1
|
Miryala SK, Anbarasu A, Ramaiah S. Role of SHV-11, a Class A β-Lactamase, Gene in Multidrug Resistance Among Klebsiella pneumoniae Strains and Understanding Its Mechanism by Gene Network Analysis. Microb Drug Resist 2020; 26:900-908. [DOI: 10.1089/mdr.2019.0430] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Sravan Kumar Miryala
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT, Vellore, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT, Vellore, India
| |
Collapse
|
2
|
Luengo JM, Olivera ER. Catabolism of biogenic amines in Pseudomonas species. Environ Microbiol 2020; 22:1174-1192. [PMID: 31912965 DOI: 10.1111/1462-2920.14912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/28/2019] [Accepted: 01/04/2020] [Indexed: 01/01/2023]
Abstract
Biogenic amines (BAs; 2-phenylethylamine, tyramine, dopamine, epinephrine, norepinephrine, octopamine, histamine, tryptamine, serotonin, agmatine, cadaverine, putrescine, spermidine, spermine and certain aliphatic amines) are widely distributed organic molecules that play basic physiological functions in animals, plants and microorganisms. Pseudomonas species can grow in media containing different BAs as carbon and energy sources, a reason why these bacteria are excellent models for studying such catabolic pathways. In this review, we analyse most of the routes used by different species of Pseudomonas (P. putida, P. aeruginosa, P. entomophila and P. fluorescens) to degrade BAs. Analysis of these pathways has led to the identification of a huge number of genes, catabolic enzymes, transport systems and regulators, as well as to understanding of their hierarchy and functional evolution. Knowledge of these pathways has allowed the design and collection of genetically manipulated microbes useful for eliminating BAs from different sources, highlighting the biotechnological applications of these studies.
Collapse
Affiliation(s)
- José M Luengo
- Departamento de Biología Molecular, Facultades de Veterinaria y de Biología, Universidad de León, 24007, León, Spain
| | - Elías R Olivera
- Departamento de Biología Molecular, Facultades de Veterinaria y de Biología, Universidad de León, 24007, León, Spain
| |
Collapse
|
3
|
Miryala SK, Anbarasu A, Ramaiah S. Systems biology studies in Pseudomonas aeruginosa PA01 to understand their role in biofilm formation and multidrug efflux pumps. Microb Pathog 2019; 136:103668. [DOI: 10.1016/j.micpath.2019.103668] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/24/2019] [Accepted: 08/12/2019] [Indexed: 11/29/2022]
|
4
|
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. EcoSal Plus 2015; 6. [PMID: 26442941 DOI: 10.1128/ecosalplus.esp-0005-2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Escherichia coli contains a versatile respiratory chain that oxidizes 10 different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. A large number of respiratory pathways can be established by combining different electron donors and acceptors. The respiratory dehydrogenases use quinones as the electron acceptors that are oxidized by the terminal reductase and oxidases. The enzymes vary largely with respect to their composition, architecture, membrane topology, and the mode of energy conservation. Most of the energy-conserving dehydrogenases (FdnGHI, HyaABC, HybCOAB, and others) and the terminal reductases (CydAB, NarGHI, and others) form a proton potential (Δp) by a redox-loop mechanism. Two enzymes (NuoA-N and CyoABCD) couple the redox energy to proton translocation by proton pumping. A large number of dehydrogenases and terminal reductases do not conserve the redox energy in a proton potential. For most of the respiratory enzymes, the mechanism of proton potential generation is known or can be predicted. The H+/2e- ratios for most respiratory chains are in the range from 2 to 6 H+/2e-. The energetics of the individual redox reactions and the respiratory chains is described and related to the H+/2e- ratios.
Collapse
|
5
|
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. EcoSal Plus 2015; 3. [PMID: 26443736 DOI: 10.1128/ecosalplus.3.2.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Escherichia coli contains a versatile respiratory chain which oxidizes ten different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use even two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. Various respiratory pathways can be established by combining the oxidation of different electron donors and acceptors which are linked by respiratory quinones. The enzymes vary largely with respect to architecture, membrane topology, and mode of energy conservation. Most of the energy-conserving dehydrogenases (e.g., FdnGHI, HyaABC, and HybCOAB) and of the terminal reductases (CydAB, NarGHI, and others) form a proton potential (Δp) by a redox loop mechanism. Only two enzymes (NuoA-N and CyoABCD) couple the redox energy to proton translocation by proton pumping. A large number of dehydrogenases (e.g., Ndh, SdhABCD, and GlpD) and of terminal reductases (e.g., FrdABCD and DmsABC) do not conserve the redox energy in a proton potential. For most of the respiratory enzymes, the mechanism of proton potential generation is known from structural and biochemical studies or can be predicted from sequence information. The H+/2e- ratios of proton translocation for most respiratory chains are in the range from 2 to 6 H+/2e-. The energetics of the individual redox reactions and of the respiratory chains is described. In contrast to the knowledge on enzyme function are physiological aspects of respiration such as organization and coordination of the electron transport and the use of alternative respiratory enzymes, not well characterized.
Collapse
|
6
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
7
|
The influence of budA deletion on glucose metabolism related in 2,3-butanediol production by Klebsiella pneumoniae. Enzyme Microb Technol 2015; 73-74:1-8. [PMID: 26002498 DOI: 10.1016/j.enzmictec.2015.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 11/27/2022]
Abstract
Klebsiella pneumoniae (K. pneumoniae), which is a promising microorganism for industrial bulk production of 2,3-butanediol (2,3-BDO), naturally converts glucose to 2,3-BDO. The 2,3-BDO biosynthesis from glucose is composed of three steps; α-acetolactate biosynthesis by α-acetolactate synthase (budB); acetoin biosynthesis by α-acetolactate decarboxylase (budA); and 2,3-BDO biosynthesis by acetoin reductase (budC). In an effort to understand the influence of blocked 2,3-BDO pathway on K. pneumoniae glucose metabolism by budA deletion, we constructed K. pneumoniaeΔwabGΔbudA (SGSB106). Carbon flux distribution analysis, transcriptome analysis and extracellular amino acid concentration analysis were carried out to understand the effects of the budA deletion, and K. pneumoniaeΔwabG (SGSB100) was used as a control strain. Approximately 50.3% decrease in CO2 emission; and approximately 3.8-fold increase in amino acid production was observed in SGSB106. In addition to, among the amino acids, valine production significantly increased, suggesting that the branched-chain amino acid biosynthesis (BACC) in SGSB106 was activated by deletion of budA. Furthermore, whole genome transcriptome analysis of SGSB106 and SGSB100, correlates with the results from carbon distribution and amino acids concentration analyses.
Collapse
|
8
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
9
|
Transcriptional regulation of the gene cluster encoding allantoinase and guanine deaminase in Klebsiella pneumoniae. J Bacteriol 2011; 193:2197-207. [PMID: 21357483 DOI: 10.1128/jb.01450-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purines can be used as the sole source of nitrogen by several strains of K. pneumoniae under aerobic conditions. The genes responsible for the assimilation of purine nitrogens are distributed in three separated clusters in the K. pneumoniae genome. Here, we characterize the cluster encompassing genes KPN_01787 to KPN_01791, which is involved in the conversion of allantoin into allantoate and in the deamination of guanine to xanthine. These genes are organized in three transcriptional units, hpxSAB, hpxC, and guaD. Gene hpxS encodes a regulatory protein of the GntR family that mediates regulation of this system by growth on allantoin. Proteins encoded by hpxB and guaD display allantoinase and guanine deaminase activity, respectively. In this cluster, hpxSAB is the most tightly regulated unit. This operon was activated by growth on allantoin as a nitrogen source; however, addition of allantoin to nitrogen excess cultures did not result in hpxSAB induction. Neither guaD nor hpxC was induced by allantoin. Expression of guaD is mainly regulated by nitrogen availability through the action of NtrC. Full induction of hpxSAB by allantoin requires both HpxS and NAC. HpxS may have a dual role, acting as a repressor in the absence of allantoin and as an activator in its presence. HpxS binds to tandem sites, S1 and S2, overlapping the -10 and -35 sequences of the hpxSAB promoter, respectively. The NAC binding site is located between S1 and S2 and partially overlaps S2. In the presence of allantoin, interplay between NAC and HpxS is proposed.
Collapse
|
10
|
Kim SH, Schneider BL, Reitzer L. Genetics and regulation of the major enzymes of alanine synthesis in Escherichia coli. J Bacteriol 2010; 192:5304-11. [PMID: 20729367 PMCID: PMC2950514 DOI: 10.1128/jb.00738-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 08/06/2010] [Indexed: 11/20/2022] Open
Abstract
Genetic analysis of alanine synthesis in the model genetic organism Escherichia coli has implicated avtA, the still uncharacterized alaA and alaB genes, and probably other genes. We identified alaA as yfbQ. We then transferred mutations in several transaminase genes into a yfbQ mutant and isolated a mutant that required alanine for optimal growth. For cells grown with carbon sources other than pyruvate, the major alanine-synthesizing transaminases are AvtA, YfbQ (AlaA), and YfdZ (which we designate AlaC). Growth with pyruvate as the carbon source and multicopy suppression suggest that several other transaminases can contribute to alanine synthesis. Expression studies showed that alanine modestly repressed avtA and yfbQ but had no effect on yfdZ. The leucine-responsive regulatory protein (Lrp) mediated control by alanine. We purified YfbQ and YfdZ and showed that both are dimers with K(m)s for pyruvate within the intracellular range of pyruvate concentration.
Collapse
Affiliation(s)
- Sok Ho Kim
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080
| | - Barbara L. Schneider
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080
| | - Larry Reitzer
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
11
|
Genetic analysis of the nitrogen assimilation control protein from Klebsiella pneumoniae. J Bacteriol 2010; 192:4834-46. [PMID: 20693327 DOI: 10.1128/jb.01114-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae is a typical LysR-type transcriptional regulator (LTTR) in many ways. However, the lack of a physiologically relevant coeffector for NAC and the fact that NAC can carry out many of its functions as a dimer make NAC unusual among the LTTRs. In the absence of a crystal structure for NAC, we analyzed the effects of amino acid substitutions with a variety of phenotypes in an attempt to identify functionally important features of NAC. A substitution that changed the glutamine at amino acid 29 to alanine (Q29A) resulted in a NAC that was seriously defective in binding to DNA. The H26D substitution resulted in a NAC that could bind and repress transcription but not activate transcription. The I71A substitution resulted in a NAC polypeptide that remained monomeric. NAC tetramers can bind to both long and shorter binding sites (like other LTTRs). However, the absence of a coeffector to induce the conformational change needed for the switch from the former to the latter raised a question. Are there two conformations of NAC, analogous to the other LTTRs? The G217R substitution resulted in a NAC that could bind to the longer sites but had difficulty in binding to the shorter sites, and the I222R and A230R substitutions resulted in a NAC that could bind to the shorter sites but had difficulty in binding properly to the longer sites. Thus, there appear to be two conformations of NAC that can freely interconvert in the absence of a coeffector.
Collapse
|
12
|
A NAC for regulating metabolism: the nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae. J Bacteriol 2010; 192:4801-11. [PMID: 20675498 DOI: 10.1128/jb.00266-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) is a LysR-type transcriptional regulator (LTTR) that is made under conditions of nitrogen-limited growth. NAC's synthesis is entirely dependent on phosphorylated NtrC from the two-component Ntr system and requires the unusual sigma factor σ54 for transcription of the nac gene. NAC activates the transcription of σ70-dependent genes whose products provide the cell with ammonia or glutamate. NAC represses genes whose products use ammonia and also represses its own transcription. In addition, NAC also subtly adjusts other cellular functions to keep pace with the supply of biosynthetically available nitrogen.
Collapse
|
13
|
Properties of the NAC (nitrogen assimilation control protein)-binding site within the ureD promoter of Klebsiella pneumoniae. J Bacteriol 2010; 192:4821-6. [PMID: 20622063 DOI: 10.1128/jb.00883-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) of Klebsiella pneumoniae is a LysR-type transcriptional regulator that activates transcription when bound to a DNA site (ATAA-N5-TnGTAT) centered at a variety of distances from the start of transcription. The NAC-binding site from the hutU promoter (NBShutU) is centered at -64 relative to the start of transcription but can activate the lacZ promoter from sites at -64, -54, -52, and -42 but not from sites at -47 or -59. However, the NBSs from the ureD promoter (ureDp) and codB promoter (codBp) are centered at -47 and -59, respectively, and NAC is fully functional at these promoters. Therefore, we compared the activities of the NBShutU and NBSureD within the context of ureDp as well as within codBp. The NBShutU functioned at both of these sites. The NBSureD has the same asymmetric core as the NBShutU. Inverting the NBSureD abolished more than 99% of NAC's ability to activate ureDp. The key to the activation lies in the TnG segment of the TnGTAT half of the NBSureD. Changing TnG to GnT, TnT, or GnG drastically reduced ureDp activation (to 0.5%, 6%, or 15% of wild-type activation, respectively). The function of the NBSureD, like that of the NBShutU, requires that the TnGTAT half of the NBS be on the promoter-proximal (downstream) side of the NBS. Taken together, our data suggest that the positional specificity of an NBS is dependent on the promoter in question and is more flexible than previously thought, allowing considerable latitude both in distance and on the face of the DNA helix for the NBS relative to that of RNA polymerase.
Collapse
|
14
|
The LysR-type nitrogen assimilation control protein forms complexes with both long and short DNA binding sites in the absence of coeffectors. J Bacteriol 2010; 192:4827-33. [PMID: 20363946 DOI: 10.1128/jb.00968-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most LysR-type transcriptional regulators (LTTRs) function as tetramers when regulating gene expression. The nitrogen assimilation control protein (NAC) generally functions as a dimer when binding to DNA and activating transcription. However, at some sites, NAC binds as a tetramer. Like many LTTRs, NAC tetramers can recognize sites with long footprints (74 bp for the site at nac) with a substantial DNA bend or short footprints (56 bp for the site at cod) with less DNA bending. However, unlike other LTTRs, NAC can recognize both types of sites in the absence of physiologically relevant coeffectors, suggesting that the two conformers of the NAC tetramer (extended and compact) are interchangeable without the need for any modification to induce or stabilize the change. In order for NAC to bind as a tetramer, three interactions must exist: an interaction between the two NAC dimers and an interaction between each NAC dimer and its corresponding binding site. The interaction between one dimer and its DNA site can be weak (recognizing a half-site rather than a full dimer-binding site), but the other two interactions must be strong. Since the conformation of the NAC tetramer (extended or compact) is determined by the nature of the DNA site without the intervention of a small molecule, we argue that the coeffector that determines the conformation of the NAC tetramer is the DNA site to which it binds.
Collapse
|
15
|
Expanded role for the nitrogen assimilation control protein in the response of Klebsiella pneumoniae to nitrogen stress. J Bacteriol 2010; 192:4812-20. [PMID: 20348267 DOI: 10.1128/jb.00931-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Klebsiella pneumoniae is able to utilize many nitrogen sources, and the utilization of some of these nitrogen sources is dependent on the nitrogen assimilation control (NAC) protein. Seven NAC-regulated promoters have been characterized in K. pneumoniae, and nine NAC-regulated promoters have been found by microarray analysis in Escherichia coli. So far, all characterized NAC-regulated promoters have been directly related to nitrogen metabolism. We have used a genome-wide analysis of NAC binding under nitrogen limitation to identify the regions of the chromosome associated with NAC in K. pneumoniae. We found NAC associated with 99 unique regions of the chromosome under nitrogen limitation. In vitro, 84 of the 99 regions associate strongly enough with purified NAC to produce a shifted band by electrophoretic mobility shift assay. Primer extension analysis of the mRNA from genes associated with 17 of the fragments demonstrated that at least one gene associated with each fragment was NAC regulated under nitrogen limitation. The large size of the NAC regulon in K. pneumoniae indicates that NAC plays a larger role in the nitrogen stress response than it does in E. coli. Although a majority of the genes with identifiable functions that associated with NAC under nitrogen limitation are involved in nitrogen metabolism, smaller subsets are associated with carbon and energy acquisition (18 genes), and growth rate control (10 genes). This suggests an expanded role for NAC regulation during the nitrogen stress response, where NAC not only regulates genes involved in nitrogen metabolism but also regulates genes involved in balancing carbon and nitrogen pools and growth rate.
Collapse
|
16
|
Characterization of alanine catabolism in Pseudomonas aeruginosa and its importance for proliferation in vivo. J Bacteriol 2009; 191:6329-34. [PMID: 19666712 DOI: 10.1128/jb.00817-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa causes a variety of infections in immunocompromised individuals, including individuals with the heritable disease cystic fibrosis. Like the carbon sources metabolized by many disease-causing bacteria, the carbon sources metabolized by P. aeruginosa at the host infection site are unknown. We recently reported that l-alanine is a preferred carbon source for P. aeruginosa and that two genes potentially involved in alanine catabolism (dadA and dadX) are induced during in vivo growth in the rat peritoneum and during in vitro growth in sputum (mucus) collected from the lungs of individuals with cystic fibrosis. The goals of this study were to characterize factors required for alanine catabolism in P. aeruginosa and to assess the importance of these factors for in vivo growth. Our results reveal that dadA and dadX are arranged in an operon and are required for catabolism of l-alanine. The dad operon is inducible by l-alanine, d-alanine, and l-valine, and induction is dependent on the transcriptional regulator Lrp. Finally, we show that a mutant unable to catabolize dl-alanine displays decreased competitiveness in a rat lung model of infection.
Collapse
|
17
|
The hpx genetic system for hypoxanthine assimilation as a nitrogen source in Klebsiella pneumoniae: gene organization and transcriptional regulation. J Bacteriol 2008; 190:7892-903. [PMID: 18849434 DOI: 10.1128/jb.01022-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth experiments showed that adenine and hypoxanthine can be used as nitrogen sources by several strains of K. pneumoniae under aerobic conditions. The assimilation of all nitrogens from these purines indicates that the catabolic pathway is complete and proceeds past allantoin. Here we identify the genetic system responsible for the oxidation of hypoxanthine to allantoin in K. pneumoniae. The hpx cluster consists of seven genes, for which an organization in four transcriptional units, hpxDE, hpxR, hpxO, and hpxPQT, is proposed. The proteins involved in the oxidation of hypoxanthine (HpxDE) or uric acid (HpxO) did not display any similarity to other reported enzymes known to catalyze these reactions but instead are similar to oxygenases acting on aromatic compounds. Expression of the hpx system is activated by nitrogen limitation and by the presence of specific substrates, with hpxDE and hpxPQT controlled by both signals. Nitrogen control of hpxPQT transcription, which depends on sigma(54), is mediated by the Ntr system. In contrast, neither NtrC nor the nitrogen assimilation control protein is involved in the nitrogen control of hpxDE, which is dependent on sigma(70) for transcription. Activation of these operons by the specific substrates is also mediated by different effectors and regulatory proteins. Induction of hpxPQT requires uric acid formation, whereas expression of hpxDE is induced by the presence of hypoxanthine through the regulatory protein HpxR. This LysR-type regulator binds to a TCTGC-N(4)-GCAAA site in the intergenic hpxD-hpxR region. When bound to this site for hpxDE activation, HpxR negatively controls its own transcription.
Collapse
|
18
|
Gusso CL, de Souza EM, Rigo LU, de Oliveira Pedrosa F, Yates M, de M Rego FG, Klassen G. Effect of anntrCmutation on amino acid or urea utilization and on nitrogenase switch-off inHerbaspirillum seropedicae. Can J Microbiol 2008; 54:235-9. [DOI: 10.1139/w07-135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herbaspirillum seropedicae is a nitrogen-fixing bacterium that grows well with ammonium chloride or sodium nitrate as alternative single nitrogen sources but that grows more slowly with l-alanine, l-serine, l-proline, or urea. The ntrC mutant strain DCP286A was able to utilize only ammonium or urea of these nitrogen sources. The addition of 1 mmol·L–1ammonium chloride to the nitrogen-fixing wild-type strain inhibited nitrogenase activity rapidly and completely. Urea was a less effective inhibitor; approximately 20% of nitrogenase activity remained 40 min after the addition of 1 mmol·L–1urea. The effect of the ntrC mutation on nitrogenase inhibition (switch-off) was studied in strain DCP286A containing the constitutively expressed gene nifA of H. seropedicae. In this strain, nitrogenase inhibition by ammonium was completely abolished, but the addition of urea produced a reduction in nitrogenase activity similar to that of the wild-type strain. The results suggest that the NtrC protein is required for assimilation of nitrate and the tested amino acids by H. seropedicae. Furthermore, NtrC is also necessary for ammonium-induced switch-off of nitrogenase but is not involved in the mechanism of nitrogenase switch-off by urea.
Collapse
Affiliation(s)
- Claudio L. Gusso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Emanuel M. de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Liu Un Rigo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - M.G. Yates
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Fabiane G. de M Rego
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Giseli Klassen
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| |
Collapse
|
19
|
Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol 2008; 190:1966-75. [PMID: 18192388 DOI: 10.1128/jb.01804-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyamines (putrescine, spermidine, and spermine) are major organic polycations essential for a wide spectrum of cellular processes. The cells require mechanisms to maintain homeostasis of intracellular polyamines to prevent otherwise severe adverse effects. We performed a detailed transcriptome profile analysis of Pseudomonas aeruginosa in response to agmatine and putrescine with an emphasis in polyamine catabolism. Agmatine serves as the precursor compound for putrescine (and hence spermidine and spermine), which was proposed to convert into 4-aminobutyrate (GABA) and succinate before entering the tricarboxylic acid cycle in support of cell growth, as the sole source of carbon and nitrogen. Two acetylpolyamine amidohydrolases, AphA and AphB, were found to be involved in the conversion of agmatine into putrescine. Enzymatic products of AphA were confirmed by mass spectrometry analysis. Interestingly, the alanine-pyruvate cycle was shown to be indispensable for polyamine utilization. The newly identified dadRAX locus encoding the regulator alanine transaminase and racemase coupled with SpuC, the major putrescine-pyruvate transaminase, were key components to maintaining alanine homeostasis. Corresponding mutant strains were severely hampered in polyamine utilization. On the other hand, an alternative gamma-glutamylation pathway for the conversion of putrescine into GABA is present in some organisms. Subsequently, GabD, GabT, and PA5313 were identified for GABA utilization. The growth defect of the PA5313 gabT double mutant in GABA suggested the importance of these two transaminases. The succinic-semialdehyde dehydrogenase activity of GabD and its induction by GABA were also demonstrated in vitro. Polyamine utilization in general was proven to be independent of the PhoPQ two-component system, even though a modest induction of this operon was induced by polyamines. Multiple potent catabolic pathways, as depicted in this study, could serve pivotal roles in the control of intracellular polyamine levels.
Collapse
|
20
|
Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol 2008; 192:4317-26. [PMID: 18192388 DOI: 10.1128/jb.00335-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polyamines (putrescine, spermidine, and spermine) are major organic polycations essential for a wide spectrum of cellular processes. The cells require mechanisms to maintain homeostasis of intracellular polyamines to prevent otherwise severe adverse effects. We performed a detailed transcriptome profile analysis of Pseudomonas aeruginosa in response to agmatine and putrescine with an emphasis in polyamine catabolism. Agmatine serves as the precursor compound for putrescine (and hence spermidine and spermine), which was proposed to convert into 4-aminobutyrate (GABA) and succinate before entering the tricarboxylic acid cycle in support of cell growth, as the sole source of carbon and nitrogen. Two acetylpolyamine amidohydrolases, AphA and AphB, were found to be involved in the conversion of agmatine into putrescine. Enzymatic products of AphA were confirmed by mass spectrometry analysis. Interestingly, the alanine-pyruvate cycle was shown to be indispensable for polyamine utilization. The newly identified dadRAX locus encoding the regulator alanine transaminase and racemase coupled with SpuC, the major putrescine-pyruvate transaminase, were key components to maintaining alanine homeostasis. Corresponding mutant strains were severely hampered in polyamine utilization. On the other hand, an alternative gamma-glutamylation pathway for the conversion of putrescine into GABA is present in some organisms. Subsequently, GabD, GabT, and PA5313 were identified for GABA utilization. The growth defect of the PA5313 gabT double mutant in GABA suggested the importance of these two transaminases. The succinic-semialdehyde dehydrogenase activity of GabD and its induction by GABA were also demonstrated in vitro. Polyamine utilization in general was proven to be independent of the PhoPQ two-component system, even though a modest induction of this operon was induced by polyamines. Multiple potent catabolic pathways, as depicted in this study, could serve pivotal roles in the control of intracellular polyamine levels.
Collapse
|
21
|
Liu Q, Bender RA. Complex regulation of urease formation from the two promoters of the ure operon of Klebsiella pneumoniae. J Bacteriol 2007; 189:7593-9. [PMID: 17720785 PMCID: PMC2168754 DOI: 10.1128/jb.01096-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae can use urea as the sole source of nitrogen, thanks to a urease encoded by the ureDABCEFG operon. Expression of this operon is independent of urea and is regulated by the supply of nitrogen in the growth medium. When cells were growth rate limited for nitrogen, the specific activity of urease was about 70 times higher than that in cells grown under conditions of excess nitrogen. Much of this nitrogen regulation of urease formation depended on the nitrogen regulatory system acting through the nitrogen assimilation control protein, NAC. In a strain deleted for the nac gene, nitrogen limitation resulted in only a 7-fold increase in the specific activity of urease, in contrast to the 70-fold increase seen in that of the wild type. The ure operon was transcribed from two promoters. The proximal promoter (P1) had an absolute requirement for NAC; little or no transcription was seen in the absence of NAC. The distal promoter (P2) was independent of NAC, but its activity increased about threefold when the growth rate of the cells was limited by the nitrogen source. Transcriptional regulation of P1 and P2 accounted for most of the changes in urease activity seen under various nitrogen conditions. However, when transcription of ureDABCEFG was less than 20% of its maximum, the amount of active urease formed per transcript of ure decreased almost linearly with decreasing transcription. This may reflect a defect in the assembly of active urease and accounted for as much as a threefold activity difference under the conditions tested here. Thus, the ure operon was transcribed from a NAC-independent promoter (P2) and the most strongly NAC-dependent promoter known (P1). Most of the regulation of urease formation was transcriptional, but when ure transcription was low, assembly of active urease also was defective.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Molecular Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
22
|
Eschenbrenner M, Horn TA, Wagner MA, Mujer CV, Miller-Scandle TL, DelVecchio VG. Comparative Proteome Analysis of Laboratory Grown Brucella abortus 2308 and Brucella melitensis 16M. J Proteome Res 2006; 5:1731-40. [PMID: 16823981 DOI: 10.1021/pr060135p] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Brucella species are pathogenic agents that cause brucellosis, a debilitating zoonotic disease that affects a large variety of domesticated animals and humans. Brucella melitensis and Brucella abortus are considered major health threats because of their highly infectious nature and worldwide occurrence. The availability of the annotated genomes for these two species has allowed a comparative proteomics study of laboratory grown B. melitensis 16M and B. abortus 2308 by two-dimensional (2-D) gel electrophoresis and peptide mass fingerprinting. Computer-assisted analysis of the different 2-D gel images of strains 16M and 2308 revealed significant quantitative and qualitative differences in their protein expression patterns. Proteins involved in membrane transport, particularly the high affinity amino acids binding proteins, and those involved in Sec-dependent secretion systems related to type IV and type V secretion systems, were differentially expressed. Differential expression of these proteins may be responsible for conferring specific host preference in the two strains 2308 and 16M.
Collapse
Affiliation(s)
- Michel Eschenbrenner
- Institute of Molecular Biology and Medicine, The University of Scranton, Scranton, Pennsylvania 18510, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Zhang Y, Pohlmann EL, Conrad MC, Roberts GP. The poor growth of Rhodospirillum rubrum mutants lacking PII proteins is due to an excess of glutamine synthetase activity. Mol Microbiol 2006; 61:497-510. [PMID: 16762025 DOI: 10.1111/j.1365-2958.2006.05251.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The P(II) family of proteins is found in all three domains of life and serves as a central regulator of the function of proteins involved in nitrogen metabolism, reflecting the nitrogen and carbon balance in the cell. The genetic elimination of the genes encoding these proteins typically leads to severe growth problems, but the basis of this effect has been unknown except with Escherichia coli. We have analysed a number of the suppressor mutations that correct such growth problems in Rhodospirillum rubrum mutants lacking P(II) proteins. These suppressors map to nifR3, ntrB, ntrC, amtB(1) and the glnA region and all have the common property of decreasing total activity of glutamine synthetase (GS). We also show that GS activity is very high in the poorly growing parental strains lacking P(II) proteins. Consistent with this, overexpression of GS in glnE mutants (lacking adenylyltransferase activity) also causes poor growth. All of these results strongly imply that elevated GS activity is the causative basis for the poor growth seen in R. rubrum mutants lacking P(II) and presumably in mutants of some other organisms with similar genotypes. The result underscores the importance of proper regulation of GS activity for cell growth.
Collapse
Affiliation(s)
- Yaoping Zhang
- Department of Bacteriology, Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
24
|
Rosario CJ, Bender RA. Importance of tetramer formation by the nitrogen assimilation control protein for strong repression of glutamate dehydrogenase formation in Klebsiella pneumoniae. J Bacteriol 2006; 187:8291-9. [PMID: 16321933 PMCID: PMC1317014 DOI: 10.1128/jb.187.24.8291-8299.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae is a very versatile regulatory protein. NAC activates transcription of operons such as hut (histidine utilization) and ure (urea utilization), whose products generate ammonia. NAC also represses the transcription of genes such as gdhA, whose products use ammonia. NAC exerts a weak repression at gdhA by competing with the binding of a lysine-sensitive activator. NAC also strongly represses transcription of gdhA (about 20-fold) by binding to two separated sites, suggesting a model involving DNA looping. We have identified negative control mutants that are unable to exert this strong repression of gdhA expression but still activate hut and ure expression normally. Some of these negative control mutants (e.g., NAC(86ter) and NAC(132ter)) delete the C-terminal domain, thought to be required for tetramerization. Other negative control mutants (e.g., NAC(L111K) and NAC(L125R)) alter single amino acids involved in tetramerization. In this work we used gel filtration to show that NAC(86ter) and NAC(L111K) are dimers in solution, even at high concentration (NAC(WT) is a tetramer). Moreover, using a combination of DNase I footprints and gel mobility shifts assays, we showed that when NAC(WT) binds to two adjacent sites on a DNA fragment, NAC(WT) binds as a tetramer that bends the DNA fragment significantly. NAC(L111K) binds to such a fragment as two independent dimers without inducing the strong bend. Thus, NAC(L111K) is a dimer in solution or when bound to DNA. NAC(L111K) (typical of the negative control mutants) is wild type for every other property tested: (i) it activates transcription at hut and ure; (ii) it competes with the lysine-sensitive activator for binding at gdhA; (iii) it binds to the same sites at the hut, ure, nac, and gdhA promoters as NAC(WT); (iv) the relative affinity of NAC(L111K) for these sites follows the same order as NAC(WT) (ure > gdhA > nac > hut); (v) it induces the same slight bend as dimers of NAC(WT); and (vi) its DNase I footprints at these sites are indistinguishable from those of NAC(WT) (except for features ascribed to tetramer formation). The only two phenotypes we know for negative control mutants of NAC are their inability to tetramerize and their inability to cause the strong repression of gdhA. Thus, we propose that in order for NAC(WT) to exert the strong repression, it must form a tetramer that bridges the two sites at gdhA (similar to other DNA looping models) and that the negative control mutants of NAC, which fail to tetramerize, cannot form this loop and thus fail to exert the strong repression at gdhA.
Collapse
Affiliation(s)
- Christopher J Rosario
- Department of Molecular Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
25
|
Reitzer L. Biosynthesis of Glutamate, Aspartate, Asparagine, L-Alanine, and D-Alanine. EcoSal Plus 2004; 1. [PMID: 26443364 DOI: 10.1128/ecosalplus.3.6.1.3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Indexed: 06/05/2023]
Abstract
Glutamate, aspartate, asparagine, L-alanine, and D-alanine are derived from intermediates of central metabolism, mostly the citric acid cycle, in one or two steps. While the pathways are short, the importance and complexity of the functions of these amino acids befit their proximity to central metabolism. Inorganic nitrogen (ammonia) is assimilated into glutamate, which is the major intracellular nitrogen donor. Glutamate is a precursor for arginine, glutamine, proline, and the polyamines. Glutamate degradation is also important for survival in acidic environments, and changes in glutamate concentration accompany changes in osmolarity. Aspartate is a precursor for asparagine, isoleucine, methionine, lysine, threonine, pyrimidines, NAD, and pantothenate; a nitrogen donor for arginine and purine synthesis; and an important metabolic effector controlling the interconversion of C3 and C4 intermediates and the activity of the DcuS-DcuR two-component system. Finally, L- and D-alanine are components of the peptide of peptidoglycan, and L-alanine is an effector of the leucine responsive regulatory protein and an inhibitor of glutamine synthetase (GS). This review summarizes the genes and enzymes of glutamate, aspartate, asparagine, L-alanine, and D-alanine synthesis and the regulators and environmental factors that control the expression of these genes. Glutamate dehydrogenase (GDH) deficient strains of E. coli, K. aerogenes, and S. enterica serovar Typhimurium grow normally in glucose containing (energy-rich) minimal medium but are at a competitive disadvantage in energy limited medium. Glutamate, aspartate, asparagine, L-alanine, and D-alanine have multiple transport systems.
Collapse
|
26
|
Pagliarulo C, Salvatore P, De Vitis LR, Colicchio R, Monaco C, Tredici M, Talà A, Bardaro M, Lavitola A, Bruni CB, Alifano P. Regulation and differential expression of gdhA encoding NADP-specific glutamate dehydrogenase in Neisseria meningitidis clinical isolates. Mol Microbiol 2004; 51:1757-72. [PMID: 15009900 DOI: 10.1111/j.1365-2958.2003.03947.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Meningococcal gdhA, encoding the NADP-specific l-glutamate dehydrogenase (NADP-GDH), is essential for systemic infection in an infant rat model. In this paper, a limited transcriptional analysis detected differences in gdhA expression among clinical isolates. In strains expressing high levels of gdhA mRNA, two promoters, gdhA P1 and gdhA P2, initiated transcription of gdhA. In contrast, in strains expressing low mRNA levels, gdhA P2 was not active because of weak expression of gdhR, an associated regulatory gene. Gene knock-out and complementation of a gdhR-defective mutant confirmed that GdhR is a positive regulator for gdhA P2. Trans-activation of gdhA P2 was maximal in complex medium during late logarithmic growth phase and in chemical defined medium (MCDA) when glucose (MCDA-glucose) instead of lactate (MCDA-lactate) was used as a carbon source in the presence of glutamate. gdhR knock-out mutants lost both growth phase and carbon source regulation, and exhibited a growth defect more severe in MCDA-glucose than in MCDA-lactate. DNA-protein interaction studies demonstrated that 2-oxoglutarate, a product of the catabolic reaction of the NADP-GDH and an intermediate of the tricarboxylic acid (TCA) cycle, inhibits binding of GdhR to gdhA P2.
Collapse
Affiliation(s)
- Caterina Pagliarulo
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L Califano, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chamond N, Grégoire C, Coatnoan N, Rougeot C, Freitas-Junior LH, da Silveira JF, Degrave WM, Minoprio P. Biochemical characterization of proline racemases from the human protozoan parasite Trypanosoma cruzi and definition of putative protein signatures. J Biol Chem 2003; 278:15484-94. [PMID: 12735293 DOI: 10.1074/jbc.m210830200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proline racemase catalyzes the interconversion of L- and D-proline enantiomers and has to date been described in only two species. Originally found in the bacterium Clostridium sticklandii, it contains cysteine residues in the active site and does not require co-factors or other known coenzymes. We recently described the first eukaryotic amino acid (proline) racemase, after isolation and cloning of a gene from the pathogenic human parasite Trypanosoma cruzi. Although this enzyme is intracellularly located in replicative non-infective forms of T. cruzi, membrane-bound and secreted forms of the enzyme are present upon differentiation of the parasite into non-dividing infective forms. The secreted form of proline racemase is a potent host B-cell mitogen supporting parasite evasion of specific immune responses. Here we describe that the TcPRAC genes in T. cruzi encode functional intracellular or secreted versions of the enzyme exhibiting distinct kinetic properties that may be relevant for their relative catalytic efficiency. Although the Km of the enzyme isoforms were of a similar order of magnitude (29-75 mM), Vmax varied between 2 x 10(-4 )and 5.3 x 10(-5) mol of L-proline/s/0.125 microM of homodimeric recombinant protein. Studies with the enzyme-specific inhibitor and abrogation of enzymatic activity by site-directed mutagenesis of the active site Cys330 residue reinforced the potential of proline racemase as a critical target for drug development against Chagas' disease. Finally, we propose a protein signature for proline racemases and suggest that the enzyme is present in several other pathogenic and non-pathogenic bacterial genomes of medical and agricultural interest, yet absent in mammalian host, suggesting that inhibition of proline racemases may have therapeutic potential.
Collapse
Affiliation(s)
- Natalie Chamond
- Department of Immunology, Institut Pasteur, Paris 75724, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Muse WB, Rosario CJ, Bender RA. Nitrogen regulation of the codBA (cytosine deaminase) operon from Escherichia coli by the nitrogen assimilation control protein, NAC. J Bacteriol 2003; 185:2920-6. [PMID: 12700271 PMCID: PMC154391 DOI: 10.1128/jb.185.9.2920-2926.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the cytosine deaminase (codBA) operon of Escherichia coli is regulated by nitrogen, with about three times more codBA expression in cells grown in nitrogen-limiting medium than in nitrogen-excess medium. Beta-galactosidase expression from codBp-lacZ operon fusions showed that the nitrogen assimilation control protein NAC was necessary for this regulation. In vitro transcription from the codBA promoter with purified RNA polymerase was stimulated by the addition of purified NAC, confirming that no other factors are required. Gel mobility shifts and DNase I footprints showed that NAC binds to a site centered at position -59 relative to the start site of transcription and that mutants that cannot bind NAC there cannot activate transcription. When a longer promoter region (positions -120 to +67) was used, a double footprint was seen with a second 26-bp footprint separated from the first by a hypersensitive site. When a shorter fragment was used (positions -83 to +67), only the primary footprint was seen. Nevertheless, both the shorter and longer fragments showed NAC-mediated regulation in vivo. Cytosine deaminase expression in Klebsiella pneumoniae was also regulated by nitrogen in a NAC-dependent manner. K. pneumoniae differs from E. coli in having two cytosine deaminase genes, an intervening open reading frame between the codB and codA orthologs, and a different response to hypoxanthine which increased cod expression in K. pneumoniae but decreased it in E. coli.
Collapse
Affiliation(s)
- Wilson B Muse
- Department of Molecular Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | |
Collapse
|
29
|
Janes BK, Rosario CJ, Bender RA. Isolation of a negative control mutant of the nitrogen assimilation control protein, NAC, in Klebsiella aerogenes. J Bacteriol 2003; 185:688-92. [PMID: 12511519 PMCID: PMC145345 DOI: 10.1128/jb.185.2.688-692.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A negative control mutant of the nitrogen assimilation control protein, NAC, has been isolated. Mutants with the leucine at position 111 changed to a nonhydrophobic residue activate transcription from hut and ure promoters, but fail to repress gdhA expression. This failure does not result from failure to bind to either of the two sites required for gdhA repression, but the binding at those sites is altered in the mutant. It appears that the NAC negative control mutants fail to form the complex structures (probably tetramers) formed by wild-type NAC at the gdhA promoter.
Collapse
Affiliation(s)
- Brian K Janes
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor 48109-1048, USA
| | | | | |
Collapse
|
30
|
Goss TJ, Janes BK, Bender RA. Repression of glutamate dehydrogenase formation in Klebsiella aerogenes requires two binding sites for the nitrogen assimilation control protein, NAC. J Bacteriol 2002; 184:6966-75. [PMID: 12446647 PMCID: PMC135459 DOI: 10.1128/jb.184.24.6966-6975.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Klebsiella aerogenes, the gdhA gene codes for glutamate dehydrogenase, one of the enzymes responsible for assimilating ammonia into glutamate. Expression of a gdhAp-lacZ transcriptional fusion was strongly repressed by the nitrogen assimilation control protein, NAC. This strong repression (>50-fold under conditions of severe nitrogen limitation) required the presence of two separate NAC binding sites centered at -89 and +57 relative to the start of gdhA transcription. Mutants lacking either or both of these sites lost the strong repression. The distance between the two sites was less important than the face of the helix on which they lay. Insertion or deletion of 10 bp between the sites had little effect on the strong repression, but insertion of 5 bp or deletion of either 5 or 15 bp decreased the repression significantly. We propose that the strong repression of gdhAp-lacZ expression requires an interaction between the NAC molecules bound at the two sites. A weaker repression of gdhAp-lacZ expression (about threefold) required only the NAC site centered at -89. This weaker repression appears to result from NAC's ability to prevent the action of a positive effector the target of which overlaps the NAC binding site centered at -89. Point mutations and deletions of this region result in the same threefold reduction in gdhAp-lacZ expression as the presence of NAC at this site.
Collapse
Affiliation(s)
- Thomas J Goss
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor 48109-1048, USA
| | | | | |
Collapse
|
31
|
Schneider BL, Ruback S, Kiupakis AK, Kasbarian H, Pybus C, Reitzer L. The Escherichia coli gabDTPC operon: specific gamma-aminobutyrate catabolism and nonspecific induction. J Bacteriol 2002; 184:6976-86. [PMID: 12446648 PMCID: PMC135471 DOI: 10.1128/jb.184.24.6976-6986.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen limitation induces the nitrogen-regulated (Ntr) response, which includes proteins that assimilate ammonia and scavenge nitrogen. Nitrogen limitation also induces catabolic pathways that degrade four metabolically related compounds: putrescine, arginine, ornithine, and gamma-aminobutyrate (GABA). We analyzed the structure, function, and regulation of the gab operon, whose products degrade GABA, a proposed intermediate in putrescine catabolism. We showed that the gabDTPC gene cluster constitutes an operon based partially on coregulation of GabT and GabD activities and the polarity of an insertion in gabT on gabC. A DeltagabDT mutant grew normally on all of the nitrogen sources tested except GABA. The unexpected growth with putrescine resulted from specific induction of gab-independent enzymes. Nac was required for gab transcription in vivo and in vitro. Ntr induction did not require GABA, but various nitrogen sources did not induce enzyme activity equally. A gabC (formerly ygaE) mutant grew faster with GABA and had elevated levels of gab operon products, which suggests that GabC is a repressor. GabC is proposed to reduce nitrogen source-specific modulation of expression. Unlike a wild-type strain, a gabC mutant utilized GABA as a carbon source and such growth required sigma(S). Previous studies showing sigma(S)-dependent gab expression in stationary phase involved gabC mutants, which suggests that such expression does not occur in wild-type strains. The seemingly narrow catabolic function of the gab operon is contrasted with the nonspecific (nitrogen source-independent) induction. We propose that the gab operon and the Ntr response itself contribute to putrescine and polyamine homeostasis.
Collapse
Affiliation(s)
- Barbara L Schneider
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson 75083-0688, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Because it can undergo reversible changes in oxidation state, iron is an excellent biocatalyst but also a potentially deleterious metal. Iron-mediated toxicity has been ascribed to Fe(II), which reacts with oxygen to generate free radicals that damage macromolecules and cause cell death. However, we now report that Fe(III) exhibits microbicidal activity towards strains of Salmonella enterica, Escherichia coli and Klebsiella pneumoniae defective in the Fe(III)-responding PmrA/PmrB signal transduction system. Fe(III) bound to a pmrA Salmonella mutant more effectively than to the isogenic wild-type strain and exerted its microbicidal activity even under anaerobic conditions. Moreover, Fe(III) permeabilized the outer membrane of the pmrA mutant, rendering it susceptible to vancomycin, which is normally non-toxic to Gram-negative species. On the other hand, Fe(III) did not affect the viability of a mutant defective in Fur, the major regulator of cytosolic iron homeostasis, which is hypersensitive to Fe(II)-mediated toxicity. A functional pmrA gene was necessary for bacterial survival in soil. Our results indicate that Fe(III) exerts its microbicidal activity by a mechanism that is oxygen independent and different from that mediated by Fe(II).
Collapse
Affiliation(s)
- Sangpen Chamnongpol
- Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
33
|
Satomura T, Kawakami R, Sakuraba H, Ohshima T. Dye-linked D-proline dehydrogenase from hyperthermophilic archaeon Pyrobaculum islandicum is a novel FAD-dependent amino acid dehydrogenase. J Biol Chem 2002; 277:12861-7. [PMID: 11823469 DOI: 10.1074/jbc.m112272200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of dye-linked d-proline dehydrogenase was found in the crude extract of a hyperthermophilic archaeon, Pyrobaculum islandicum JCM 9189. The dye-linked d-proline dehydrogenase was a membrane associated enzyme and was solubilized from the membrane fractions by treatment with Tween 20. The solubilized enzyme was purified 34-fold in the presence of 0.1% Tween 20 by four sequential chromatographies. The enzyme has a molecular mass of about 145 kDa and consisted of homotetrameric subunits with a molecular mass of about 42 kDa. The N-terminal amino acid sequence of the subunit was MKVAIVGGGIIGLFTAYHLRQQGADVVI. The enzyme retained its full activity both after incubation at 80 degrees C for 10 min and after incubation in the range of pH 4.0-10.0 at 50 degrees C for 10 min. The enzyme-catalyzed dehydrogenation of several d-amino acids was carried out using 2,6-dichloroindophenol as an electron acceptor, and d-proline was the most preferred substrate among the d-amino acids. The Michaelis constants for d-proline and 2,6-dichloroindophenol were determined to be 4.2 and 0.14 mm, respectively. Delta(1)-Pyrroline-2-carboxylate was identified as the reaction product from d-proline by thin layer chromatography. The prosthetic group of the enzyme was identified to be FAD by high-performance liquid chromatography. The gene encoding the enzyme was cloned and expressed in Escherichia coli. The nucleotide sequence of the dye-linked d-proline dehydrogenase gene was determined and encoded a peptide of 363 amino acids with a calculated molecular weight of 40,341. The amino acid sequence of the Pb. islandicum enzyme showed the highest similarity (38%) with that of the probable oxidoreductase in Sulfolobus solfataricus, but low similarity with those of d-alanine dehydrogenases from the mesophiles so far reported. This shows that the membrane-bound d-proline dehydrogenase from Pb. islandicum is a novel FAD-dependent amino acid dehydrogenase.
Collapse
Affiliation(s)
- Takenori Satomura
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minami-josanjimacho, Tokushima 770-8506, Japan
| | | | | | | |
Collapse
|
34
|
Poggio S, Domeinzain C, Osorio A, Camarena L. The nitrogen assimilation control (Nac) protein represses asnC and asnA transcription in Escherichia coli. FEMS Microbiol Lett 2002; 206:151-6. [PMID: 11814655 DOI: 10.1111/j.1574-6968.2002.tb11001.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In this work, we show that the expression of the asnA and asnC genes is regulated by the availability of ammonium in the growth medium. Our results suggest that, under nitrogen-limiting growth conditions, the nitrogen assimilation control (Nac) protein is involved in the repression of the asnC gene, whose product is required to activate the transcription of asnA. We also show that asparagine negatively affects the expression of asnA, independently of the presence of Nac. These results allow us to conclude that asnA transcription is regulated by two different mechanisms that respond to different effectors: nitrogen and asparagine availability.
Collapse
Affiliation(s)
- Sebastian Poggio
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ap. Postal 70-228, 04510, México, D.F., Mexico
| | | | | | | |
Collapse
|
35
|
Goss TJ, Perez-Matos A, Bender RA. Roles of glutamate synthase, gltBD, and gltF in nitrogen metabolism of Escherichia coli and Klebsiella aerogenes. J Bacteriol 2001; 183:6607-19. [PMID: 11673431 PMCID: PMC95492 DOI: 10.1128/jb.183.22.6607-6619.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of Escherichia coli and Klebsiella aerogenes that are deficient in glutamate synthase (glutamate-oxoglutarate amidotransferase [GOGAT]) activity have difficulty growing with nitrogen sources other than ammonia. Two models have been proposed to account for this inability to grow. One model postulated an imbalance between glutamine synthesis and glutamine degradation that led to a repression of the Ntr system and the subsequent failure to activate transcription of genes required for the use of alternative nitrogen sources. The other model postulated that mutations in gltB or gltD (which encode the subunits of GOGAT) were polar on a downstream gene, gltF, which is necessary for proper activation of gene expression by the Ntr system. The data reported here show that the gltF model is incorrect for three reasons: first, a nonpolar gltB and a polar gltD mutation of K. aerogenes both show the same phenotype; second, K. aerogenes and several other enteric bacteria lack a gene homologous to gltF; and third, mutants of E. coli whose gltF gene has been deleted show no defect in nitrogen metabolism. The argument that accumulated glutamine represses the Ntr system in gltB or gltD mutants is also incorrect, because these mutants can derepress the Ntr system normally so long as sufficient glutamate is supplied. Thus, we conclude that gltB or gltD mutants grow slowly on many poor nitrogen sources because they are starved for glutamate. Much of the glutamate formed by catabolism of alternative nitrogen sources is converted to glutamine, which cannot be efficiently converted to glutamate in the absence of GOGAT activity. Finally, GOGAT-deficient E. coli cells growing with glutamine as the sole nitrogen source increase their synthesis of the other glutamate-forming enzyme, glutamate dehydrogenase, severalfold, but this is still insufficient to allow rapid growth under these conditions.
Collapse
Affiliation(s)
- T J Goss
- Department of Biology, The University of Michigan, Ann Arbor 48109-1048, USA
| | | | | |
Collapse
|
36
|
Reitzer L, Schneider BL. Metabolic context and possible physiological themes of sigma(54)-dependent genes in Escherichia coli. Microbiol Mol Biol Rev 2001; 65:422-44, table of contents. [PMID: 11528004 PMCID: PMC99035 DOI: 10.1128/mmbr.65.3.422-444.2001] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sigma(54) has several features that distinguish it from other sigma factors in Escherichia coli: it is not homologous to other sigma subunits, sigma(54)-dependent expression absolutely requires an activator, and the activator binding sites can be far from the transcription start site. A rationale for these properties has not been readily apparent, in part because of an inability to assign a common physiological function for sigma(54)-dependent genes. Surveys of sigma(54)-dependent genes from a variety of organisms suggest that the products of these genes are often involved in nitrogen assimilation; however, many are not. Such broad surveys inevitably remove the sigma(54)-dependent genes from a potentially coherent metabolic context. To address this concern, we consider the function and metabolic context of sigma(54)-dependent genes primarily from a single organism, Escherichia coli, in which a reasonably complete list of sigma(54)-dependent genes has been identified by computer analysis combined with a DNA microarray analysis of nitrogen limitation-induced genes. E. coli appears to have approximately 30 sigma(54)-dependent operons, and about half are involved in nitrogen assimilation and metabolism. A possible physiological relationship between sigma(54)-dependent genes may be based on the fact that nitrogen assimilation consumes energy and intermediates of central metabolism. The products of the sigma(54)-dependent genes that are not involved in nitrogen metabolism may prevent depletion of metabolites and energy resources in certain environments or partially neutralize adverse conditions. Such a relationship may limit the number of physiological themes of sigma(54)-dependent genes within a single organism and may partially account for the unique features of sigma(54) and sigma(54)-dependent gene expression.
Collapse
Affiliation(s)
- L Reitzer
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, TX 75083-0688, USA.
| | | |
Collapse
|
37
|
Janes BK, Pomposiello PJ, Perez-Matos A, Najarian DJ, Goss TJ, Bender RA. Growth inhibition caused by overexpression of the structural gene for glutamate dehydrogenase (gdhA) from Klebsiella aerogenes. J Bacteriol 2001; 183:2709-14. [PMID: 11274137 PMCID: PMC95194 DOI: 10.1128/jb.183.8.2709-2714.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two linked mutations affecting glutamate dehydrogenase (GDH) formation (gdh-1 and rev-2) had been isolated at a locus near the trp cluster in Klebsiella aerogenes. The properties of these two mutations were consistent with those of a locus containing either a regulatory gene or a structural gene. The gdhA gene from K. aerogenes was cloned and sequenced, and an insertion mutation was generated and shown to be linked to trp. A region of gdhA from a strain bearing gdh-1 was sequenced and shown to have a single-base-pair change, confirming that the locus defined by gdh-1 is the structural gene for GDH. Mutants with the same phenotype as rev-2 were isolated, and their sequences showed that the mutations were located in the promoter region of the gdhA gene. The linkage of gdhA to trp in K. aerogenes was explained by postulating an inversion of the genetic map relative to other enteric bacteria. Strains that bore high-copy-number clones of gdhA displayed an auxotrophy that was interpreted as a limitation for alpha-ketoglutarate and consequently for succinyl-coenzyme A (CoA). Three lines of evidence supported this interpretation: high-copy-number clones of the enzymatically inactive gdhA1 allele showed no auxotrophy, repression of GDH expression by the nitrogen assimilation control protein (NAC) relieved the auxotrophy, and addition of compounds that could increase the alpha-ketoglutarate supply or reduce the succinyl-CoA requirement relieved the auxotrophy.
Collapse
Affiliation(s)
- B K Janes
- Department of Biology, The University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | | | | | |
Collapse
|
38
|
Wu SQ, Chai W, Lin JT, Stewart V. General nitrogen regulation of nitrate assimilation regulatory gene nasR expression in Klebsiella oxytoca M5al. J Bacteriol 1999; 181:7274-84. [PMID: 10572131 PMCID: PMC103690 DOI: 10.1128/jb.181.23.7274-7284.1999] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella oxytoca can assimilate nitrate and nitrite by using enzymes encoded by the nasFEDCBA operon. Expression of the nasF operon is controlled by general nitrogen regulation (Ntr) via the NtrC transcription activator and by pathway-specific nitrate and nitrite induction via the NasR transcription antiterminator. This paper reports our analysis of nasR gene expression. We constructed strains bearing single-copy Phi(nasR-lacZ) operon fusions within the chromosomal rhaBAD-rhaSR locus. The expression of DeltarhaBS::[Phi(nasR-lacZ)] operon fusions was induced about 10-fold during nitrogen-limited growth. Induction was reduced in both ntrC and rpoN null mutants, indicating that Ntr control of nasR gene expression requires the NtrC and sigma(N) (sigma(54)) proteins. Sequence inspection of the nasR control region reveals an apparent sigma(N)-dependent promoter but no apparent NtrC protein binding sites. Analysis of site-specific mutations coupled with primer extension analysis authenticated the sigma(N)-dependent nasR promoter. Fusion constructs with only about 70 nucleotides (nt) upstream of the transcription initiation site exhibited patterns of beta-galactosidase expression indistinguishable from Phi(nasR-lacZ) constructs with about 470 nt upstream. Expression was independent of the Nac protein, implying that NtrC is a direct activator of nasR transcription. Together, these results indicate that nasR gene expression does not require specific upstream NtrC-binding sequences, as previously noted for argT gene expression in Salmonella typhimurium (G. Schmitz, K. Nikaido, and G. F.-L. Ames, Mol. Gen. Genet. 215:107-117, 1988).
Collapse
Affiliation(s)
- S Q Wu
- Section of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | | | | | | |
Collapse
|
39
|
Blehert DS, Fox BG, Chambliss GH. Cloning and sequence analysis of two Pseudomonas flavoprotein xenobiotic reductases. J Bacteriol 1999; 181:6254-63. [PMID: 10515912 PMCID: PMC103757 DOI: 10.1128/jb.181.20.6254-6263.1999] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes encoding flavin mononucleotide-containing oxidoreductases, designated xenobiotic reductases, from Pseudomonas putida II-B and P. fluorescens I-C that removed nitrite from nitroglycerin (NG) by cleavage of the nitroester bond were cloned, sequenced, and characterized. The P. putida gene, xenA, encodes a 39,702-Da monomeric, NAD(P)H-dependent flavoprotein that removes either the terminal or central nitro groups from NG and that reduces 2-cyclohexen-1-one but did not readily reduce 2,4,6-trinitrotoluene (TNT). The P. fluorescens gene, xenB, encodes a 37,441-Da monomeric, NAD(P)H-dependent flavoprotein that exhibits fivefold regioselectivity for removal of the central nitro group from NG and that transforms TNT but did not readily react with 2-cyclohexen-1-one. Heterologous expression of xenA and xenB was demonstrated in Escherichia coli DH5alpha. The transcription initiation sites of both xenA and xenB were identified by primer extension analysis. BLAST analyses conducted with the P. putida xenA and the P. fluorescens xenB sequences demonstrated that these genes are similar to several other bacterial genes that encode broad-specificity flavoprotein reductases. The prokaryotic flavoprotein reductases described herein likely shared a common ancestor with old yellow enzyme of yeast, a broad-specificity enzyme which may serve a detoxification role in antioxidant defense systems.
Collapse
Affiliation(s)
- D S Blehert
- Department of Bacteriology, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
40
|
Muse WB, Bender RA. The amino-terminal 100 residues of the nitrogen assimilation control protein (NAC) encode all known properties of NAC from Klebsiella aerogenes and Escherichia coli. J Bacteriol 1999; 181:934-40. [PMID: 9922258 PMCID: PMC93461 DOI: 10.1128/jb.181.3.934-940.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/1998] [Accepted: 11/21/1998] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) from Klebsiella aerogenes or Escherichia coli (NACK or NACE, respectively) is a transcriptional regulator that is both necessary and sufficient to activate transcription of the histidine utilization (hut) operon and to repress transcription of the glutamate dehydrogenase (gdh) operon in K. aerogenes. Truncated NAC polypeptides, generated by the introduction of stop codons within the nac open reading frame, were tested for the ability to activate hut and repress gdh in vivo. Most of the NACK and NACE fragments with 100 or more amino acids (wild-type NACK and NACE both have 305 amino acids) were functional in activating hut and repressing gdh expression in vivo. Full-length NACK and NACE were isolated as chimeric proteins with the maltose-binding protein (MBP). NACK and NACE released from such chimeras were able to activate hut transcription in a purified system in vitro, as were NACK129 and NACE100 (a NACK fragment of 129 amino acids and a NACE fragment of 100 amino acids) released from comparable chimeras. A set of NACE and NACK fragments carrying nickel-binding histidine tags (his6) at their C termini were also generated. All such constructs derived from NACE were insoluble, as was NACE itself. Of the his6-tagged constructs derived from NACK, NACK100 was inactive, but NACK120 was active. Several NAC fragments were tested for dimerization. NACK120-his6 and NACK100-his6 were dimers in solution. MBP-NACK and MBP-NACK129 were monomers in solution but dimerized when the MBP was released by cleavage with factor Xa. MBP-NACE was readily cleaved by factor Xa, but the resulting NACE was also degraded by the protease. However, MBP-NACE-his6 was completely resistant to cleavage by factor Xa, suggesting an interaction between the C and N termini of this protein.
Collapse
Affiliation(s)
- W B Muse
- Department of Biology, The University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | |
Collapse
|
41
|
Janes BK, Bender RA. Two roles for the leucine-responsive regulatory protein in expression of the alanine catabolic operon (dadAB) in Klebsiella aerogenes. J Bacteriol 1999; 181:1054-8. [PMID: 9922277 PMCID: PMC93480 DOI: 10.1128/jb.181.3.1054-1058.1999] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/1998] [Accepted: 11/16/1998] [Indexed: 11/20/2022] Open
Abstract
The lrp gene, which codes for the leucine-responsive regulatory protein (Lrp), was cloned from Klebsiella aerogenes W70. The DNA sequence was determined, and the clone was used to create a disruption of the lrp gene. The lack of functional Lrp led to an increased expression of the alanine catabolic operon (dad) in the absence of the inducer L-alanine but also to a decreased expression of the operon in the presence of L-alanine. Thus, Lrp is both a repressor and activator of dad expression. Lrp is also necessary for glutamate synthase formation but not for the formation of two other enzymes controlled by the nitrogen regulatory (Ntr) system, glutamate dehydrogenase and histidase.
Collapse
Affiliation(s)
- B K Janes
- Department of Biology, The University of Michigan, Ann Arbor, Michigan 49109-1048, USA
| | | |
Collapse
|
42
|
Abstract
The nitrogen assimilation control gene, nac, was detected in Escherichia coli but not in Salmonella typhimurium by Southern blotting, using a probe from the Klebsiella aerogenes nac (nacK) gene. The E. coli nac gene (nacE) was isolated from a cosmid clone by complementation of a nac mutation in K. aerogenes. nacE was fully functional in this complementation assay. DNA sequence analysis showed considerable divergence between nacE and nacK, with a predicted amino acid sequence identity of only 79% and most of the divergence in the C-terminal half of the protein sequence. The total predicted size of NAC(E) is 305 amino acids, the same as for NAC(K). A null mutation, nac-28, was generated by reverse genetics. Mutants bearing nac-28 have a variety of phenotypes related to nitrogen metabolism, including slower growth on cytosine, faster growth on arginine, and suppression of the failure of an Ntr-constitutive mutant to grow with serine as sole nitrogen source. In addition to a loss of nitrogen regulation of histidase formation, nac-28 mutants also showed a loss of a weak repression of glutamate dehydrogenase formation. This repression was unexpected because it is balanced by a NAC-independent activation of glutamate dehydrogenase formation during nitrogen-limited growth. Attempts to purify NAC(E) by using methods established for NAC(K) failed, and NAC(E) appears to be degraded with a half-life at 30 degrees C as short as 15 min during inhibition of protein synthesis.
Collapse
Affiliation(s)
- W B Muse
- Department of Biology, The University of Michigan, Ann Arbor 48109-1048, USA.
| | | |
Collapse
|
43
|
Pomposiello PJ, Janes BK, Bender RA. Two roles for the DNA recognition site of the Klebsiella aerogenes nitrogen assimilation control protein. J Bacteriol 1998; 180:578-85. [PMID: 9457860 PMCID: PMC106924 DOI: 10.1128/jb.180.3.578-585.1998] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/1997] [Accepted: 11/04/1997] [Indexed: 02/06/2023] Open
Abstract
The nitrogen assimilation control protein (NAC) binds to a site within the promoter region of the histidine utilization operon (hutUH) of Klebsiella aerogenes, and NAC bound at this site activates transcription of hutUH. This NAC-binding site was characterized by a combination of random and directed DNA mutagenesis. Mutations that abolished or diminished in vivo transcriptional activation by NAC were found to lie within a 15-bp region contained within the 26-bp region protected by NAC from DNase I digestion. This 15-bp core has the palindromic ends ATA and TAT, and it matches the consensus for LysR family transcriptional regulators. Protein-binding experiments showed that transcriptional activation in vivo decreased with decreasing binding in vitro. In contrast to the NAC-binding site from hutUH, the NAC-binding site from the gdhA promoter failed to activate transcription from a semisynthetic promoter, and this failure was not due to weak binding or greatly distorted protein-DNA structure. Mutations in the promoter-proximal half-site of the NAC-binding site from gdhA allowed this site to activate transcription. Similar studies using the NAC-binding site from hut showed that two mutations in the promoter proximal half-site increased binding but abolished transcriptional activation. Interestingly, for symmetric mutations in the promoter-distal half-site, loss of transcriptional activation was always correlated with a decrease in binding. We conclude from these observations that if the binding in vitro reflects the binding in vivo, then binding of NAC to DNA is not sufficient for transcriptional activation and that the NAC-binding site can be functionally divided in two half-sites, with related but different functions.
Collapse
Affiliation(s)
- P J Pomposiello
- Department of Biology, The University of Michigan, Ann Arbor 48109-1048, USA
| | | | | |
Collapse
|