1
|
Hassoun Y, Bartoli J, Wahl A, Viala JP, Bouveret E. Dual Regulation of Phosphatidylserine Decarboxylase Expression by Envelope Stress Responses. Front Mol Biosci 2021; 8:665977. [PMID: 34026837 PMCID: PMC8138132 DOI: 10.3389/fmolb.2021.665977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteria adapt to versatile environments by modulating gene expression through a set of stress response regulators, alternative Sigma factors, or two-component systems. Among the central processes that must be finely tuned is membrane homeostasis, including synthesis of phospholipids (PL). However, few genetic regulations of this process have been reported. We have previously shown that the gene coding the first step of PL synthesis is regulated by σE and ppGpp, and that the BasRS (PmrAB) two component system controls the expression of the DgkA PL recycling enzyme. The gene coding for phosphatidylserine decarboxylase, the last step in phosphatidylethanolamine synthesis is another gene in the PL synthesis pathway susceptible of stress response regulation. Indeed, psd appears in transcriptome studies of the σE envelope stress Sigma factor and of the CpxAR two component system. Interestingly, this gene is presumably in operon with mscM coding for a miniconductance mechanosensitive channel. In this study, we dissected the promoter region of the psd-mscM operon and studied its regulation by σE and CpxR. By artificial activation of σE and CpxRA stress response pathways, using GFP transcriptional fusion and western-blot analysis of Psd and MscM enzyme production, we showed that the operon is under the control of two distinct promoters. One is activated by σE, the second is activated by CpxRA and also responsible for basal expression of the operon. The fact that the phosphatidylethanolamine synthesis pathway is controlled by envelope stress responses at both its first and last steps might be important for adaptation of the membrane to envelope perturbations.
Collapse
Affiliation(s)
- Yasmine Hassoun
- LISM, Institut de Microbiologie de la Méditerranée, UMR 7255, CNRS and Aix-Marseille Université, Marseille, France
| | - Julia Bartoli
- LISM, Institut de Microbiologie de la Méditerranée, UMR 7255, CNRS and Aix-Marseille Université, Marseille, France
| | - Astrid Wahl
- LISM, Institut de Microbiologie de la Méditerranée, UMR 7255, CNRS and Aix-Marseille Université, Marseille, France
| | - Julie Pamela Viala
- LISM, Institut de Microbiologie de la Méditerranée, UMR 7255, CNRS and Aix-Marseille Université, Marseille, France
| | - Emmanuelle Bouveret
- SAMe Unit, UMR 2001, Microbiology Department, Pasteur Institute, Paris, France
| |
Collapse
|
2
|
Posttranslational Control of PlsB Is Sufficient To Coordinate Membrane Synthesis with Growth in Escherichia coli. mBio 2020; 11:mBio.02703-19. [PMID: 32817111 PMCID: PMC7439487 DOI: 10.1128/mbio.02703-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
How do bacterial cells grow without breaking their membranes? Although the biochemistry of fatty acid and membrane synthesis is well known, how membrane synthesis is balanced with growth and metabolism has remained unclear. This is partly due to the many control points that have been discovered within the membrane synthesis pathways. By precisely establishing the contributions of individual pathway enzymes, our results simplify the model of membrane biogenesis in the model bacterial species Escherichia coli. Specifically, we found that allosteric control of a single enzyme, PlsB, is sufficient to balance growth with membrane synthesis and to ensure that growing E. coli cells produce sufficient membrane. Identifying the signals that activate and deactivate PlsB will resolve the issue of how membrane synthesis is synchronized with growth. Every cell must produce enough membrane to contain itself. However, the mechanisms by which the rate of membrane synthesis is coupled with the rate of cell growth remain unresolved. By comparing substrate and enzyme concentrations of the fatty acid and phospholipid synthesis pathways of Escherichia coli across a 3-fold range of carbon-limited growth rates, we show that the rate of membrane phospholipid synthesis during steady-state growth is determined principally through allosteric control of a single enzyme, PlsB. Due to feedback regulation of the fatty acid pathway, PlsB activity also indirectly controls synthesis of lipopolysaccharide, a major component of the outer membrane synthesized from a fatty acid synthesis intermediate. Surprisingly, concentrations of the enzyme that catalyzes the committed step of lipopolysaccharide synthesis (LpxC) do not differ across steady-state growth conditions, suggesting that steady-state lipopolysaccharide synthesis is modulated primarily via indirect control by PlsB. In contrast to steady-state regulation, we found that responses to environmental perturbations are triggered directly via changes in acetyl coenzyme A (acetyl-CoA) concentrations, which enable rapid adaptation. Adaptations are further modulated by ppGpp, which regulates PlsB activity during slow growth and growth arrest. The strong reliance of the membrane synthesis pathway upon posttranslational regulation ensures both the reliability and the responsiveness of membrane synthesis.
Collapse
|
3
|
Dolke F, Dong C, Bandi S, Paetz C, Glauser G, von Reuß SH. Ascaroside Signaling in the Bacterivorous Nematode Caenorhabditis remanei Encodes the Growth Phase of Its Bacterial Food Source. Org Lett 2019; 21:5832-5837. [PMID: 31305087 DOI: 10.1021/acs.orglett.9b01914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel class of species-specific modular ascarosides that integrate additional fatty acid building blocks was characterized in the nematode Caenorhabditis remanei using a combination of HPLC-ESI-(-)-MS/MS precursor ion scanning, microreactions, HR-MS/MS, MSn, and NMR techniques. The structure of the dominating component carrying a cyclopropyl fatty acid moiety was established by total synthesis. Biogenesis of this female-produced male attractant depends on cyclopropyl fatty acid synthase (cfa), which is expressed in bacteria upon entering their stationary phase.
Collapse
Affiliation(s)
- Franziska Dolke
- Department of Bioorganic Chemistry , Max Planck Institute for Chemical Ecology , Hans-Knöll Straße 8 , D-07745 Jena , Germany
| | - Chuanfu Dong
- Department of Bioorganic Chemistry , Max Planck Institute for Chemical Ecology , Hans-Knöll Straße 8 , D-07745 Jena , Germany
| | - Siva Bandi
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry , University of Neuchâtel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland
| | - Christian Paetz
- Research Group Biosynthesis/NMR , Max Planck Institute for Chemical Ecology , Hans-Knöll Straße 8 , D-07745 Jena , Germany
| | - Gaétan Glauser
- Neuchâtel Platform for Analytical Chemistry (NPAC) , University of Neuchâtel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland
| | - Stephan H von Reuß
- Department of Bioorganic Chemistry , Max Planck Institute for Chemical Ecology , Hans-Knöll Straße 8 , D-07745 Jena , Germany.,Laboratory for Bioanalytical Chemistry, Institute of Chemistry , University of Neuchâtel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland.,Neuchâtel Platform for Analytical Chemistry (NPAC) , University of Neuchâtel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland
| |
Collapse
|
4
|
Srisukchayakul P, Charalampopoulos D, Karatzas KA. Study on the effect of citric acid adaptation toward the subsequent survival of Lactobacillus plantarum NCIMB 8826 in low pH fruit juices during refrigerated storage. Food Res Int 2018; 111:198-204. [PMID: 30007676 DOI: 10.1016/j.foodres.2018.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 01/16/2023]
Abstract
Pre-treatment of stationary phase cells of Lactobacillus plantarum NCMIB 8826 with citric acid (pH 3 to 6) for a short period of time significantly improved subsequent cell survival in several highly acidic fruit juices namely cranberry (pH 2.7), pomegranate (pH 3.5), and lemon & lime juices (pH 2.8). Although the mechanism for this adaptation is still unclear, the analysis of the cellular fatty acid content of acid adapted cells and the reverse transcription polymerase chain reaction (RT-PCR) showed a significant increase (by ~1.7 fold) of the cellular cyclopropane fatty acid, cis-11,12-methylene octadecanoic acid (C19:0cyclow7c) and a significant upregulation (~12 fold) of cyclopropane synthase (cfa) were observed, respectively, during acid adaptation. It is likely that these changes led to a decrease in membrane fluidity and to lower membrane permeability, which prevents the cells from proton influx during storage in these low pH fruit juices.
Collapse
Affiliation(s)
- Pornpoj Srisukchayakul
- Department of Food and Nutritional Sciences, University of Reading, PO Box 226, Whiteknights, Reading RG6 6AP, United Kingdom
| | - Dimitris Charalampopoulos
- Department of Food and Nutritional Sciences, University of Reading, PO Box 226, Whiteknights, Reading RG6 6AP, United Kingdom
| | - Kimon Andreas Karatzas
- Department of Food and Nutritional Sciences, University of Reading, PO Box 226, Whiteknights, Reading RG6 6AP, United Kingdom; CINN (Centre for Integrative Neuroscience and Neurodynamics), University of Reading, Whiteknights, Reading RG6 6BE, United Kingdom.
| |
Collapse
|
5
|
The Long Hunt for pssR-Looking for a Phospholipid Synthesis Transcriptional Regulator, Finding the Ribosome. J Bacteriol 2017; 199:JB.00202-17. [PMID: 28484043 DOI: 10.1128/jb.00202-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/26/2017] [Indexed: 11/20/2022] Open
Abstract
The phospholipid (PL) composition of bacterial membranes varies as a function of growth rate and in response to changes in the environment. While growth adaptation can be explained by biochemical feedback in the PL synthesis pathway, recent transcriptome studies have revealed that the expression of PL synthesis genes can also be tuned in response to various stresses. We previously showed that the BasRS two-component pathway controls the expression of the diacylglycerol kinase gene, dgkA, in Escherichia coli (A. Wahl, L. My, R. Dumoulin, J. N. Sturgis, and E. Bouveret, Mol Microbiol, 80:1260-1275, 2011, https://doi.org/10.1111/j.1365-2958.2011.07641.x). In this study, we set up a strategy to identify the mutation responsible for the upregulation of pssA observed in the historical pssR1 mutant and supposedly corresponding to a transcriptional repressor (C. P. Sparrow and J. Raetz, J Biol Chem, 258:9963-9967, 1983). pssA encodes phosphatidylserine synthase, the first step of phosphatidylethanolamine synthesis. We showed that this mutation corresponded to a single nucleotide change in the anti-Shine-Dalgarno sequence of the 16S rRNA encoded by the rrnC operon. We further demonstrated that this mutation enhanced the translation of pssA Though this effect appeared to be restricted to PssA among phospholipid synthesis enzymes, it was not specific, as evidenced by a global effect on the production of unrelated proteins.IMPORTANCE Bacteria adjust the phospholipid composition of their membranes to the changing environment. In addition to enzymatic regulation, stress response regulators control specific steps of the phospholipid synthesis pathway. We wanted to identify a potential regulator controlling the expression of the phosphatidylserine synthase gene. We showed that it was not the previously suggested hdfR gene and instead that a mutation in the anti-Shine-Dalgarno sequence of 16S RNA was responsible for an increase in pssA translation. This example underlines the fact that gene expression can be modulated by means other than specific regulatory processes.
Collapse
|
6
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
7
|
Chatnaparat T, Li Z, Korban SS, Zhao Y. The Stringent Response Mediated by (p)ppGpp Is Required for Virulence of Pseudomonas syringae pv. tomato and Its Survival on Tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:776-789. [PMID: 25675257 DOI: 10.1094/mpmi-11-14-0378-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS) is a key pathogenicity factor in Pseudomonas syringae pv. tomato DC3000 (DC3000). In this study, the role of the second messenger (p)ppGpp on virulence and survival of DC3000 was investigated. Results have demonstrated that (p)ppGpp-deficient mutant (ppGpp(0)) of DC3000 exhibited lower levels of expression of the T3SS and genes of other virulence traits, such as coronatine toxin. The ppGpp(0) mutant of DC3000 was greatly impaired in causing disease and in growth in planta. Furthermore, (p)ppGpp was required for swarming motility, pyoverdine production, the oxidative stress response, as well as γ-amino butyric acid utilization. Screening of amino acids, major signals in activation of ppGpp biosynthesis, revealed that promoter activities of the avrPto gene could be either activated or suppressed by various amino acids in a ppGpp-dependent or -independent manner. Moreover, the ppGpp(0) mutant exhibited increased cell size and decreased survival on plant surfaces. Altogether, these findings indicate that ppGpp acts as an internal signal that regulates the T3SS as well as other virulence factors in pseudomonads and suggest that bacterial pathogens utilize intracellular messengers to sense environmental and nutritional signals for rapid, precise, and reversible control of their pathogenesis and survival.
Collapse
Affiliation(s)
- Tiyakhon Chatnaparat
- 1 Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Zhong Li
- 2 Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at-Urbana-Champaign
| | - Schuyler S Korban
- 3 Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign
- 4 Department of Biology, University of Massachusetts Boston, Boston, MA 02125, U.S.A
| | - Youfu Zhao
- 1 Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| |
Collapse
|
8
|
Janßen HJ, Steinbüchel A. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:7. [PMID: 24405789 PMCID: PMC3896788 DOI: 10.1186/1754-6834-7-7] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/24/2013] [Indexed: 05/04/2023]
Abstract
The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed.
Collapse
Affiliation(s)
- Helge Jans Janßen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Essential roles for Mycobacterium tuberculosis Rel beyond the production of (p)ppGpp. J Bacteriol 2013; 195:5629-38. [PMID: 24123821 DOI: 10.1128/jb.00759-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In Mycobacterium tuberculosis, the stringent response to amino acid starvation is mediated by the M. tuberculosis Rel (RelMtb) enzyme, which transfers a pyrophosphate from ATP to GDP or GTP to synthesize ppGpp and pppGpp, respectively. (p)ppGpp then influences numerous metabolic processes. RelMtb also encodes a second, distinct catalytic domain that hydrolyzes (p)ppGpp into pyrophosphate and GDP or GTP. RelMtb is required for chronic M. tuberculosis infection in mice; however, it is unknown which catalytic activity of RelMtb mediates pathogenesis and whether (p)ppGpp itself is necessary. In order to individually investigate the roles of (p)ppGpp synthesis and hydrolysis during M. tuberculosis pathogenesis, we generated RelMtb point mutants that were either synthetase dead (RelMtb(H344Y)) or hydrolase dead (RelMtb(H80A)). M. tuberculosis strains expressing the synthetase-dead RelMtb(H344Y) mutant did not persist in mice, demonstrating that the RelMtb (p)ppGpp synthetase activity is required for maintaining bacterial titers during chronic infection. Deletion of a second predicted (p)ppGpp synthetase had no effect on pathogenesis, demonstrating that RelMtb was the major contributor to (p)ppGpp production during infection. Interestingly, expression of an allele encoding the hydrolase-dead RelMtb mutant, RelMtb(H80A), that is incapable of hydrolyzing (p)ppGpp but still able to synthesize (p)ppGpp decreased the growth rate of M. tuberculosis and changed the colony morphology of the bacteria. In addition, RelMtb(H80A) expression during acute or chronic M. tuberculosis infection in mice was lethal to the infecting bacteria. These findings highlight a distinct role for RelMtb-mediated (p)ppGpp hydrolysis that is essential for M. tuberculosis pathogenesis.
Collapse
|
10
|
Shamim S, Rehman A. Physicochemical surface properties of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 under cadmium stress. J Basic Microbiol 2013; 54:306-14. [PMID: 23564035 DOI: 10.1002/jobm.201200434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/03/2012] [Indexed: 11/10/2022]
Abstract
Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 were used as cadmium (Cd) resistant and sensitive bacteria, respectively to study the effect of Cd on physicochemical surface properties which include the study of surface charge and hydrophobicity which are subjected to vary under stress conditions. In this research work, effective concentration 50 (EC50 ) was calculated to exclude the doubt that dead cells were also responding and used as reference point to study the changes in cell surface properties in the presence of Cd. EC50 of C. metallidurans CH34 was found to be 2.5 and 0.25 mM for P. putida mt2. The zeta potential analysis showed that CH34 cells were slightly less unstable than mt2 cells as CH34 cells exhibited -8.5 mV more negative potential than mt2 cells in the presence of Cd in growth medium. Cd made P. putida mt2 surface to behave as intermediate hydrophilic (θw = 25.32°) while C. metallidurans CH34 as hydrophobic (θw = 57.26°) at their respective EC50 . Although belonging to the same gram-negative group, both bacteria behaved differently in terms of changes in membrane fluidity. Expression of trans fatty acids was observed in mt2 strain (0.45%) but not in CH34 strain (0%). Similarly, cyclopropane fatty acids were observed more in mt2 strain (0.06-0.14%) but less in CH34 strain (0.01-0.02%). Degree of saturation of fatty acids decreased in P. putida mt2 (36.8-33.75%) while increased in C. metallidurans CH34 (35.6-39.3%). Homeoviscous adaptation is a survival strategy in harsh environments which includes expression of trans fatty acids and cyclo fatty acids in addition to altered degree of saturation. Different bacteria show different approaches to homeoviscous adaptation.
Collapse
Affiliation(s)
- Saba Shamim
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore, Pakistan; Department of Environmental Microbiology-UMB, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | | |
Collapse
|
11
|
Kanjee U, Ogata K, Houry WA. Direct binding targets of the stringent response alarmone (p)ppGpp. Mol Microbiol 2012; 85:1029-43. [PMID: 22812515 DOI: 10.1111/j.1365-2958.2012.08177.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Escherichia coli stringent response, mediated by the alarmone ppGpp, is responsible for the reorganization of cellular transcription upon nutritional starvation and other stresses. These transcriptional changes occur mainly as a result of the direct effects of ppGpp and its partner transcription factor DksA on RNA polymerase. An often overlooked feature of the stringent response is the direct targeting of other proteins by ppGpp. Here we review the literature on proteins that are known to bind ppGpp and, based on sequence homology, X-ray crystal structures and in silico docking, we propose new potential protein binding targets for ppGpp. These proteins were found to fall into five main categories: (i) cellular GTPases, (ii) proteins involved in nucleotide metabolism, (iii) proteins involved in lipid metabolism, (iv) general metabolic proteins and (v) PLP-dependent basic aliphatic amino acid decarboxylases. Bioinformatic rationale is provided for expanding the role of ppGpp in regulating the activities of the cellular GTPases. Proteins involved in nucleotide and lipid metabolism and general metabolic proteins provide an interesting set of structurally varied stringent response targets. While the inhibition of some PLP-dependent decarboxylases by ppGpp suggests the existence of cross-talk between the acid stress and stringent response systems.
Collapse
Affiliation(s)
- Usheer Kanjee
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
12
|
Abstract
In their stressful natural environments, bacteria often are in stationary phase and use their limited resources for maintenance and stress survival. Underlying this activity is the general stress response, which in Escherichia coli depends on the σS (RpoS) subunit of RNA polymerase. σS is closely related to the vegetative sigma factor σ70 (RpoD), and these two sigmas recognize similar but not identical promoter sequences. During the postexponential phase and entry into stationary phase, σS is induced by a fine-tuned combination of transcriptional, translational, and proteolytic control. In addition, regulatory "short-cuts" to high cellular σS levels, which mainly rely on the rapid inhibition of σS proteolysis, are triggered by sudden starvation for various nutrients and other stressful shift conditons. σS directly or indirectly activates more than 500 genes. Additional signal input is integrated by σS cooperating with various transcription factors in complex cascades and feedforward loops. Target gene products have stress-protective functions, redirect metabolism, affect cell envelope and cell shape, are involved in biofilm formation or pathogenesis, or can increased stationary phase and stress-induced mutagenesis. This review summarizes these diverse functions and the amazingly complex regulation of σS. At the molecular level, these processes are integrated with the partitioning of global transcription space by sigma factor competition for RNA polymerase core enzyme and signaling by nucleotide second messengers that include cAMP, (p)ppGpp, and c-di-GMP. Physiologically, σS is the key player in choosing between a lifestyle associated with postexponential growth based on nutrient scavenging and motility and a lifestyle focused on maintenance, strong stress resistance, and increased adhesiveness. Finally, research with other proteobacteria is beginning to reveal how evolution has further adapted function and regulation of σS to specific environmental niches.
Collapse
|
13
|
Wahl A, My L, Dumoulin R, Sturgis JN, Bouveret E. Antagonistic regulation of dgkA and plsB genes of phospholipid synthesis by multiple stress responses in Escherichia coli. Mol Microbiol 2011; 80:1260-75. [PMID: 21463370 DOI: 10.1111/j.1365-2958.2011.07641.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phospholipid homeostasis of the bacterial membrane is maintained by biochemical regulation of the synthesis enzymes depending on the environment. However, genes encoding phospholipid synthesis enzymes might also be regulated during stress responses, in order for the bacteria to adapt their growth to changing environments. While few studies have addressed this question, global analyses show that specific genes are activated by alternative Sigma factors, and that phospholipid synthesis genes are co-ordinately regulated during stringent response. In Escherichia coli, the genes coding for glycerol-3-phosphate acyltransferase and diacylglycerol kinase (plsB and dgkA) are found next to each other in divergent orientations, suggesting a co-ordinated regulation. We investigated their regulation and found that these two genes are inversely regulated by a diversity of stress responses. plsB activation by σE is concomitant with a reduced DgkA amount. A second proximal promoter for plsB expression is responsible for basal plsB expression and is inhibited during stringent response. Finally, dgkA is activated by the two-component regulator BasR, linking dgkA function of phospholipid recycling to LPS modifications. In E. coli, PlsB and DgkA are key enzymes in the phospholipid synthesis pathway. Our results show that their expression is a crucial point of integration for different stress signals.
Collapse
Affiliation(s)
- Astrid Wahl
- LISM, CNRS, Aix-Marseille University, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
14
|
Cyclopropanation of membrane unsaturated fatty acids is not essential to the acid stress response of Lactococcus lactis subsp. cremoris. Appl Environ Microbiol 2011; 77:3327-34. [PMID: 21421775 DOI: 10.1128/aem.02518-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-L-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells.
Collapse
|
15
|
Nadratowska-Wesołowska B, Słomińska-Wojewódzka M, Łyzeń R, Wegrzyn A, Szalewska-Pałasz A, Wegrzyn G. Transcription regulation of the Escherichia coli pcnB gene coding for poly(A) polymerase I: roles of ppGpp, DksA and sigma factors. Mol Genet Genomics 2010; 284:289-305. [PMID: 20700605 PMCID: PMC2939334 DOI: 10.1007/s00438-010-0567-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 07/24/2010] [Indexed: 12/27/2022]
Abstract
Poly(A) polymerase I (PAP I), encoded by the pcnB gene, is a major enzyme responsible for RNA polyadenylation in Escherichia coli, a process involved in the global control of gene expression in this bacterium through influencing the rate of transcript degradation. Recent studies have suggested a complicated regulation of pcnB expression, including a complex promoter region, a control at the level of translation initiation and dependence on bacterial growth rate. In this report, studies on transcription regulation of the pcnB gene are described. Results of in vivo and in vitro experiments indicated that (a) there are three σ70-dependent (p1, pB, and p2) and two σS-dependent (pS1 and pS2) promoters of the pcnB gene, (b) guanosine tetraphosphate (ppGpp) and DksA directly inhibit transcription from pB, pS1 and pS2, and (c) pB activity is drastically impaired at the stationary phase of growth. These results indicate that regulation of the pcnB gene transcription is a complex process, which involves several factors acting to ensure precise control of PAP I production. Moreover, inhibition of activities of pS1 and pS2 by ppGpp and DksA suggests that regulation of transcription from promoters requiring alternative σ factors by these effectors of the stringent response might occur according to both passive and active models.
Collapse
|
16
|
Traxler MF, Summers SM, Nguyen HT, Zacharia VM, Smith JT, Conway T. The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 2008; 68:1128-48. [PMID: 18430135 PMCID: PMC3719176 DOI: 10.1111/j.1365-2958.2008.06229.x] [Citation(s) in RCA: 401] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The stringent response to amino acid starvation, whereby stable RNA synthesis is curtailed in favour of transcription of amino acid biosynthetic genes, is controlled by the alarmone ppGpp. To elucidate the extent of gene expression effected by ppGpp, we designed an experimental system based on starvation for isoleucine, which could be applied to both wild-type Escherichia coli and the multiauxotrophic relA spoT mutant (ppGpp(0)). We used microarrays to profile the response to amino acid starvation in both strains. The wild-type response included induction of the general stress response, downregulation of genes involved in production of macromolecular structures and comprehensive restructuring of metabolic gene expression, but not induction of amino acid biosynthesis genes en masse. This restructuring of metabolism was confirmed using kinetic Biolog assays. These responses were profoundly altered in the ppGpp(0) strain. Furthermore, upon isoleucine starvation, the ppGpp(0) strain exhibited a larger cell size and continued growth, ultimately producing 50% more biomass than the wild-type, despite producing a similar amount of protein. This mutant phenotype correlated with aberrant gene expression in diverse processes, including DNA replication, cell division, and fatty acid and membrane biosynthesis. We present a model that expands and functionally integrates the ppGpp-mediated stringent response to include control of virtually all macromolecular synthesis and intermediary metabolism.
Collapse
Affiliation(s)
- Matthew F. Traxler
- Advanced Center for Genome Technology, University of Oklahoma, Norman, OK 73019
| | - Sean M. Summers
- Advanced Center for Genome Technology, University of Oklahoma, Norman, OK 73019
| | - Huyen-Tran Nguyen
- Advanced Center for Genome Technology, University of Oklahoma, Norman, OK 73019
| | | | - Joel T. Smith
- Department of Chemistry, Southeastern Oklahoma State University, Durant, OK, USA 74701
| | - Tyrrell Conway
- Advanced Center for Genome Technology, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
17
|
Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR. Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 2007; 282:25475-86. [PMID: 17565990 DOI: 10.1074/jbc.m701415200] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both prokaryotic and eukaryotic photosynthetic microbes experience conditions of anoxia, especially during the night when photosynthetic activity ceases. In Chlamydomonas reinhardtii, dark anoxia is characterized by the activation of an extensive set of fermentation pathways that act in concert to provide cellular energy, while limiting the accumulation of potentially toxic fermentative products. Metabolite analyses, quantitative PCR, and high density Chlamydomonas DNA microarrays were used to monitor changes in metabolite accumulation and gene expression during acclimation of the cells to anoxia. Elevated levels of transcripts encoding proteins associated with the production of H2, organic acids, and ethanol were observed in congruence with the accumulation of fermentation products. The levels of over 500 transcripts increased significantly during acclimation of the cells to anoxic conditions. Among these were transcripts encoding transcription/translation regulators, prolyl hydroxylases, hybrid cluster proteins, proteases, transhydrogenase, catalase, and several putative proteins of unknown function. Overall, this study uses metabolite, genomic, and transcriptome data to provide genome-wide insights into the regulation of the complex metabolic networks utilized by Chlamydomonas under the anaerobic conditions associated with H2 production.
Collapse
Affiliation(s)
- Florence Mus
- Department of Plant Biology, Carnegie Institution, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
18
|
Behr J, Gänzle MG, Vogel RF. Characterization of a highly hop-resistant Lactobacillus brevis strain lacking hop transport. Appl Environ Microbiol 2006; 72:6483-92. [PMID: 17021196 PMCID: PMC1610305 DOI: 10.1128/aem.00668-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to hops is a prerequisite for lactic acid bacteria to spoil beer. In this study we analyzed mechanisms of hop resistance of Lactobacillus brevis at the metabolism, membrane physiology, and cell wall composition levels. The beer-spoiling organism L. brevis TMW 1.465 was adapted to high concentrations of hop compounds and compared to a nonadapted strain. Upon adaptation to hops the metabolism changed to minimize ethanol stress. Fructose was used predominantly as a carbon source by the nonadapted strain but served as an electron acceptor upon adaptation to hops, with concomitant formation of acetate instead of ethanol. Furthermore, hop adaptation resulted in higher levels of lipoteichoic acids (LTA) incorporated into the cell wall and altered composition and fluidity of the cytoplasmic membrane. The putative transport protein HitA and enzymes of the arginine deiminase pathway were overexpressed upon hop adaptation. HorA was not expressed, and the transport of hop compounds from the membrane to the extracellular space did not account for increased resistance to hops upon adaptation. Accordingly, hop resistance is a multifactorial dynamic property, which can develop during adaptation. During hop adaptation, arginine catabolism contributes to energy and generation of the proton motive force until a small fraction of the population has established structural improvements. This acquired hop resistance is energy independent and involves an altered cell wall composition. LTA shields the organism from accompanying stresses and provides a reservoir of divalent cations, which are otherwise scarce as a result of their complexation by hop acids. Some of the mechanisms involved in hop resistance overlap with mechanisms of pH resistance and ethanol tolerance and as a result enable beer spoilage by L. brevis.
Collapse
Affiliation(s)
- Jürgen Behr
- Technische Mikrobiologie, Technische Universität München, Weihenstephaner Steig 16, 85350 Freising, Germany
| | | | | |
Collapse
|
19
|
Diodati ME, Ossa F, Caberoy NB, Jose IR, Hiraiwa W, Igo MM, Singer M, Garza AG. Nla18, a key regulatory protein required for normal growth and development of Myxococcus xanthus. J Bacteriol 2006; 188:1733-43. [PMID: 16484184 PMCID: PMC1426557 DOI: 10.1128/jb.188.5.1733-1743.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NtrC-like activators regulate the transcription of a wide variety of adaptive genes in bacteria. Previously, we demonstrated that a mutation in the ntrC-like activator gene nla18 causes defects in fruiting body development in Myxococcus xanthus. In this report, we describe the effect that nla18 inactivation has on gene expression patterns during development and vegetative growth. Gene expression in nla18 mutant cells is altered in the early stages of fruiting body development. Furthermore, nla18 mutant cells are defective for two of the earliest events in development, production of the intracellular starvation signal ppGpp and production of A-signal. Taken together, these results indicate that the developmental program in nla18 mutant cells goes awry very early. Inactivation of nla18 also causes a dramatic decrease in the vegetative growth rate of M. xanthus cells. DNA microarray analysis revealed that the vegetative expression patterns of more than 700 genes are altered in nla18 mutant cells. Genes coding for putative membrane and membrane-associated proteins are among the largest classes of genes whose expression is altered by nla18 inactivation. This result is supported by our findings that the profiles of membrane proteins isolated from vegetative nla18 mutant and wild-type cells are noticeably different. In addition to genes that code for putative membrane proteins, nla18 inactivation affects the expression of many genes that are likely to be important for protein synthesis and gene regulation. Our data are consistent with a model in which Nla18 controls vegetative growth and development by activating the expression of genes involved in gene regulation, translation, and membrane structure.
Collapse
Affiliation(s)
- Michelle E Diodati
- Department of Biology, Syracuse University, BRL Room 200, 130 College Place, Syracuse, NY 13244-1220, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Muñoz-Rojas J, Bernal P, Duque E, Godoy P, Segura A, Ramos JL. Involvement of cyclopropane fatty acids in the response of Pseudomonas putida KT2440 to freeze-drying. Appl Environ Microbiol 2006; 72:472-7. [PMID: 16391080 PMCID: PMC1352226 DOI: 10.1128/aem.72.1.472-477.2006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440, a saprophytic soil bacterium that colonizes the plant root, is a suitable microorganism for the removal of pollutants and a stable host for foreign genes used in biotransformation processes. Because of its potential use in agriculture and industry, we investigated the conditions for the optimal preservation of the strain and its derivatives for long-term storage. The highest survival rates were achieved with cells that had reached the stationary phase and which had been subjected to freeze-drying in the presence of disaccharides (trehalose, maltose, and lactose) as lyoprotectants. Using fluorescence polarization techniques, we show that cell membranes of KT2440 were more rigid in the stationary phase than in the exponential phase of growth. This is consistent with the fact that cells grown in the stationary phase exhibited a higher proportion of C17:cyclopropane as a fatty acid than cells in the exponential phase. Mutants for the cfaB gene, which encodes the main C17:cyclopropane synthase, and for the cfaA gene, which encodes a minor C17:cyclopropane synthase, were constructed. These mutants were more sensitive to freeze-drying than wild-type cells, particularly the mutant with a knockout in the cfaB gene that produced less than 2% of the amount of C17:cyclopropane produced by the parental strain.
Collapse
Affiliation(s)
- Jesús Muñoz-Rojas
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008 Granada, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Wu G, Nie L, Zhang W. Predicted highly expressed genes in Nocardia farcinica and the implication for its primary metabolism and nocardial virulence. Antonie van Leeuwenhoek 2006; 89:135-46. [PMID: 16496092 DOI: 10.1007/s10482-005-9016-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 09/26/2005] [Indexed: 01/30/2023]
Abstract
Nocardia farcinica is a Gram positive, filamentous bacterium, and is considered an opportunistic pathogen. In this study, the highly expressed genes in N. farcinica were predicted using the codon adaptation index (CAI) as a numerical estimator of gene expressivity. Using ribosomal protein (RP) genes as references, the top approximately approximately 10% of the genes were predicted to be the predicted highly expressed (PHX) genes in N. farcinica using a CAI cutoff of greater than 0.73. Consistent with earlier analysis of Streptomyces genomes, most of the PHX genes in N. farcinica were involved in various 'house-keeping' functions important for cell growth. However, 15 genes putatively involved in nocardial virulence were predicted as PHX genes in N. farcinica, which included genes encoding four Mce proteins, cyclopropane fatty acid synthase which is involved in the modification of cell wall which may be important for nocardia virulence, polyketide synthase PKS13 for mycolic acid synthesis and a non-ribosomal peptide synthetase involved in biosynthesis of a mycobactin-related siderophore. In addition, multiple genes involved in defense against reactive oxygen species (ROS) produced by the phagocyte were predicted with high expressivity, which included alkylhydroperoxide reductase (ahpC), catalase (katG), superoxide dismutase (sodF), thioredoxin, thioredoxin reductase, glutathione peroxidase, and peptide methionine sulfoxide reductase, suggesting that combating against ROS is essential for survival of N. farcinica in host cells. The study also showed that the distribution of PHX genes in the N. farcinica circular chromosome was uneven, with more PHX genes located in the regions close to replication initiation site. The results provided the first estimates of global gene expression patterns in N. farcinica, which will be useful in guiding experimental design for further investigations.
Collapse
Affiliation(s)
- Gang Wu
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
22
|
Budin-Verneuil A, Pichereau V, Auffray Y, Ehrlich DS, Maguin E. Proteomic characterization of the acid tolerance response inLactococcus lactis MG1363. Proteomics 2005; 5:4794-807. [PMID: 16237734 DOI: 10.1002/pmic.200401327] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Exponentially growing cells of Lactococcus lactis MG1363 are able to develop an Acid Tolerance Response (ATR) when incubated at pH 5, in both rich (M17)--and chemically defined (SA)--culture media. Physiological and proteomic characterization of this adaptive response indicated that L. lactis reorganizes its metabolism in response to acid stress to a great extent and quite differently in the two media. The development of ATR was fully dependent on protein de novo synthesis in SA and only partly dependent in M17. 2D gel electrophoresis revealed a total of 90 spots induced by acidity, 80 of which were identified by mass spectrometry. Only 10 proteins (BglA, PycA, GlmS, HasC, ArgS, GatA, AtpA, ArcB, Cfa, and SodA) were overproduced in the two media. A transcriptional analysis of the corresponding genes suggested that for half of them the mode of regulation may differ in the two media. Among the protein spots upregulated during the ATR in SA but not in M17, 13 already displayed an elevated rate of synthesis in M17 at neutral pH. These proteins could play an important role in the development of the protein de novo synthesis-independent ATR observed in M17.
Collapse
Affiliation(s)
- Aurélie Budin-Verneuil
- Laboratoire Microbiologie de l'Environnement, Université de Caen, F-14032 Caen cedex, France
| | | | | | | | | |
Collapse
|
23
|
Budin-Verneuil A, Maguin E, Auffray Y, Ehrlich SD, Pichereau V. Transcriptional analysis of the cyclopropane fatty acid synthase gene ofLactococcus lactisMG1363 at low pH. FEMS Microbiol Lett 2005; 250:189-94. [PMID: 16098686 DOI: 10.1016/j.femsle.2005.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 06/29/2005] [Accepted: 07/06/2005] [Indexed: 11/20/2022] Open
Abstract
Cyclopropane fatty acid synthase (cfa) catalyses the transfer of a methyl group from S-adenosylmethionine (SAM) to unsaturated fatty acids. Northern blot experiments demonstrated that the Lactococcus lactis MG1363 cfa gene is mainly expressed as a bicistronic transcript together with metK, the gene encoding SAM synthetase, and is highly induced by acidity. The cfa promoter was characterized by 5'-RACE PCR, and fused to beta-galactosidase by cloning into the pAK80 plasmid. This transcriptional fusion was highly induced by acidity (23-fold at pH 5) as well as during entry into the stationary phase (8-fold) in L. lactis. Interestingly, the cfa promoter expression is repressed in a L. lactis relA* mutant which accumulates (p)ppGpp, whereas its induction by acidity appeared independent of (p)ppGpp in L. lactis and in Escherichia coli.
Collapse
Affiliation(s)
- Aurélie Budin-Verneuil
- Laboratoire de Microbiologie de l'Environnement, EA956-USC INRA 2017, IRBA, Université de Caen, 14032 Caen Cedex, France
| | | | | | | | | |
Collapse
|
24
|
Härtig C, Loffhagen N, Harms H. Formation of trans fatty acids is not involved in growth-linked membrane adaptation of Pseudomonas putida. Appl Environ Microbiol 2005; 71:1915-22. [PMID: 15812020 PMCID: PMC1082513 DOI: 10.1128/aem.71.4.1915-1922.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 10/22/2004] [Indexed: 11/20/2022] Open
Abstract
Fatty acid compositions in growing and resting cells of several strains of Pseudomonas putida (P8, NCTC 10936, and KT 2440) were studied, with a focus on alterations of the saturation degree, cis-trans isomerization, and cyclopropane formation. The fatty acid compositions of the strains were very similar under comparable growth conditions, but surprisingly, and contrary to earlier reports, trans fatty acids were not found in either exponentially growing cells or stationary-phase cells. During the transition from growth to the starvation state, cyclopropane fatty acids were preferentially formed, an increase in the saturation degree of fatty acids was observed, and larger amounts of hydroxy fatty acids were detected. A lowered saturation degree and concomitant higher membrane fluidity seemed to be optimal for substrate uptake and growth. The incubation of cells under nongrowth conditions rapidly led to the formation of trans fatty acids. We show that harvesting and sample preparation for analysis could provoke the enzyme-catalyzed formation of trans fatty acids. Freeze-thawing of resting cells and increased temperatures accelerated the formation of trans fatty acids. We demonstrate that cis-trans isomerization only occurred in cells that were subjected to an abrupt disturbance without having the possibility of adapting to the changed conditions by the de novo synthesis of fatty acids. The cis-trans isomerization reaction was in competition with the cis-to-cyclopropane fatty acid conversion. The potential for the formation of trans fatty acids depended on the cyclopropane content that was already present.
Collapse
Affiliation(s)
- Claus Härtig
- Department of Environmental Microbiology, UFZ Centre for Environmental Research Leipzig-Halle, P.O. Box 500136, 04301 Leipzig, Germany.
| | | | | |
Collapse
|
25
|
Kim BH, Kim S, Kim HG, Lee J, Lee IS, Park YK. The formation of cyclopropane fatty acids in Salmonella enterica serovar Typhimurium. Microbiology (Reading) 2005; 151:209-218. [PMID: 15632439 DOI: 10.1099/mic.0.27265-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation of cyclopropane fatty acid (CFA) and its role in the acid shock response inSalmonella entericaserovar Typhimurium (S. typhimurium) was investigated. Data obtained by GC/MS demonstrated that the CFA level inS. typhimuriumincreased upon its entry to the stationary phase, as in other bacteria. Thecfagene encoding CFA synthase was cloned, and mutants of thecfagene were constructed by allelic exchange. Acfamutant could not produce CFA and was sensitive to low pH. Introduction of a functionalcfagene into acfamutant cell made the mutant convert all unsaturated fatty acids to CFAs and partially restored resistance to low pH. Interestingly, the alternative sigma factor RpoS, which was induced during the stationary phase, affected the production of C19CFA but not C17CFA. Western blotting analysis showed that the increase in expression of CFA synthase at early stationary phase was due to the alternative sigma factor RpoS.
Collapse
Affiliation(s)
- Bae Hoon Kim
- Laboratory of Microbial Genetics, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Seungki Kim
- Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
- Laboratory of Microbial Genetics, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Hyeon Guk Kim
- Laboratory of Microbial Genetics, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Jin Lee
- Laboratory of Microbial Genetics, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - In Soo Lee
- Department of Microbiology, Hannam University, DaeJeon 300-791, Korea
| | - Yong Keun Park
- Laboratory of Microbial Genetics, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| |
Collapse
|
26
|
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, is transmitted by the tick Ixodes scapularis. A 2.9-kb fragment containing a putative spoT gene was isolated from B. burgdorferi genomic DNA by PCR amplification and cloned into a pBAD24 vector. The cloned gene complemented Escherichia coli mutant strain CF1693, which contains deletions of both the relA and spoT genes. The spoT gene in E. coli encodes a bifunctional enzyme capable of synthesizing and degrading (p)ppGpp, which mediates the stringent response during carbon source starvation. B. burgdorferi has been reported to have a stress response to serum starvation. Thin-layer chromatography was used to detect (p)ppGpp extracted from H(3)(32)PO(4)-labeled B. burgdorferi cells starved for serum in RPMI. B. burgdorferi spoT gene expression was characterized during fatty acid starvation. Northern analysis of spoT revealed detectable message at 2.5 min of starvation in RPMI. Expression of spoT during serum starvation increased approximately 6-fold during the 30 min that starvation conditions were maintained. Further, expression of spoT decreased when serum was added to serum-starved cells. Reverse transcriptase PCR (RT-PCR) was used to detect spoT mRNA from approximately 10(6) cells starved for serum in RPMI for 2.5 to 30 min or incubated in tick saliva for 15 min. Northern blot analysis suggests that spoT transcript was approximately 900 nucleotides in length. RT-PCR amplification of the transcript using several sets of primers confirmed this finding. Additionally, a truncated clone containing only the first 950 bp of the 2,001-bp spoT open reading frame was able to complement E. coli CF1693. The data suggest that B. burgdorferi exhibits a stringent response to serum starvation and during incubation in tick saliva.
Collapse
Affiliation(s)
- Marc B Concepcion
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston 02881, USA
| | | |
Collapse
|
27
|
Abstract
The control of water activity has been used as a means of preserving foods for thousands of years. This preservation strategy presents food-borne microorganisms with serious problems, many of which relate to the management of water flow. Although the specific details of how each organism deals with these problems are different, several common themes have emerged. Bacteria induce specific responses. both physiological and genetic, to respond to either the loss or the gain of water, triggered by changes in the osmolarity of the environment. Many of the key systems have now been identified and the mechanisms of their regulation are beginning to be understood. Here we review recent developments in the field of bacterial osmoregulation with emphasis on key food-borne genera.
Collapse
Affiliation(s)
- Conor P O'Byrne
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Scotland, UK
| | | |
Collapse
|
28
|
Diez AA, Tunlid A, Nyström T. The Escherichia coli ftsK1 mutation attenuates the induction of sigma(S)-dependent genes upon transition to stationary phase. FEMS Microbiol Lett 2002; 206:19-23. [PMID: 11786251 DOI: 10.1111/j.1574-6968.2002.tb10980.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A mutation in the cell division gene ftsK causes super-induction of sigma(70)-dependent stress defense genes, such as uspA, during entry of cells into stationary phase. In contrast, we report here that stationary phase induction of sigma(S)-dependent genes, uspB and cfa, is attenuated and that sigma(S) accumulates at a lower rate in ftsK1 cells. Ectopic overexpression of rpoS restored induction of the rpoS regulon in the ftsK mutant, as did a deletion in the recA gene. Thus, a mutation in the cell division gene, ftsK, uncouples the otherwise coordinated induction of sigma(S)-dependent genes and the universal stress response gene, uspA, during entry into stationary phase.
Collapse
Affiliation(s)
- Alfredo A Diez
- Department of Cell and Molecular Biology-Microbiology, Göteborg, Sweden
| | | | | |
Collapse
|
29
|
van Delden C, Comte R, Bally AM. Stringent response activates quorum sensing and modulates cell density-dependent gene expression in Pseudomonas aeruginosa. J Bacteriol 2001; 183:5376-84. [PMID: 11514523 PMCID: PMC95422 DOI: 10.1128/jb.183.18.5376-5384.2001] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During nutrient starvation, Escherichia coli elicits a stringent response involving the ribosome-associated protein RelA. Activation of RelA results in a global change in the cellular metabolism including enhanced expression of the stationary-phase sigma factor RpoS. In the human pathogen Pseudomonas aeruginosa, a complex quorum-sensing circuitry, linked to RpoS expression, is required for cell density-dependent production of many secreted virulence factors, including LasB elastase. Quorum sensing relies on the activation of specific transcriptional regulators (LasR and RhlR) by their corresponding autoinducers (3-oxo-C(12)-homoserine lactone [HSL] and C(4)-HSL), which function as intercellular signals. We found that overexpression of relA activated the expression of rpoS in P. aeruginosa and led to premature, cell density-independent LasB elastase production. We therefore investigated the effects of the stringent response on quorum sensing. Both lasR and rhlR gene expression and autoinducer synthesis were prematurely activated during the stringent response induced by overexpression of relA. Premature expression of lasR and rhlR was also observed when relA was overexpressed in a PAO1 rpoS mutant. The stringent response induced by the amino acid analogue serine hydroxamate (SHX) also led to premature production of the 3-oxo-C(12)-HSL autoinducer. This response to SHX was absent in a PAO1 relA mutant. These findings suggest that the stringent response can activate the two quorum-sensing systems of P. aeruginosa independently of cell density.
Collapse
Affiliation(s)
- C van Delden
- Department of Genetics and Microbiology, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
30
|
Bidle KA, Bartlett DH. RNA arbitrarily primed PCR survey of genes regulated by ToxR in the deep-sea bacterium Photobacterium profundum strain SS9. J Bacteriol 2001; 183:1688-93. [PMID: 11160100 PMCID: PMC95054 DOI: 10.1128/jb.183.5.1688-1693.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We are currently investigating the role of ToxR-mediated gene regulation in Photobacterium profundum strain SS9. SS9 is a moderately piezophilic ("pressure loving") psychrotolerant marine bacterium belonging to the family Vibrionaceae. In Vibrio cholerae, ToxR is a transmembrane DNA binding protein involved in mediating virulence gene expression in response to various environmental signals. A homolog to V. cholerae ToxR that is necessary for pressure-responsive gene expression of two outer membrane protein-encoding genes was previously found in SS9. To search for additional genes regulated by ToxR in SS9, we have used RNA arbitrarily primed PCR (RAP-PCR) with wild-type and toxR mutant strains of SS9. Seven ToxR-activated transcripts and one ToxR-repressed transcript were identified in this analysis. The cDNAs corresponding to these partial transcripts were cloned and sequenced, and ToxR regulation of their genes was verified. The products of these genes are all predicted to fall into one or both of two functional categories, those whose products alter membrane structure and/or those that are part of a starvation response. The transcript levels of all eight newly identified genes were also characterized as a function of hydrostatic pressure. Various patterns of pressure regulation were observed, indicating that ToxR activation or repression cannot be used to predict the influence of pressure on gene expression in SS9. These results provide further information on the nature of the ToxR regulon in SS9 and indicate that RAP-PCR is a useful approach for the discovery of new genes under the control of global regulatory transcription factors.
Collapse
Affiliation(s)
- K A Bidle
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California 92093-0202, USA
| | | |
Collapse
|
31
|
Hesketh A, Sun J, Bibb M. Induction of ppGpp synthesis in Streptomyces coelicolor A3(2) grown under conditions of nutritional sufficiency elicits actII-ORF4 transcription and actinorhodin biosynthesis. Mol Microbiol 2001; 39:136-44. [PMID: 11123695 DOI: 10.1046/j.1365-2958.2001.02221.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Production of ppGpp in Streptomyces coelicolor A3(2) was achieved independently of amino acid limitation by placing N-terminal segments of the ppGpp synthetase gene, relA, under the control of a thiostrepton-inducible promoter (tipAp). S1 nuclease protection experiments indicated that induced ppGpp concentrations of 6-12 pmol mg(-1) dry weight in late-exponential phase cultures caused activation of transcription of actII-ORF4, the pathway-specific activator gene for actinorhodin production. This level of ppGpp had no effect on growth rate, implying a causal role for ppGpp in activating actII-ORF4 transcription. No effect was observed on the transcription of the corresponding and homologous activator gene for undecylprodigiosin production, redD, reflecting a requirement for additional regulatory factors for activation of its transcription. This work provides the most compelling evidence yet for the activation of an antibiotic biosynthetic pathway by the stringent factor ppGpp.
Collapse
Affiliation(s)
- A Hesketh
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
32
|
Kobayashi H, Saito H, Kakegawa T. Bacterial strategies to inhabit acidic environments. J GEN APPL MICROBIOL 2000; 46:235-243. [PMID: 12483574 DOI: 10.2323/jgam.46.235] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacteria can inhabit a wide range of environmental conditions, including extremes in pH ranging from 1 to 11. The primary strategy employed by bacteria in acidic environments is to maintain a constant cytoplasmic pH value. However, many data demonstrate that bacteria can grow under conditions in which pH values are out of the range in which cytoplasmic pH is kept constant. Based on these observations, a novel notion was proposed that bacteria have strategies to survive even if the cytoplasm is acidified by low external pH. Under these conditions, bacteria are obliged to use acid-resistant systems, implying that multiple systems having the same physiological role are operating at different cytoplasmic pH values. If this is true, it is quite likely that bacteria have genes that are induced by environmental stimuli under different pH conditions. In fact, acid-inducible genes often respond to another factor(s) besides pH. Furthermore, distinct genes might be required for growth or survival at acid pH under different environmental conditions because functions of many systems are dependent on external conditions. Systems operating at acid pH have been described to date, but numerous genes remain to be identified that function to protect bacteria from an acid challenge. Identification and analysis of these genes is critical, not only to elucidate bacterial physiology, but also to increase the understanding of bacterial pathogenesis.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Faculty of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | | | | |
Collapse
|
33
|
Primm TP, Andersen SJ, Mizrahi V, Avarbock D, Rubin H, Barry CE. The stringent response of Mycobacterium tuberculosis is required for long-term survival. J Bacteriol 2000; 182:4889-98. [PMID: 10940033 PMCID: PMC111369 DOI: 10.1128/jb.182.17.4889-4898.2000] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stringent response utilizes hyperphosphorylated guanine [(p)ppGpp] as a signaling molecule to control bacterial gene expression involved in long-term survival under starvation conditions. In gram-negative bacteria, (p)ppGpp is produced by the activity of the related RelA and SpoT proteins. Mycobacterium tuberculosis contains a single homolog of these proteins (Rel(Mtb)) and responds to nutrient starvation by producing (p)ppGpp. A rel(Mtb) knockout strain was constructed in a virulent strain of M. tuberculosis, H37Rv, by allelic replacement. The rel(Mtb) mutant displayed a significantly slower aerobic growth rate than the wild type in synthetic liquid media, whether rich or minimal. The growth rate of the wild type was equivalent to that of the mutant when citrate or phospholipid was employed as the sole carbon source. These two organisms also showed identical growth rates within a human macrophage-like cell line. These results suggest that the in vivo carbon source does not represent a stressful condition for the bacilli, since it appears to be utilized in a similar Rel(Mtb)-independent manner. In vitro growth in liquid media represents a condition that benefits from Rel(Mtb)-mediated adaptation. Long-term survival of the rel(Mtb) mutant during in vitro starvation or nutrient run out in normal media was significantly impaired compared to that in the wild type. In addition, the mutant was significantly less able to survive extended anaerobic incubation than the wild-type virulent organism. Thus, the Rel(Mtb) protein is required for long-term survival of pathogenic mycobacteria under starvation conditions.
Collapse
Affiliation(s)
- T P Primm
- Tuberculosis Research Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20852, USA
| | | | | | | | | | | |
Collapse
|
34
|
Chang YY, Eichel J, Cronan JE. Metabolic instability of Escherichia coli cyclopropane fatty acid synthase is due to RpoH-dependent proteolysis. J Bacteriol 2000; 182:4288-94. [PMID: 10894739 PMCID: PMC101943 DOI: 10.1128/jb.182.15.4288-4294.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclopropane fatty acids (CFAs) are generally synthesized as bacterial cultures enter stationary phase. In Escherichia coli, the onset of CFA synthesis results from increased transcription of cfa, the gene encoding CFA synthase. However, the increased level of CFA synthase activity is transient; the activity quickly declines to the basal level. We report that the loss of CFA activity is due to proteolytic degradation dependent on expression of the heat shock regulon. CFA synthase degradation is unaffected by mutations in the lon, clpP, and groEL genes or by depletion of the intracellular ATP pools. It seems likely that CFA synthase is the target of an unidentified energy-independent heat shock regulon protease. This seems to be the first example of heat shock-dependent degradation of a normal biosynthetic enzyme.
Collapse
Affiliation(s)
- Y Y Chang
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
35
|
Ellis RJ, Timms-Wilson TM, Bailey MJ. Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Environ Microbiol 2000; 2:274-84. [PMID: 11200428 DOI: 10.1046/j.1462-2920.2000.00102.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A collection of 29 fluorescent pseudomonads, some with known biological control activity against a range of phytopathogenic fungi, were characterized phenotypically and genotypically by comparing carbon source utilization patterns, suppression of Pythium ultimum both in planta and in vitro and the potential to produce known secondary metabolites. Fatty acid profiling and restriction fragment length polymorphism (RFLP) analysis of the ribosomal DNA operon (ribotyping) were used to determine the diversity of isolates. A small group of genetically related Pseudomonas spp. with similar properties was identified; each isolate produced a diffusible bioactive product in vitro and was active against Pythium ultimum in planta. However, other isolates that were able to suppress damping off disease but did not inhibit hyphal extension in vitro clustered outside this group. Phenotypic analyses revealed that the accumulation of C17:0 cyclopropane fatty acid (17CFA) and the production of hydrogen cyanide correlated significantly with biological control activity and with the antagonism of fungal development. The potential of 17CFA as a marker for the selection of fluorescent pseudomonads with biocontrol agent (BCA) potential was demonstrated by the isolation of a novel active strain. This was selected after the screening of 13 clonal groups of fluorescent pseudomonads identified from 500 isolates from the phytosphere of sugar beet. Levels of 17CFA synthesis possibly reflect the efficacy of the rpoS allele in particular strains.
Collapse
Affiliation(s)
- R J Ellis
- Molecular Microbial Ecology, NERC Institute of Virology and Environmental Microbiology, Oxford, UK
| | | | | |
Collapse
|
36
|
Kvint K, Farewell A, Nyström T. RpoS-dependent promoters require guanosine tetraphosphate for induction even in the presence of high levels of sigma(s). J Biol Chem 2000; 275:14795-8. [PMID: 10747855 DOI: 10.1074/jbc.c000128200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RpoS-dependent promoters require ppGpp for induction in the stationary phase. This has been thought to be a simple consequence of final sigma(S) itself requiring ppGpp for its production. By using four model promoters requiring final sigma(S) for normal induction in the stationary phase, we demonstrate that final sigma(S)-dependent promoters require ppGpp even in the presence of high levels of final sigma(S) produced ectopically. Similar to final sigma(70)-dependent promoters under positive control by ppGpp, the requirement of final sigma(S)-dependent promoters for this alarmone is bypassed by specific "stringent" mutations in the beta-subunit of RNA polymerase. The results suggest that stationary phase induction of both final sigma(S)- and final sigma(70)-dependent genes requires the stringent control modulon and that stringency confers dual control on the RpoS regulon by affecting promoter activity and the levels of the required final sigma-factor.
Collapse
Affiliation(s)
- K Kvint
- Department of Cell and Molecular Biology-Microbiology, Göteborg University, Box 462, 405 30 Göteborg, Sweden
| | | | | |
Collapse
|
37
|
Chang YY, Cronan JE. Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 1999; 33:249-59. [PMID: 10411742 DOI: 10.1046/j.1365-2958.1999.01456.x] [Citation(s) in RCA: 297] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclopropane fatty acid (CFA) formation is a post-synthetic modification of the lipid bilayer that occurs as cultures of Escherichia coli and many other bacteria enter stationary phase. We report the first distinct phenotype for this membrane modification; early stationary phase cultures of strains lacking CFA (as a result of a null mutation in the cfa gene) are abnormally sensitive to killing by a rapid shift from neutral pH to pH 3. This sensitivity to acid shock is dependent on CFA itself because resistance to acid shock is restored to cfa mutant strains by incorporation of CFAs from the growth medium or by introduction of a functional cfa gene on a plasmid. The synthesis of CFA depends in part on the RpoS sigma factor, but the role of RpoS in resistance to acid shock involves additional factors because strains with null mutations in both cfa and rpoS are more sensitive to acid shock than either single mutant strain. Exponential phase cultures of E. coli are much more sensitive to acid shock than stationary phase cultures, but survival is greatly increased if the exponential phase cultures are exposed to moderately acid conditions (pH 5) before shift to pH 3. We show that exposure to moderately acid conditions gives a marked increase in cfa transcription. The efficiency of the survival of acid shock is extremely strain dependent, even among putative wild-type strains. Much, but not all, of this variability can be explained by the partially or totally defective RpoS alleles carried by many strains.
Collapse
Affiliation(s)
- Y Y Chang
- Department of Microbiology, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|