1
|
Yang H, Dong P, Huo S, Nychas GJE, Luo X, Zhu L, Mao Y, Han G, Liu M, Liu Y, Zhang Y. Deciphering the inhibitory mechanisms of cinnamaldehyde on biofilm formation of Listeria monocytogenes and implement these strategies to control its transfer to beef surfaces. Food Res Int 2025; 204:115946. [PMID: 39986790 DOI: 10.1016/j.foodres.2025.115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/24/2025]
Abstract
Natural essential oils have received widespread attention as promising microbial inhibitors, whereas a comprehensive understanding of their mechanisms underlying biofilm control and impact on biofilm cross-contamination on meat remains poorly understood. In this study, Listeria monocytogenes (Lm) biofilms were treated with sub-inhibitory concentrations of cinnamaldehyde (CA) and characterized over a 4-day period. Both 1/2 MIC (160 μg/mL) and 1/4 MIC (80 μg/mL) CA delayed the development of Lm biofilm on abiotic surfaces and reduced the maximum biofilm formation. The limited effect of 1/4 MIC CA on the flagellar-mediated motility of Lm during initial adhesion indicated that hindering bacterial motility was not the main reason for CA inhibition of biofilm formation. Transcriptomics results showed that CA was involved in inhibitory pathways dominated by energy metabolism and peptidoglycan synthesis during the initial adhesion period and the maturation period of the biofilm, respectively. This posed an obstacle to the polymers required for biofilm cell adhesion and the energy consumption required for their production. Down-regulation of genes associated with multiple signalling systems and virulence factors also suggested that CA further mitigated resistance and virulence in residual biofilm cells. In addition, quantification of biofilm cells transferred to beef surfaces confirmed that CA significantly reduces the biomass transferred and the risk of persistent biofilm contamination. This study provided the theoretical basis for the control of Lm biofilm and its cross-contamination in the food industry by natural essential oils.
Collapse
Affiliation(s)
- Huixuan Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shengnan Huo
- Shandong Institute for Food and Drug Control, Jinan 250101, China; Key Laboratory of Supervising Technology for Meat and Meat Products, State Administration for Market Regulation, Jinan 250101, China
| | - George-John E Nychas
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China; Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China
| | - Guangxing Han
- Lilnyi Station of China Agriculture Research System (beef), Linyi, Shandong 276000, China
| | - Minze Liu
- Yangxin Yiliyuan Halal Meat Co., Ltd., Binzhou 251800, China
| | - Yunge Liu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China; Yangxin Yiliyuan Halal Meat Co., Ltd., Binzhou 251800, China.
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China.
| |
Collapse
|
2
|
Alejandro-Navarreto X, Freitag NE. Revisiting old friends: updates on the role of two-component signaling systems in Listeria monocytogenes survival and pathogenesis. Infect Immun 2024; 92:e0034523. [PMID: 38591895 PMCID: PMC11003226 DOI: 10.1128/iai.00345-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Listeria monocytogenes is well recognized for both its broad resistance to stress conditions and its ability to transition from a soil bacterium to an intracellular pathogen of mammalian hosts. The bacterium's impressive ability to adapt to changing environments and conditions requires the rapid sensing of environmental cues and the coordinated response of gene products that enable bacterial growth and survival. Two-component signaling systems (TCSs) have been long recognized for their ability to detect environmental stimuli and transmit those signals into transcriptional responses; however, often the precise nature of the stimulus triggering TCS responses can be challenging to define. L. monocytogenes has up to 16 TCSs that have been recognized based on homology and included in this list are several whose functions remain poorly described. This review highlights the current understanding of the breadth and scope of L. monocytogenes TCS as relates to stress resistance and pathogenesis. Precise signals still often remain elusive, but the gene networks associated with TCSs are providing clues into possible functions.
Collapse
Affiliation(s)
| | - Nancy E. Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Meireles D, Pombinho R, Cabanes D. Signals behind Listeria monocytogenes virulence mechanisms. Gut Microbes 2024; 16:2369564. [PMID: 38979800 PMCID: PMC11236296 DOI: 10.1080/19490976.2024.2369564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
The tight and coordinated regulation of virulence gene expression is crucial to ensure the survival and persistence of bacterial pathogens in different contexts within their hosts. Considering this, bacteria do not express virulence factors homogenously in time and space, either due to their associated fitness cost or to their detrimental effect at specific infection stages. To efficiently infect and persist into their hosts, bacteria have thus to monitor environmental cues or chemical cell-to-cell signaling mechanisms that allow their transition from the external environment to the host, and therefore adjust gene expression levels, intrinsic biological activities, and appropriate behaviors. Listeria monocytogenes (Lm), a major Gram-positive facultative intracellular pathogen, stands out for its adaptability and capacity to thrive in a wide range of environments. Because of that, Lm presents itself as a significant concern in food safety and public health, that can lead to potentially life-threatening infections in humans. A deeper understanding of the intricate bacterial virulence mechanisms and the signals that control them provide valuable insights into the dynamic interplay between Lm and the host. Therefore, this review addresses the role of some crucial signals behind Lm pathogenic virulence mechanisms and explores how the ability to assimilate and interpret these signals is fundamental for pathogenesis, identifying potential targets for innovative antimicrobial strategies.
Collapse
Affiliation(s)
- Diana Meireles
- Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Group of Molecular Microbiology, IBMC, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar – ICBAS, Porto, Portugal
| | - Rita Pombinho
- Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Group of Molecular Microbiology, IBMC, Porto, Portugal
| | - Didier Cabanes
- Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Group of Molecular Microbiology, IBMC, Porto, Portugal
| |
Collapse
|
4
|
Guan G, Li S, Bing J, Liu L, Tao L. The Rfg1 and Bcr1 transcription factors regulate acidic pH-induced filamentous growth in Candida albicans. Microbiol Spectr 2023; 11:e0178923. [PMID: 37933972 PMCID: PMC10715123 DOI: 10.1128/spectrum.01789-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/23/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE Candida albicans is a human commensal and frequent pathogen that encounters a wide range of pH stresses. The ability of C. albicans to adapt to changes in extracellular pH is crucial for its success in colonization and pathogenesis. The Rim101 pH sensing pathway is well known to govern neutral-alkaline pH responses in this pathogen. Here, we report a novel Rfg1-Bcr1 regulatory pathway that governs acidic pH responses and regulates filamentous growth in C. albicans. In addition, the Rim101-Phr1 pathway, cAMP signaling pathway, transcription factors Efg1 and Flo8, and hyphal-specific G1 cyclin Hgc1 cooperate with this regulation. Our findings provide new insights into the regulatory mechanism of acidic pH response in C. albicans.
Collapse
Affiliation(s)
- Guobo Guan
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuaihu Li
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jian Bing
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Li Tao
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Hong H, Yang SM, Kim E, Kim HJ, Park SH. Comprehensive metagenomic analysis of stress-resistant and -sensitive Listeria monocytogenes. Appl Microbiol Biotechnol 2023; 107:6047-6056. [PMID: 37542576 DOI: 10.1007/s00253-023-12693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/07/2023]
Abstract
Listeria monocytogenes is a pathogenic bacterium which can live in adverse environments (low pH, high salinity, and low temperature). Even though there are various whole genome sequencing (WGS) data on L. monocytogenes, investigations on genetic differences between stress-resistant and -sensitive L. monocytogenes grown under stress environments have been not fully examined. This study aims to investigate and compare genetic characteristics between stress-resistant and -sensitive L. monocytogenes using whole genome sequencing (WGS). A total of 47 L. monocytogenes strains (43 stress-resistant and 4 stress-sensitive) were selected based on the stress-resistance tests under pH 3, 5% salt concentration, and 1 °C. The sequencing library for WGS was prepared and sequenced using an Illumina MiSeq. Genetic characteristics of two different L. monocytogenes groups were examined to analyze the pangenome, functionality, virulence, antibiotic resistance, core, and unique genes. The functionality of unique genes in the stress-resistant L. monocytogenes was distinct compared to the stress-sensitive L. monocytogenes, such as carbohydrate and nucleotide transport and metabolism. The lisR virulence gene was detected more in the stress-resistant L. monocytogenes than in the stress-sensitive group. Five stress-resistant L. monocytogenes strains possessed tet(M) antibiotic resistance gene. This is the first study suggesting that deep genomic characteristics of L. monocytogenes may have different resistance level under stress conditions. This new insight will aid in understanding the genetic relationship between stress-resistant and -sensitive L. monocytogenes strains isolated from diverse resources. KEY POINTS: • Whole genomes of L. monocytogenes isolated from three different sources were analyzed. • Differences in two L. monocytogenes groups were identified in functionality, virulence, and antibiotic resistance genes. • This study first examines the association between resistances and whole genomes of stress-resistant and -sensitive L. monocytogenes.
Collapse
Affiliation(s)
- Hyunhee Hong
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
| | - Seung Min Yang
- Institute of Life Sciences & Resources and Department of Food Science and Technology, Kyung-Hee University, Gyeonggi-Do, Yongin, 17104, Republic of Korea
| | - Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Technology, Kyung-Hee University, Gyeonggi-Do, Yongin, 17104, Republic of Korea
| | - Hyun Jung Kim
- Korea Food Research Institute, Wanju-Gun, Jeollabuk-Do, Republic of Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA.
| |
Collapse
|
6
|
Myintzaw P, Pennone V, McAuliffe O, Begley M, Callanan M. Association of Virulence, Biofilm, and Antimicrobial Resistance Genes with Specific Clonal Complex Types of Listeria monocytogenes. Microorganisms 2023; 11:1603. [PMID: 37375105 DOI: 10.3390/microorganisms11061603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Precise classification of foodborne pathogen Listeria monocytogenes is a necessity in efficient foodborne disease surveillance, outbreak detection, and source tracking throughout the food chain. In this study, a total of 150 L. monocytogenes isolates from various food products, food processing environments, and clinical sources were investigated for variations in virulence, biofilm formation, and the presence of antimicrobial resistance genes based on their Whole-Genome Sequences. Clonal complex (CC) determination based on Multi-Locus Sequence Typing (MLST) revealed twenty-eight CC-types including eight isolates representing novel CC-types. The eight isolates comprising the novel CC-types share the majority of the known (cold and acid) stress tolerance genes and are all genetic lineage II, serogroup 1/2a-3a. Pan-genome-wide association analysis by Scoary using Fisher's exact test identified eleven genes specifically associated with clinical isolates. Screening for the presence of antimicrobial and virulence genes using the ABRicate tool uncovered variations in the presence of Listeria Pathogenicity Islands (LIPIs) and other known virulence genes. Specifically, the distributions of actA, ecbA, inlF, inlJ, lapB, LIPI-3, and vip genes across isolates were found to be significantly CC-dependent while the presence of ami, inlF, inlJ, and LIPI-3 was associated with clinical isolates specifically. In addition, Roary-derived phylogenetic grouping based on Antimicrobial-Resistant Genes (AMRs) revealed that the thiol transferase (FosX) gene was present in all lineage I isolates, and the presence of the lincomycin resistance ABC-F-type ribosomal protection protein (lmo0919_fam) was also genetic-lineage-dependent. More importantly, the genes found to be specific to CC-type were consistent when a validation analysis was performed with fully assembled, high-quality complete L. monocytogenes genome sequences (n = 247) extracted from the National Centre for Biotechnology Information (NCBI) microbial genomes database. This work highlights the usefulness of MLST-based CC typing using the Whole-Genome Sequence as a tool in classifying isolates.
Collapse
Affiliation(s)
- Peter Myintzaw
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| | - Vincenzo Pennone
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| | - Michael Callanan
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
7
|
Cahoon LA, Alejandro‐Navarreto X, Gururaja AN, Light SH, Alonzo F, Anderson WF, Freitag NE. Listeria monocytogenes two component system PieRS regulates secretion chaperones PrsA1 and PrsA2 and enhances bacterial translocation across the intestine. Mol Microbiol 2022; 118:278-293. [PMID: 35943959 PMCID: PMC9545042 DOI: 10.1111/mmi.14967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Listeria monocytogenes (Lm) is a widespread environmental Gram-positive bacterium that can transition into a pathogen following ingestion by a susceptible host. To cross host barriers and establish infection, Lm is dependent upon the regulated secretion and activity of many proteins including PrsA2, a peptidyl-prolyl cis-trans isomerase with foldase activity. PrsA2 contributes to the stability and activity of a number of secreted virulence factors that are required for Lm invasion, replication, and cell-to-cell spread within the infected host. In contrast, a second related secretion chaperone, PrsA1, has thus far no identified contributions to Lm pathogenesis. Here we describe the characterization of a two-component signal transduction system PieRS that regulates the expression of a regulon that includes the secretion chaperones PrsA1 and PrsA2. PieRS regulated gene products are required for bacterial resistance to ethanol exposure and are important for bacterial survival during transit through the gastrointestinal tract. PrsA1 was also found to make a unique contribution to Lm survival in the GI tract, revealing for the first time a non-overlapping requirement for both secretion chaperones PrsA1 and PrsA2 during the process of intra-gastric infection.
Collapse
Affiliation(s)
- Laty A. Cahoon
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | | | - Avinash N. Gururaja
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Sam H. Light
- Department of MicrobiologyUniversity of ChicagoChicagoIllinoisUSA
| | - Francis Alonzo
- Department of Microbiology and ImmunologyLoyola UniversityChicagoIllinoisUSA
| | - Wayne F. Anderson
- Center for Genomics and Infectious Diseases, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Nancy E. Freitag
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
8
|
RclS Sensor Kinase Modulates Virulence of Pseudomonas capeferrum. Int J Mol Sci 2022; 23:ijms23158232. [PMID: 35897798 PMCID: PMC9331949 DOI: 10.3390/ijms23158232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Signal transduction systems are the key players of bacterial adaptation and survival. The orthodox two-component signal transduction systems perceive diverse environmental stimuli and their regulatory response leads to cellular changes. Although rarely described, the unorthodox three-component systems are also implemented in the regulation of major bacterial behavior such as the virulence of clinically relevant pathogen P. aeruginosa. Previously, we described a novel three-component system in P. capeferrum WCS358 (RclSAR) where the sensor kinase RclS stimulates the intI1 transcription in stationary growth phase. In this study, using rclS knock-out mutant, we identified RclSAR regulon in P. capeferrum WCS358. The RNA sequencing revealed that activity of RclSAR signal transduction system is growth phase dependent with more pronounced regulatory potential in early stages of growth. Transcriptional analysis emphasized the role of RclSAR in global regulation and indicated the involvement of this system in regulation of diverse cellular activities such as RNA binding and metabolic and biocontrol processes. Importantly, phenotypic comparison of WCS358 wild type and ΔrclS mutant showed that RclS sensor kinase contributes to modulation of antibiotic resistance, production of AHLs and siderophore as well as host cell adherence and cytotoxicity. Finally, we proposed the improved model of interplay between RclSAR, RpoS and LasIR regulatory systems in P. capeferrum WCS358.
Collapse
|
9
|
Myintzaw P, Pennone V, McAuliffe O, Begley M, Callanan M. Correlation of organic acid tolerance and genotypic characteristics of Listeria monocytogenes food and clinical isolates. Food Microbiol 2022; 104:104004. [DOI: 10.1016/j.fm.2022.104004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/05/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
|
10
|
Osek J, Lachtara B, Wieczorek K. Listeria monocytogenes - How This Pathogen Survives in Food-Production Environments? Front Microbiol 2022; 13:866462. [PMID: 35558128 PMCID: PMC9087598 DOI: 10.3389/fmicb.2022.866462] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes is the causative agent of human listeriosis, a severe disease, especially dangerous for the elderly, pregnant women, and newborns. Although this infection is comparatively rare, it is often associated with a significant mortality rate of 20-30% worldwide. Therefore, this microorganism has an important impact on food safety. L. monocytogenes can adapt, survive and even grow over a wide range of food production environmental stress conditions such as temperatures, low and high pH, high salt concentration, ultraviolet lights, presence of biocides and heavy metals. Furthermore, this bacterium is also able to form biofilm structures on a variety of surfaces in food production environments which makes it difficult to remove and allows it to persist for a long time. This increases the risk of contamination of food production facilities and finally foods. The present review focuses on the key issues related to the molecular mechanisms of the pathogen survival and adaptation to adverse environmental conditions. Knowledge and understanding of the L. monocytogenes adaptation approaches to environmental stress factors will have a significant influence on the development of new, efficient, and cost-effective methods of the pathogen control in the food industry, which is critical to ensure food production safety.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Puławy, Poland
| | | | | |
Collapse
|
11
|
Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-del Portillo F, Pucciarelli MG, Ortega AD. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021; 12:2509-2545. [PMID: 34612177 PMCID: PMC8496543 DOI: 10.1080/21505594.2021.1975526] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in food-processing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host's gastrointestinal tract. Then we dissect host-pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes.
Collapse
Affiliation(s)
- Juan J. Quereda
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Alvaro Morón-García
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
| | - Carla Palacios-Gorba
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Charlotte Dessaux
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - M. Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa’. Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid. Madrid, Spain
| | - Alvaro D. Ortega
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
12
|
Coleman A, Håkansson A, Grahn Håkansson E, Cottrell K, Bialasiewicz S, Zaugg J, Cervin A. In vitro Inhibition of respiratory pathogens by lactobacillus and alpha haemolytic streptococci from Aboriginal and Torres Strait Islander children. J Appl Microbiol 2021; 132:2368-2378. [PMID: 34606144 DOI: 10.1111/jam.15320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/08/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022]
Abstract
AIMS To explore the in vitro ability of alpha haemolytic streptococcus (AHS) and lactobacilli (LBs), from Indigenous Australian children, to inhibit the growth of respiratory pathogens (Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis), also from Indigenous Australian children. METHODS AND RESULTS The bacterial interference of 91 isolates, from Indigenous Australian children both with and without otitis media (OM) or rhinorrhoea, was investigated using agar overlay and cell-free supernatant. Promising isolates underwent whole genome sequencing to investigate upper respiratory tract tropism, antibiotic resistance and virulence. Antibiotic susceptibility was examined for ampicillin, amoxicillin +clavulanic acid and azithromycin. Differences in the strength of bacterial inferences in relation to OM was examined using a case series of three healthy and three children with OM. LBs readily inhibited the growth of pathogens. AHS were less effective, although several isolates inhibited S. pneumoniae. One L. rhamnosus had genes coding for pili to adhere to epithelial cells. We detected antibiotic resistance genes coding for antibiotic efflux pump and ribosomal protection protein. LBs were susceptible to antimicrobials in vitro. Screening for virulence detected genes encoding for two putative capsule proteins. Healthy children had AHS and LB that were more potent inhibitors of respiratory pathogens in vitro than children with OM. CONCLUSIONS L. rhamnosus from remote Indigenous Australian children are potent inhibitors of respiratory pathogens in vitro. SIGNIFICANCE AND IMPACT OF STUDY Respiratory/ear disease are endemic in Indigenous Australians. There is an urgent call for more effective treatment/prevention; beneficial microbes have not been explored. L. rhamnosus investigated in this study are potent inhibitors of respiratory pathogens in vitro and require further investigation.
Collapse
Affiliation(s)
- Andrea Coleman
- The University of Queensland Centre for Clinical Research, Herston, Australia.,Townsville University Hospital, Douglas, Australia
| | | | - Eva Grahn Håkansson
- Essum AB, Umeå, Sweden.,Department of Clinical Microbiology, Umeå University, Sweden
| | - Kyra Cottrell
- The University of Queensland Centre for Clinical Research, Herston, Australia
| | - Seweryn Bialasiewicz
- Queensland Paediatric Infectious Disease Laboratory, South Brisbane, Australia.,Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Australia
| | - Julian Zaugg
- Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Australia
| | - Anders Cervin
- The University of Queensland Centre for Clinical Research, Herston, Australia.,The Royal Brisbane and Women's Hospital, Herston, Australia
| |
Collapse
|
13
|
Krawczyk-Balska A, Ładziak M, Burmistrz M, Ścibek K, Kallipolitis BH. RNA-Mediated Control in Listeria monocytogenes: Insights Into Regulatory Mechanisms and Roles in Metabolism and Virulence. Front Microbiol 2021; 12:622829. [PMID: 33935989 PMCID: PMC8079631 DOI: 10.3389/fmicb.2021.622829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
Listeria monocytogenes is an intracellular pathogen that is well known for its adaptability to life in a broad spectrum of different niches. RNA-mediated regulatory mechanisms in L. monocytogenes play important roles in successful adaptation providing fast and versatile responses to a changing environment. Recent findings indicate that non-coding RNAs (ncRNAs) regulate a variety of processes in this bacterium, such as environmental sensing, metabolism and virulence, as well as immune responses in eukaryotic cells. In this review, the current knowledge on RNA-mediated regulation in L. monocytogenes is presented, with special focus on the roles and mechanisms underlying modulation of metabolism and virulence. Collectively, these findings point to ncRNAs as important gene regulatory elements in L. monocytogenes, both outside and inside an infected host. However, the involvement of regulatory ncRNAs in bacterial physiology and virulence is still underestimated and probably will be better assessed in the coming years, especially in relation to discovering the regulatory functions of 5′ and 3′ untranslated regions and excludons, and by exploring the role of ncRNAs in interaction with both bacterial and host proteins.
Collapse
Affiliation(s)
- Agata Krawczyk-Balska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Ładziak
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Michał Burmistrz
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Ścibek
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Birgitte H Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Aslan H, Petersen ME, De Berardinis A, Zacho Brunhede M, Khan N, Vergara A, Kallipolitis B, Meyer RL. Activation of the Two-Component System LisRK Promotes Cell Adhesion and High Ampicillin Tolerance in Listeria monocytogenes. Front Microbiol 2021; 12:618174. [PMID: 33584621 PMCID: PMC7873292 DOI: 10.3389/fmicb.2021.618174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen which can survive in harsh environmental conditions. It responds to external stimuli through an array of two-component systems (TCS) that sense external cues. Several TCS, including LisRK, have been linked to Listeria’s ability to grow at slightly elevated antibiotic levels. The aim of this study was to determine if the TCS LisRK is also involved in acquiring the high antibiotic tolerance that is characteristic of persister cells. LisRK activates a response that leads to remodeling of the cell envelope, and we therefore hypothesized that activation of LisRK could also increase in the cells’ adhesiveness and initiate the first step in biofilm formation. We used a ΔlisR mutant to study antibiotic tolerance in the presence and absence of LisRK, and a GFP reporter strain to visualize the activation of LisRK in L. monocytogenes LO28 at a single-cell level. LisRK was activated in most cells in stationary phase cultures. Antimicrobial susceptibility tests showed that LisRK was required for the generation of ampicillin tolerance under these conditions. The wildtype strain tolerated exposure to ampicillin at 1,000 × inhibitory levels for 24 h, and the fraction of surviving cells was 20,000-fold higher in the wildtype strain compared to the ΔlisR mutant. The same protection was not offered to other antibiotics (vancomycin, gentamicin, tetracycline), and the mechanism for antibiotic tolerance is thus highly specific. Furthermore, quantification of bacterial attachment rates and attachment force also revealed that the absence of a functional LisRK rendered the cells less adhesive. Hence, LisRK TCS promotes multiple protective mechanisms simultaneously.
Collapse
Affiliation(s)
- Hüsnü Aslan
- Faculty of Natural Sciences, Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | | | | | - Maja Zacho Brunhede
- Faculty of Natural Sciences, Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Nasar Khan
- Faculty of Natural Sciences, Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Alberto Vergara
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Birgitte Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Rikke Louise Meyer
- Faculty of Natural Sciences, Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.,Department of Biology, Faculty of Natural Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Brunhede MZ, Santos PTD, Gal L, Garmyn D, Kallipolitis BH, Piveteau P. LisRK is required for optimal fitness of Listeria monocytogenes in soil. FEMS Microbiol Lett 2020; 367:5986613. [PMID: 33202028 DOI: 10.1093/femsle/fnaa188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/13/2020] [Indexed: 01/10/2023] Open
Abstract
Listeria monocytogenes is a food-borne pathogen responsible for the disease listeriosis. It is ubiquitously found in the environment and soil is one of its natural habitats. Listeria monocytogenes is highly capable of coping with various stressful conditions. We hypothesized that stress-responsive two-component systems such as LisRK might contribute to the adaptation of L. monocytogenes to the soil environment. Indeed, investigations of the population dynamics of wild-type and mutant strains suggest an important role of LisRK for optimal fitness of L. monocytogenes in sterile soil. Results from non-sterile soil showed that the parental strain was capable of surviving longer than mutant strains lacking lisRK or genes encoding the LisRK-regulated LhrC small RNAs (sRNAs), suggesting that LisRK as well as the LhrC sRNAs were important for survival. Transcription of five LisRK-regulated genes was assessed after 1 h incubation in sterile soil. We observed that LisRK and the LhrC sRNAs contribute to the upregulation of lmo2522 in the soil environment. Notably, lmo2522 encodes an equivalent of the resuscitation promoting factors, Rpfs, in actinobacteria. Collectively, our study demonstrates that LisRK is important for growth and survival in sterile and non-sterile soil and suggests a role for LisRK-regulation of Lmo2522 in resuscitation from dormancy in the soil environment.
Collapse
Affiliation(s)
- Maja Z Brunhede
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Patrícia T Dos Santos
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Laurent Gal
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Dominique Garmyn
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Birgitte H Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
16
|
Arcari T, Feger ML, Guerreiro DN, Wu J, O’Byrne CP. Comparative Review of the Responses of Listeria monocytogenes and Escherichia coli to Low pH Stress. Genes (Basel) 2020; 11:genes11111330. [PMID: 33187233 PMCID: PMC7698193 DOI: 10.3390/genes11111330] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Acidity is one of the principal physicochemical factors that influence the behavior of microorganisms in any environment, and their response to it often determines their ability to grow and survive. Preventing the growth and survival of pathogenic bacteria or, conversely, promoting the growth of bacteria that are useful (in biotechnology and food production, for example), might be improved considerably by a deeper understanding of the protective responses that these microorganisms deploy in the face of acid stress. In this review, we survey the molecular mechanisms used by two unrelated bacterial species in their response to low pH stress. We chose to focus on two well-studied bacteria, Escherichia coli (phylum Proteobacteria) and Listeria monocytogenes (phylum Firmicutes), that have both evolved to be able to survive in the mammalian gastrointestinal tract. We review the mechanisms that these species use to maintain a functional intracellular pH as well as the protective mechanisms that they deploy to prevent acid damage to macromolecules in the cells. We discuss the mechanisms used to sense acid in the environment and the regulatory processes that are activated when acid is encountered. We also highlight the specific challenges presented by organic acids. Common themes emerge from this comparison as well as unique strategies that each species uses to cope with acid stress. We highlight some of the important research questions that still need to be addressed in this fascinating field.
Collapse
|
17
|
Strain Variability of Listeria monocytogenes under NaCl Stress Elucidated by a High-Throughput Microbial Growth Data Assembly and Analysis Protocol. Appl Environ Microbiol 2020; 86:AEM.02378-19. [PMID: 31900307 DOI: 10.1128/aem.02378-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Listeria monocytogenes causes the severe foodborne illness listeriosis and survives in food-associated environments due to its high stress tolerance. A data assembly and analysis protocol for microbial growth experiments was compiled to elucidate the strain variability of L. monocytogenes stress tolerance. The protocol includes measurement of growth ability under stress (step 1), selection of a suitable method for growth parameter calculation (step 2), comparison of growth patterns between strains (step 3), and biological interpretation of the discovered differences (step 4). In step 1, L. monocytogenes strains (n = 388) of various serovars and origins grown on media with 9.0% NaCl were measured using a Bioscreen C microbiology reader. Technical variability of the growth measurements was assessed and eliminated. In step 2, the growth parameters determined by Gompertz, modified-Gompertz, logistic, and Richards models and model-free splines were compared, illustrating differences in the suitability of these methods to describe the experimental data. In step 3, hierarchical clustering was used to describe the NaCl tolerance of L. monocytogenes measured by strain-specific variation in growth ability; tolerant strains had higher growth rates and maximum optical densities and shorter lag phases than susceptible strains. The spline parameter area under the curve best classified "poor," "average," and "good" growers. In step 4, the tested L. monocytogenes lineage I strains (serovars 4b and 1/2b) proved to be significantly more tolerant toward 9.0% NaCl than lineage II strains (serovars 1/2a, 1/2c, and 3a). Our protocol provides systematic tools to gain comparable data for investigating strain-specific variation of bacterial growth under stress.IMPORTANCE The pathogen Listeria monocytogenes causes the foodborne disease listeriosis, which can be fatal in immunocompromised individuals. L. monocytogenes tolerates several environmental stressors and can persist in food-processing environments and grow in foodstuffs despite traditional control measures such as high salt content. Nonetheless, L. monocytogenes strains differ in their ability to withstand stressors. Elucidating the intraspecies strain variability of L. monocytogenes stress tolerance is crucial for the identification of particularly tolerant strains. To enhance reliable identification of variability in bacterial stress tolerance phenotypes, we compiled a large-scale protocol for the entire data assembly and analysis of microbial growth experiments, providing a systematic approach and checklist for experiments on strain-specific growth ability. Our study illustrated the diversity and strain-specific variation of L. monocytogenes stress tolerance with an unprecedented scope and discovered biologically relevant serovar- and lineage-dependent phenotypes of NaCl tolerance.
Collapse
|
18
|
Baindara P, Ghosh AK, Mandal SM. Coevolution of Resistance Against Antimicrobial Peptides. Microb Drug Resist 2020; 26:880-899. [PMID: 32119634 DOI: 10.1089/mdr.2019.0291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are produced by all forms of life, ranging from eukaryotes to prokaryotes, and they are a crucial component of innate immunity, involved in clearing infection by inhibiting pathogen colonization. In the recent past, AMPs received high attention due to the increase of extensive antibiotic resistance by these pathogens. AMPs exhibit a diverse spectrum of activity against bacteria, fungi, parasites, and various types of cancer. AMPs are active against various bacterial pathogens that cause disease in animals and plants. However, because of the coevolution of host and pathogen interaction, bacteria have developed the mechanisms to sense and exhibit an adaptive response against AMPs. These resistance mechanisms are playing an important role in bacterial virulence within the host. Here, we have discussed the different resistance mechanisms used by gram-positive and gram-negative bacteria to sense and combat AMP actions. Understanding the mechanism of AMP resistance may provide directions toward the development of novel therapeutic strategies to control multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ananta K Ghosh
- Department of Biotechnology, Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Santi M Mandal
- Department of Biotechnology, Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
19
|
Won S, Lee J, Kim J, Choi H, Kim J. Comparative Whole Cell Proteomics of Listeria monocytogenes at Different Growth Temperatures. J Microbiol Biotechnol 2020; 30:259-270. [PMID: 31838794 PMCID: PMC9728365 DOI: 10.4014/jmb.1911.11027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Listeria monocytogenes is a gram-positive, facultative anaerobe food pathogen responsible for the listeriosis that mostly occurs during the low-temperature storage of a cold cut or dairy products. To understand the systemic response to a wide range of growth temperatures, L. monocytogenes were cultivated at a different temperature from 10°C to 42°C, then whole cell proteomic analysis has been performed both exponential and stationary cells. The specific growth rate increased proportionally with the increase in growth temperature. The maximum growth rate was observed at 37°C and was maintained at 42°C. Global protein expression profiles mainly depended on the growth temperatures showing similar clusters between exponential and stationary phases. Expressed proteins were categorized by their belonging metabolic systems and then, evaluated the change of expression level in regard to the growth temperature and stages. DnaK, GroEL, GroES, GrpE, and CspB, which were the heat&cold shock response proteins, increased their expression with increasing the growth temperatures. In particular, GroES and CspB were expressed more than 100-fold than at low temperatures during the exponential phase. Meanwhile, CspL, another cold shock protein, overexpressed at a low temperature then exponentially decreased its expression to 65-folds. Chemotaxis protein CheV and flagella proteins were highly expressed at low temperatures and stationary phases. Housekeeping proteins maintained their expression levels constant regardless of growth temperature or growth phases. Most of the growth related proteins, which include central carbon catabolic enzymes, were highly expressed at 30°C then decreased sharply at high growth temperatures.
Collapse
Affiliation(s)
- Soyoon Won
- Department of Food and Nutrition, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Jeongmin Lee
- Department of Food and Nutrition, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Jieun Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Hyungseok Choi
- Department of Food and Nutrition, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Jaehan Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 305-764, Republic of Korea,Corresponding author Phone: +82-042-821-6834 Fax:+82-042-821-8887 E-mail:
| |
Collapse
|
20
|
Tavares RDM, Silva DALD, Camargo AC, Yamatogi RS, Nero LA. Interference of the acid stress on the expression of llsX by Listeria monocytogenes pathogenic island 3 (LIPI-3) variants. Food Res Int 2020; 132:109063. [PMID: 32331684 DOI: 10.1016/j.foodres.2020.109063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/13/2022]
Abstract
Listeria monocytogenes harbor different virulence factors, with a highly heterogeneous distribution between distinct lineages and serotypes. The Listeria Pathogenicity Island 3 (LIPI-3), mainly described in lineage I, encodes for Listeriolysin S (LLS), a virulence factor expressed by L. monocytogenes in the gastrointestinal tract during in vivo infections. The aim of this study was to carry out a comparative genotypic analysis of LIPI-3 identified in L. monocytogenes isolates obtained in Brazil and subjected to whole genomic sequencing (WGS). In addition, transcription of llsX expression under different acid stress conditions was evaluated by RT-PCR. Homologues of the eight LIPI-3 genes (llsAGHXBYDP) were identified in 15 isolates (all from lineage I) representative of different sequence types: ST1 (n = 3), ST3 (n = 6), ST218 (n = 5) and ST288 (n = 1). Single nucleotide polymorphism (SNP) analysis revealed that genetic variation resulted in modification of the final peptide LLS for ST218 (serogroup IVb-v1) and ST288 (serogroup IIb). Selected strains from ST3 and ST288 were subjected to acid stress conditions and the expression of llsX, a LIPI-3 gene, was observed: only F2365 (4b/ST1) presented llsX expression after six hours of acid stress, indicating relevant differences when compared to isolates IIb (ST3 and 288). The results highlight the presence of genomic variations on LIPI-3 and llsX expression under acid stress conditions, demanding further studies to evaluate if these mutations have an impact on L. monocytogenes virulence in vivo.
Collapse
Affiliation(s)
- Rafaela de Melo Tavares
- Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Inspeção de Produtos de Origem Animal, Campus UFV, Centro, 36570 900, Viçosa, MG, Brazil
| | - Danilo Augusto Lopes da Silva
- Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Inspeção de Produtos de Origem Animal, Campus UFV, Centro, 36570 900, Viçosa, MG, Brazil
| | - Anderson Carlos Camargo
- Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Inspeção de Produtos de Origem Animal, Campus UFV, Centro, 36570 900, Viçosa, MG, Brazil
| | - Ricardo Seiti Yamatogi
- Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Inspeção de Produtos de Origem Animal, Campus UFV, Centro, 36570 900, Viçosa, MG, Brazil
| | - Luís Augusto Nero
- Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Inspeção de Produtos de Origem Animal, Campus UFV, Centro, 36570 900, Viçosa, MG, Brazil.
| |
Collapse
|
21
|
Horlbog JA, Stevens MJA, Stephan R, Guldimann C. Global Transcriptional Response of Three Highly Acid-Tolerant Field Strains of Listeria monocytogenes to HCl Stress. Microorganisms 2019; 7:microorganisms7100455. [PMID: 31623206 PMCID: PMC6843411 DOI: 10.3390/microorganisms7100455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Tolerance to acid is of dual importance for the food-borne pathogen Listeria monocytogenes: acids are used as a preservative, and gastric acid is one of the first defenses within the host. There are considerable differences in the acid tolerance of strains. Here we present the transcriptomic response of acid-tolerant field strains of L. monocytogenes to HCl at pH 3.0. RNAseq revealed significant differential expression of genes involved in phosphotransferase systems, oxidative phosphorylation, cell morphology, motility, and biofilm formation. Genes in the acetoin biosynthesis pathway were upregulated, suggesting that L. monocytogenes shifts to metabolizing pyruvate to acetoin under organic acid stress. We also identified the formation of cell aggregates in microcolonies as a potential relief strategy. A motif search within the first 150 bp upstream of differentially expressed genes identified a novel potential regulatory sequence that may have a function in the regulation of virulence gene expression. Our data support a model where an excess of intracellular H+ ions is counteracted by pumping H+ out of the cytosol via cytochrome C under reduced activity of the ATP synthase. The observed morphological changes suggest that acid stress may cause cells to aggregate in biofilm microcolonies to create a more favorable microenvironment. Additionally, HCl stress in the host stomach may serve as (i) a signal to downregulate highly immunogenic flagella, and (ii) as an indicator for the imminent contact with host cells which triggers early stage virulence genes.
Collapse
Affiliation(s)
- Jule Anna Horlbog
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8006 Zürich, Switzerland.
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8006 Zürich, Switzerland.
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8006 Zürich, Switzerland.
| | - Claudia Guldimann
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8006 Zürich, Switzerland.
| |
Collapse
|
22
|
Tiensuu T, Guerreiro DN, Oliveira AH, O’Byrne C, Johansson J. Flick of a switch: regulatory mechanisms allowing Listeria monocytogenes to transition from a saprophyte to a killer. Microbiology (Reading) 2019; 165:819-833. [DOI: 10.1099/mic.0.000808] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Teresa Tiensuu
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS); Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Duarte N. Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Ana H. Oliveira
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS); Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Conor O’Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Jörgen Johansson
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS); Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
23
|
Johansson J, Freitag NE. Regulation of Listeria monocytogenes Virulence. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0064-2019. [PMID: 31441398 PMCID: PMC10957223 DOI: 10.1128/microbiolspec.gpp3-0064-2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 02/07/2023] Open
Abstract
Whereas obligate human and animal bacterial pathogens may be able to depend upon the warmth and relative stability of their chosen replication niche, environmental bacteria such as Listeria monocytogenes that harbor the ability to replicate both within animal cells and in the outside environment must maintain the capability to manage life under a variety of disparate conditions. Bacterial life in the outside environment requires adaptation to wide ranges of temperature, available nutrients, and physical stresses such as changes in pH and osmolarity as well as desiccation. Following ingestion by a susceptible animal host, the bacterium must adapt to similar changes during transit through the gastrointestinal tract and overcome a variety of barriers associated with host innate immune responses. Rapid alteration of patterns of gene expression and protein synthesis represent one strategy for quickly adapting to a dynamic host landscape. Here, we provide an overview of the impressive variety of strategies employed by the soil-dwelling, foodborne, mammalian pathogen L. monocytogenes to straddle diverse environments and optimize bacterial fitness both inside and outside host cells.
Collapse
Affiliation(s)
- Jörgen Johansson
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Nancy E Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago IL
| |
Collapse
|
24
|
|
25
|
Arii K, Kawada‐Matsuo M, Oogai Y, Noguchi K, Komatsuzawa H. Single mutations in BraRS confer high resistance against nisin A in Staphylococcus aureus. Microbiologyopen 2019; 8:e791. [PMID: 30656859 PMCID: PMC6854852 DOI: 10.1002/mbo3.791] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 01/09/2023] Open
Abstract
Nisin A is a lantibiotic produced by Lactococcus lactis that is widely used as a food preservative. In Staphylococcus aureus, the BraRS two‐component system (TCS) senses nisin A and regulates the expression of the ABC transporter VraDE, which is responsible for nisin A resistance. In this study, we exposed S. aureus to a sub‐minimum inhibition concentration of nisin A and obtained three spontaneous mutants that were highly resistant to this lantibiotic, designated as SAN (S. aureus nisin resistant) 1, SAN8, and SAN87. In the wild‐type S. aureus strain, VraDE expression was induced by nisin A. In contrast, SAN8 and SAN87 showed constitutively high VraDE expression, even in the absence of nisin A, while SAN1 showed higher BraRS expression, which resulted in high VraDE expression in the presence of nisin A. We identified a single mutation in the promoter region of braXRS in SAN1, whereas SAN8 and SAN87 had single mutations in braR and braS, respectively. Interestingly, even the unphosphorylated form of the mutant BraR protein induced VraDE expression. These results indicate that conformational changes in BraS or BraR resulting from the point mutations may result in the constitutive expression of VraDE, allowing S. aureus to adapt to high concentrations of nisin A.
Collapse
Affiliation(s)
- Kaoru Arii
- Department of Oral MicrobiologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
- Department of PeriodontologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Miki Kawada‐Matsuo
- Department of Oral MicrobiologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Yuichi Oogai
- Department of Oral MicrobiologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Kazuyuki Noguchi
- Department of PeriodontologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Hitoshi Komatsuzawa
- Department of Oral MicrobiologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| |
Collapse
|
26
|
Dos Santos PT, Menendez-Gil P, Sabharwal D, Christensen JH, Brunhede MZ, Lillebæk EMS, Kallipolitis BH. The Small Regulatory RNAs LhrC1-5 Contribute to the Response of Listeria monocytogenes to Heme Toxicity. Front Microbiol 2018; 9:599. [PMID: 29636750 PMCID: PMC5880928 DOI: 10.3389/fmicb.2018.00599] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/15/2018] [Indexed: 11/29/2022] Open
Abstract
The LhrC family of small regulatory RNAs (sRNAs) is known to be induced when the foodborne pathogen Listeria monocytogenes is exposed to infection-relevant conditions, such as human blood. Here we demonstrate that excess heme, the core component of hemoglobin in blood, leads to a strong induction of the LhrC family members LhrC1–5. The heme-dependent activation of lhrC1–5 relies on the response regulator LisR, which is known to play a role in virulence and stress tolerance. Importantly, our studies revealed that LhrC1–5 and LisR contribute to the adaptation of L. monocytogenes to excess heme. Regarding the regulatory function of the sRNAs, we demonstrate that LhrC1–5 act to down-regulate the expression of known LhrC target genes under heme-rich conditions: oppA, tcsA, and lapB, encoding surface exposed proteins with virulence functions. These genes were originally identified as targets for LhrC-mediated control under cell envelope stress conditions, suggesting a link between the response to heme toxicity and cell envelope stress in L. monocytogenes. We also investigated the role of LhrC1–5 in controlling the expression of genes involved in heme uptake and utilization: lmo2186 and lmo2185, encoding the heme-binding proteins Hbp1 and Hbp2, respectively, and lmo0484, encoding a heme oxygenase-like protein. Using in vitro binding assays, we demonstrated that the LhrC family member LhrC4 interacts with mRNAs encoded from lmo2186, lmo2185, and lmo0484. For lmo0484, we furthermore show that LhrC4 uses a CU-rich loop for basepairing to the AG-rich Shine–Dalgarno region of the mRNA. The presence of a link between the response to heme toxicity and cell envelope stress was further underlined by the observation that LhrC1–5 down-regulate the expression of lmo0484 in response to the cell wall-acting antibiotic cefuroxime. Collectively, this study suggests a role for the LisR-regulated sRNAs LhrC1–5 in a coordinated response to excess heme and cell envelope stress in L. monocytogenes.
Collapse
Affiliation(s)
- Patrícia T Dos Santos
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pilar Menendez-Gil
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Dharmesh Sabharwal
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jens-Henrik Christensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Maja Z Brunhede
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Eva M S Lillebæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte H Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
27
|
Screening of the two-component-system histidine kinases of Listeria monocytogenes EGD-e. LiaS is needed for growth under heat, acid, alkali, osmotic, ethanol and oxidative stresses. Food Microbiol 2017; 65:36-43. [DOI: 10.1016/j.fm.2017.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 12/15/2016] [Accepted: 01/30/2017] [Indexed: 11/23/2022]
|
28
|
Mathur H, Field D, Rea MC, Cotter PD, Hill C, Ross RP. Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective. Front Microbiol 2017; 8:1205. [PMID: 28706513 PMCID: PMC5489601 DOI: 10.3389/fmicb.2017.01205] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/14/2017] [Indexed: 12/18/2022] Open
Abstract
The continuing emergence of multi-drug resistant pathogens has sparked an interest in seeking alternative therapeutic options. Antimicrobial combinatorial therapy is one such avenue. A number of studies have been conducted, involving combinations of bacteriocins with other antimicrobials, to circumvent the development of antimicrobial resistance and/or increase antimicrobial potency. Such bacteriocin-antimicrobial combinations could have tremendous value, in terms of reducing the likelihood of resistance development due to the involvement of two distinct mechanisms of antimicrobial action. Furthermore, antimicrobial synergistic interactions may also have potential financial implications in terms of decreasing the costs of treatment by reducing the concentration of an expensive antimicrobial and utilizing it in combination with an inexpensive one. In addition, combinatorial therapies with bacteriocins can broaden antimicrobial spectra and/or result in a reduction in the concentration of an antibiotic required for effective treatments to the extent that potentially toxic or adverse side effects can be reduced or eliminated. Here, we review studies in which bacteriocins were found to be effective in combination with other antimicrobials, with a view to targeting clinical and/or food-borne pathogens. Furthermore, we discuss some of the bottlenecks which are currently hindering the development of bacteriocins as viable therapeutic options, as well as addressing the need to exercise caution when attempting to predict clinical outcomes of bacteriocin-antimicrobial combinations.
Collapse
Affiliation(s)
- Harsh Mathur
- Teagasc Food Research Centre, MooreparkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Des Field
- APC Microbiome Institute, University College CorkCork, Ireland.,School of Microbiology, University College CorkCork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, MooreparkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, MooreparkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Colin Hill
- APC Microbiome Institute, University College CorkCork, Ireland.,School of Microbiology, University College CorkCork, Ireland
| | - R Paul Ross
- APC Microbiome Institute, University College CorkCork, Ireland.,School of Microbiology, University College CorkCork, Ireland
| |
Collapse
|
29
|
Secretion Chaperones PrsA2 and HtrA Are Required for Listeria monocytogenes Replication following Intracellular Induction of Virulence Factor Secretion. Infect Immun 2016; 84:3034-46. [PMID: 27481256 DOI: 10.1128/iai.00312-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 07/27/2016] [Indexed: 12/25/2022] Open
Abstract
The Gram-positive bacterium Listeria monocytogenes transitions from an environmental organism to an intracellular pathogen following its ingestion by susceptible mammalian hosts. Bacterial replication within the cytosol of infected cells requires activation of the central virulence regulator PrfA followed by a PrfA-dependent induction of secreted virulence factors. The PrfA-induced secreted chaperone PrsA2 and the chaperone/protease HtrA contribute to the folding and stability of select proteins translocated across the bacterial membrane. L. monocytogenes strains that lack both prsA2 and htrA exhibit near-normal patterns of growth in broth culture but are severely attenuated in vivo We hypothesized that, in the absence of PrsA2 and HtrA, the increase in PrfA-dependent protein secretion that occurs following bacterial entry into the cytosol results in misfolded proteins accumulating at the bacterial membrane with a subsequent reduction in intracellular bacterial viability. Consistent with this hypothesis, the introduction of a constitutively activated allele of prfA (prfA*) into ΔprsA2 ΔhtrA strains was found to essentially inhibit bacterial growth at 37°C in broth culture. ΔprsA2 ΔhtrA strains were additionally found to be defective for cell invasion and vacuole escape in selected cell types, steps that precede full PrfA activation. These data establish the essential requirement for PrsA2 and HtrA in maintaining bacterial growth under conditions of PrfA activation. In addition, chaperone function is required for efficient bacterial invasion and rapid vacuole lysis within select host cell types, indicating roles for PrsA2/HtrA prior to cytosolic PrfA activation and the subsequent induction of virulence factor secretion.
Collapse
|
30
|
Sievers S, Lund A, Menendez-Gil P, Nielsen A, Storm Mollerup M, Lambert Nielsen S, Buch Larsson P, Borch-Jensen J, Johansson J, Kallipolitis BH. The multicopy sRNA LhrC controls expression of the oligopeptide-binding protein OppA in Listeria monocytogenes. RNA Biol 2016; 12:985-97. [PMID: 26176322 DOI: 10.1080/15476286.2015.1071011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Listeria monocytogenes is the causative agent of the foodborne disease listeriosis. During infection, L. monocytogenes produces an array of non-coding RNAs, including the multicopy sRNA LhrC. These five, nearly identical sRNAs are highly induced in response to cell envelope stress and target the virulence adhesin lapB at the post-transcriptional level. Here, we demonstrate that LhrC controls expression of additional genes encoding cell envelope-associated proteins with virulence function. Using transcriptomics and proteomics, we identified a set of genes affected by LhrC in response to cell envelope stress. Three targets were significantly down-regulated by LhrC at both the RNA and protein level: lmo2349, tcsA and oppA. All three genes encode membrane-associated proteins: A putative substrate binding protein of an amino acid ABC transporter (Lmo2349); the CD4+ T cell-stimulating antigen TcsA, and the oligopeptide binding protein OppA, of which the latter 2 are required for full virulence of L. monocytogenes. For OppA, we show that LhrC acts by direct base paring to the ribosome binding site of the oppA mRNA, leading to an impediment of its translation and a decreased mRNA level. The sRNA-mRNA interaction depends on 2 of 3 CU-rich regions in LhrC allowing binding of 2 oppA mRNAs to a single LhrC molecule. Finally, we found that LhrC contributes to infection in macrophage-like cells. These findings demonstrate a central role for LhrC in controlling the level of OppA and other virulence-associated cell envelope proteins in response to cell envelope stress.
Collapse
Affiliation(s)
- Susanne Sievers
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark.,b Institute for Microbiology; Ernst-Moritz-Arndt-University Greifswald ; Greifswald , Germany.,d These authors equally contributed to this work
| | - Anja Lund
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark.,d These authors equally contributed to this work
| | - Pilar Menendez-Gil
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark
| | - Aaraby Nielsen
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark
| | - Maria Storm Mollerup
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark
| | - Stine Lambert Nielsen
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark
| | - Pernille Buch Larsson
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark
| | - Jonas Borch-Jensen
- a Department of Biochemistry and Molecular Biology ; University of Southern Denmark ; Odense , Denmark
| | - Jörgen Johansson
- c Department of Molecular Biology ; Umeå University ; Umeå , Sweden
| | | |
Collapse
|
31
|
Listeria monocytogenes – An examination of food chain factors potentially contributing to antimicrobial resistance. Food Microbiol 2016. [DOI: 10.1016/j.fm.2014.08.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Khosa S, Hoeppner A, Gohlke H, Schmitt L, Smits SHJ. Structure of the Response Regulator NsrR from Streptococcus agalactiae, Which Is Involved in Lantibiotic Resistance. PLoS One 2016; 11:e0149903. [PMID: 26930060 PMCID: PMC4773095 DOI: 10.1371/journal.pone.0149903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/05/2016] [Indexed: 01/22/2023] Open
Abstract
Lantibiotics are antimicrobial peptides produced by Gram-positive bacteria. Interestingly, several clinically relevant and human pathogenic strains are inherently resistant towards lantibiotics. The expression of the genes responsible for lantibiotic resistance is regulated by a specific two-component system consisting of a histidine kinase and a response regulator. Here, we focused on a response regulator involved in lantibiotic resistance, NsrR from Streptococcus agalactiae, and determined the crystal structures of its N-terminal receiver domain and C-terminal DNA-binding effector domain. The C-terminal domain exhibits a fold that classifies NsrR as a member of the OmpR/PhoB subfamily of regulators. Amino acids involved in phosphorylation, dimerization, and DNA-binding were identified and demonstrated to be conserved in lantibiotic resistance regulators. Finally, a model of the full-length NsrR in the active and inactive state provides insights into protein dimerization and DNA-binding.
Collapse
Affiliation(s)
- Sakshi Khosa
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Astrid Hoeppner
- X-Ray Facility and Crystal Farm, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
- * E-mail:
| |
Collapse
|
33
|
Comparison of the Potency of the Lipid II Targeting Antimicrobials Nisin, Lacticin 3147 and Vancomycin Against Gram-Positive Bacteria. Probiotics Antimicrob Proteins 2016; 4:108-15. [PMID: 26781852 DOI: 10.1007/s12602-012-9095-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
While nisin (lantibiotic), lacticin 3147 (lantibiotic) and vancomycin (glycopeptides) are among the best studied lipid II-binding antimicrobials, their relative activities have never been compared. Nisin and lacticin 3147 have been employed/investigated primarily as food preservatives, although they do have potential in terms of veterinary and clinical applications. Vancomycin is used exclusively in clinical therapy. We reveal a higher potency for lacticin 3147 (MIC 0.95-3.8 μg/ml) and vancomycin (MIC 0.78-1.56 μg/ml) relative to that of nisin (MIC 6.28-25.14 μg/ml) against the food-borne pathogen Listeria monocytogenes. A comparison of the activity of the three antimicrobials against nisin resistance mutants of L. monocytogenes also reveals that their susceptibility to vancomycin and lacticin 3147 changed only slightly or not at all. A further assessment of relative activity against a selection of Bacillus cereus, Enterococcus and Staphylococcus aureus targets revealed that vancomycin MICs consistently ranged between 0.78 and 1.56 μg/ml against all but one strain. Lacticin 3147 was found to be more effective than nisin against B. cereus (lacticin 3147 MIC 1.9-3.8 μg/ml; nisin MIC 4.1-16.7 μg/ml) and E. faecium and E. faecalis targets (lacticin 3147 MIC from 1.9 to 3.8 μg/ml; nisin MIC ≥8.3 μg/ml). The greater effectiveness of lacticin 3147 is even more impressive when expressed as molar values. However, in agreement with the previous reports, nisin was the more effective of the two lantibiotics against S. aureus strains. This study highlights that in many instances the antimicrobial activity of these leading lantibiotics are comparable with that of vancomycin and emphasizes their particular value with respect to use in situations including foods and veterinary medicine, where the use of vancomycin is not permitted.
Collapse
|
34
|
Krawczyk-Balska A, Markiewicz Z. The intrinsic cephalosporin resistome of Listeria monocytogenes in the context of stress response, gene regulation, pathogenesis and therapeutics. J Appl Microbiol 2015; 120:251-65. [PMID: 26509460 DOI: 10.1111/jam.12989] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/18/2015] [Accepted: 08/28/2015] [Indexed: 12/22/2022]
Abstract
Intrinsic resistance to antibiotics is a serious therapeutic problem in the case of many bacterial species. The Gram-positive human pathogen Listeria monocytogenes is intrinsically resistant to broad spectrum cephalosporin antibiotics, which are commonly used in therapy of bacterial infections. Besides three penicillin-binding proteins the intrinsic cephalosporin resistome of L. monocytogenes includes multidrug resistance transporter transporters, proteins involved in peptidoglycan biosynthesis and modification, cell envelope proteins with structural or general detoxification function, cytoplasmic proteins with unknown function and regulatory proteins. Analysis of the regulation of the expression of genes involved in the intrinsic resistance of L. monocytogenes to cephalosporins highlights the high complexity of control of the intrinsic resistance phenotype. The regulation of the transcription of the intrinsic resistome determinants involves the activity of eight regulators, namely LisR, CesR, LiaR, VirR, σ(B) , σ(H) , σ(L) and PrfA, of which the most prominent role play LisR, CesR and σ(B) . Furthermore, the vast majority of the intrinsic resistome determinants contribute to the tolerance of different stress conditions and virulence. A study indicates that O-acetyltransferase OatA is the most promising candidate for co-drug development since an agent targeting OatA should sensitize L. monocytogenes to certain antibiotics, therefore improving the efficacy of listeriosis treatment as well as food preservation measures.
Collapse
Affiliation(s)
- A Krawczyk-Balska
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Z Markiewicz
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
35
|
Krumbeck JA, Marsteller NL, Frese SA, Peterson DA, Ramer-Tait AE, Hutkins RW, Walter J. Characterization of the ecological role of genes mediating acid resistance in Lactobacillus reuteri during colonization of the gastrointestinal tract. Environ Microbiol 2015; 18:2172-84. [PMID: 26530032 DOI: 10.1111/1462-2920.13108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023]
Abstract
Rodent-derived strains of Lactobacillus reuteri densely colonize the forestomach of mice and possess several genes whose predicted functions constitute adaptations towards an acidic environment. The objective of this study was to systematically determine which genes of L. reuteri 100-23 contribute to tolerance towards host gastric acid secretion. Genes predicted to be involved in acid resistance were inactivated, and their contribution to survival under acidic conditions was confirmed in model gastric juice. Fitness of five mutants that showed impaired in vitro acid resistance were then compared through competition experiments in ex-germ-free mice that were either treated with omeprazole, a proton-pump inhibitor that suppresses acid secretion in the stomach, or left untreated. This analysis revealed that the urease cluster was the predominant factor in mediating resistance to gastric acid production. Population levels of the mutant, which were substantially decreased in untreated mice, were almost completely restored through omeprazole, demonstrating that urease production in L. reuteri is mainly devoted to overcome gastric acid. The findings provide novel information on the mechanisms by which L. reuteri colonizes its gastric niche and demonstrate that in silico gene predictions and in vitro tests have limitations for predicting the ecological functions of colonization factors in bacterial symbionts.
Collapse
Affiliation(s)
- Janina A Krumbeck
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA.,School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Nathan L Marsteller
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Steven A Frese
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Daniel A Peterson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Robert W Hutkins
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Jens Walter
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
36
|
The Mechanisms of Virulence Regulation by Small Noncoding RNAs in Low GC Gram-Positive Pathogens. Int J Mol Sci 2015; 16:29797-814. [PMID: 26694351 PMCID: PMC4691137 DOI: 10.3390/ijms161226194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 11/30/2022] Open
Abstract
The discovery of small noncoding regulatory RNAs (sRNAs) in bacteria has grown tremendously recently, giving new insights into gene regulation. The implementation of computational analysis and RNA sequencing has provided new tools to discover and analyze potential sRNAs. Small regulatory RNAs that act by base-pairing to target mRNAs have been found to be ubiquitous and are the most abundant class of post-transcriptional regulators in bacteria. The majority of sRNA studies has been limited to E. coli and other gram-negative bacteria. However, examples of sRNAs in gram-positive bacteria are still plentiful although the detailed gene regulation mechanisms behind them are not as well understood. Strict virulence control is critical for a pathogen’s survival and many sRNAs have been found to be involved in that process. This review outlines the targets and currently known mechanisms of trans-acting sRNAs involved in virulence regulation in various gram-positive pathogens. In addition, their shared characteristics such as CU interaction motifs, the role of Hfq, and involvement in two-component regulators, riboswitches, quorum sensing, or toxin/antitoxin systems are described.
Collapse
|
37
|
Pöntinen A, Markkula A, Lindström M, Korkeala H. Two-Component-System Histidine Kinases Involved in Growth of Listeria monocytogenes EGD-e at Low Temperatures. Appl Environ Microbiol 2015; 81:3994-4004. [PMID: 25841007 PMCID: PMC4524140 DOI: 10.1128/aem.00626-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/28/2015] [Indexed: 01/23/2023] Open
Abstract
Two-component systems (TCSs) aid bacteria in adapting to a wide variety of stress conditions. While the role of TCS response regulators in the cold tolerance of the psychrotrophic foodborne pathogen Listeria monocytogenes has been demonstrated previously, no comprehensive studies showing the role of TCS histidine kinases of L. monocytogenes at low temperature have been performed. We compared the expression levels of each histidine kinase-encoding gene of L. monocytogenes EGD-e in logarithmic growth phase at 3°C and 37°C, as well as the expression levels 30 min, 3 h, and 7 h after cold shock at 5°C and preceding cold shock (at 37°C). We constructed a deletion mutation in each TCS histidine kinase gene, monitored the growth of the EGD-e wild-type and mutant strains at 3°C and 37°C, and measured the minimum growth temperature of each strain. Two genes, yycG and lisK, proved significant in regard to induced relative expression levels under cold conditions and cold-sensitive mutant phenotypes. Moreover, the ΔresE mutant showed a lower growth rate than that of wild-type EGD-e at 3°C. Eleven other genes showed upregulated gene expression but revealed no cold-sensitive phenotypes. The results show that the histidine kinases encoded by yycG and lisK are important for the growth and adaptation of L. monocytogenes EGD-e at low temperature.
Collapse
Affiliation(s)
- Anna Pöntinen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Annukka Markkula
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
38
|
Abstract
The dramatic rise in the incidence of antibiotic resistance demands that new therapeutic options will have to be developed. One potentially interesting class of antimicrobials are the modified bacteriocins termed lantibiotics, which are bacterially produced, posttranslationally modified, lanthionine/methyllanthionine-containing peptides. It is interesting that low levels of resistance have been reported for lantibiotics compared with commercial antibiotics. Given that there are very few examples of naturally occurring lantibiotic resistance, attempts have been made to deliberately induce resistance phenotypes in order to investigate this phenomenon. Mechanisms that hinder the action of lantibiotics are often innate systems that react to the presence of any cationic peptides/proteins or ones which result from cell well damage, rather than being lantibiotic specific. Such resistance mechanisms often arise due to altered gene regulation following detection of antimicrobials/cell wall damage by sensory proteins at the membrane. This facilitates alterations to the cell wall or changes in the composition of the membrane. Other general forms of resistance include the formation of spores or biofilms, which are a common mechanistic response to many classes of antimicrobials. In rare cases, bacteria have been shown to possess specific antilantibiotic mechanisms. These are often species specific and include the nisin lytic protein nisinase and the phenomenon of immune mimicry.
Collapse
Affiliation(s)
- Lorraine A Draper
- School of Microbiology, University College Cork, Cork, Ireland Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
39
|
Affiliation(s)
- Máire Begley
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland;
| | - Colin Hill
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland;
| |
Collapse
|
40
|
The two-component system GrvRS (EtaRS) regulates ace expression in Enterococcus faecalis OG1RF. Infect Immun 2014; 83:389-95. [PMID: 25385790 DOI: 10.1128/iai.02587-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Expression of ace (adhesin to collagen of Enterococcus faecalis), encoding a virulence factor in endocarditis and urinary tract infection models, has been shown to increase under certain conditions, such as in the presence of serum, bile salts, urine, and collagen and at 46 °C. However, the mechanism of ace/Ace regulation under different conditions is still unknown. In this study, we identified a two-component regulatory system GrvRS as the main regulator of ace expression under these stress conditions. Using Northern hybridization and β-galactosidase assays of an ace promoter-lacZ fusion, we found transcription of ace to be virtually absent in a grvR deletion mutant under the conditions that increase ace expression in wild-type OG1RF and in the complemented strain. Moreover, a grvR mutant revealed decreased collagen binding and biofilm formation as well as attenuation in a murine urinary tract infection model. Here we show that GrvR plays a major role in control of ace expression and E. faecalis virulence.
Collapse
|
41
|
Nguyen UT, Harvey H, Hogan AJ, Afonso ACF, Wright GD, Burrows LL. Role of PBPD1 in stimulation of Listeria monocytogenes biofilm formation by subminimal inhibitory β-lactam concentrations. Antimicrob Agents Chemother 2014; 58:6508-17. [PMID: 25136010 PMCID: PMC4249420 DOI: 10.1128/aac.03671-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/10/2014] [Indexed: 12/19/2022] Open
Abstract
Disinfectant-tolerant Listeria monocytogenes biofilms can colonize surfaces that come into contact with food, leading to contamination and, potentially, food-borne illnesses. To better understand the process of L. monocytogenes biofilm formation and dispersal, we screened 1,120 off-patent FDA-approved drugs and identified several that modulate Listeria biofilm development. Among the hits were more than 30 β-lactam antibiotics, with effects ranging from inhibiting (≤50%) to stimulating (≥200%) biofilm formation compared to control. Most β-lactams also dispersed a substantial proportion of established biofilms. This phenotype did not necessarily involve killing, as >50% dispersal could be achieved with concentrations as low as 1/20 of the MIC of some cephalosporins. Penicillin-binding protein (PBP) profiling using a fluorescent penicillin analogue showed similar inhibition patterns for most β-lactams, except that biofilm-stimulatory drugs did not bind PBPD1, a low-molecular-weight d,d-carboxypeptidase. Compared to the wild type, a pbpD1 mutant had an attenuated biofilm response to stimulatory β-lactams. The cephalosporin-responsive CesRK two-component regulatory system, whose regulon includes PBPs, was not required for the response. The requirement for PBPD1 activity for β-lactam stimulation of L. monocytogenes biofilms shows that the specific set of PBPs that are inactivated by a particular drug dictates whether a protective biofilm response is provoked.
Collapse
Affiliation(s)
- Uyen T Nguyen
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada
| | - Hanjeong Harvey
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada
| | - Andrew J Hogan
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada
| | - Alexandria C F Afonso
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
42
|
Milecka D, Samluk A, Wasiak K, Krawczyk-Balska A. An essential role of a ferritin-like protein in acid stress tolerance of Listeria monocytogenes. Arch Microbiol 2014; 197:347-51. [PMID: 25352185 PMCID: PMC4326649 DOI: 10.1007/s00203-014-1053-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 09/01/2014] [Accepted: 10/22/2014] [Indexed: 12/15/2022]
Abstract
The expression of ten genes of Listeria monocytogenes previously identified as penicillin G-inducible was transcriptionally analyzed in the presence of 0.5 M KCl, pH 5.0 and 42 °C. This study revealed that all the genes are upregulated by osmotic stress, seven by acid stress and four by temperature stress conditions. The contribution of a gene encoding a ferritin-like protein (fri), a two-component phosphate-response regulator (phoP) and an AraC/XylS family transcription regulator (axyR) to temperature, acid and osmotic stress tolerance was further examined by analysis of nonpolar deletion mutants. This revealed that a lack of PhoP or AxyR does not affect the ability to grow under the tested stress conditions. However, the Δ fri strain showed slightly delayed growth under osmotic and clearly impaired growth under acid stress conditions, indicating an important role of the ferritin-like protein in acid stress tolerance.
Collapse
Affiliation(s)
- Dorota Milecka
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | | | | | | |
Collapse
|
43
|
Sievers S, Sternkopf Lillebæk EM, Jacobsen K, Lund A, Mollerup MS, Nielsen PK, Kallipolitis BH. A multicopy sRNA of Listeria monocytogenes regulates expression of the virulence adhesin LapB. Nucleic Acids Res 2014; 42:9383-98. [PMID: 25034691 PMCID: PMC4132741 DOI: 10.1093/nar/gku630] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The multicopy sRNA LhrC of the intracellular pathogen Listeria monocytogenes has been shown to be induced under infection-relevant conditions, but its physiological role and mechanism of action is not understood. In an attempt to pinpoint the exact terms of LhrC expression, cell envelope stress could be defined as a specific inducer of LhrC. In this process, the two-component system LisRK was shown to be indispensable for expression of all five copies of LhrC. lapB mRNA, encoding a cell wall associated protein that was recently identified as an important virulence factor, was disclosed to be directly bound by LhrC leading to an impediment of its translation. Although LhrC binds to Hfq, it does not require the RNA chaperone for stability or lapB mRNA interaction. The mechanism of LhrC-lapB mRNA binding was shown to involve three redundant CU-rich sites and a structural rearrangement in the sRNA. This study represents an extensive depiction of a so far uncharacterized multicopy sRNA and reveals interesting new aspects concerning its regulation, virulence association and mechanism of target binding.
Collapse
Affiliation(s)
- Susanne Sievers
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Kirstine Jacobsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Anja Lund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Maria Storm Mollerup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pia Kiil Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
44
|
Laursen MF, Bahl MI, Licht TR, Gram L, Knudsen GM. A single exposure to a sublethal pediocin concentration initiates a resistance-associated temporal cell envelope and general stress response inListeria monocytogenes. Environ Microbiol 2014; 17:1134-51. [DOI: 10.1111/1462-2920.12534] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 06/08/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Martin F. Laursen
- Department of Systems Biology; Technical University of Denmark; DK-2800 Kongens Lyngby Denmark
- National Food Institute; Technical University of Denmark; DK-2860 Søborg Denmark
| | - Martin I. Bahl
- National Food Institute; Technical University of Denmark; DK-2860 Søborg Denmark
| | - Tine R. Licht
- National Food Institute; Technical University of Denmark; DK-2860 Søborg Denmark
| | - Lone Gram
- Department of Systems Biology; Technical University of Denmark; DK-2800 Kongens Lyngby Denmark
| | - Gitte M. Knudsen
- Department of Systems Biology; Technical University of Denmark; DK-2800 Kongens Lyngby Denmark
| |
Collapse
|
45
|
Neuhaus K, Satorhelyi P, Schauer K, Scherer S, Fuchs TM. Acid shock of Listeria monocytogenes at low environmental temperatures induces prfA, epithelial cell invasion, and lethality towards Caenorhabditis elegans. BMC Genomics 2013; 14:285. [PMID: 23622257 PMCID: PMC3648428 DOI: 10.1186/1471-2164-14-285] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 03/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The saprophytic pathogen Listeria monocytogenes has to cope with a variety of acidic habitats during its life cycle. The impact of low-temperature coupled with pH decrease for global gene expression and subsequent virulence properties, however, has not been elucidated. RESULTS qRT-PCR revealed for the first time a transient, acid triggered prfA induction of approximately 4-fold, 5.7-fold, 7-fold and 9.3-fold 60 to 90 min after acid shock of L. monocytogenes at 37°C, 25°C, 18°C, and 10°C, respectively. Comparable data were obtained for seven different L. monocytogenes strains, demonstrating that prfA induction under these conditions is a general response of L. monocytogenes. Transcriptome analysis revealed that the in vivo-relevant genes bsh, clpP, glpD, hfq, inlA, inlB, inlE, lisR, and lplA1 as well as many other genes with a putative role during infection are transiently induced upon acid shock conducted at 25°C and 37°C. Twenty-five genes repressed upon acid shock are known to be down regulated during intracellular growth or by virulence regulators. These data were confirmed by qRT-PCR of twelve differentially regulated genes and by the identification of acid shock-induced genes influenced by σB. To test if up regulation of virulence genes at temperatures below 37°C correlates with pathogenicity, the capacity of L. monocytogenes to invade epithelial cells after acid shock at 25°C was measured. A 12-fold increased number of intracellular bacteria was observed (acid shock, t = 60 min) that was reduced after adaptation to the level of the unshocked control. This increased invasiveness was shown to be in line with the induction of inlAB. Using a nematode infection assay, we demonstrated that Caenorhabditis elegans fed with acid-shocked L. monocytogenes exhibits a shorter time to death of 50% (TD50) of the worms (6.4 days) compared to infection with unshocked bacteria (TD50 = 10.2 days). CONCLUSIONS PrfA and other listerial virulence genes are induced by an inorganic acid in a temperature-dependent manner. The data presented here suggest that low pH serves as a trigger for listerial pathogenicity at environmental temperatures.
Collapse
Affiliation(s)
- Klaus Neuhaus
- Department für biowissenschaftliche Grundlagen, Technische Universität München, Freising, Germany
| | | | | | | | | |
Collapse
|
46
|
Cheng C, Chen J, Shan Y, Fang C, Liu Y, Xia Y, Song H, Fang W. Listeria monocytogenes ArcA contributes to acid tolerance. J Med Microbiol 2013; 62:813-821. [PMID: 23518652 DOI: 10.1099/jmm.0.055145-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes is able to colonize the human and animal intestinal tracts and subsequently crosses the intestinal barrier, causing systemic infection. For successful establishment of infection, L. monocytogenes must survive and adapt to the low pH environment of the stomach. Gene sequence analysis indicates that lmo0043, an orthologue of arcA, encodes a protein containing conserved motifs and critical active amino acids characteristic of arginine deiminase that mediates an arginine deimination reaction. We attempted to characterize the role of ArcA in acid tolerance in vitro and in mice models. Transcription of arcA was significantly increased in L. monocytogenes culture subjected to acid stress at pH 4.8, as compared with that at pH 7.0. Deletion of arcA impaired growth of L. monocytogenes under mild acidic conditions at pH 5.5, and reduced its survival in synthetic human gastric fluid at pH 2.5 and in the murine stomach. Bacterial load in the spleen of mice intraperitoneally inoculated with an arcA deletion mutant was significantly lower than that of the wild-type strain. These phenotypic changes were recoverable by genetic complementation. Thus, we conclude that L. monocytogenes arcA not only mediates acid tolerance in vitro but also participates in gastric survival and virulence in mice.
Collapse
Affiliation(s)
- Changyong Cheng
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jianshun Chen
- Zhejiang Aquatic Disease Prevention and Quarantine Center, 20 Yile Road, Hangzhou, Zhejiang 310012, PR China
| | - Ying Shan
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Chun Fang
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yuan Liu
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Ye Xia
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Houhui Song
- Zhejiang A&F University College of Animal Science & Technology, Lin'an, Zhejiang 311300, PR China
| | - Weihuan Fang
- Zhejiang A&F University College of Animal Science & Technology, Lin'an, Zhejiang 311300, PR China.,Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| |
Collapse
|
47
|
Smith JL, Liu Y, Paoli GC. How does Listeria monocytogenes combat acid conditions? Can J Microbiol 2012; 59:141-52. [PMID: 23540331 DOI: 10.1139/cjm-2012-0392] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Listeria monocytogenes, a major foodborne pathogen, possesses a number of mechanisms that enable it to combat the challenges posed by acidic environments, such as that of acidic foods and the gastrointestinal tract. One mechanism employed by L. monocytogenes for survival at low pH is the adaptive acid tolerance response (ATR) in which a short adaptive period at a nonlethal pH induces metabolic changes that allow the organism to survive a lethal pH. Overcoming acid conditions by L. monocytogenes involves a variety of regulatory responses, including the LisRK 2-component regulatory system, the SOS response, components of the σ(B) regulon, changes in membrane fluidity, the F0F1-ATPase proton pump, and at least 2 enzymatic systems that regulate internal hydrogen ion concentration (glutamate decarboxylase and arginine deiminase). It is not clear if these mechanisms exert their protective effects separately or in concert, but it is probable that these mechanisms overlap. Studies using mutants indicate that the glutamate decarboxylase system can protect L. monocytogenes when the organism is present in acidic juices, yogurt, salad dressing, mayonnaise, and modified CO2 atmospheres. The glutamate decarboxylase system also has a role in protecting L. monocytogenes against the acidic environment of the stomach. There is a need to study other acid resistance mechanisms of L. monocytogenes to determine their effectiveness in protecting the organism in acidic foods or during transit through the acid stomach.
Collapse
Affiliation(s)
- James L Smith
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038-8598, USA.
| | | | | |
Collapse
|
48
|
Knudsen G, Holch A, Gram L. Subinhibitory concentrations of antibiotics affect stress and virulence gene expression inListeria monocytogenesand cause enhanced stress sensitivity but do not affect Caco-2 cell invasion. J Appl Microbiol 2012; 113:1273-86. [DOI: 10.1111/j.1365-2672.2012.05435.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 11/29/2022]
Affiliation(s)
- G.M. Knudsen
- National Food Institute; Technical University of Denmark; Kongens Lyngby; Denmark
| | - A. Holch
- National Food Institute; Technical University of Denmark; Kongens Lyngby; Denmark
| | - L. Gram
- National Food Institute; Technical University of Denmark; Kongens Lyngby; Denmark
| |
Collapse
|
49
|
Abstract
While the bacteriocin Nisin has been employed by the food industry for 60 y, it remains the only bacteriocin to be extensively employed as a food preservative. This is despite the fact that the activity of Nisin against several food spoilage and pathogenic bacteria is poor and the availability of many other bacteriocins with significant potential in this regard. An alternative route to address the deficiencies of Nisin is the application of bioengineered derivatives of the peptide which, despite differing only subtly, possess enhanced capabilities of commercial value. The career path which has taken me from learning for the first time what bacteriocins are to understanding the potential of bacteriocin bioengineering has been a hugely enjoyable experience and promises to get even more interesting in the years to come.
Collapse
Affiliation(s)
- Paul D Cotter
- Teagasc Food Research Centre; Moorepark, Cork, Ireland.
| |
Collapse
|
50
|
Genes important for catalase activity in Enterococcus faecalis. PLoS One 2012; 7:e36725. [PMID: 22590595 PMCID: PMC3349705 DOI: 10.1371/journal.pone.0036725] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/11/2012] [Indexed: 12/29/2022] Open
Abstract
Little in general is known about how heme proteins are assembled from their constituents in cells. The Gram-positive bacterium Enterococcus faecalis cannot synthesize heme and does not depend on it for growth. However, when supplied with heme in the growth medium the cells can synthesize two heme proteins; catalase (KatA) and cytochrome bd (CydAB). To identify novel factors important for catalase biogenesis libraries of E. faecalis gene insertion mutants were generated using two different types of transposons. The libraries of mutants were screened for clones deficient in catalase activity using a colony zymogram staining procedure. Analysis of obtained clones identified, in addition to katA (encoding the catalase enzyme protein), nine genes distributed over five different chromosomal loci. No factors with a dedicated essential role in catalase biogenesis or heme trafficking were revealed, but the results indicate the RNA degradosome (srmB, rnjA), an ABC-type oligopeptide transporter (oppBC), a two-component signal transducer (etaR), and NADH peroxidase (npr) as being important for expression of catalase activity in E. faecalis. It is demonstrated that catalase biogenesis in E. faecalis is independent of the CydABCD proteins and that a conserved proline residue in the N-terminal region of KatA is important for catalase assembly.
Collapse
|