s)
- Binyong Liang
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1300 Jefferson Park Avenue, P.O. Box 800736, Charlottesville, VA 22908
| | - Lukas K. Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1300 Jefferson Park Avenue, P.O. Box 800736, Charlottesville, VA 22908
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Sun G, Pal S, Sarcon AK, Kim S, Sugawara E, Nikaido H, Cocco MJ, Peterson EM, de la Maza LM. Structural and functional analyses of the major outer membrane protein of Chlamydia trachomatis. J Bacteriol 2007; 189:6222-35. [PMID: 17601785 PMCID: PMC1951919 DOI: 10.1128/jb.00552-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis is a major pathogen throughout the world, and preventive measures have focused on the production of a vaccine using the major outer membrane protein (MOMP). Here, in elementary bodies and in preparations of the outer membrane, we identified native trimers of the MOMP. The trimers were stable under reducing conditions, although disulfide bonds appear to be present between the monomers of a trimer and between trimers. Cross-linking of the outer membrane complex demonstrated that the MOMP is most likely not in a close spatial relationship with the 60- and 12-kDa cysteine-rich proteins. Extraction of the MOMP from Chlamydia isolates under nondenaturing conditions yielded the trimeric conformation of this protein as shown by cross-linking and analysis by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis with different concentrations of acrylamide. Using circular dichroism spectroscopy, we determined that the trimers were formed mainly of beta-pleated sheet structures in detergent micelles. Using a liposomal swelling assay, the MOMP was found to have porin activity, and the size of the pore was estimated to be approximately 2 nm in diameter. The trimers were found to be stable in SDS at temperatures ranging from 4 to 37 degrees C and over a pH range of 5.0 to 8.0. In addition, the trimers of MOMP were found to be resistant to digestion with trypsin. In conclusion, these results show that the native conformation of the MOMP of C. trachomatis is a trimer with predominantly a beta-sheet structure and porin function.
Collapse
Affiliation(s)
- Guifeng Sun
- Department of Pathology and Laboratory Medicine, Medical Sciences, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jehle S, Hiller M, Rehbein K, Diehl A, Oschkinat H, van Rossum BJ. Spectral editing: selection of methyl groups in multidimensional solid-state magic-angle spinning NMR. JOURNAL OF BIOMOLECULAR NMR 2006; 36:169-77. [PMID: 17031530 DOI: 10.1007/s10858-006-9078-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 08/08/2006] [Indexed: 05/12/2023]
Abstract
A simple spectroscopic filtering technique is presented that may aid the assignment of (13)C and (15)N resonances of methyl-containing amino-acids in solid-state magic-angle spinning (MAS) NMR. A filtering block that selects methyl resonances is introduced in two-dimensional (2D) (13)C-homonuclear and (15)N-(13)C heteronuclear correlation experiments. The 2D (13)C-(13)C correlation spectra are recorded with the methyl filter implemented prior to a (13)C-(13)C mixing step. It is shown that these methyl-filtered (13)C-homonuclear correlation spectra are instrumental in the assignment of C(delta) resonances of leucines by suppression of C(gamma)-C(delta) cross peaks. Further, a methyl filter is implemented prior to a (15)N-(13)C transferred-echo double resonance (TEDOR) exchange scheme to obtain 2D (15)N-(13)C heteronuclear correlation spectra. These experiments provide correlations between methyl groups and backbone amides. Some of the observed sequential (15)N-(13)C correlations form the basis for initial sequence-specific assignments of backbone signals of the outer-membrane protein G.
Collapse
Affiliation(s)
- Stefan Jehle
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, D-13125, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Visudtiphole V, Chalton DA, Hong Q, Lakey JH. Determining OMP topology by computation, surface plasmon resonance and cysteine labelling: the test case of OMPG. Biochem Biophys Res Commun 2006; 351:113-7. [PMID: 17055462 DOI: 10.1016/j.bbrc.2006.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 10/03/2006] [Indexed: 10/24/2022]
Abstract
Bacterial outer-membrane proteins (OMP) are important in pathogenicity and the recently solved structure of OmpG provides an excellent test case for topological predictions since it is monomeric. Here we compare the results of applying several computerised structure prediction algorithms to the sequence of OmpG. Furthermore, we probe the OmpG topology by both an established chemical labelling approach and a new method which combines epitope insertion and surface plasmon resonance. The computational approaches are broadly accurate but the exact choice of the number of beta strands remains difficult. The algorithms also tend to predict the entire beta strand rather than just the transmembrane region. Epitope insertion clearly pinpoints exposed loops but its utility in defining buried or periplasmic sites is less clear cut. Cysteine-mutant labelling is largely confined to exposed residues but one periplasmic cysteine may be labelled by reagents entering via the OmpG pore.
Collapse
Affiliation(s)
- Virak Visudtiphole
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle NE2 4HH, UK
| | | | | | | |
Collapse
|
48
|
Yildiz Ö, Vinothkumar KR, Goswami P, Kühlbrandt W. Structure of the monomeric outer-membrane porin OmpG in the open and closed conformation. EMBO J 2006; 25:3702-13. [PMID: 16888630 PMCID: PMC1538548 DOI: 10.1038/sj.emboj.7601237] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 06/14/2006] [Indexed: 11/09/2022] Open
Abstract
OmpG, a monomeric pore-forming protein from Escherichia coli outer membranes, was refolded from inclusion bodies and crystallized in two different conformations. The OmpG channel is a 14-stranded beta-barrel, with short periplasmic turns and seven extracellular loops. Crystals grown at neutral pH show the channel in the open state at 2.3 A resolution. In the 2.7 A structure of crystals grown at pH 5.6, the pore is blocked by loop 6, which folds across the channel. The rearrangement of loop 6 appears to be triggered by a pair of histidine residues, which repel one another at acidic pH, resulting in the breakage of neighbouring H-bonds and a lengthening of loop 6 from 10 to 17 residues. A total of 151 ordered LDAO detergent molecules were found in the 2.3 A structure, mostly on the hydrophobic outer surface of OmpG, mimicking the outer membrane lipid bilayer, with three LDAO molecules in the open pore. In the 2.7 A structure, OmpG binds one OG and one glucose molecule as sugar substrates in the closed pore.
Collapse
Affiliation(s)
- Özkan Yildiz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Kutti R Vinothkumar
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Panchali Goswami
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, Frankfurt am Main 60438, Germany. Tel.: +49 69 6303 3000; Fax: +49 69 6303 3002; E-mail:
| |
Collapse
|
49
|
Subbarao GV, van den Berg B. Crystal Structure of the Monomeric Porin OmpG. J Mol Biol 2006; 360:750-9. [PMID: 16797588 DOI: 10.1016/j.jmb.2006.05.045] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 04/21/2006] [Accepted: 05/18/2006] [Indexed: 11/17/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria contains a large number of channel proteins that mediate the uptake of ions and nutrients necessary for growth and functioning of the cell. An important group of OM channel proteins are the porins, which mediate the non-specific, diffusion-based passage of small (<600 Da) polar molecules. All porins of Gram-negative bacteria that have been crystallized to date form stable trimers, with each monomer composed of a 16-stranded beta-barrel with a relatively narrow central pore. In contrast, the OmpG porin is unique, as it appears to function as a monomer. We have determined the X-ray crystal structure of OmpG from Escherichia coli to a resolution of 2.3 A. The structure shows a 14-stranded beta-barrel with a relatively simple architecture. Due to the absence of loops that fold back into the channel, OmpG has a large ( approximately 13 A) central pore that is considerably wider than those of other E. coli porins, and very similar in size to that of the toxin alpha-hemolysin. The architecture of the channel, together with previous biochemical and other data, suggests that OmpG may form a non-specific channel for the transport of larger oligosaccharides. The structure of OmpG provides the starting point for engineering studies aiming to generate selective channels and for the development of biosensors.
Collapse
Affiliation(s)
- Gowtham V Subbarao
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
50
|
Sundara Baalaji N, Mathew MK, Krishnaswamy S. Functional assay of Salmonella typhi OmpC using reconstituted large unilamellar vesicles: a general method for characterization of outer membrane proteins. Biochimie 2006; 88:1419-24. [PMID: 16765505 DOI: 10.1016/j.biochi.2006.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
The immunodominant trimeric beta-barrel outer membrane protein OmpC from Salmonella typhi, the causative agent of typhoid, has been functionally characterized here. The activity in the vesicle environment was studied in vitro using OmpC reconstituted into proteoliposomes. Passage of polysaccharides and polyethyleneglycols through OmpC has been examined to determine the permeability properties. The relative rate of neutral solute flux yields a radius of 1.1 nm for the S. typhi OmpC pore. This is almost double the pore size of Escherichia coli. This provides an example of large pore size present in the porins that form trimers as in the general bacterial porin family. The method used in this study provides a good membrane model for functional studies of porins.
Collapse
Affiliation(s)
- N Sundara Baalaji
- Center of Excellence in Bioinformatics, School of Biotechnology, Madurai-Kamaraj University, Palkalainagar, Madurai 625021, India
| | | | | |
Collapse
|