1
|
The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol Mol Biol Rev 2013; 76:497-529. [PMID: 22933558 DOI: 10.1128/mmbr.00006-12] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial enhancer binding proteins (bEBPs) are transcriptional activators that assemble as hexameric rings in their active forms and utilize ATP hydrolysis to remodel the conformation of RNA polymerase containing the alternative sigma factor σ(54). We present a comprehensive and detailed summary of recent advances in our understanding of how these specialized molecular machines function. The review is structured by introducing each of the three domains in turn: the central catalytic domain, the N-terminal regulatory domain, and the C-terminal DNA binding domain. The role of the central catalytic domain is presented with particular reference to (i) oligomerization, (ii) ATP hydrolysis, and (iii) the key GAFTGA motif that contacts σ(54) for remodeling. Each of these functions forms a potential target of the signal-sensing N-terminal regulatory domain, which can act either positively or negatively to control the activation of σ(54)-dependent transcription. Finally, we focus on the DNA binding function of the C-terminal domain and the enhancer sites to which it binds. Particular attention is paid to the importance of σ(54) to the bacterial cell and its unique role in regulating transcription.
Collapse
|
2
|
Ng WL, Perez L, Cong J, Semmelhack MF, Bassler BL. Broad spectrum pro-quorum-sensing molecules as inhibitors of virulence in vibrios. PLoS Pathog 2012; 8:e1002767. [PMID: 22761573 PMCID: PMC3386246 DOI: 10.1371/journal.ppat.1002767] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/07/2012] [Indexed: 01/30/2023] Open
Abstract
Quorum sensing (QS) is a bacterial cell-cell communication process that relies on the production and detection of extracellular signal molecules called autoinducers. QS allows bacteria to perform collective activities. Vibrio cholerae, a pathogen that causes an acute disease, uses QS to repress virulence factor production and biofilm formation. Thus, molecules that activate QS in V. cholerae have the potential to control pathogenicity in this globally important bacterium. Using a whole-cell high-throughput screen, we identified eleven molecules that activate V. cholerae QS: eight molecules are receptor agonists and three molecules are antagonists of LuxO, the central NtrC-type response regulator that controls the global V. cholerae QS cascade. The LuxO inhibitors act by an uncompetitive mechanism by binding to the pre-formed LuxO-ATP complex to inhibit ATP hydrolysis. Genetic analyses suggest that the inhibitors bind in close proximity to the Walker B motif. The inhibitors display broad-spectrum capability in activation of QS in Vibrio species that employ LuxO. To the best of our knowledge, these are the first molecules identified that inhibit the ATPase activity of a NtrC-type response regulator. Our discovery supports the idea that exploiting pro-QS molecules is a promising strategy for the development of novel anti-infectives.
Collapse
Affiliation(s)
- Wai-Leung Ng
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | | | | | | | |
Collapse
|
3
|
Poggio S, Osorio A, Dreyfus G, Camarena L. The flagellar hierarchy of Rhodobacter sphaeroides is controlled by the concerted action of two enhancer-binding proteins. Mol Microbiol 2006; 58:969-83. [PMID: 16262784 DOI: 10.1111/j.1365-2958.2005.04900.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The expression of the bacterial flagellar genes follows a hierarchical pattern. In Rhodobacter sphaeroides the flagellar genes encoding the hook and basal body proteins are expressed from sigma54-dependent promoters. This type of promoters is always regulated by transcriptional activators that belong to the family of the enhancer-binding proteins (EBPs). We searched for possible EBPs in the genome of R. sphaeroides and mutagenized two open reading frames (ORFs) (fleQ and fleT), which are in the vicinity of flagellar genes. The resulting mutants were non-motile and could only be complemented by the wild-type copy of the mutagenized gene. Transcriptional fusions showed that all the flagellar sigma54-dependent promoters with exception of fleTp, required both transcriptional activators for their expression. Interestingly, transcription of the fleT operon is only dependent on FleQ, and FleT has a negative effect. Both activators were capable of hydrolysing ATP, and were capable of promoting transcription from the flagellar promoters at some extent. Electrophoretic mobility shift assays suggest that only FleQ interacts with DNA whereas FleT improves binding of FleQ to DNA. A four-tiered flagellar transcriptional hierarchy and a regulatory mechanism based on the intracellular concentration of both activators and differential enhancer affinities are proposed.
Collapse
Affiliation(s)
- Sebastian Poggio
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 México D. F., México
| | | | | | | |
Collapse
|
4
|
Rappas M, Schumacher J, Niwa H, Buck M, Zhang X. Structural basis of the nucleotide driven conformational changes in the AAA+ domain of transcription activator PspF. J Mol Biol 2006; 357:481-92. [PMID: 16430918 DOI: 10.1016/j.jmb.2005.12.052] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 12/13/2005] [Accepted: 12/13/2005] [Indexed: 11/20/2022]
Abstract
Bacterial enhancer-binding proteins (EBP) activate transcription by hydrolyzing ATP to restructure the sigma(54)-RNA polymerase-promoter complex. We compare six high resolution structures (<2.1 A) of the AAA(+) domain of EBP phage shock protein F (PspF) including apo, AMPPNP, Mg(2+)-ATP, and ADP forms. These structures permit a description of the atomic details underpinning the origins of the conformational changes occurring during ATP hydrolysis. Conserved regions of PspF's AAA(+) domain respond distinctively to nucleotide binding and hydrolysis, suggesting functional roles during the hydrolysis cycle, which completely agree with those derived from activities of PspF mutated at these positions. We propose a putative atomic switch that is responsible for coupling structural changes in the nucleotide-binding site to the repositioning of the sigma(54)-interacting loops. Striking similarities in nucleotide-specific conformational changes and atomic switch exist between PspF and the large T antigen helicase, suggesting conservation in the origin of those events amongst AAA(+) proteins.
Collapse
Affiliation(s)
- Mathieu Rappas
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
5
|
Buchan A, Ornston LN. When coupled to natural transformation in Acinetobacter sp. strain ADP1, PCR mutagenesis is made less random by mismatch repair. Appl Environ Microbiol 2005; 71:7610-2. [PMID: 16269815 PMCID: PMC1287675 DOI: 10.1128/aem.71.11.7610-7612.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Random PCR mutagenesis is a powerful tool for structure-function analysis of targeted proteins, especially when coupled with DNA integration through natural transformation followed by selection for loss of function. The technique has been applied successfully to structure-function analysis of transcriptional regulators, enzymes, and transporters in Acinetobacter sp. strain ADP1. However, the mismatch repair system prevents the full spectrum of nucleotide substitutions that may be selected at the level of protein function from being recovered. This barrier may be overcome by introducing PCR-mutagenized genes into strains in which the corresponding genes have been deleted.
Collapse
Affiliation(s)
- Alison Buchan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
6
|
Lee SK, Newman JD, Keasling JD. Catabolite repression of the propionate catabolic genes in Escherichia coli and Salmonella enterica: evidence for involvement of the cyclic AMP receptor protein. J Bacteriol 2005; 187:2793-800. [PMID: 15805526 PMCID: PMC1070369 DOI: 10.1128/jb.187.8.2793-2800.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies with Salmonella enterica serovar Typhimurium LT2 demonstrated that transcriptional activation of the prpBCDE operon requires the function of transcription factor PrpR, sigma-54, and IHF. In this study, we found that transcription from the prpBCDE and prpR promoters was down-regulated by the addition of glucose or glycerol, indicating that these genes may be regulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex. Targeted mutagenesis of a putative CRP-binding site in the promoter region between prpR and prpBCDE suggested that these genes are under the control of CRP. Furthermore, cells with defects in cya or crp exhibited reduced transcriptional activation of prpR and prpBCDE in Escherichia coli. These results demonstrate that propionate metabolism is subject to catabolite repression by the global transcriptional regulator CRP and that this regulation is effected through control of both the regulator gene prpR and the prpBCDE operon itself. The unique properties of the regulation of these two divergent promoters may have important implications for mechanisms of CRP-dependent catabolite repression acting in conjunction with a member of the sigma-54 family of transcriptional activators.
Collapse
Affiliation(s)
- Sung Kuk Lee
- Department of Chemical Engineering, University of California, Berkeley, CA 94720-1462, USA
| | | | | |
Collapse
|
7
|
Rappas M, Schumacher J, Beuron F, Niwa H, Bordes P, Wigneshweraraj S, Keetch CA, Robinson CV, Buck M, Zhang X. Structural insights into the activity of enhancer-binding proteins. Science 2005; 307:1972-5. [PMID: 15790859 PMCID: PMC2756573 DOI: 10.1126/science.1105932] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Activators of bacterial sigma54-RNA polymerase holoenzyme are mechanochemical proteins that use adenosine triphosphate (ATP) hydrolysis to activate transcription. We have determined by cryogenic electron microscopy (cryo-EM) a 20 angstrom resolution structure of an activator, phage shock protein F [PspF(1-275)], which is bound to an ATP transition state analog in complex with its basal factor, sigma54. By fitting the crystal structure of PspF(1-275) at 1.75 angstroms into the EM map, we identified two loops involved in binding sigma54. Comparing enhancer-binding structures in different nucleotide states and mutational analysis led us to propose nucleotide-dependent conformational changes that free the loops for association with sigma54.
Collapse
Affiliation(s)
- Mathieu Rappas
- Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK
- Centre for Structural Biology, Imperial College London, London, SW7 2AZ, UK
| | - Jorg Schumacher
- Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Fabienne Beuron
- Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK
- Centre for Structural Biology, Imperial College London, London, SW7 2AZ, UK
| | - Hajime Niwa
- Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK
- Centre for Structural Biology, Imperial College London, London, SW7 2AZ, UK
| | - Patricia Bordes
- Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK
| | | | - Catherine A Keetch
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Carol V Robinson
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Martin Buck
- Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Xiaodong Zhang
- Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK
- Centre for Structural Biology, Imperial College London, London, SW7 2AZ, UK
- To whom correspondence should be addressed.
| |
Collapse
|
8
|
Huergo LF, Assumpção MC, Souza EM, Steffens MBR, Yates MG, Chubatsu LS, Pedrosa FO. Repressor mutant forms of the Azospirillum brasilense NtrC protein. Appl Environ Microbiol 2004; 70:6320-3. [PMID: 15466584 PMCID: PMC522079 DOI: 10.1128/aem.70.10.6320-6323.2004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Azospirillum brasilense mutant strains FP8 and FP9, after treatment with nitrosoguanidine, showed a null Nif phenotype and were unable to use nitrate as their sole nitrogen source. Sequencing of the ntrC genes revealed single nucleotide mutations in the NtrC nucleotide-binding site. The phenotypes of these strains are discussed in relation to their genotypes.
Collapse
Affiliation(s)
- Luciano F Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-990 Curitiba, Paraná, Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
Lee SY, De La Torre A, Yan D, Kustu S, Nixon BT, Wemmer DE. Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains. Genes Dev 2003; 17:2552-63. [PMID: 14561776 PMCID: PMC218149 DOI: 10.1101/gad.1125603] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transcription by sigma54 RNA polymerase depends on activators that contain ATPase domains of the AAA+ class. These activators, which are often response regulators of two-component signal transduction systems, remodel the polymerase so that it can form open complexes at promoters. Here, we report the first crystal structures of the ATPase domain of an activator, the NtrC1 protein from the extreme thermophile Aquifex aeolicus. This domain alone, which is active, crystallized as a ring-shaped heptamer. The protein carrying both the ATPase and adjacent receiver domains, which is inactive, crystallized as a dimer. In the inactive dimer, one residue needed for catalysis is far from the active site, and extensive contacts among the domains prevent oligomerization of the ATPase domain. Oligomerization, which completes the active site, depends on surfaces that are buried in the dimer, and hence, on a rearrangement of the receiver domains upon phosphorylation. A motif in the ATPase domain known to be critical for coupling energy to remodeling of polymerase forms a novel loop that projects from the middle of an alpha helix. The extended, structured loops from the subunits of the heptamer localize to a pore in the center of the ring and form a surface that could contact sigma54.
Collapse
Affiliation(s)
- Seok-Yong Lee
- Graduate Group in Biophysics, University of California, Berkeley, California 94720,USA
| | | | | | | | | | | |
Collapse
|
10
|
Lai YC, Peng HL, Chang HY. RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. J Bacteriol 2003; 185:788-800. [PMID: 12533454 PMCID: PMC142793 DOI: 10.1128/jb.185.3.788-800.2003] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rmpA2 gene, which encodes an activator for capsular polysaccharide (CPS) synthesis, was isolated from a 200-kb virulence plasmid of Klebsiella pneumoniae CG43. Based on the sequence homology with LuxR at the carboxyl-terminal DNA-binding motif, we hypothesized that RmpA2 exerts its effect by activating the expression of cps genes that are responsible for CPS biosynthesis. Two luxAB transcriptional fusions, each containing a putative promoter region of the K. pneumoniae K2 cps genes, were constructed and were found to be activated in the presence of multicopy rmpA2. The activation is likely due to direct binding of RmpA2 to the cps gene promoter through its C-terminal DNA binding motif. Moreover, the loss of colony mucoidy in a K. pneumoniae strain deficient in RcsB, a regulator for cps gene expression, could be recovered by complementing the strain with a multicopy plasmid carrying rmpA2. The CPS production in Lon protease-deficient K. pneumoniae significantly increased, and the effect was accompanied by an increase of RmpA2 stability. The expression of the rmpA2 gene was negatively autoregulated and could be activated when the organism was grown in M9 minimal medium. An IS3 element located upstream of the rmpA2 was required for the full activation of the rmpA2 promoter. In summary, our results suggest that the enhancement of K2 CPS synthesis in K. pneumoniae CG43 by RmpA2 can be attributed to its transcriptional activation of K2 cps genes, and the expression level of rmpA2 is autoregulated and under the control of Lon protease.
Collapse
Affiliation(s)
- Yi-Chyi Lai
- Department of Life Science, National Tsing Hua University, 101 Kuan-Fu Road, 2nd Section, Hsin Chu, Taiwan, Republic of China
| | | | | |
Collapse
|
11
|
Wikström P, O'Neill E, Ng LC, Shingler V. The regulatory N-terminal region of the aromatic-responsive transcriptional activator DmpR constrains nucleotide-triggered multimerisation. J Mol Biol 2001; 314:971-84. [PMID: 11743715 DOI: 10.1006/jmbi.2000.5212] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcriptional promoting activity of DmpR is under the strict control of its aromatic effector ligands that are bound by its regulatory N-terminal domain. The positive control function of DmpR resides within the central C-domain that is highly conserved among activators of sigma(54)-RNA polymerase. The C-domain mediates ATP hydrolysis and interaction with sigma(54)-RNA polymerase that are essential for open-complex formation and thus initiation of transcription. Wild-type and loss-of-function derivatives of DmpR, which are defective in distinct steps in nucleotide catalysis, were used to address the consequences of nucleotide binding and hydrolysis with respect to the multimeric state of DmpR and its ability to promote in vitro transcription. Here, we show that DmpR derivatives deleted of the regulatory N-terminal domain undergo an aromatic-effector independent ATP-binding triggered multimerisation as detected by cross-linking. In the intact protein, however, aromatic effector activation is required before ATP-binding can trigger an apparent dimer-to-hexamer switch in subunit conformation. The data suggest a model in which the N-terminal domain controls the transcriptional promoting property of DmpR by constraining ATP-mediated changes in its oligomeric state. The results are discussed in the light of recent mechanistic insights from the AAA(+) superfamily of ATPases that utilise nucleotide hydrolysis to restructure their substrates.
Collapse
Affiliation(s)
- P Wikström
- Institute for Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
12
|
Abstract
Transcriptional enhancers are cis-acting DNA elements that are binding sites for regulatory proteins and function at large distances from promoter elements to stimulate transcription. Once thought to be unique to eukaryotes, enhancer-like elements have been discovered in a wide variety of bacteria. The regulatory proteins that bind to these bacterial enhancers must contact RNA polymerase to activate transcription. In principle, interactions between bacterial enhancer-binding proteins and RNA polymerase can occur by either DNA looping or tracking of the enhancer-binding protein along the DNA. Paradigms for each of these methods are found in bacterial systems. Activators of sigma(54)-RNA polymerase holoenzyme contact polymerase by DNA looping, while bacteriophage T4 gp45 functions as a sliding clamp that tracks along DNA until it engages RNA polymerase. Significant advances have been made over the last few years towards understanding the mechanisms by which bacterial enhancer-binding proteins activate transcription, but important aspects of these mechanisms are still poorly defined.
Collapse
Affiliation(s)
- H Xu
- Department of Microbiology, 527 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
13
|
Garmendia J, de Lorenzo VC. Visualization of DNA-protein intermediates during activation of the Pu promoter of the TOL plasmid of Pseudomonas putida. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2555-2563. [PMID: 11021930 DOI: 10.1099/00221287-146-10-2555] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ATP-dependent multimerization process undergone by the sigma(54)-dependent activator XylR of the TOL plasmid pWW0 of Pseudomonas putida when bound to the upstream activating sequences (UAS) of the cognate PU: promoter was examined by transmission electron microscopy (TEM). To this end, supercoiled DNA templates were combined with increasing concentrations of the constitutive XylR variant XylRDeltaA, with or without ATP or its non-hydrolysable analogue ATPgammaS, and the resulting complexes were visualized by TEM. The different types of DNA-protein association were analysed and a statistical study of the frequency of the various forms was made. ATP appeared to establish an equilibrium between different molecular associations, as well as major changes in the physical shape of the DNA-protein complexes. The formation of higher nucleoprotein structures frequently bearing DNA bends became manifest. Such complexes often engaged otherwise separated UAS-containing plasmids, indicating that the ATP-driven multimer included XylR molecules recruited in trans. Whilst ATP caused the different types of XylR-DNA complex to occur at quite balanced frequencies, ATPgammaS appeared to displace the distribution predominantly towards the higher order forms. These data are compatible with the notion that each time ATP is hydrolysed the transcriptional activation complex is disassembled.
Collapse
Affiliation(s)
- Junkal Garmendia
- Centro Nacional de Biotecnologı́a CSIC, Campus de Cantoblanco, 28049 Madrid, Spain1
| | - Vı Ctor de Lorenzo
- Centro Nacional de Biotecnologı́a CSIC, Campus de Cantoblanco, 28049 Madrid, Spain1
| |
Collapse
|
14
|
Yan D, Cho HS, Hastings CA, Igo MM, Lee SY, Pelton JG, Stewart V, Wemmer DE, Kustu S. Beryllofluoride mimics phosphorylation of NtrC and other bacterial response regulators. Proc Natl Acad Sci U S A 1999; 96:14789-94. [PMID: 10611291 PMCID: PMC24726 DOI: 10.1073/pnas.96.26.14789] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-component systems, sensor kinase-response regulator pairs, dominate bacterial signal transduction. Regulation is exerted by phosphorylation of an Asp in receiver domains of response regulators. Lability of the acyl phosphate linkage has limited structure determination for the active, phosphorylated forms of receiver domains. As assessed by both functional and structural criteria, beryllofluoride yields an excellent analogue of aspartyl phosphate in response regulator NtrC, a bacterial enhancer-binding protein. Beryllofluoride also appears to activate the chemotaxis, sporulation, osmosensing, and nitrate/nitrite response regulators CheY, Spo0F, OmpR, and NarL, respectively. NMR spectroscopic studies indicate that beryllofluoride will facilitate both biochemical and structural characterization of the active forms of receiver domains.
Collapse
Affiliation(s)
- D Yan
- Department of Plant Biology, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yan D, Kustu S. "Switch I" mutant forms of the bacterial enhancer-binding protein NtrC that perturb the response to DNA. Proc Natl Acad Sci U S A 1999; 96:13142-6. [PMID: 10557287 PMCID: PMC23914 DOI: 10.1073/pnas.96.23.13142] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NtrC (nitrogen regulatory protein C) is a bacterial enhancer-binding protein of 469 residues that activates transcription by sigma(54)-holoenzyme. A region of its transcriptional activation (central) domain that is highly conserved among homologous activators of sigma(54)-holoenzyme-residues 206-220-is essential for interaction with this RNA polymerase: it is required for contact with the polymerase and/or for coupling the energy from ATP hydrolysis to a change in the conformation of the polymerase that allows it to form transcriptionally productive open complexes. Several mutant NtrC proteins with amino acid substitutions in this region, including NtrC(A216V) and NtrC(G219K), have normal ATPase activity but fail in transcriptional activation. We now report that other mutant forms carrying amino acid substitutions at these same positions, NtrC(A216C) and NtrC(G219C), are capable of activating transcription when they are not bound to a DNA template (non-DNA-binding derivatives with an altered helix-turn-helix DNA-binding motif at the C terminus of the protein) but are unable to do so when they are bound to a DNA template, whether or not it carries a specific enhancer. Enhancer DNA remains a positive allosteric effector of ATP hydrolysis, as it is for wild-type NtrC but, surprisingly, appears to have become a negative allosteric effector for some aspect of interaction with sigma(54)-holoenzyme. The conserved region in which these amino acid substitutions occur (206-220) is equivalent to the Switch I region of a large group of purine nucleotide-binding proteins. Interesting analogies can be drawn between the Switch I region of NtrC and that of p21(ras).
Collapse
Affiliation(s)
- D Yan
- Department of Plant Biology, University of California, Berkeley, CA 94720-3102, USA
| | | |
Collapse
|