1
|
Mendoza-Martínez AE, Sánchez O, Aguirre J. The role of peroxiredoxins PrxA and PrxB in the antioxidant response, carbon utilization and development in Aspergillus nidulans. Fungal Biol 2023; 127:1198-1208. [PMID: 37495309 DOI: 10.1016/j.funbio.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
In addition to their role in the breakdown of H2O2, some peroxiredoxins (Prxs) have chaperone and H2O2 sensing functions. Acting as an H2O2 sensor, Prx Gpx3 transfers the oxidant signal to the transcription factor Yap1, involved in the antioxidant response in Saccharomyces cerevisiae. We have shown that Aspergillus nidulans Yap1 ortholog NapA is necessary for the antioxidant response, the utilization of arabinose, fructose and ethanol, and for proper development. To address the Prx roles in these processes, we generated and characterized mutants lacking peroxiredoxins PrxA, PrxB, PrxC, or TpxC. Our results show that the elimination of peroxiredoxins PrxC or TpxC does not produce any distinguishable phenotype. In contrast, the elimination of atypical 2-cysteine peroxiredoxins PrxA and PrxB produce different mutant phenotypes. ΔprxA, ΔnapA and ΔprxA ΔnapA mutants are equally sensitive to H2O2 and menadione, while PrxB is dispensable for this. However, the sensitivity of ΔprxA and ΔprxA ΔnapA mutants is increased by the lack of PrxB. Moreover, PrxB is required for arabinose and ethanol utilization and fruiting body cell wall pigmentation. PrxA expression is partially independent of NapA, and the replacement of peroxidatic cysteine 61 by serine (C61S) is enough to cause oxidative stress sensitivity and prevent NapA nuclear accumulation in response to H2O2, indicating its critical role in H2O2 sensing. Our results show that despite their high similarity, PrxA and PrxB play differential roles in Aspergillus nidulans antioxidant response, carbon utilization and development.
Collapse
Affiliation(s)
- Ariann E Mendoza-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510, México, D.F., Mexico
| | - Olivia Sánchez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510, México, D.F., Mexico
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510, México, D.F., Mexico.
| |
Collapse
|
2
|
Yoshimi A, Hagiwara D, Ono M, Fukuma Y, Midorikawa Y, Furukawa K, Fujioka T, Mizutani O, Sato N, Miyazawa K, Maruyama JI, Marui J, Yamagata Y, Nakajima T, Tanaka C, Abe K. Downregulation of the ypdA Gene Encoding an Intermediate of His-Asp Phosphorelay Signaling in Aspergillus nidulans Induces the Same Cellular Effects as the Phenylpyrrole Fungicide Fludioxonil. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:675459. [PMID: 37744139 PMCID: PMC10512292 DOI: 10.3389/ffunb.2021.675459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/26/2021] [Indexed: 09/26/2023]
Abstract
Many eukaryotic histidine-to-aspartate (His-Asp) phosphorelay systems consist of three types of signal transducers: a His-kinase (HK), a response regulator (RR), and a histidine-containing phosphotransfer intermediate (HPt). In general, the HPt acts as an intermediate between the HK and the RR and is indispensable for inducing appropriate responses to environmental stresses. In a previous study, we attempted but were unable to obtain deletion mutants of the ypdA gene in order to characterize its function in the filamentous fungus Aspergillus nidulans. In the present study, we constructed the CypdA strain in which ypdA expression is conditionally regulated by the A. nidulans alcA promoter. We constructed CypdA strains with RR gene disruptions (CypdA-sskAΔ, CypdA-srrAΔ, and CypdA-sskAΔsrrAΔ). Suppression of YpdA induced by ypdA downregulation activated the downstream HogA mitogen-activated protein kinase cascade. YpdA suppression caused severe growth defects and abnormal hyphae, with features such as enhanced septation, a decrease in number of nuclei, nuclear fragmentation, and hypertrophy of vacuoles, both regulated in an SskA-dependent manner. Fludioxonil treatment caused the same cellular responses as ypdA suppression. The growth-inhibitory effects of fludioxonil and the lethality caused by ypdA downregulation may be caused by the same or similar mechanisms and to be dependent on both the SskA and SrrA pathways.
Collapse
Affiliation(s)
- Akira Yoshimi
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Kyoto University, Kyoto, Japan
| | - Daisuke Hagiwara
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Miyako Ono
- Laboratory of Applied Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yasuyuki Fukuma
- Laboratory of Applied Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yura Midorikawa
- Laboratory of Applied Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kentaro Furukawa
- Laboratory of Enzymology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomonori Fujioka
- Laboratory of Enzymology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Osamu Mizutani
- Laboratory of Applied Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Natsuko Sato
- Laboratory of Enzymology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ken Miyazawa
- Laboratory of Applied Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Junichiro Marui
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Youhei Yamagata
- Laboratory of Enzymology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tasuku Nakajima
- Laboratory of Enzymology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Chihiro Tanaka
- Terrestrial Microbial Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Keietsu Abe
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Laboratory of Applied Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Laboratory of Enzymology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Igbalajobi O, Gao J, Fischer R. The HOG Pathway Plays Different Roles in Conidia and Hyphae During Virulence of Alternaria alternata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1405-1410. [PMID: 33104446 DOI: 10.1094/mpmi-06-20-0165-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The black mold Alternaria alternata causes dramatic losses in agriculture due to postharvest colonization and mycotoxin formation and is a weak pathogen on living plants. Fungal signaling processes are crucial for successful colonization of a host plant. Because the mitogen-activated protein kinase HogA is important for the expression of stress-associated genes, we tested a ∆hogA-deletion strain for pathogenicity. When conidia were used as inoculum, the ∆hogA-deletion strain was largely impaired in colonizing tomato and apple. In comparison, hyphae as inoculum colonized the fruit very well. Hence, HogA appears to be important only in the initial stages of plant colonization. A similar difference between conidial inoculum and hyphal inoculum was observed on artificial medium in the presence of different stress agents. Whereas wild-type conidia adapted well to different stresses, the ∆hogA-deletion strain failed to grow under the same conditions. With hyphae as inoculum, the wild type and the ∆hogA-deletion strain grew in a very similar way. At the molecular level, we observed upregulation of several catalase (catA, -B, and -D) and superoxide dismutase (sodA, -B, and -E) genes in germlings but not in hyphae after exposure to 4 mM hydrogen peroxide. The upregulation required the high osmolarity glycerol (HOG) pathway. In contrast, in mycelia, catD, sodA, sodB, and sodE were upregulated upon stress in the absence of HogA. Several other stress-related genes behaved in a similar way.
Collapse
Affiliation(s)
- Olumuyiwa Igbalajobi
- Karlsruhe Institute of Technology (KIT)-South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4,D-76131 Karlsruhe, Germany
| | - Jia Gao
- Karlsruhe Institute of Technology (KIT)-South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4,D-76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT)-South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4,D-76131 Karlsruhe, Germany
| |
Collapse
|
4
|
Zhu Z, Yang M, Bai Y, Ge F, Wang S. Antioxidant-related catalase CTA1 regulates development, aflatoxin biosynthesis, and virulence in pathogenic fungus Aspergillus flavus. Environ Microbiol 2020; 22:2792-2810. [PMID: 32250030 DOI: 10.1111/1462-2920.15011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species (ROS) induce the synthesis of a myriad of secondary metabolites, including aflatoxins. It raises significant concern as it is a potent environmental contaminant. In Aspergillus flavus., antioxidant enzymes link ROS stress response with coordinated gene regulation of aflatoxin biosynthesis. In this study, we characterized the function of a core component of the antioxidant enzyme catalase (CTA1) of A. flavus. Firstly, we verified the presence of cta1 corresponding protein (CTA1) by Western blot analysis and mass-spectrometry based analysis. Then, the functional study revealed that the growth, sporulation and sclerotia formation significantly increased, while aflatoxins production and virulence were decreased in the cta1 deletion mutant as compared with the WT and complementary strains. Furthermore, the absence of the cta1 gene resulted in a significant rise in the intracellular ROS level, which in turn added to the oxidative stress level of cells. A further quantitative proteomics investigation hinted that in vivo, CTA1 might maintain the ROS level to facilitate the aflatoxin synthesis. All in all, the pleiotropic phenotype of A. flavus CTA1 deletion mutant revealed that the antioxidant system plays a crucial role in fungal development, aflatoxins biosynthesis and virulence.
Collapse
Affiliation(s)
- Zhuo Zhu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingkun Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Youhuang Bai
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
5
|
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol Mol Biol Rev 2018; 82:e00068-17. [PMID: 29643171 PMCID: PMC5968459 DOI: 10.1128/mmbr.00068-17] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salomon Bartnicki-García
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Ursula Fleig
- Institute for Functional Genomics of Microorganisms, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Jörg Kämper
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ulrich Kück
- Ruhr University Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Bochum, Germany
| | - Rosa R Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Norio Takeshita
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
6
|
Poirier F, Boursier C, Mesnage R, Oestreicher N, Nicolas V, Vélot C. Proteomic analysis of the soil filamentous fungus Aspergillus nidulans exposed to a Roundup formulation at a dose causing no macroscopic effect: a functional study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25933-25946. [PMID: 28940012 DOI: 10.1007/s11356-017-0217-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
Roundup® is a glyphosate-based herbicide (GBH) used worldwide both in agriculture and private gardens. Thus, it constitutes a substantial source of environmental contaminations, especially for water and soil, and may impact a number of non-target organisms essential for ecosystem balance. The soil filamentous fungus Aspergillus nidulans has been shown to be highly affected by a commercial formulation of Roundup® (R450), containing 450 g/L of glyphosate (GLY), at doses far below recommended agricultural application rate. In the present study, we used two-dimensional gel electrophoresis combined to mass spectrometry to analyze proteomic pattern changes in A. nidulans exposed to R450 at a dose corresponding to the no-observed-adverse-effect level (NOAEL) for macroscopic parameters (31.5 mg/L GLY among adjuvants). Comparative analysis revealed a total of 82 differentially expressed proteins between control and R450-treated samples, and 85% of them (70) were unambiguously identified. Their molecular functions were mainly assigned to cell detoxification and stress response (16%), protein synthesis (14%), amino acid metabolism (13%), glycolysis/gluconeogenesis/glycerol metabolism/pentose phosphate pathway (13%) and Krebs TCA cycle/acetyl-CoA synthesis/ATP metabolism (10%). These results bring new insights into the understanding of the toxicity induced by higher doses of this herbicide in the soil model organism A. nidulans. To our knowledge, this study represents the first evidence of protein expression modulation and, thus, possible metabolic disturbance, in response to an herbicide treatment at a dose that does not cause any visible effect. These data are likely to challenge the concept of "substantial equivalence" when applied to herbicide-tolerant plants.
Collapse
Affiliation(s)
- Florence Poirier
- Université Paris 13, UFR SMBH, Plateforme PPUP13, 1 rue de Chablis, 93017, Bobigny cedex, France
| | - Céline Boursier
- UMS-IPSIT, US31 Inserm-UMS3679 CNRS, Plateformes Trans-Prot et d'Imagerie Cellulaire, Université Paris-Sud, Faculté de Pharmacie, Tour E1, 5 Rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| | - Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, SE1 9RT, London, UK
- CRIIGEN, 81 rue Monceau, 75008, Paris, France
| | - Nathalie Oestreicher
- Laboratoire VEAC, Université Paris-Sud, Faculté des Sciences, Bât. 360, Rue du Doyen André Guinier, 91405, Orsay, France
- Pôle Risques MRSH-CNRS, Université de Caen, Esplanade de la Paix, 14032, Caen, France
| | - Valérie Nicolas
- UMS-IPSIT, US31 Inserm-UMS3679 CNRS, Plateformes Trans-Prot et d'Imagerie Cellulaire, Université Paris-Sud, Faculté de Pharmacie, Tour E1, 5 Rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| | - Christian Vélot
- CRIIGEN, 81 rue Monceau, 75008, Paris, France.
- Laboratoire VEAC, Université Paris-Sud, Faculté des Sciences, Bât. 360, Rue du Doyen André Guinier, 91405, Orsay, France.
- Pôle Risques MRSH-CNRS, Université de Caen, Esplanade de la Paix, 14032, Caen, France.
| |
Collapse
|
7
|
Igbalajobi OA, Yu JH, Shin KS. Characterization of the rax1 gene encoding a putative regulator of G protein signaling in Aspergillus fumigatus. Biochem Biophys Res Commun 2017; 487:426-432. [PMID: 28427940 DOI: 10.1016/j.bbrc.2017.04.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/15/2017] [Indexed: 10/19/2022]
Abstract
The filamentous fungus Aspergillus fumigatus is the major cause of life threatening invasive aspergillosis, and its small hydrophobic asexual spores (conidia) are the major infection agent. To better understand biology of A. fumigatus, we have characterized the rax1 gene encoding a putative regulator of G protein signaling (RGS). The deletion (Δ) of rax1 results in restricted colony growth and highly reduced number of conidia in A. fumigatus. Transcript levels of the three central activators of asexual development abaA, brlA, and wetA are significantly reduced in the Δrax1 mutant. However, the Δrax1 conidia, but not vegetative cells, are specifically resistant against H2O2 stress. The Δrax1 conidia accumulate higher mRNA levels of sakA encoding a key MAP kinase for stress response. Moreover, the Δrax1 conidia contain over five-fold amount of trehalose, an osmolyte and protein/membrane protectant. Transmission electron microscopy analyses indicate that the Δrax1 conidia have the thicker melanized-outermost cell wall layer compared to those of wild-type. In summary, Rax1 positively controls growth and development, and modulates intracellular trehalose amount, cell wall melanin levels in conidia, and spore resistance to H2O2.
Collapse
Affiliation(s)
| | - Jae-Hyuk Yu
- Departments of Bacteriology and Genetics, University of Wisconsin-Madison, Madison WI53706, USA.
| | - Kwang-Soo Shin
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 300-716, Republic of Korea.
| |
Collapse
|
8
|
Mendoza-Martínez AE, Lara-Rojas F, Sánchez O, Aguirre J. NapA Mediates a Redox Regulation of the Antioxidant Response, Carbon Utilization and Development in Aspergillus nidulans. Front Microbiol 2017; 8:516. [PMID: 28424666 PMCID: PMC5371717 DOI: 10.3389/fmicb.2017.00516] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/13/2017] [Indexed: 01/27/2023] Open
Abstract
The redox-regulated transcription factors (TFs) of the bZIP AP1 family, such as yeast Yap1 and fission yeast Pap1, are activated by peroxiredoxin proteins (Prxs) to regulate the antioxidant response. Previously, Aspergillus nidulans mutants lacking the Yap1 ortholog NapA have been characterized as sensitive to H2O2 and menadione. Here we study NapA roles in relation to TFs SrrA and AtfA, also involved in oxidant detoxification, showing that these TFs play different roles in oxidative stress resistance, catalase gene regulation and development, during A. nidulans life cycle. We also uncover novel NapA roles in repression of sexual development, normal conidiation, conidial mRNA accumulation, and carbon utilization. The phenotypic characterization of ΔgpxA, ΔtpxA, and ΔtpxB single, double and triple peroxiredoxin mutants in wild type or ΔnapA backgrounds shows that none of these Prxs is required for NapA function in H2O2 and menadione resistance. However, these Prxs participate in a minor NapA-independent H2O2 resistance pathway and NapA and TpxA appear to regulate conidiation along the same route. Using transcriptomic analysis we show that during conidial development NapA-dependent gene expression pattern is different from canonical oxidative stress patterns. In the course of conidiation, NapA is required for regulation of at least 214 genes, including ethanol utilization genes alcR, alcA and aldA, and large sets of genes encoding proteins involved in transcriptional regulation, drug detoxification, carbohydrate utilization and secondary metabolism, comprising multiple oxidoreductases, membrane transporters and hydrolases. In agreement with this, ΔnapA mutants fail to grow or grow very poorly in ethanol, arabinose or fructose as sole carbon sources. Moreover, we show that NapA nuclear localization is induced not only by oxidative stress but also by growth in ethanol and by carbon starvation. Together with our previous work, these results show that SakA-AtfA, SrrA and NapA oxidative stress-sensing pathways regulate essential aspects of spore physiology (i.e., cell cycle arrest, dormancy, drug production and detoxification, and carbohydrate utilization).
Collapse
Affiliation(s)
- Ariann E Mendoza-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCoyoacán, Mexico
| | - Fernando Lara-Rojas
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCoyoacán, Mexico
| | - Olivia Sánchez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCoyoacán, Mexico
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCoyoacán, Mexico
| |
Collapse
|
9
|
Ianutsevich EA, Danilova OA, Groza NV, Tereshina VM. Membrane lipids and cytosol carbohydrates in Aspergillus niger under osmotic, oxidative, and cold impact. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716030152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Noble LM, Andrianopoulos A. Fungal genes in context: genome architecture reflects regulatory complexity and function. Genome Biol Evol 2013; 5:1336-52. [PMID: 23699226 PMCID: PMC3730340 DOI: 10.1093/gbe/evt077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene context determines gene expression, with local chromosomal environment most influential. Comparative genomic analysis is often limited in scope to conserved or divergent gene and protein families, and fungi are well suited to this approach with low functional redundancy and relatively streamlined genomes. We show here that one aspect of gene context, the amount of potential upstream regulatory sequence maintained through evolution, is highly predictive of both molecular function and biological process in diverse fungi. Orthologs with large upstream intergenic regions (UIRs) are strongly enriched in information processing functions, such as signal transduction and sequence-specific DNA binding, and, in the genus Aspergillus, include the majority of experimentally studied, high-level developmental and metabolic transcriptional regulators. Many uncharacterized genes are also present in this class and, by implication, may be of similar importance. Large intergenic regions also share two novel sequence characteristics, currently of unknown significance: they are enriched for plus-strand polypyrimidine tracts and an information-rich, putative regulatory motif that was present in the last common ancestor of the Pezizomycotina. Systematic consideration of gene UIR in comparative genomics, particularly for poorly characterized species, could help reveal organisms’ regulatory priorities.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Genetics, University of Melbourne, Victoria, Australia
| | | |
Collapse
|
11
|
Transcriptional changes in the transition from vegetative cells to asexual development in the model fungus Aspergillus nidulans. EUKARYOTIC CELL 2012; 12:311-21. [PMID: 23264642 DOI: 10.1128/ec.00274-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Morphogenesis encompasses programmed changes in gene expression that lead to the development of specialized cell types. In the model fungus Aspergillus nidulans, asexual development involves the formation of characteristic cell types, collectively known as the conidiophore. With the aim of determining the transcriptional changes that occur upon induction of asexual development, we have applied massive mRNA sequencing to compare the expression pattern of 19-h-old submerged vegetative cells (hyphae) with that of similar hyphae after exposure to the air for 5 h. We found that the expression of 2,222 (20.3%) of the predicted 10,943 A. nidulans transcripts was significantly modified after air exposure, 2,035 being downregulated and 187 upregulated. The activation during this transition of genes that belong specifically to the asexual developmental pathway was confirmed. Another remarkable quantitative change occurred in the expression of genes involved in carbon or nitrogen primary metabolism. Genes participating in polar growth or sexual development were transcriptionally repressed, as were those belonging to the HogA/SakA stress response mitogen-activated protein (MAP) kinase pathway. We also identified significant expression changes in several genes purportedly involved in redox balance, transmembrane transport, secondary metabolite production, or transcriptional regulation, mainly binuclear-zinc cluster transcription factors. Genes coding for these four activities were usually grouped in metabolic clusters, which may bring regulatory implications for the induction of asexual development. These results provide a blueprint for further stage-specific gene expression studies during conidiophore development.
Collapse
|
12
|
Lara-Rojas F, Sánchez O, Kawasaki L, Aguirre J. Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions. Mol Microbiol 2011; 80:436-54. [PMID: 21320182 PMCID: PMC3108070 DOI: 10.1111/j.1365-2958.2011.07581.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2011] [Indexed: 12/16/2022]
Abstract
Fungi utilize a phosphorelay system coupled to a MAP kinase module for sensing and processing environmental signals. In Aspergillus nidulans, response regulator SskA transmits osmotic and oxidative stress signals to the stress MAPK (SAPK) SakA. Using a genetic approach together with GFP tagging and molecular bifluorescence we show that SakA and ATF/CREB transcription factor AtfA define a general stress-signalling pathway that plays differential roles in oxidative stress responses during growth and development. AtfA is permanently localized in the nucleus, while SakA accumulates in the nucleus in response to oxidative or osmotic stress signals or during normal spore development, where it physically interacts with AtfA. AtfA is required for expression of several genes, the conidial accumulation of SakA and the viability of conidia. Furthermore, SakA is active (phosphorylated) in asexual spores, remaining phosphorylated in dormant conidia and becoming dephosphorylated during germination. SakA phosphorylation in spores depends on certain (SskA) but not other (SrrA and NikA) components of the phosphorelay system. Constitutive phosphorylation of SakA induced by the fungicide fludioxonil prevents both, germ tube formation and nuclear division. Similarly, Neurospora crassa SakA orthologue OS-2 is phosphorylated in intact conidia and gets dephosphorylated during germination. We propose that SakA-AtfA interaction regulates gene expression during stress and conidiophore development and that SAPK phosphorylation is a conserved mechanism to regulate transitions between non-growing (spore) and growing (mycelia) states.
Collapse
Affiliation(s)
- Fernando Lara-Rojas
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoApartado Postal 70-242, 04510, México, D.F., México
| | - Olivia Sánchez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoApartado Postal 70-242, 04510, México, D.F., México
| | - Laura Kawasaki
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoApartado Postal 70-242, 04510, México, D.F., México
| | - Jesús Aguirre
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoApartado Postal 70-242, 04510, México, D.F., México
| |
Collapse
|
13
|
Hagiwara D, Mizuno T, Abe K. Characterization of the conserved phosphorylation site in the Aspergillus nidulans response regulator SrrA. Curr Genet 2011; 57:103-14. [PMID: 21229249 DOI: 10.1007/s00294-010-0330-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 12/19/2010] [Accepted: 12/20/2010] [Indexed: 01/11/2023]
Abstract
Ssk1- and Skn7-type response regulators are widely conserved in fungal His-Asp phosphorelay (two-component) signaling systems. SrrA, a Skn7-type RR of Aspergillus nidulans, is implicated not only in oxidative stress responses but also in osmotic adaptation, conidia production (asexual development), inhibition by fungicides, and cell wall stress resistance. Here, we characterized SrrA, focusing on the role of the conserved aspartate residue in the receiver domain, which is essential for phosphorelay function. We constructed strains carrying an SrrA protein in which aspartate residue D385 was replaced with either asparagine (N) or alanine (A). These mutants exhibited normal conidiation and partial oxidative stress resistance. In osmotic adaptation, mutants with substitution at SrrA D385 showed as much sensitivity as ΔsrrA strains, suggesting that SrrA plays a role in osmotic stress adaptation in a phosphorelay-dependent manner. The SrrA D385 substitution mutants showed significant resistance to fungicides and cell wall stresses. These results together led us to conclude that the conserved aspartate residue has a substantial impact on SrrA function, and that SrrA plays a role in several aspects of cellular function via His-Asp phosphorelay circuitry in Aspergillus nidulans.
Collapse
Affiliation(s)
- Daisuke Hagiwara
- Department of Biological Sciences, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan.
| | | | | |
Collapse
|
14
|
The Euryhaline Yeast Debaryomyces hansenii has Two Catalase Genes Encoding Enzymes with Differential Activity Profile. Curr Microbiol 2010; 62:933-43. [DOI: 10.1007/s00284-010-9806-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
|
15
|
Proteomic analysis of early phase of conidia germination in Aspergillus nidulans. Fungal Genet Biol 2010; 47:246-53. [DOI: 10.1016/j.fgb.2009.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 11/10/2009] [Accepted: 11/10/2009] [Indexed: 11/30/2022]
|
16
|
Abstract
Fungi are amongst the most industrially important microorganisms in current use within the biotechnology industry. Most such fungal cultures are highly aerobic in nature, a character that has been frequently referred to in both reactor design and fungal physiology. The most fundamentally significant outcome of the highly aerobic growth environment in fermenter vessels is the need for the fungal culture to effectively combat in the intracellular environment the negative consequences of high oxygen transfer rates. The use of oxygen as the respiratory substrate is frequently reported to lead to the development of oxidative stress, mainly due to oxygen-derived free radicals, which are collectively termed as reactive oxygen species (ROS). Recently, there has been extensive research on the occurrence, extent, and consequences of oxidative stress in microorganisms, and the underlying mechanisms through which cells prevent and repair the damage caused by ROS. In the present study, we critically review the current understanding of oxidative stress events in industrially relevant fungi. The review first describes the current state of knowledge of ROS concisely, and then the various antioxidant strategies employed by fungal cells to counteract the deleterious effects, together with their implications in fungal bioprocessing are also discussed. Finally, some recommendations for further research are made.
Collapse
Affiliation(s)
- Qiang Li
- Strathclyde Fermentation Centre, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | |
Collapse
|
17
|
Sakamoto K, Iwashita K, Yamada O, Kobayashi K, Mizuno A, Akita O, Mikami S, Shimoi H, Gomi K. Aspergillus oryzae atfA controls conidial germination and stress tolerance. Fungal Genet Biol 2009; 46:887-97. [PMID: 19770065 DOI: 10.1016/j.fgb.2009.09.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 11/17/2022]
Abstract
We compared atfA and atfB, the genes encoding the respective ATF/CREB-type transcription factors in Aspergillus oryzae. The germination ratio of DeltaatfA conidia was low without any stress, unlike that of DeltaatfB conidia. The DeltaatfA conidia were more sensitive to oxidative stress than the DeltaatfB conidia, which are also sensitive to oxidative stress. We compared the gene expressions of these strains by using a DNA microarray, GeneChip. Almost all the genes regulated by atfB were also regulated by atfA, but atfA also regulated many genes that were not regulated by atfB, including some genes putatively involved in oxidative stress resistance. The level of glutamate, the major amino acid in A. oryzae conidia, was significantly low only in the DeltaatfA conidia, and the glycerol accumulation during germination was not observed only in the DeltaatfA strain. We therefore concluded that atfA is involved in germination via carbon and nitrogen source metabolism.
Collapse
Affiliation(s)
- Kazutoshi Sakamoto
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nakagawa Y. [Oxidative stress responses in pathogenic fungi]. Nihon Saikingaku Zasshi 2009; 63:417-24. [PMID: 19317231 DOI: 10.3412/jsb.63.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yoshiyuki Nakagawa
- Division of Molecular Mycology and Medicine, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Syowa-ku, Nagoya 466-8550
| |
Collapse
|
19
|
Siderophore synthesis in Magnaporthe grisea is essential for vegetative growth, conidiation and resistance to oxidative stress. Fungal Genet Biol 2008; 46:321-32. [PMID: 19171198 DOI: 10.1016/j.fgb.2008.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 12/11/2008] [Accepted: 12/15/2008] [Indexed: 11/21/2022]
Abstract
The plant pathogenic fungus Magnaporthe grisea excretes siderophores of the coprogen-type for iron acquisition and uses ferricrocin for intracellular iron storage. In the present report we characterize mutants with defects in extracellular siderophore biosynthesis. Deletion of the M. grisea SSM2 gene, which encodes a non-ribosomal peptide synthetase, resulted in a loss of the production of all coprogens. The mutant strains had a reduced growth rate, produced fewer conidia and were more sensitive to oxidative stress. Ferricrocin production was not affected. Upon deletion of M. grisea OMO1, a gene predicted to encode an L-ornithine-N(5)-monooxygenase, no siderophores of any type were detected, the strain was aconidial, growth rate was reduced and sensitivity to oxidative stress was increased. Abundance of several proteins was affected in the mutants. The Deltassm2 and Deltaomo1 mutant phenotypes were complemented by supplementation of the medium with siderophores or reintroduction of the respective genes.
Collapse
|
20
|
Chagas RF, Bailão AM, Pereira M, Winters MS, Smullian AG, Deepe GS, de Almeida Soares CM. The catalases of Paracoccidioides brasiliensis are differentially regulated: protein activity and transcript analysis. Fungal Genet Biol 2008; 45:1470-8. [PMID: 18799136 DOI: 10.1016/j.fgb.2008.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/21/2008] [Accepted: 08/22/2008] [Indexed: 11/29/2022]
Abstract
Paracoccidioides brasiliensis is a fungal pathogen of humans. The P. brasiliensis response to oxidative stress is largely unexplored. We report the analysis of three catalases, PbCatA, PbCatP and PbCatC. The former are monofunctional catalases and the latter is a catalase-peroxidase. Differential expression of catalases as measured by activity and by quantitative analysis of transcripts was observed in the morphological conversion and in response to different stress conditions. PbCatA manifested higher activity in the mycelial phase, showed increased activity during transition from mycelium to yeast and during conditions of endogenous oxidative stress. Consistent with our previous studies, PbCatP manifested higher activity in yeast cells since it is putatively involved in the control of exogenous reactive oxygen species. P. brasiliensis displays an oxidative stress response following phagocytosis by macrophages, inducing the expression of catalase A and P transcripts. PbCatC displayed a relatively constant pattern of expression, being modestly induced in cells exposed to osmotic and heat stress.
Collapse
Affiliation(s)
- Ronney Fernandes Chagas
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | | | | | | | | | | | | |
Collapse
|
21
|
Aspergillus oryzae atfB encodes a transcription factor required for stress tolerance in conidia. Fungal Genet Biol 2008; 45:922-32. [PMID: 18448366 DOI: 10.1016/j.fgb.2008.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 03/04/2008] [Accepted: 03/17/2008] [Indexed: 11/23/2022]
Abstract
Using an Aspergillus oryzae EST database, we identified a gene encoding a transcription factor (atfB), which is a member of the ATF/CREB family. Expression of atfB was barely detectable during vegetative growth, but was readily detected during conidiation in solid-state culture. Microarray analyses showed that expression of many other genes, including catalase (catA), were downregulated in an atfB-disruptant. The expression of most of these genes was upregulated in the wild-type strain during the conidiation phase in solid-state culture, and the expression pattern was similar to that of atfB itself. In the absence of stress, e.g. heat-shock or hydrogen peroxide, the conidial germination ratios for the DeltaatfB strain and the wild-type strain were similar, but the stress tolerance of conidia carrying the DeltaatfB deletion was less than that of the wild-type conidia. CRE-like DNA motifs, which are bound by ATF/CREB proteins, were found in the promoters of most of the downregulated genes in the DeltaatfB strain. Thus, atfB appears to encode a transcription factor required for stress tolerance in conidia.
Collapse
|
22
|
Li Q, McNeil B, Harvey LM. Adaptive response to oxidative stress in the filamentous fungus Aspergillus niger B1-D. Free Radic Biol Med 2008; 44:394-402. [PMID: 17967428 DOI: 10.1016/j.freeradbiomed.2007.09.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 09/03/2007] [Accepted: 09/29/2007] [Indexed: 10/22/2022]
Abstract
In the present study, we used a recombinant filamentous fungus strain, Aspergillus niger B1-D, as a model system, and investigated the antioxidant defences in this organism. Our findings indicate that pretreatment with low concentrations of H(2)O(2) completely prevents killing by this oxidant at high concentrations. It shows that A. niger adapts to exposure to H(2)O(2) by reducing growth and inducing a number of antioxidant enzyme activities, including superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, of which the induction of catalase is the most pronounced. Moreover the decline of these antioxidant enzymes activities after H(2)O(2) detoxification, coincides with recommencement of growth. Results from monitoring the extracellular H(2)O(2) concentration clearly indicate a very rapid detoxification rate for H(2)O(2) in adapted A. niger cultures. A mathematical model predicts only very low concentrations of intracellular H(2)O(2) accumulating in such cultures. Our results also show that glutathione plays a role in the oxidative defence against H(2)O(2) in A. niger. On addition of H(2)O(2), the intracellular pool of glutathione increases while the redox state of glutathione becomes more oxidized.
Collapse
Affiliation(s)
- Qiang Li
- Strathclyde Fermentation Centre, Strathclyde Institute of Pharmacy and Biomedical Sciences, Royal College Building, University of Strathclyde, Glasgow, UK
| | | | | |
Collapse
|
23
|
Yamashita K, Shiozawa A, Banno S, Fukumori F, Ichiishi A, Kimura M, Fujimura M. Involvement of OS-2 MAP kinase in regulation of the large-subunit catalases CAT-1 and CAT-3 in Neurospora crassa. Genes Genet Syst 2008; 82:301-10. [PMID: 17895581 DOI: 10.1266/ggs.82.301] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neurospora crassa has four catalase genes--cat-1, cat-2, cat-3, and ctt-1/cat-4. cat-1 and cat-3 encode two fungal-specific large-subunit catalases CAT-1 and CAT-3 normally produced in conidia and growing hyphae, respectively. cat-2 encodes CAT-2 catalase-peroxidase normally produced in conidia. ctt-1 (or cat-4), of which expression was controlled by OS-2 MAP kinase (Noguchi et al., Fungal Genet. Biol. 44, 208-218), encodes a small-subunit catalase with unknown function. To clarify the contribution of OS-2 on the regulation of CAT-1, CAT-2, and CAT-3, we performed quantitative RT-PCR and in-gel catalase activity analyses. When the hyphae were treated with a fungicide (1 mug/ml fludioxonil) or subjected to an osmotic stress (1 M sorbitol), cat-1 was strongly upregulated and CAT-1 was reasonably induced in the wild-type strain. Interestingly, fludioxonil caused not only the CAT-1 induction but also a remarkable CAT-3 decrease in the wild-type hyphae, implying of an abnormal stimulation of asexual differentiation. These responses were not observed in an os-2 mutant hyphae, indicating an involvement of OS-2 in the cat-1 expression; however, os-2 was dispensable for the production of CAT-1 in conidia. In contrast, the expression of cat-2 was significantly induced by heat shock (45 degrees C) and that of cat-3 was moderately stimulated by an oxidative stress (50 microg/ml methyl viologen) in both the wild-type strain and the os-2 mutant, and corresponding enzyme activities were detected after the treatments. Although basal levels of transcription of cat-1 and cat-3 in an os-2 mutant hyphae were a few-fold lower than in the wild-type hyphae, the os-2 mutant exhibited a considerably lower levels of CAT-3 activity than the wild-type strain. These findings suggest that OS-2 MAP kinase regulated the expression of cat-1 and cat-3 transcriptionally, and probably that of cat-3 posttranscriptionally, even though the presence of another regulatory system for each of these two genes is evident.
Collapse
|
24
|
Vargas-Pérez I, Sánchez O, Kawasaki L, Georgellis D, Aguirre J. Response regulators SrrA and SskA are central components of a phosphorelay system involved in stress signal transduction and asexual sporulation in Aspergillus nidulans. EUKARYOTIC CELL 2007; 6:1570-83. [PMID: 17630329 PMCID: PMC2043363 DOI: 10.1128/ec.00085-07] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Among eukaryotes, only slime molds, fungi, and plants contain signal transduction phosphorelay systems. In filamentous fungi, multiple sensor kinases appear to use a single histidine-containing phosphotransfer (HPt) protein to relay signals to two response regulators (RR). In Aspergillus nidulans, the RR SskA mediates activation of the mitogen-activated protein kinase SakA in response to osmotic and oxidative stress, whereas the functions of the RR SrrA were unknown. We used a genetic approach to characterize the srrA gene as a new member of the skn7/prr1 family and to analyze the roles of SrrA in the phosphorelay system composed of the RR SskA, the HPt protein YpdA, and the sensor kinase NikA. While mutants lacking the HPt protein YpdA are unviable, mutants lacking SskA (DeltasskA), SrrA (DeltasrrA), or both RR (DeltasrrA DeltasskA) are viable and differentially affected in osmotic and oxidative stress responses. Both RR are involved in osmostress resistance, but DeltasskA mutants are more sensitive to this stress, and only SrrA is required for H(2)O(2) resistance and H(2)O(2)-mediated induction of catalase CatB. In contrast, both RR are individually required for fungicide sensitivity and calcofluor resistance and for normal sporulation and conidiospore viability. The DeltasrrA and DeltasskA sporulation defects appear to be related to decreased mRNA levels of the key sporulation gene brlA. In contrast, conidiospore viability defects do not correlate with the activity of the spore-specific catalase CatA. Our results support a model in which NikA acts upstream of SrrA and SskA to transmit fungicide signals and to regulate asexual sporulation and conidiospore viability. In contrast, NikA appears dispensable for osmotic and oxidative stress signaling. These results highlight important differences in stress signal transmission among fungi and define a phosphorelay system involved in oxidative and osmotic stress, cell wall maintenance, fungicide sensitivity, asexual reproduction, and spore viability.
Collapse
Affiliation(s)
- Itzel Vargas-Pérez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510, México, DF, México
| | | | | | | | | |
Collapse
|
25
|
Aguirre J, Hansberg W, Navarro R. Fungal responses to reactive oxygen species. Med Mycol 2006; 44:S101-S107. [DOI: 10.1080/13693780600900080] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
26
|
Missall TA, Lodge JK, McEwen JE. Mechanisms of resistance to oxidative and nitrosative stress: implications for fungal survival in mammalian hosts. EUKARYOTIC CELL 2005; 3:835-46. [PMID: 15302816 PMCID: PMC500878 DOI: 10.1128/ec.3.4.835-846.2004] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Tricia A Missall
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104, USA
| | | | | |
Collapse
|
27
|
Miozzi L, Balestrini R, Bolchi A, Novero M, Ottonello S, Bonfante P. Phospholipase A2 up-regulation during mycorrhiza formation in Tuber borchii. THE NEW PHYTOLOGIST 2005; 167:229-38. [PMID: 15948845 DOI: 10.1111/j.1469-8137.2005.01400.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
TbSP1 is a secreted and surface-associated phospholipase A(2) previously found to be up-regulated in C- or N-deprived free-living mycelia from the ectomycorrhizal ascomycete Tuber borchii. As nutrient limitation is considered an important environmental factor favouring the transition to symbiotic status, TbSP1 was suggested to be involved in the formation of mycorrhizas. An in vitro symbiosis system between Cistus incanus and T. borchii was set up: TbSP1 mRNA levels in free-living mycelia and in mycorrhizas sampled in different districts of the plant-fungus interaction were examined. In the same samples, TbSP1 protein expression was analysed by immunoelectron microscopy. A substantially enhanced TbSP1 mRNA expression, compared with nutrient-limited but free-living mycelia, was detected in the presence of the plant and reached maximal levels in fully developed mycorrhizas. A similar expression trend was revealed by immunolocalization experiments. We have shown that TbSP1 appears to respond to two partially overlapping yet distinct stimuli: nutrient starvation and mycorrhiza formation.
Collapse
Affiliation(s)
- Laura Miozzi
- Dipartimento di Biologia Vegetale, Università di Torino, Torino, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Aguirre J, Ríos-Momberg M, Hewitt D, Hansberg W. Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 2005; 13:111-8. [PMID: 15737729 DOI: 10.1016/j.tim.2005.01.007] [Citation(s) in RCA: 437] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species (ROS) have been regarded as inevitable harmful by-products of aerobic metabolism. Growing evidence, however, suggests that ROS play important physiological roles. This raises questions about the pathways that different groups of organisms use to produce and sense ROS. In microbial eukaryotes, recent data show (i) increased ROS levels during cell differentiation, (ii) the existence of ROS-producing enzymes, such as NADPH oxidases (NOX), (iii) the involvement of NOX in developmental processes, and (iv) a conservation in the signal-transduction mechanisms used to detect ROS. This shows that manipulation of reactive species, as strategy to regulate cell differentiation, is ubiquitous in eukaryotes and suggests that such strategy was selected early in evolution.
Collapse
Affiliation(s)
- Jesús Aguirre
- Departamento de Genética Molecular, Instituto de Fisiología Celular-UNAM, Apartado Postal 70-242, 04510 México, D.F., México.
| | | | | | | |
Collapse
|
29
|
Lara-Ortíz T, Riveros-Rosas H, Aguirre J. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol Microbiol 2004; 50:1241-55. [PMID: 14622412 DOI: 10.1046/j.1365-2958.2003.03800.x] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
NADPH oxidases (Nox) have been characterized as higher eukaryotic enzymes used deliberately to produce reactive oxygen species (ROS). The recent discovery of new functional members of the Nox family in plants and animals has led to the recognition of the increasing importance of ROS as signals involved in regulation of diverse cellular processes such as defence, growth and signalling. Here, we address the role of NADPH oxidase-generated ROS in the biology of the filamentous fungus Aspergillus nidulans. We characterize the noxA gene and show that it encodes a member of a novel NADPH oxidase subfamily ubiquitous in lower eukaryotes. Deletion of noxA specifically blocks differentiation of sexual fruit bodies (cleistothecia), without affecting hyphal growth or asexual development. Accordingly, the noxA gene is induced during sexual development, peaking at the time of cleistothecia differentiation and in parallel with the hülle cell-associated catalase peroxidase gene cpeA. This expression pattern is not dependent on transcription factors SteA and StuA, which are essential for cleistothecia formation. In contrast, noxA-dependent premature sexual development correlates with noxA derepression in DeltasakA null mutants, connecting stress MAPK signalling to the regulated production of ROS. Using a nitroblue tetrazolium (NBT) assay to detect superoxide, we found that hülle cells and cleistothecia initials produce superoxide in a process inhibited by NADPH oxidase inhibitor DPI and markedly reduced in DeltanoxA mutants. Furthermore, using H2DCFDA, we detected that H2O2 and possibly other ROS are generated in a NoxA-dependent fashion, mainly in the external walls from cleistothecia initials. The essential role of NoxA-generated ROS in A. nidulans sexual differentiation and the presence of one or two noxA homologues in all analysed filamentous fungi suggest that NADPH oxidase-generated ROS play important roles in fungal physiology and differentiation.
Collapse
Affiliation(s)
- Teresa Lara-Ortíz
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Fac. Medicina, Universidad Nacional Autónoma de México, 04510 México, DF
| | | | | |
Collapse
|
30
|
Abstract
Glutathione (GSH; gamma-L-glutamyl-L-cysteinyl-glycine), a non-protein thiol with a very low redox potential (E'0 = 240 mV for thiol-disulfide exchange), is present in high concentration up to 10 mM in yeasts and filamentous fungi. GSH is concerned with basic cellular functions as well as the maintenance of mitochondrial structure, membrane integrity, and in cell differentiation and development. GSH plays key roles in the response to several stress situations in fungi. For example, GSH is an important antioxidant molecule, which reacts non-enzymatically with a series of reactive oxygen species. In addition, the response to oxidative stress also involves GSH biosynthesis enzymes, NADPH-dependent GSH-regenerating reductase, glutathione S-transferase along with peroxide-eliminating glutathione peroxidase and glutaredoxins. Some components of the GSH-dependent antioxidative defence system confer resistance against heat shock and osmotic stress. Formation of protein-SSG mixed disulfides results in protection against desiccation-induced oxidative injuries in lichens. Intracellular GSH and GSH-derived phytochelatins hinder the progression of heavy metal-initiated cell injuries by chelating and sequestering the metal ions themselves and/or by eliminating reactive oxygen species. In fungi, GSH is mobilized to ensure cellular maintenance under sulfur or nitrogen starvation. Moreover, adaptation to carbon deprivation stress results in an increased tolerance to oxidative stress, which involves the induction of GSH-dependent elements of the antioxidant defence system. GSH-dependent detoxification processes concern the elimination of toxic endogenous metabolites, such as excess formaldehyde produced during the growth of the methylotrophic yeasts, by formaldehyde dehydrogenase and methylglyoxal, a by-product of glycolysis, by the glyoxalase pathway. Detoxification of xenobiotics, such as halogenated aromatic and alkylating agents, relies on glutathione S-transferases. In yeast, these enzymes may participate in the elimination of toxic intermediates that accumulate in stationary phase and/or act in a similar fashion as heat shock proteins. GSH S-conjugates may also form in a glutathione S-transferases-independent way, e.g. through chemical reaction between GSH and the antifugal agent Thiram. GSH-dependent detoxification of penicillin side-chain precursors was shown in Penicillium sp. GSH controls aging and autolysis in several fungal species, and possesses an anti-apoptotic feature.
Collapse
Affiliation(s)
- István Pócsi
- Department of Microbiology and Biotechnology, Faculty of Sciences, University of Debrecen, P.O. Box 63, H-4010 Debrecen, Hungary
| | | | | |
Collapse
|
31
|
Scherer M, Wei H, Liese R, Fischer R. Aspergillus nidulans catalase-peroxidase gene (cpeA) is transcriptionally induced during sexual development through the transcription factor StuA. EUKARYOTIC CELL 2002; 1:725-35. [PMID: 12455692 PMCID: PMC126739 DOI: 10.1128/ec.1.5.725-735.2002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Catalases, peroxidases, and catalase-peroxidases are important enzymes to cope with reactive oxygen species in pro- and eukaryotic cells. In the filamentous fungus Aspergillus nidulans three monofunctional catalases have been described, and a fourth catalase activity was observed in native polyacrylamide gels. The latter activity is probably due to the bifunctional enzyme catalase-peroxidase, which we characterized here. The gene, named cpeA, encodes an 81-kDa polypeptide with a conserved motif for heme coordination. The enzyme comprises of two similar domains, suggesting gene duplication and fusion during evolution. The first 439 amino acids share 22% identical residues with the C terminus. Homologous proteins are found in several prokaryotes, such as Escherichia coli and Mycobacterium tuberculosis (both with 61% identity). In fungi the enzyme has been noted in Penicillium simplicissimum, Septoria tritici, and Neurospora crassa (69% identical amino acids) but is absent from Saccharomyces cerevisiae. Expression analysis in A. nidulans revealed that the gene is transcriptionally induced upon carbon starvation and during sexual development, but starvation is not sufficient to reach high levels of the transcript during development. Besides transcriptional activation, we present evidence for posttranscriptional regulation. A green fluorescent protein fusion protein localized to the cytoplasm of Hülle cells. The Hülle cell-specific expression was dependent on the developmental regulator StuA, suggesting an activating function of this helix-loop-helix transcription factor.
Collapse
Affiliation(s)
- Mario Scherer
- Laboratorium für Mikrobiologie, Philipps-Universität Marburg and Max-Planck-Institut für Terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | | | | | | |
Collapse
|
32
|
Schmidt M, Dehne S, Feierabend J. Post-transcriptional mechanisms control catalase synthesis during its light-induced turnover in rye leaves through the availability of the hemin cofactor and reversible changes of the translation efficiency of mRNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 31:601-613. [PMID: 12207650 DOI: 10.1046/j.1365-313x.2002.01382.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The enzyme catalase is light-sensitive. In leaves, losses caused by photoinactivation are replaced by new enzyme and the rate of de novo synthesis must be rapidly and flexibly attuned to fluctuating light conditions. In mature rye leaves, post-transcriptional mechanisms were shown to control the rate of catalase synthesis. The amount of the leaf catalase (CAT-1) transcript did not increase with light intensity, but was even higher after dark exposure of light-grown leaves. Initiation was apparently not limiting translation in the dark, as the association of the Cat1 mRNA with polysomes did not change notably under different light conditions. By analysing the translation of catalase polypeptides in cell-free systems with poly(A)+ RNA from leaves or with mRNA transcribed from a Cat1-containing cDNA clone, two mechanisms of post-transcriptional control were identified. First, translation of catalase depended on the presence of hemin. In leaves, the availability of hemin may signal the extent of catalase degradation as the hemin of the inactivated enzyme is recycled. Second, the translation efficiency of the Cat1 transcripts was reversibly modulated in a dose-dependent manner by the light intensity to which leaves were exposed, prior to extraction. The Cat1 mRNA from light-exposed leaves was translated much more efficiently than mRNA from dark-exposed leaves. The increase of its translation activity in vivo was not blocked by cordycepin but was suppressed by methylation inhibitors, indicating a reversible modification of pre-existing mRNA by methylation. Translation of in vitro synthesized Cat1 mRNA required a methylated cap (m7GpppG), but was virtually below detection when it contained an unmethylated cap (GpppG).
Collapse
Affiliation(s)
- Matthias Schmidt
- Botanisches Institut, Goethe-Universität, PO Box 11 19 32, D-60054 Frankfurt am Main, Germany
| | | | | |
Collapse
|
33
|
Michán S, Lledías F, Baldwin JD, Natvig DO, Hansberg W. Regulation and oxidation of two large monofunctional catalases. Free Radic Biol Med 2002; 33:521-32. [PMID: 12160934 DOI: 10.1016/s0891-5849(02)00909-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The two Neurospora crassa catalase genes cat-1 and cat-3 were shown to encode Cat-1 and Cat-3 large monofunctional catalases. cat-1 and cat-3 genes are regulated differentially during the asexual life cycle and under stress conditions. A stepwise increase in catalase activity occurs during conidiation. Conidia have 60 times more catalase activity than exponentially growing hyphae. Cat-1 activity was predominant in conidia, during germination and early exponential growth. It was induced during prestationary growth and by ethanol or heat shock. Cat-3 activity was predominant during late exponential growth and at the start of the conidiation process. It was induced under stress conditions, such as H(2)O(2), paraquat, cadmium, heat shock, uric acid, and nitrate treatment. In general, Cat-1 activity was associated with nongrowing cells and Cat-3 activity with growing cells. The Cat-3 N-terminus sequence indicates that this catalase is processed and presumably secreted. Paraquat caused modification and degradation of Cat-1. Under heat shock both Cat-1 and Cat-3 were modified and degraded and Cat-1 was resynthesized. Paraquat and heat shock effects were observed only in the presence of air and are probably related to in vivo generation of singlet oxygen. Purified Cat-3 was modified with a photosensitizing reaction in which singlet oxygen is produced.
Collapse
Affiliation(s)
- Shaday Michán
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, DF
| | | | | | | | | |
Collapse
|
34
|
Kawasaki L, Sánchez O, Shiozaki K, Aguirre J. SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol Microbiol 2002; 45:1153-63. [PMID: 12180932 DOI: 10.1046/j.1365-2958.2002.03087.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In eukaryotic cells, environmental stress signals are transmitted by evolutionarily conserved MAPKs, such as Hog1 in the budding yeast Saccharomyces cerevisiae, Spc1 in the fission yeast Schizosaccharomyces pombe and p38/JNK in mammalian cells. Here, we report the identification of the Aspergillus nidulans sakA gene, which encodes a member of the stress MAPK family. The sakA gene is able to complement the S. pombe spc1- defects in both osmo-regulation and cell cycle progression. Moreover, SakA MAPK is activated in response to osmotic and oxidative stress in both S. pombe and A. nidulans. However, in contrast to hog1 and spc1 mutants, the sakA null mutant is not sensitive to high osmolarity stress, indicating a different regulation of the osmostress response in this fungus. On the other hand, the DeltasakA mutant shows development and cell-specific phenotypes. First, it displays premature steA-dependent sexual development. Second, DeltasakA mutant produces asexual spores that are highly sensitive to oxidative and heat shock stress and lose viability upon storage. Indeed, SakA is transiently activated early after induction of conidiation. Our results indicate that SakA MAPK is involved in stress signal transduction and repression of sexual development, and is required for spore stress resistance and survival.
Collapse
Affiliation(s)
- Laura Kawasaki
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | | | | | | |
Collapse
|
35
|
Prade RA, Ayoubi P, Krishnan S, Macwana S, Russell H. Accumulation of stress and inducer-dependent plant-cell-wall-degrading enzymes during asexual development in Aspergillus nidulans. Genetics 2001; 157:957-67. [PMID: 11238386 PMCID: PMC1461545 DOI: 10.1093/genetics/157.3.957] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Determination and interpretation of fungal gene expression profiles based on digital reconstruction of expressed sequenced tags (ESTs) are reported. A total of 51,524 DNA sequence files processed with PipeOnline resulted in 9775 single and 5660 contig unique ESTs, 31.2% of a typical fungal transcriptome. Half of the unique ESTs shared homology with genes in public databases, 35.8% of which are functionally defined and 64.2% are unclear or unknown. In Aspergillus nidulans 86% of transcripts associate with intermediate metabolism functions, mainly related to carbohydrate, amino acid, protein, and peptide biosynthesis. During asexual development, A. nidulans unexpectedly accumulates stress response and inducer-dependent transcripts in the absence of an inducer. Stress response genes in A. nidulans ESTs total 1039 transcripts, contrasting with 117 in Neurospora crassa, a 14.3-fold difference. A total of 5.6% of A. nidulans ESTs implicate inducer-dependent cell wall degradation or amino acid acquisition, 3.5-fold higher than in N. crassa. Accumulation of stress response and inducer-dependent transcripts suggests general derepression of cis-regulation during terminal asexual development.
Collapse
Affiliation(s)
- R A Prade
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078-3020, USA.
| | | | | | | | | |
Collapse
|
36
|
Kawasaki L, Aguirre J. Multiple catalase genes are differentially regulated in Aspergillus nidulans. J Bacteriol 2001; 183:1434-40. [PMID: 11157957 PMCID: PMC95018 DOI: 10.1128/jb.183.4.1434-1440.2001] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2000] [Accepted: 11/21/2000] [Indexed: 11/20/2022] Open
Abstract
Detoxification of hydrogen peroxide is a fundamental aspect of the cellular antioxidant responses in which catalases play a major role. Two differentially regulated catalase genes, catA and catB, have been studied in Aspergillus nidulans. Here we have characterized a third catalase gene, designated catC, which predicts a 475-amino-acid polypeptide containing a peroxisome-targeting signal. With a molecular mass of 54 kDa, CatC shows high similarity to other small-subunit monofunctional catalases and is most closely related to catalases from other fungi, Archaea, and animals. In contrast, the CatA (approximately 84 kDa) and CatB (approximately 79 kDa) enzymes belong to a family of large-subunit catalases, constituting a unique fungal and bacterial group. The catC gene displayed a relatively constant pattern of expression, not being induced by oxidative or other types of stress. Targeted disruption of catC eliminated a constitutive catalase activity not detected previously in zymogram gels. However, a catalase activity detected in catA catB mutant strains during late stationary phase was still present in catC and catABC null mutants, thus demonstrating the presence of a fourth catalase, here named catalase D (CatD). Neither catC nor catABC triple mutants showed any developmental defect, and both mutants grew as well as wild-type strains in H(2)O(2)-generating substrates, such as fatty acids, and/or purines as the sole carbon and nitrogen sources, respectively. CatD activity was induced during late stationary phase by glucose starvation, high temperature, and, to a lesser extent, H(2)O(2) treatment. The existence of at least four differentially regulated catalases indicates a large and regulated capability for H(2)O(2) detoxification in filamentous fungi.
Collapse
Affiliation(s)
- L Kawasaki
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México, D. F., Mexico
| | | |
Collapse
|
37
|
Bussink HJ, Oliver R. Identification of two highly divergent catalase genes in the fungal tomato pathogen, Cladosporium fulvum. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:15-24. [PMID: 11121097 DOI: 10.1046/j.1432-1327.2001.01774.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Catalases of pathogenic micro-organisms have attracted attention as potential virulence factors. Homology-based screens were performed to identify catalase genes in the fungal tomato pathogen Cladosporium fulvum. Two highly divergent genes, Cat1 and Cat2, were isolated and characterized. Cat1 codes for a putative 566-amino-acid catalase subunit and belongs to the gene family that also encodes the mainly peroxisome-localized catalases of animal and yeast species. Cat2 codes for a putative catalase subunit of 745 amino acids and belongs to a different gene family coding for the large-subunit catalases similar to ones found in bacteria and filamentous fungi. Neither catalase had an obvious secretory signal sequence. A search for an extracellular catalase was unproductive. The Cat1 and Cat2 genes showed differential expression, with the Cat1 mRNA preferentially accumulating in spores and the Cat2 mRNA preferentially accumulating in response to external H(2)O(2). With Cat2-deleted strains, activity of the Cat2 gene product (CAT2) was identified among four proteins with catalase activity separated on non-denaturing gels. The CAT2 activity represented a minor fraction of the catalase activity in spores and H(2)O(2)-stressed mycelium, and no phenotype was observed for Cat2-deleted strains, which showed a normal response to H(2)O(2) treatment. These results indicate the existence of a complex catalase system in C. fulvum, with regard to both the structure and regulation of the genes involved. In addition, efficient C. fulvum gene-replacement technology has been established.
Collapse
Affiliation(s)
- H J Bussink
- Carlsberg Laboratory, Department of Physiology, Copenhagen Valby, Denmark
| | | |
Collapse
|
38
|
Garcia MX, Foote C, van Es S, Devreotes PN, Alexander S, Alexander H. Differential developmental expression and cell type specificity of Dictyostelium catalases and their response to oxidative stress and UV-light. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:295-310. [PMID: 11004503 DOI: 10.1016/s0167-4781(00)00063-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cells of Dictyostelium discoideum are highly resistant to DNA damaging agents such as UV-light, gamma-radiation and chemicals. The genes encoding nucleotide excision repair (NER) and base excision repair (BER) enzymes are rapidly upregulated in response to UV-irradiation and DNA-damaging chemicals, suggesting that this is at least partially responsible for the resistance of this organism to these agents. Although Dictyostelium is also unusually resistant to high concentrations of H(2)O(2), little is known about the response of this organism to oxidative stress. To determine if transcriptional upregulation is a common mechanism for responding to DNA-damaging agents, we have studied the Dictyostelium catalase and Cu/Zn superoxide dismutase antioxidant enzymes. We show that there are two catalase genes and that each is differentially regulated both temporally and spatially during multicellular development. The catA gene is expressed throughout growth and development and its corresponding enzyme is maintained at a steady level. In contrast, the catB gene encodes a larger protein and is only expressed during the final stages of morphogenesis. Cell type fractionation showed that the CatB enzyme is exclusively localized to the prespore cells and the CatA enzyme is found exclusively in the prestalk cells. Each enzyme has a different subcellular localization. The unique developmental timing and cell type distribution suggest that the role for catB in cell differentiation is to protect the dormant spores from oxidative damage. We found that exposure to H(2)O(2) does not result in the induction of the catalase, superoxide dismutase, NER or BER mRNAs. A mutant with greatly reduced levels of catA mRNA and enzyme has greatly increased sensitivity to H(2)O(2) but normal sensitivity to UV. These results indicate that the natural resistance to oxidative stress is not due to an ability to rapidly raise the level of antioxidant or DNA repair enzymes and that the response to UV-light is independent from the response to reactive oxygen compounds.
Collapse
Affiliation(s)
- M X Garcia
- Division of Biological Sciences, University of Missouri, Columbia 65211-7400, USA
| | | | | | | | | | | |
Collapse
|
39
|
Calera JA, Sánchez-Weatherby J, López-Medrano R, Leal F. Distinctive properties of the catalase B of Aspergillus nidulans. FEBS Lett 2000; 475:117-20. [PMID: 10858500 DOI: 10.1016/s0014-5793(00)01637-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aspergillus nidulans catalase B (CatB) was purified to homogeneity and characterized as a hydroperoxidase which resembles typical catalases in some physicochemical characteristics: (1) it has an apparent molecular weight of 360000 and is composed of four glycosylated subunits, (2) it has hydrophobic properties as revealed by extractability in ethanol/chloroform and binding to phenyl-Superose, and (3) it has an acidic isoelectric point at pH 3. 5. Also CatB exhibits some distinctive properties, e.g. it is not inhibited by the presence of 2% sodium dodecyl sulfate, 9 M urea or reducing agents. Furthermore, even though CatB does not exhibit any residual peroxidase activity, it is able to retain up to 38% of its initial catalase activity after incubation with the typical catalase inhibitor 3-amino-1,2,4-triazole.
Collapse
Affiliation(s)
- J A Calera
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | | | | | | |
Collapse
|
40
|
Noventa-Jordão MA, Couto RM, Goldman MHS, Aguirre J, Iyer S, Caplan A, Terenzi HF, Goldman GH. Catalase activity is necessary for heat-shock recovery in Aspergillus nidulans germlings. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 11):3229-3234. [PMID: 10589732 DOI: 10.1099/00221287-145-11-3229] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To understand the molecular mechanisms induced by stress that contribute to the development of tolerance in eukaryotic cells, the filamentous fungus Aspergillus nidulans has been chosen as a model system. Here, the response of A. nidulans germlings to heat shock is reported. The heat treatment dramatically increased the concentration of trehalose and induced the accumulation of mannitol and mRNA from the catalase gene catA. Both mannitol and catalase function to protect cells from different reactive oxygen species. Treatment with hydrogen peroxide increased A. nidulans germling viability after heat shock whilst mutants deficient in catalase were more sensitive to a 50 degrees C heat exposure. It is concluded that the defence against the lethal effects of heat exposure can be correlated with the activity of the defence system against oxidative stress.
Collapse
Affiliation(s)
- Maria Antônia Noventa-Jordão
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo and Universidade de Franca, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil1
| | - Ricardo M Couto
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo and Universidade de Franca, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil1
| | - Maria Helena S Goldman
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil2
| | - Jesus Aguirre
- Instituto de Fisiologia Celular-UNAM, Mexico City, Mexico3
| | - Suresh Iyer
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID, USA4
| | - Allan Caplan
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID, USA4
| | - Hector F Terenzi
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil2
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo and Universidade de Franca, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil1
| |
Collapse
|