1
|
Le Y, Sun J. CRISPR/Cas genome editing systems in thermophiles: Current status, associated challenges, and future perspectives. ADVANCES IN APPLIED MICROBIOLOGY 2022; 118:1-30. [PMID: 35461662 DOI: 10.1016/bs.aambs.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Thermophiles, offering an attractive and unique platform for a broad range of applications in biofuels and environment protections, have received a significant attention and growing interest from academy and industry. However, the exploration and exploitation of thermophilic organisms have been hampered by the lack of a powerful genome manipulation tool to improve production efficiency. At current, the clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR associated (Cas) system has been successfully exploited as a competent, simplistic, and powerful tool for genome engineering both in eukaryotes and prokaryotes. Indeed, with the significant efforts made in recent years, some thermostable Cas9 proteins have been well identified and characterized and further, some thermostable Cas9-based editing tools have been successfully established in some representative obligate thermophiles. In this regard, we reviewed the current status and its progress in CRISPR/Cas-based genome editing system towards a variety of thermophilic organisms. Despite the potentials of these progresses, multiple factors/barriers still have to be overcome and optimized for improving its editing efficiency in thermophiles. Some insights into the roles of thermostable CRISPR/Cas technologies for the metabolic engineering of thermophiles as a thermophilic microbial cell factory were also fully analyzed and discussed.
Collapse
Affiliation(s)
- Yilin Le
- Biofuels institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| | - Jianzhong Sun
- Biofuels institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
2
|
Genome Editing of the Anaerobic Thermophile Thermoanaerobacter ethanolicus Using Thermostable Cas9. Appl Environ Microbiol 2020; 87:AEM.01773-20. [PMID: 33067194 DOI: 10.1128/aem.01773-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022] Open
Abstract
Thermoanaerobacter ethanolicus can produce acetate, lactate, hydrogen, and ethanol from sugars resulting from plant carbohydrate polymer degradation at temperatures above 65°C. T. ethanolicus is a promising candidate for thermophilic ethanol fermentations due to the utilization of both pentose and hexose. Although an ethanol balance model in T. ethanolicus has been developed, only a few physiological or biochemical experiments regarding the function of important enzymes in ethanol formation have been carried out. To address this issue, we developed a thermostable Cas9-based system for genome editing of T. ethanolicus As a proof of principle, three genes, including the thymidine kinase gene (tdk), acetaldehyde-alcohol dehydrogenase gene (adhE), and redox sensing protein gene (rsp), were chosen as editing targets, and these genes were edited successfully. As a genetic tool, we tested the gene knockout and a small DNA fragment knock-in. After optimization of the transformation strategies, 77% genome-editing efficiency was observed. Furthermore, our in vivo results revealed that redox sensing protein (RSP) plays a more important role in regulation of energy metabolism, including hydrogen production and ethanol formation. The genetic system provides us with an effective strategy to identify genes involved in biosynthesis and energy metabolism.IMPORTANCE Interest in thermophilic microorganisms as emerging metabolic engineering platforms to produce biofuels and chemicals has surged. Thermophilic microbes for biofuels have attracted great attention, due to their tolerance of high temperature and wide range of substrate utilization. On the basis of the biochemical experiments of previous investigation, the formation of ethanol was controlled via transcriptional regulation and influenced by the relevant properties of specific enzymes in T. ethanolicus Thus, there is an urgent need to understand the physiological function of these key enzymes, which requires genetic manipulations such as deletion or overexpression of genes encoding putative key enzymes. Here, we developed a thermostable Cas9-based engineering tool for gene editing in T. ethanolicus The thermostable Cas9-based genome-editing tool may further be applied to metabolically engineer T. ethanolicus to produce biofuels. This genetic system represents an important expansion of the genetic tool box of anaerobic thermophile T. ethanolicus strains.
Collapse
|
3
|
Loder AJ, Zeldes BM, Conway JM, Counts JA, Straub CT, Khatibi PA, Lee LL, Vitko NP, Keller MW, Rhaesa AM, Rubinstein GM, Scott IM, Lipscomb GL, Adams MW, Kelly RM. Extreme Thermophiles as Metabolic Engineering Platforms: Strategies and Current Perspective. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Andrew J. Loder
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Benjamin M. Zeldes
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Jonathan M. Conway
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - James A. Counts
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Christopher T. Straub
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Piyum A. Khatibi
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Laura L. Lee
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Nicholas P. Vitko
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Matthew W. Keller
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Amanda M. Rhaesa
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Gabe M. Rubinstein
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Israel M. Scott
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Gina L. Lipscomb
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Michael W.W. Adams
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Robert M. Kelly
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| |
Collapse
|
4
|
Andersen RL, Jensen KM, Mikkelsen MJ. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411. PLoS One 2015; 10:e0136060. [PMID: 26295944 PMCID: PMC4546601 DOI: 10.1371/journal.pone.0136060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/30/2015] [Indexed: 11/26/2022] Open
Abstract
Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47–0.49 g/g (based on glucose, xylose, and arabinose), volumetric ethanol productivities of 1.2–2.7 g/L/h and a total sugar conversion of 90–99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion.
Collapse
|
5
|
Thermoanaerobacter thermohydrosulfuricus WC1 shows protein complement stability during fermentation of key lignocellulose-derived substrates. Appl Environ Microbiol 2013; 80:1602-15. [PMID: 24362431 DOI: 10.1128/aem.03555-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermoanaerobacter spp. have long been considered suitable Clostridium thermocellum coculture partners for improving lignocellulosic biofuel production through consolidated bioprocessing. However, studies using "omic"-based profiling to better understand carbon utilization and biofuel producing pathways have been limited to only a few strains thus far. To better characterize carbon and electron flux pathways in the recently isolated, xylanolytic strain, Thermoanaerobacter thermohydrosulfuricus WC1, label-free quantitative proteomic analyses were combined with metabolic profiling. SWATH-MS proteomic analysis quantified 832 proteins in each of six proteomes isolated from mid-exponential-phase cells grown on xylose, cellobiose, or a mixture of both. Despite encoding genes consistent with a carbon catabolite repression network observed in other Gram-positive organisms, simultaneous consumption of both substrates was observed. Lactate was the major end product of fermentation under all conditions despite the high expression of gene products involved with ethanol and/or acetate synthesis, suggesting that carbon flux in this strain may be controlled via metabolite-based (allosteric) regulation or is constrained by metabolic bottlenecks. Cross-species "omic" comparative analyses confirmed similar expression patterns for end-product-forming gene products across diverse Thermoanaerobacter spp. It also identified differences in cofactor metabolism, which potentially contribute to differences in end-product distribution patterns between the strains analyzed. The analyses presented here improve our understanding of T. thermohydrosulfuricus WC1 metabolism and identify important physiological limitations to be addressed in its development as a biotechnologically relevant strain in ethanologenic designer cocultures through consolidated bioprocessing.
Collapse
|
6
|
Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives. Appl Microbiol Biotechnol 2011; 92:13-27. [DOI: 10.1007/s00253-011-3456-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 10/17/2022]
|
7
|
Qi X, Zhang Y, Tu R, Lin Y, Li X, Wang Q. High-throughput screening and characterization of xylose-utilizing, ethanol-tolerant thermophilic bacteria for bioethanol production. J Appl Microbiol 2011; 110:1584-91. [DOI: 10.1111/j.1365-2672.2011.05014.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Zhou Q, Shao WL. Molecular genetic characterization of the thermostable L-lactate dehydrogenase gene (ldhL) of Thermoanaerobacter ethanolicus JW200 and biochemical characterization of the enzyme. BIOCHEMISTRY (MOSCOW) 2010; 75:526-30. [DOI: 10.1134/s0006297910040188] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Cloning, expression and characterization of xylose isomerase, XylA, from Caldanaerobacter subterraneus subsp. yonseiensis. Biotechnol Lett 2010; 32:929-33. [DOI: 10.1007/s10529-010-0255-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022]
|
10
|
Rodionov DA, Mironov AA, Gelfand MS. Transcriptional regulation of pentose utilisation systems in the Bacillus/Clostridium group of bacteria. FEMS Microbiol Lett 2001; 205:305-14. [PMID: 11750820 DOI: 10.1111/j.1574-6968.2001.tb10965.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In Bacillus subtilis, utilisation of xylose, arabinose and ribose is controlled by the transcriptional factors XylR, AraR and RbsR, respectively. Here we apply the comparative approach to the analysis of these regulons in the Bacillus/Clostridium group. Evolutionary variability of operon structures is demonstrated and operator sites for the main transcription factors are predicted. The consensus sequences for the XylR and RbsR binding sites vary in different subgroups of genomes. The functional coupling of gene clusters and the conservation of regulatory sites allow for detection of non-orthologous gene displacement of ribulose kinase in Enterococcus faecium and Clostridium acetobutylicum. Moreover, candidate catabolite responsive elements found upstream of most pentose-utilising genes suggest CcpA-mediated catabolite repression.
Collapse
Affiliation(s)
- D A Rodionov
- State Scientific Center GosNIIGenetika, Moscow, Russia.
| | | | | |
Collapse
|
11
|
Holt PJ, Williams RE, Jordan KN, Lowe CR, Bruce NC. Cloning, sequencing and expression in Escherichia coli of the primary alcohol dehydrogenase gene from Thermoanaerobacter ethanolicus JW200. FEMS Microbiol Lett 2000; 190:57-62. [PMID: 10981690 DOI: 10.1111/j.1574-6968.2000.tb09262.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The structural gene, adhA, for a thermostable primary alcohol dehydrogenase was cloned from Thermoanaerobacter ethanolicus JW200. Constitutive expression from its own promoter was observed in Escherichia coli. The nucleotide sequence of adhA corresponded to an open reading frame of 1197 bp, encoding a polypeptide of 399 amino acids with a calculated Mr of 43 192. Amino acid sequence analysis showed 67-69% identity with alcohol dehydrogenases from two archaeal species and 29-37% identity with bacterial type III alcohol dehydrogenases. This represents the first reported cloning of an alcohol dehydrogenase from a bacterial species that is both thermostable and active against primary long-chain alcohols.
Collapse
MESH Headings
- Alcohol Dehydrogenase/genetics
- Alcohol Dehydrogenase/isolation & purification
- Alcohol Dehydrogenase/metabolism
- Bacteria, Anaerobic/enzymology
- Bacteria, Anaerobic/genetics
- Bacteria, Anaerobic/growth & development
- Base Sequence
- Cloning, Molecular
- Coculture Techniques
- Enzyme Stability
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Genes, Bacterial
- Gram-Positive Asporogenous Rods, Irregular/enzymology
- Gram-Positive Asporogenous Rods, Irregular/genetics
- Gram-Positive Asporogenous Rods, Irregular/growth & development
- Molecular Sequence Data
- Promoter Regions, Genetic
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- P J Holt
- Institute of Biotechnology, University of Cambridge, UK
| | | | | | | | | |
Collapse
|
12
|
Abstract
beta-Xylosidase (1,4-beta-D-xylan xylohydrolase EC 3.2.1.37) and xylose isomerase (D-xylose ketol-isomerase EC 5.3.1.5) produced by Streptomyces sp. strain EC 10, were cell-bound enzymes induced by xylan, straw, and xylose. Enzyme production was subjected to a form of carbon catabolite repression by glycerol. beta-Xylosidase and xylose isomerase copurified strictly, and the preparation was found homogeneous by gel electrophoresis after successive chromatography on DEAE-Sephacel and gel filtration on Biogel A. Streptomyces sp. produced apparently a bifunctional beta-xylosidase-xylose isomerase enzyme. The molecular weight of the enzyme was measured to be 163,000 by gel filtration and 42,000 by SDS-PAGE, indicating that the enzyme behaved as a tetramer of identical subunits. The Streptomyces sp. beta-xylosidase was a typical glycosidase acting as an exoenzyme on xylooligosaccharides, and working optimally at pH 7.5 and 45 degrees C. The xylose isomerase optimal temperature was 70 degrees C and maximal activity was observed in a broad range pH (5-8). Enhanced saccharification of arabinoxylan caused by the addition of the enzyme to endoxylanase suggested a cooperative enzyme action. The first 35 amino acids of the N-terminal sequence of the enzyme showed strong analogies with N-terminal sequences of xylose isomerase produced by other microorganisms but not with other published N-terminal sequences of beta-xylosidases.
Collapse
|
13
|
Erbeznik M, Strobel HJ, Dawson KA, Jones CR. The D-xylose-binding protein, XylF, from Thermoanaerobacter ethanolicus 39E: cloning, molecular analysis, and expression of the structural gene. J Bacteriol 1998; 180:3570-7. [PMID: 9657999 PMCID: PMC107324 DOI: 10.1128/jb.180.14.3570-3577.1998] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Immediately downstream from the Thermoanaerobacter ethanolicus xylAB operon, comprising genes that encode D-xylose isomerase and D-xylulose kinase, lies a 1,101-bp open reading frame that exhibits 61% amino acid sequence identity to the Escherichia coli D-xylose binding periplasmic receptor, XylF, a component of the high-affinity binding-protein-dependent D-xylose transport. The 25-residue N-terminal fragment of the deduced T. ethanolicus XylF has typical features of bacterial leader peptides. The C-terminal portion of this leader sequence matches the cleavage consensus for lipoproteins and is followed by a 22-residue putative linker sequence rich in serine, threonine, and asparagine. The putative mature 341-amino-acid-residue XylF (calculated molecular mass of 37,069 Da) appears to be a lipoprotein attached to the cell membrane via a lipid anchor covalently linked to the N-terminal cysteine, as demonstrated by metabolic labelling of the recombinant XylF with [14C]palmitate. The induced E. coli avidly bound D-[14C]xylose, yielding additional evidence that T. ethanolicus XylF is the D-xylose-binding protein. On the basis of sequence comparison of XylFs to other monosaccharide-binding proteins, we propose that the sequence signature of binding proteins specific for hexoses and pentoses be refined as (KDQ)(LIVFAG)3IX3(DN)(SGP)X3(GS)X(LIVA) 2X2A. Transcription of the monocistronic 1.3-kb xylF mRNA is inducible by xylose and unaffected by glucose. Primer extension analysis indicated that xylF transcription initiates from two +1 sites, both situated within the xylAB operon. Unlike in similar transport systems in other bacteria, the genes specifying the membrane components (e.g., ATP-binding protein and permease) of the high-affinity D-xylose uptake system are not located in the vicinity of xylF in T. ethanolicus. This is the first report of a gene encoding a xylose-binding protein in a gram-positive or thermophilic bacterium.
Collapse
Affiliation(s)
- M Erbeznik
- Department of Animal Sciences, University of Kentucky, Lexington, Kentucky 40546-0215, USA
| | | | | | | |
Collapse
|