1
|
Coulson TJD, Malenfant RM, Patten CL. Characterization of the TyrR Regulon in the Rhizobacterium Enterobacter ludwigii UW5 Reveals Overlap with the CpxR Envelope Stress Response. J Bacteriol 2020; 203:e00313-20. [PMID: 33046562 PMCID: PMC7723952 DOI: 10.1128/jb.00313-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/03/2020] [Indexed: 01/06/2023] Open
Abstract
The TyrR transcription factor controls the expression of genes for the uptake and biosynthesis of aromatic amino acids in Escherichia coli In the plant-associated and clinically significant proteobacterium Enterobacter ludwigii UW5, the TyrR orthologue was previously shown to regulate genes that encode enzymes for synthesis of the plant hormone indole-3-acetic acid and for gluconeogenesis, indicating a broader function for the transcription factor. This study aimed to delineate the TyrR regulon of E. ludwigii by comparing the transcriptomes of the wild type and a tyrR deletion strain. In E. ludwigii, TyrR positively or negatively regulates the expression of over 150 genes. TyrR downregulated expression of envelope stress response regulators CpxR and CpxP through interaction with a DNA binding site in the intergenic region between divergently transcribed cpxP and cpxR Repression of cpxP was alleviated by tyrosine. Methyltransferase gene dmpM, which is possibly involved in antibiotic synthesis, was strongly activated in the presence of tyrosine and phenylalanine by TyrR binding to its promoter region. TyrR also regulated expression of genes for aromatic catabolism and anaerobic respiration. Our findings suggest that the E. ludwigii TyrR regulon has diverged from that of E. coli to include genes for survival in the diverse environments that this bacterium inhabits and illustrate the expansion and plasticity of transcription factor regulons.IMPORTANCE Genome-wide RNA sequencing revealed a broader regulatory role for the TyrR transcription factor in the ecologically versatile bacterium Enterobacter ludwigii beyond that of aromatic amino acid synthesis and transport that constitute the role of the TyrR regulon of E. coli In E. ludwigii, a plant symbiont and human gut commensal, the TyrR regulon is expanded to include genes that are beneficial for plant interactions and response to stresses. Identification of the genes regulated by TyrR provides insight into the mechanisms by which the bacterium adapts to its environment.
Collapse
Affiliation(s)
- Thomas J D Coulson
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - René M Malenfant
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Cheryl L Patten
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
2
|
Benoit SL, Maier RJ, Sawers RG, Greening C. Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists. Microbiol Mol Biol Rev 2020; 84:e00092-19. [PMID: 31996394 PMCID: PMC7167206 DOI: 10.1128/mmbr.00092-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathogenic microorganisms use various mechanisms to conserve energy in host tissues and environmental reservoirs. One widespread but often overlooked means of energy conservation is through the consumption or production of molecular hydrogen (H2). Here, we comprehensively review the distribution, biochemistry, and physiology of H2 metabolism in pathogens. Over 200 pathogens and pathobionts carry genes for hydrogenases, the enzymes responsible for H2 oxidation and/or production. Furthermore, at least 46 of these species have been experimentally shown to consume or produce H2 Several major human pathogens use the large amounts of H2 produced by colonic microbiota as an energy source for aerobic or anaerobic respiration. This process has been shown to be critical for growth and virulence of the gastrointestinal bacteria Salmonella enterica serovar Typhimurium, Campylobacter jejuni, Campylobacter concisus, and Helicobacter pylori (including carcinogenic strains). H2 oxidation is generally a facultative trait controlled by central regulators in response to energy and oxidant availability. Other bacterial and protist pathogens produce H2 as a diffusible end product of fermentation processes. These include facultative anaerobes such as Escherichia coli, S Typhimurium, and Giardia intestinalis, which persist by fermentation when limited for respiratory electron acceptors, as well as obligate anaerobes, such as Clostridium perfringens, Clostridioides difficile, and Trichomonas vaginalis, that produce large amounts of H2 during growth. Overall, there is a rich literature on hydrogenases in growth, survival, and virulence in some pathogens. However, we lack a detailed understanding of H2 metabolism in most pathogens, especially obligately anaerobic bacteria, as well as a holistic understanding of gastrointestinal H2 transactions overall. Based on these findings, we also evaluate H2 metabolism as a possible target for drug development or other therapies.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - R Gary Sawers
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
3
|
Abstract
Numerous recent developments in the biochemistry, molecular biology, and physiology of formate and H2 metabolism and of the [NiFe]-hydrogenase (Hyd) cofactor biosynthetic machinery are highlighted. Formate export and import by the aquaporin-like pentameric formate channel FocA is governed by interaction with pyruvate formate-lyase, the enzyme that generates formate. Formate is disproportionated by the reversible formate hydrogenlyase (FHL) complex, which has been isolated, allowing biochemical dissection of evolutionary parallels with complex I of the respiratory chain. A recently identified sulfido-ligand attached to Mo in the active site of formate dehydrogenases led to the proposal of a modified catalytic mechanism. Structural analysis of the homologous, H2-oxidizing Hyd-1 and Hyd-5 identified a novel proximal [4Fe-3S] cluster in the small subunit involved in conferring oxygen tolerance to the enzymes. Synthesis of Salmonella Typhimurium Hyd-5 occurs aerobically, which is novel for an enterobacterial Hyd. The O2-sensitive Hyd-2 enzyme has been shown to be reversible: it presumably acts as a conformational proton pump in the H2-oxidizing mode and is capable of coupling reverse electron transport to drive H2 release. The structural characterization of all the Hyp maturation proteins has given new impulse to studies on the biosynthesis of the Fe(CN)2CO moiety of the [NiFe] cofactor. It is synthesized on a Hyp-scaffold complex, mainly comprising HypC and HypD, before insertion into the apo-large subunit. Finally, clear evidence now exists indicating that Escherichia coli can mature Hyd enzymes differentially, depending on metal ion availability and the prevailing metabolic state. Notably, Hyd-3 of the FHL complex takes precedence over the H2-oxidizing enzymes.
Collapse
|
4
|
De Maeyer D, Renkens J, Cloots L, De Raedt L, Marchal K. PheNetic: network-based interpretation of unstructured gene lists in E. coli. MOLECULAR BIOSYSTEMS 2013; 9:1594-603. [PMID: 23591551 DOI: 10.1039/c3mb25551d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
At the present time, omics experiments are commonly used in wet lab practice to identify leads involved in interesting phenotypes. These omics experiments often result in unstructured gene lists, the interpretation of which in terms of pathways or the mode of action is challenging. To aid in the interpretation of such gene lists, we developed PheNetic, a decision theoretic method that exploits publicly available information, captured in a comprehensive interaction network to obtain a mechanistic view of the listed genes. PheNetic selects from an interaction network the sub-networks highlighted by these gene lists. We applied PheNetic to an Escherichia coli interaction network to reanalyse a previously published KO compendium, assessing gene expression of 27 E. coli knock-out mutants under mild acidic conditions. Being able to unveil previously described mechanisms involved in acid resistance demonstrated both the performance of our method and the added value of our integrated E. coli network. PheNetic is available at .
Collapse
Affiliation(s)
- Dries De Maeyer
- Center of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | | | | | | | | |
Collapse
|
5
|
McNorton MM, Maier RJ. Roles of H2 uptake hydrogenases in Shigella flexneri acid tolerance. MICROBIOLOGY-SGM 2012; 158:2204-2212. [PMID: 22628482 DOI: 10.1099/mic.0.058248-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hydrogenases play many roles in bacterial physiology, and use of H(2) by the uptake-type enzymes of animal pathogens is of particular interest. Hydrogenases have never been studied in the pathogen Shigella, so targeted mutant strains were individually generated in the two Shigella flexneri H(2)-uptake enzymes (Hya and Hyb) and in the H(2)-evolving enzyme (Hyc) to address their roles. Under anaerobic fermentative conditions, a Hya mutant strain (hya) was unable to oxidize H(2), while a Hyb mutant strain oxidized H(2) like the wild-type. A hyc strain oxidized more exogenously added hydrogen than the parent. Fluorescence ratio imaging with dye JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide) showed that the parent strain generated a membrane potential 15 times greater than hya. The hya mutant was also by far the most acid-sensitive strain, being even more acid-sensitive than a mutant strain in the known acid-combating glutamate-dependent acid-resistance pathway (GDAR pathway). In severe acid-challenge experiments, the addition of glutamate to hya restored survivability, and this ability was attributed in part to the GDAR system (removes intracellular protons) by mutant strain (e.g. hya/gadBC double mutant) analyses. However, mutant strain phenotypes indicated that a larger portion of the glutamate-rescued acid tolerance was independent of GadBC. The acid tolerance of the hya strains was aided by adding chloride ions to the growth medium. The whole-cell Hya enzyme became more active upon acid exposure (20 min), based on assays of hyc. Indeed, the very high rates of Shigella H(2) oxidation by Hya in acid can supply each cell with 2.4×10(8) protons min(-1). Electrons generated from Hya-mediated H(2) oxidation at the inner membrane likely counteract cytoplasmic positive charge stress, while abundant proton pools deposited periplasmically likely repel proton influx during severe acid stress.
Collapse
Affiliation(s)
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, GA, USA
| |
Collapse
|
6
|
|
7
|
Schwarz C, Poss Z, Hoffmann D, Appel J. Hydrogenases and Hydrogen Metabolism in Photosynthetic Prokaryotes. RECENT ADVANCES IN PHOTOTROPHIC PROKARYOTES 2010; 675:305-48. [DOI: 10.1007/978-1-4419-1528-3_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Li Y, Zamble DB. pH-Responsive DNA-Binding Activity of Helicobacter pylori NikR. Biochemistry 2009; 48:2486-96. [DOI: 10.1021/bi801742r] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanjie Li
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| | - Deborah B. Zamble
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
9
|
Abstract
This chapter describes in detail the genes and proteins of Escherichia coli involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of trp operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon.
Collapse
|
10
|
Salmonella enterica serovar Typhimurium NiFe uptake-type hydrogenases are differentially expressed in vivo. Infect Immun 2008; 76:4445-54. [PMID: 18625729 DOI: 10.1128/iai.00741-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Salmonella enterica serovar Typhimurium, a common enteric pathogen, possesses three NiFe uptake-type hydrogenases. The results from mouse infection studies suggest that the H(2) oxidation capacity provided by these hydrogenases is important for virulence. Since the three enzymes are similar in structure and function, it may be expected that they are utilized under different locations and times during an infection. A recombination-based method to examine promoter activity in vivo (RIVET) was used to determine hydrogenase gene expression in macrophages, polymorphonuclear leukocyte (PMN)-like cells, and a mouse model of salmonellosis. The hyd and hya promoters showed increased expression in both murine macrophages and human PMN-like cells compared to that in the medium-only controls. Quantitative reverse transcription-PCR results suggested that hyb is also expressed in phagocytes. A nonpolar hya mutant was compromised for survival in macrophages compared to the wild type. This may be due to lower tolerance to acid stress, since the hya mutant was much more acid sensitive than the wild type. In addition, hya mutant cells were internalized by macrophages the same as wild-type cells. Mouse studies (RIVET) indicate that hyd is highly expressed in the liver and spleen early during infection but is expressed poorly in the ileum in infected animals. Late in the infection, the hyd genes were expressed at high levels in the ileum as well as in the liver and spleen. The hya genes were expressed at low levels in all locations tested. These results suggest that the hydrogenases are used to oxidize hydrogen in different stages of an infection.
Collapse
|
11
|
Zbell AL, Benoit SL, Maier RJ. Differential expression of NiFe uptake-type hydrogenase genes in Salmonella enterica serovar Typhimurium. Microbiology (Reading) 2007; 153:3508-3516. [PMID: 17906148 DOI: 10.1099/mic.0.2007/009027-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium possesses three similar NiFe hydrogenases important to its virulence. Here we show that the three hydrogenase operons hyb, hya and hyd are expressed under different environmental conditions and are subject to control by different regulatory proteins. Hydrogenase promoter-lacZ fusion plasmids were transferred into the wild-type strain or into arcA, fnr, iscR, narL and narP deletion mutants, or into a fnr/arcA double mutant. The hyb promoter had highest beta-galactosidase activity under growth conditions promoting anaerobic respiration (glycerol plus fumarate) and may be subject to glucose repression, since cells grown with glucose had about half the transcriptional activity of cells grown with mannose. Based on the phenotype of regulatory mutant strains, IscR represses hyb aerobically, and ArcA plays a role in both hyb and hyd regulation. The hyd promoter had about five times more activity in cells grown under aerobic conditions compared to anaerobic levels, and its activity tripled in an arcA mutant grown anaerobically. The hya promoter had the highest activity when cells were grown anaerobically with glucose, and the growth yield of the hya mutant was about 25 % lower than for wild-type cells grown fermentatively, suggesting that Hya may be utilized during fermentation. The hya promoter is repressed by nitrate and this repression was abolished when the NarL-binding site was mutated, or in a narL mutant background. FNR is involved in hyb and hya regulation, since beta-galactosidase activity decreased significantly in a fnr mutant. These findings suggest that the three hydrogenases are used under different conditions, likely enhancing the pathogen's capacity to survive in a variety of environments.
Collapse
Affiliation(s)
- Andrea L Zbell
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Stéphane L Benoit
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
12
|
Kieboom J, Abee T. Arginine-dependent acid resistance in Salmonella enterica serovar Typhimurium. J Bacteriol 2006; 188:5650-3. [PMID: 16855258 PMCID: PMC1540025 DOI: 10.1128/jb.00323-06] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium does not survive a pH 2.5 acid challenge under conditions similar to those used for Escherichia coli. Here, we provide evidence that S. enterica serovar Typhimurium can display arginine-dependent acid resistance (AR) provided the cells are grown under anoxic conditions and not under the microaerobic conditions used for assessment of AR in E. coli. The role of the arginine decarboxylase pathway in Salmonella AR was shown by the loss of AR in mutants lacking adiA, which encodes arginine decarboxylase; adiC, which encodes the arginine-agmatine antiporter; or adiY, which encodes an AraC-like regulator. Transcription of adiA and adiC was found to be dependent on AdiY, anaerobiosis, and acidic pH.
Collapse
Affiliation(s)
- Jasper Kieboom
- Laboratory of Food Microbiology, Wageningen University Agrotechnology and Food Sciences Group, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | | |
Collapse
|
13
|
Abstract
The TyrR protein of Escherichia coli can act both as a repressor and as an activator of transcription. It can interact with each of the three aromatic amino acids, with ATP and, under certain circumstances, with the C-terminal region of the alpha-subunit of RNA polymerase. TyrR protein is a dimer in solution but in the presence of tyrosine and ATP it self-associates to form a hexamer. Whereas TyrR dimers can, in the absence of any aromatic amino acids, bind to certain recognition sequences referred to as 'strong TyrR boxes', hexamers can bind to extended sequences including lower-affinity sites called 'weak TyrR boxes', some of which overlap the promoter. There is no single mechanism for repression, which in some cases involves exclusion of RNA polymerase from the promoter and in others, interference with the ability of bound RNA polymerase to form open complexes or to exit the promoter. When bound to a site upstream of certain promoters, TyrR protein in the presence of phenylalanine, tyrosine or tryptophan can interact with the alpha-subunit of RNA polymerase to activate transcription. In one unusual case, activation of a non-productive promoter is used to repress transcription from a promoter on the opposite strand. Regulation of individual transcription units within the regulon reflects their physiological function and is determined by the position and nature of the recognition sites (TyrR boxes) associated with each of the promoters. The intracellular levels of the various forms of the TyrR protein are also postulated to be of critical importance in determining regulatory outcomes. TyrR protein remains a paradigm for a regulator that is able to interact with multiple cofactors and exert a range of regulatory effects by forming different oligomers on DNA and making contact with other proteins. A recent analysis identifying putative TyrR boxes in the E. coli genome raises the possibility that the TyrR regulon may extend beyond the well-characterized transcription units described in this review.
Collapse
Affiliation(s)
- James Pittard
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
14
|
Sawers RG, Blokesch M, Böck A. Anaerobic Formate and Hydrogen Metabolism. EcoSal Plus 2004; 1. [PMID: 26443350 DOI: 10.1128/ecosalplus.3.5.4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Indexed: 06/05/2023]
Abstract
During fermentative growth, Escherichia coli degrades carbohydrates via the glycolytic route into two pyruvate molecules. Pyruvate can be reduced to lactate or nonoxidatively cleaved by pyruvate formate lyase into acetyl-coenzyme A (acetyl-CoA) and formate. Acetyl-CoA can be utilized for energy conservation in the phosphotransacetylase (PTA) and acetate kinase (ACK) reaction sequence or can serve as an acceptor for reducing equivalents gathered during pyruvate formation, through the action of alcohol dehydrogenase (AdhE). Formic acid is strongly acidic and has a redox potential of -420 mV under standard conditions and therefore can be classified as a high-energy compound. Its disproportionation into CO2 and molecular hydrogen (Em,7 -420 mV) via the formate hydrogenlyase (FHL) system is therefore of high selective value. The FHL reaction involves the participation of at least seven proteins, most of which are metalloenzymes, with requirements for iron, molybdenum, nickel, or selenium. Complex auxiliary systems incorporate these metals. Reutilization of the hydrogen evolved required the evolution of H2 oxidation systems, which couple the oxidation process to an appropriate energy-conserving terminal reductase. E. coli has two hydrogen-oxidizing enzyme systems. Finally, fermentation is the "last resort" of energy metabolism, since it gives the minimal energy yield when compared with respiratory processes. Consequently, fermentation is used only when external electron acceptors are absent. This has necessitated the establishment of regulatory cascades, which ensure that the metabolic capability is appropriately adjusted to the physiological condition. Here we review the genetics, biochemistry, and regulation of hydrogen metabolism and its hydrogenase maturation system.
Collapse
|
15
|
Iyer R, Williams C, Miller C. Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J Bacteriol 2003; 185:6556-61. [PMID: 14594828 PMCID: PMC262112 DOI: 10.1128/jb.185.22.6556-6561.2003] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The process of arginine-dependent extreme acid resistance (XAR) is one of several decarboxylase-antiporter systems that protects Escherichia coli and possibly other enteric bacteria from exposure to the strong acid environment of the stomach. Arginine-dependent acid resistance depends on an intracellular proton-utilizing arginine alpha-decarboxylase and a membrane transport protein necessary for delivering arginine to and removing agmatine, its decarboxylation product, from the cytoplasm. The arginine system afforded significant protection to wild-type E. coli cells in our acid shock experiments. The gene coding for the transport protein is identified here as a putative membrane protein of unknown function, YjdE, which we now name adiC. Strains from which this gene is deleted fail to mount arginine-dependent XAR, and they cannot perform coupled transport of arginine and agmatine. Homologues of this gene are found in other bacteria in close proximity to homologues of the arginine decarboxylase in a gene arrangement pattern similar to that in E coli. Evidence for a lysine-dependent XAR system in E. coli is also presented. The protection by lysine, however, is milder than that by arginine.
Collapse
Affiliation(s)
- Ram Iyer
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
16
|
Audia JP, Webb CC, Foster JW. Breaking through the acid barrier: an orchestrated response to proton stress by enteric bacteria. Int J Med Microbiol 2001; 291:97-106. [PMID: 11437344 DOI: 10.1078/1438-4221-00106] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ability of enteropathogens such as Salmonella and Escherichia coli to adapt and survive acid stress is fundamental to their pathogenesis. Once inside the host, these organisms encounter life-threatening levels of inorganic acid (H+) in the stomach and a combination of inorganic and organic acids (volatile fatty acids) in the small intestine. To combat these stresses, enteric bacteria have evolved elegant, overlapping strategies that involve both constitutive and inducible defense systems. This article reviews the recent progress made in understanding the pH 3 acid tolerance systems of Salmonella and the even more effective pH 2 acid resistance systems of E. coli. Focus is placed on how Salmonella orchestrates acid tolerance by modulating the activities or levels of diverse regulatory proteins in response to pH stress. The result is induction of overlapping arrays of acid shock proteins that protect the cell against acid and other environmental stresses. Most notable among these pH-response regulators are RpoS, Fur, PhoP and OmpR. In addition, we will review three dedicated acid resistance systems of E. coli, not present in Salmonella, that allow this organism to survive extreme (pH 2) acid challenge.
Collapse
Affiliation(s)
- J P Audia
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile 36688, USA
| | | | | |
Collapse
|
17
|
Bang IS, Kim BH, Foster JW, Park YK. OmpR regulates the stationary-phase acid tolerance response of Salmonella enterica serovar typhimurium. J Bacteriol 2000; 182:2245-52. [PMID: 10735868 PMCID: PMC111274 DOI: 10.1128/jb.182.8.2245-2252.2000] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/1999] [Accepted: 01/24/2000] [Indexed: 11/20/2022] Open
Abstract
Tolerance to acidic environments is an important property of free-living and pathogenic enteric bacteria. Salmonella enterica serovar Typhimurium possesses two general forms of inducible acid tolerance. One is evident in exponentially growing cells exposed to a sudden acid shock. The other is induced when stationary-phase cells are subjected to a similar shock. These log-phase and stationary-phase acid tolerance responses (ATRs) are distinct in that genes identified as participating in log-phase ATR have little to no effect on the stationary-phase ATR (I. S. Lee, J. L. Slouczewski, and J. W. Foster, J. Bacteriol. 176:1422-1426, 1994). An insertion mutagenesis strategy designed to reveal genes associated with acid-inducible stationary-phase acid tolerance (stationary-phase ATR) yielded two insertions in the response regulator gene ompR. The ompR mutants were defective in stationary-phase ATR but not log-phase ATR. EnvZ, the known cognate sensor kinase, and the porin genes known to be controlled by OmpR, ompC and ompF, were not required for stationary-phase ATR. However, the alternate phosphodonor acetyl phosphate appears to play a crucial role in OmpR-mediated stationary-phase ATR and in the OmpR-dependent acid induction of ompC. This conclusion was based on finding that a mutant form of OmpR, which is active even though it cannot be phosphorylated, was able to suppress the acid-sensitive phenotype of an ack pta mutant lacking acetyl phosphate. The data also revealed that acid shock increases the level of ompR message and protein in stationary-phase cells. Thus, it appears that acid shock induces the production of OmpR, which in its phosphorylated state can trigger expression of genes needed for acid-induced stationary-phase acid tolerance.
Collapse
Affiliation(s)
- I S Bang
- Graduate School of Biotechnology, Korea University, Seoul 136701, Korea
| | | | | | | |
Collapse
|
18
|
Abstract
Plasmid-encoded fimbriae (Pef) expressed by Salmonella typhimurium mediate adhesion to mouse intestinal epithelium. The pef operon shares features with the Escherichia coli pyelonephritis-associated pilus (pap) operon, which is under methylation-dependent transcriptional regulation. These features include conserved DNA GATC box sites in the upstream regulatory region as well as homologues of the PapI and PapB regulatory proteins. Unlike Pap fimbriae, which are expressed in a variety of laboratory media, Pef fimbriae were expressed only in acidic, rich broth under standing culture conditions. Analysis of S. typhimurium grown under these conditions indicated that Pef production was regulated by a phase variation mechanism, in which the bacterial population was skewed between fimbrial expression (phase ON) and non-expression (phase OFF) states. Leucine-responsive regulatory protein (Lrp) and DNA adenine methylase (Dam) were required for pef transcription. In contrast, the histone-like protein (H-NS) and the stationary-phase sigma factor (RpoS) repressed pef transcription. Methylation of the pef GATC II site appeared to be required for pef fimbrial expression based on analysis of a GCTC II mutant that did not express Pef fimbriae. Analysis of the DNA methylation states of pef GATC sites indicated that, under acidic growth conditions, which induced Pef production, most GATC I sites were non-methylated, whereas GATC II and GATC X were predominantly methylated. The methylation protection at GATC I and GATC II was dependent upon Lrp and was modulated by PefI. Together, these results indicate that Pef production is regulated by DNA methylation, which is the first example of methylation-dependent gene regulation outside of E. coli.
Collapse
Affiliation(s)
- B Nicholson
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
19
|
Abstract
Inducible tolerance to acidic and alkaline environments is recognized as an important survival strategy for many prokaryotic and eukaryotic microorganisms. Recent developments in understanding this phenomenon include the identification of regulatory genes, specific tolerance mechanisms and genes associated with tolerance. In addition, there is significant evidence linking pH responses with virulence.
Collapse
Affiliation(s)
- J W Foster
- Department of Microbiology and Immunology, University of South Alabama, College of Medicine, Mobile, AL 36688, USA.
| |
Collapse
|