1
|
Takahashi-Íñiguez T, Barrios-Hernández J, Rodríguez-Maldonado M, Flores ME. Tricarboxylic acid cycle without malate dehydrogenase in Streptomyces coelicolor M-145. Arch Microbiol 2018; 200:1279-1286. [DOI: 10.1007/s00203-018-1541-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/01/2018] [Accepted: 06/16/2018] [Indexed: 11/28/2022]
|
2
|
Proteomic approach to reveal the regulatory function of aconitase AcnA in oxidative stress response in the antibiotic producer Streptomyces viridochromogenes Tü494. PLoS One 2014; 9:e87905. [PMID: 24498397 PMCID: PMC3912134 DOI: 10.1371/journal.pone.0087905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/30/2013] [Indexed: 01/16/2023] Open
Abstract
The aconitase AcnA from the phosphinothricin tripeptide producing strain Streptomyces viridochromogenes Tü494 is a bifunctional protein: under iron-sufficiency conditions AcnA functions as an enzyme of the tricarboxylic acid cycle, whereas under iron depletion it is a regulator of iron metabolism and oxidative stress response. As a member of the family of iron regulatory proteins (IRP), AcnA binds to characteristic iron responsive element (IRE) binding motifs and post-transcriptionally controls the expression of respective target genes. A S. viridochromogenes aconitase mutant (MacnA) has previously been shown to be highly sensitive to oxidative stress. In the present paper, we performed a comparative proteomic approach with the S. viridochromogenes wild-type and the MacnA mutant strain under oxidative stress conditions to identify proteins that are under control of the AcnA-mediated regulation. We identified up to 90 differentially expressed proteins in both strains. In silico analysis of the corresponding gene sequences revealed the presence of IRE motifs on some of the respective target mRNAs. From this proteome study we have in vivo evidences for a direct AcnA-mediated regulation upon oxidative stress.
Collapse
|
3
|
Genome-wide analysis of the regulation of pimaricin production in Streptomyces natalensis by reactive oxygen species. Appl Microbiol Biotechnol 2014; 98:2231-41. [PMID: 24413916 DOI: 10.1007/s00253-013-5455-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022]
Abstract
To investigate the molecular mechanisms that interplay between oxygen metabolism and secondary metabolism in Streptomyces natalensis, we compared the transcriptomes of the strains CAM.02 (ΔsodF), pimaricin under-producer phenotype, and CAM.04 (ΔahpCD), pimaricin over-producer phenotype, with that of the wild type at late exponential and stationary growth phases. Microarray data interpretation was supported by characterization of the mutant strains regarding enzymatic activities, phosphate uptake, oxygen consumption and pimaricin production.Both mutant strains presented a delay in the transcription activation of the PhoRP system and pimaricin biosynthetic gene cluster that correlated with the delayed inorganic phosphate (Pi) depletion in the medium and late onset of pimaricin production, respectively. The carbon flux of both mutants was also altered: a re-direction from glycolysis to the pentose phosphate pathway (PPP) in early exponential phase followed by a transcriptional activation of both pathways in subsequent growth phases was observed. Mutant behavior diverged at the respiratory chain/tricarboxylic acid cycle (TCA) and the branched chain amino acid (BCAA) metabolism. CAM.02 (ΔsodF) presented an impaired TCA cycle and an inhibition of the BCAA biosynthesis and degradation pathways. Conversely, CAM.04 (ΔahpCD) presented a global activation of BCAA metabolism.The results highlight the cellular NADPH/NADH ratio and the availability of biosynthetic precursors via the BCAA metabolism as the main pimaricin biosynthetic bottlenecks under oxidative stress conditions. Furthermore, new evidences are provided regarding a crosstalk between phosphate metabolism and oxidative stress in Streptomyces.
Collapse
|
4
|
Michta E, Schad K, Blin K, Ort-Winklbauer R, Röttig M, Kohlbacher O, Wohlleben W, Schinko E, Mast Y. The bifunctional role of aconitase in Streptomyces viridochromogenes Tü494. Environ Microbiol 2012; 14:3203-19. [PMID: 23116164 DOI: 10.1111/1462-2920.12006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/24/2012] [Indexed: 12/01/2022]
Abstract
In many organisms, aconitases have dual functions; they serve as enzymes in the tricarboxylic acid cycle and as regulators of iron metabolism. In this study we defined the role of the aconitase AcnA in Streptomyces viridochromogenes Tü494, the producer of the herbicide phosphinothricyl-alanyl-alanine, also known as phosphinothricin tripeptide or bialaphos. A mutant in which the aconitase gene acnA was disrupted showed severe defects in morphology and physiology, as it was unable to form any aerial mycelium, spores nor phosphinothricin tripeptide. AcnA belongs to the iron regulatory proteins (IRPs). In addition to its catalytic function, AcnA plays a regulatory role by binding to iron responsive elements (IREs) located on the untranslated region of certain mRNAs. A mutation preventing the formation of the [4Fe-4S] cluster of AcnA eliminated its catalytic activity, but did not inhibit RNA-binding ability. In silico analysis of the S. viridochromogenes genome revealed several IRE-like structures. One structure is located upstream of recA, which is involved in the bacterial SOS response, and another one was identified upstream of ftsZ, which is required for the onset of sporulation in streptomycetes. The functionality of different IRE structures was proven with gel shift assays and specific IRE consensus sequences were defined. Furthermore, RecA was shown to be upregulated on post-transcriptional level under oxidative stress conditions in the wild-type strain but not in the acnA mutant, suggesting a regulatory role of AcnA in oxidative stress response.
Collapse
Affiliation(s)
- Ewelina Michta
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin (IMIT), Mikrobiologie/Biotechnologie, Fakultät für Biologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Gallo G, Alduina R, Renzone G, Thykaer J, Bianco L, Eliasson-Lantz A, Scaloni A, Puglia AM. Differential proteomic analysis highlights metabolic strategies associated with balhimycin production in Amycolatopsis balhimycina chemostat cultivations. Microb Cell Fact 2010; 9:95. [PMID: 21110849 PMCID: PMC3004843 DOI: 10.1186/1475-2859-9-95] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/26/2010] [Indexed: 11/25/2022] Open
Abstract
Background Proteomics was recently used to reveal enzymes whose expression is associated with the production of the glycopeptide antibiotic balhimycin in Amycolatopsis balhimycina batch cultivations. Combining chemostat fermentation technology, where cells proliferate with constant parameters in a highly reproducible steady-state, and differential proteomics, the relationships between physiological status and metabolic pathways during antibiotic producing and non-producing conditions could be highlighted. Results Two minimal defined media, one with low Pi (0.6 mM; LP) and proficient glucose (12 g/l) concentrations and the other one with high Pi (1.8 mM) and limiting (6 g/l; LG) glucose concentrations, were developed to promote and repress antibiotic production, respectively, in A. balhimycina chemostat cultivations. Applying the same dilution rate (0.03 h-1), both LG and LP chemostat cultivations showed a stable steady-state where biomass production yield coefficients, calculated on glucose consumption, were 0.38 ± 0.02 and 0.33 ± 0.02 g/g (biomass dry weight/glucose), respectively. Notably, balhimycin was detected only in LP, where quantitative RT-PCR revealed upregulation of selected bal genes, devoted to balhimycin biosynthesis, and of phoP, phoR, pstS and phoD, known to be associated to Pi limitation stress response. 2D-Differential Gel Electrophoresis (DIGE) and protein identification, performed by mass spectrometry and computer-assisted 2 D reference-map http://www.unipa.it/ampuglia/Abal-proteome-maps matching, demonstrated a differential expression for proteins involved in many metabolic pathways or cellular processes, including central carbon and phosphate metabolism. Interestingly, proteins playing a key role in generation of primary metabolism intermediates and cofactors required for balhimycin biosynthesis were upregulated in LP. Finally, a bioinformatic approach showed PHO box-like regulatory elements in the upstream regions of nine differentially expressed genes, among which two were tested by electrophoresis mobility shift assays (EMSA). Conclusion In the two chemostat conditions, used to generate biomass for proteomic analysis, mycelia grew with the same rate and with similar glucose-biomass conversion efficiencies. Global gene expression analysis revealed a differential metabolic adaptation, highlighting strategies for energetic supply and biosynthesis of metabolic intermediates required for biomass production and, in LP, for balhimycin biosynthesis. These data, confirming a relationship between primary metabolism and antibiotic production, could be used to increase antibiotic yield both by rational genetic engineering and fermentation processes improvement.
Collapse
Affiliation(s)
- Giuseppe Gallo
- Università di Palermo, Dipartimento di Biologia Cellulare e dello Sviluppo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Facciotti MT, Pang WL, Lo FY, Whitehead K, Koide T, Masumura KI, Pan M, Kaur A, Larsen DJ, Reiss DJ, Hoang L, Kalisiak E, Northen T, Trauger SA, Siuzdak G, Baliga NS. Large scale physiological readjustment during growth enables rapid, comprehensive and inexpensive systems analysis. BMC SYSTEMS BIOLOGY 2010; 4:64. [PMID: 20470417 PMCID: PMC2880973 DOI: 10.1186/1752-0509-4-64] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 05/14/2010] [Indexed: 12/02/2022]
Abstract
Background Rapidly characterizing the operational interrelationships among all genes in a given organism is a critical bottleneck to significantly advancing our understanding of thousands of newly sequenced microbial and eukaryotic species. While evolving technologies for global profiling of transcripts, proteins, and metabolites are making it possible to comprehensively survey cellular physiology in newly sequenced organisms, these experimental techniques have not kept pace with sequencing efforts. Compounding these technological challenges is the fact that individual experiments typically only stimulate relatively small-scale cellular responses, thus requiring numerous expensive experiments to survey the operational relationships among nearly all genetic elements. Therefore, a relatively quick and inexpensive strategy for observing changes in large fractions of the genetic elements is highly desirable. Results We have discovered in the model organism Halobacterium salinarum NRC-1 that batch culturing in complex medium stimulates meaningful changes in the expression of approximately two thirds of all genes. While the majority of these changes occur during transition from rapid exponential growth to the stationary phase, several transient physiological states were detected beyond what has been previously observed. In sum, integrated analysis of transcript and metabolite changes has helped uncover growth phase-associated physiologies, operational interrelationships among two thirds of all genes, specialized functions for gene family members, waves of transcription factor activities, and growth phase associated cell morphology control. Conclusions Simple laboratory culturing in complex medium can be enormously informative regarding the activities of and interrelationships among a large fraction of all genes in an organism. This also yields important baseline physiological context for designing specific perturbation experiments at different phases of growth. The integration of such growth and perturbation studies with measurements of associated environmental factor changes is a practical and economical route for the elucidation of comprehensive systems-level models of biological systems.
Collapse
Affiliation(s)
- Marc T Facciotti
- Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Schinko E, Schad K, Eys S, Keller U, Wohlleben W. Phosphinothricin-tripeptide biosynthesis: an original version of bacterial secondary metabolism? PHYTOCHEMISTRY 2009; 70:1787-1800. [PMID: 19878959 DOI: 10.1016/j.phytochem.2009.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 05/28/2023]
Abstract
Streptomyces viridochromogenes Tü494 produces the herbicide phosphinothricyl-alanyl-alanine (phosphinothricin-tripeptide=PTT; bialaphos). Its bioactive moiety phosphinothricin competitively inhibits bacterial and plant glutamine synthetases. The biosynthesis of PTT includes the synthesis of the unusual amino acid N-acetyl-demethyl-phosphinothricin and a three step condensation via non-ribosomal peptide synthetases. Two characteristics within the PTT biosynthesis make it suitable to study the evolution of secondary metabolism biosynthesis. First, PTT biosynthesis represents the only known system where all peptide synthetase modules are located on separate proteins. This 'single enzyme system' might be an archetype of the multimodular and multienzymatic non-ribosomal peptide synthetases in evolutionary terms. The second interesting feature of PTT biosynthesis is the pathway-specific aconitase Pmi that is involved in the supply of N-acetyl-demethyl-phosphinothricin. Pmi is highly similar to the tricarboxylic acid aconitase AcnA. They share 64% identity at the DNA level and both belong to the Iron-Regulatory-Protein/AcnA family. Despite their high sequence similarity, AcnA and Pmi catalyze different reactions and are not able to substitute for each other. Thus, the enzyme pair AcnA/Pmi presents an example of the evolution of a secondary metabolite-specific enzyme from a primary metabolism enzyme.
Collapse
Affiliation(s)
- Eva Schinko
- Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
8
|
Kern A, Tilley E, Hunter IS, Legisa M, Glieder A. Engineering primary metabolic pathways of industrial micro-organisms. J Biotechnol 2007; 129:6-29. [PMID: 17196287 DOI: 10.1016/j.jbiotec.2006.11.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 07/04/2006] [Accepted: 08/18/2006] [Indexed: 01/01/2023]
Abstract
Metabolic engineering is a powerful tool for the optimisation and the introduction of new cellular processes. This is mostly done by genetic engineering. Since the introduction of this multidisciplinary approach, the success stories keep accumulating. The primary metabolism of industrial micro-organisms has been studied for long time and most biochemical pathways and reaction networks have been elucidated. This large pool of biochemical information, together with data from proteomics, metabolomics and genomics underpins the strategies for design of experiments and choice of targets for manipulation by metabolic engineers. These targets are often located in the primary metabolic pathways, such as glycolysis, pentose phosphate pathway, the TCA cycle and amino acid biosynthesis and mostly at major branch points within these pathways. This paper describes approaches taken for metabolic engineering of these pathways in bacteria, yeast and filamentous fungi.
Collapse
Affiliation(s)
- Alexander Kern
- Institute for Molecular Biotechnology, TU Graz, Petersgasse 14, 8010 Graz, Austria
| | | | | | | | | |
Collapse
|
9
|
Nakano S, Fukaya M, Horinouchi S. Enhanced expression of aconitase raises acetic acid resistance inAcetobacter aceti. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09605.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Somerville GA, Chaussee MS, Morgan CI, Fitzgerald JR, Dorward DW, Reitzer LJ, Musser JM. Staphylococcus aureus aconitase inactivation unexpectedly inhibits post-exponential-phase growth and enhances stationary-phase survival. Infect Immun 2002; 70:6373-82. [PMID: 12379717 PMCID: PMC130419 DOI: 10.1128/iai.70.11.6373-6382.2002] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus preferentially catabolizes glucose, generating pyruvate, which is subsequently oxidized to acetate under aerobic growth conditions. Catabolite repression of the tricarboxylic acid (TCA) cycle results in the accumulation of acetate. TCA cycle derepression coincides with exit from the exponential growth phase, the onset of acetate catabolism, and the maximal expression of secreted virulence factors. These data suggest that carbon and energy for post-exponential-phase growth and virulence factor production are derived from the catabolism of acetate mediated by the TCA cycle. To test this hypothesis, the aconitase gene was genetically inactivated in a human isolate of S. aureus, and the effects on physiology, morphology, virulence factor production, virulence for mice, and stationary-phase survival were examined. TCA cycle inactivation prevented the post-exponential growth phase catabolism of acetate, resulting in premature entry into the stationary phase. This phenotype was accompanied by a significant reduction in the production of several virulence factors and alteration in host-pathogen interaction. Unexpectedly, aconitase inactivation enhanced stationary-phase survival relative to the wild-type strain. Aconitase is an iron-sulfur cluster-containing enzyme that is highly susceptible to oxidative inactivation. We speculate that reversible loss of the iron-sulfur cluster in wild-type organisms is a survival strategy used to circumvent oxidative stress induced during host-pathogen interactions. Taken together, these data demonstrate the importance of the TCA cycle in the life cycle of this medically important pathogen.
Collapse
Affiliation(s)
- Greg A Somerville
- Laboratory of Human Bacterial Pathogenesis. Rocky Mountain Microscopy Branch. Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Brämer CO, Silva LF, Gomez JGC, Priefert H, Steinbüchel A. Identification of the 2-methylcitrate pathway involved in the catabolism of propionate in the polyhydroxyalkanoate-producing strain Burkholderia sacchari IPT101(T) and analysis of a mutant accumulating a copolyester with higher 3-hydroxyvalerate content. Appl Environ Microbiol 2002; 68:271-9. [PMID: 11772636 PMCID: PMC126583 DOI: 10.1128/aem.68.1.271-279.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia sacchari IPT101(T) induced the formation of 2-methylcitrate synthase and 2-methylisocitrate lyase when it was cultivated in the presence of propionic acid. The prp locus of B. sacchari IPT101(T) is required for utilization of propionic acid as a sole carbon source and is relevant for incorporation of 3-hydroxyvalerate (3HV) into copolyesters, and it was cloned and sequenced. Five genes (prpR, prpB, prpC, acnM, and ORF5) exhibited identity to genes located in the prp loci of other gram-negative bacteria. prpC encodes a 2-methylcitrate synthase with a calculated molecular mass of 42,691 Da. prpB encodes a 2-methylisocitrate lyase. The levels of PrpC and PrpB activity were much lower in propionate-negative mutant IPT189 obtained from IPT101(T) and were heterologously expressed in Escherichia coli. The acnM gene (ORF4) and ORF5, which are required for conversion of 2-methylcitric acid to 2-methylisocitric acid in Ralstonia eutropha HF39, are also located in the prp locus. The translational product of ORF1 (prpR) had a calculated molecular mass of 70,598 Da and is a putative regulator of the prp cluster. Three additional open reading frames (ORF6, ORF7, and ORF8) whose functions are not known were located adjacent to ORF5 in the prp locus of B. sacchari, and these open reading frames have not been found in any other prp operon yet. In summary, the organization of the prp genes of B. sacchari is similar but not identical to the organization of these genes in other bacteria investigated recently. In addition, this study provided a rationale for the previously shown increased molar contents of 3HV in copolyesters accumulated by a B. sacchari mutant since it was revealed in this study that the mutant is defective in prpC.
Collapse
Affiliation(s)
- C O Brämer
- Institut für Mikrobiologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
12
|
Heinzelmann E, Kienzlen G, Kaspar S, Recktenwald J, Wohlleben W, Schwartz D. The phosphinomethylmalate isomerase gene pmi, encoding an aconitase-like enzyme, is involved in the synthesis of phosphinothricin tripeptide in Streptomyces viridochromogenes. Appl Environ Microbiol 2001; 67:3603-9. [PMID: 11472937 PMCID: PMC93061 DOI: 10.1128/aem.67.8.3603-3609.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces viridochromogenes Tü494 produces the antibiotic phosphinothricin tripeptide (PTT). In the postulated biosynthetic pathway, one reaction, the isomerization of phosphinomethylmalate, resembles the aconitase reaction of the tricarboxylic acid (TCA) cycle. It was speculated that this reaction is carried out by the corresponding enzyme of the primary metabolism (C. J. Thompson and H. Seto, p. 197-222, in L. C. Vining and C. Stuttard, ed., Genetics and Biochemistry of Antibiotic Production, 1995). However, in addition to the TCA cycle aconitase gene, a gene encoding an aconitase-like protein (the phosphinomethylmalate isomerase gene, pmi) was identified in the PTT biosynthetic gene cluster by Southern hybridization experiments, using oligonucleotides which were derived from conserved amino acid sequences of aconitases. The deduced protein revealed high similarity to aconitases from plants, bacteria, and fungi and to iron regulatory proteins from eucaryotes. Pmi and the S. viridochromogenes TCA cycle aconitase, AcnA, have 52% identity. By gene insertion mutagenesis, a pmi mutant (Mapra1) was generated. The mutant failed to produce PTT, indicating the inability of AcnA to carry out the secondary-metabolism reaction. A His-tagged protein (Hispmi*) was heterologously produced in Streptomyces lividans. The purified protein showed no standard aconitase activity with citrate as a substrate, and the corresponding gene was not able to complement an acnA mutant. This indicates that Pmi and AcnA are highly specific for their respective enzymatic reactions.
Collapse
Affiliation(s)
- E Heinzelmann
- Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Viollier PH, Nguyen KT, Minas W, Folcher M, Dale GE, Thompson CJ. Roles of aconitase in growth, metabolism, and morphological differentiation of Streptomyces coelicolor. J Bacteriol 2001; 183:3193-203. [PMID: 11325949 PMCID: PMC95221 DOI: 10.1128/jb.183.10.3193-3203.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2000] [Accepted: 02/08/2001] [Indexed: 11/20/2022] Open
Abstract
The studies of aconitase presented here, along with those of citrate synthase (P. H. Viollier, W. Minas, G. E. Dale, M. Folcher, and C. J. Thompson, J. Bacteriol. 183:3184-3192, 2001), were undertaken to investigate the role of the tricarboxylic acid (TCA) cycle in Streptomyces coelicolor development. A single aconitase activity (AcoA) was detected in protein extracts of cultures during column purification. The deduced amino acid sequence of the cloned acoA gene constituted the N-terminal sequence of semipurified AcoA and was homologous to bacterial A-type aconitases and bifunctional eukaryotic aconitases (iron regulatory proteins). The fact that an acoA disruption mutant (BZ4) did not grow on minimal glucose media in the absence of glutamate confirmed that this gene encoded the primary vegetative aconitase catalyzing flux through the TCA cycle. On glucose-based complete medium, BZ4 had defects in growth, antibiotic biosynthesis, and aerial hypha formation, partially due to medium acidification and accumulation of citrate. The inhibitory effects of acids and citrate on BZ4 were partly suppressed by buffer or by introducing a citrate synthase mutation. However, the fact that growth of an acoA citA mutant remained impaired, even on a nonacidogenic carbon source, suggested alternative functions of AcoA. Immunoblots revealed that AcoA was present primarily during substrate mycelial growth on solid medium. Transcription of acoA was limited to the early growth phase in liquid cultures from a start site mapped in vitro and in vivo.
Collapse
Affiliation(s)
- P H Viollier
- Department of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|