1
|
Shin H, Pigli Y, Reyes TP, Fuller JR, Olorunniji FJ, Rice PA. Structural basis of directionality control in large serine integrases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631226. [PMID: 39803483 PMCID: PMC11722253 DOI: 10.1101/2025.01.03.631226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Large serine integrases (LSIs) catalyze unidirectional site-specific DNA recombination reactions, yet those reactions are reversed by the presence of a cognate recombination directionality factor (RDF). Mechanistic understanding of directionality control has been hampered by a lack of structural information. Here, we use cryo-electron microscopy (cryo-EM) to determine the structures of six SPbeta integrase-DNA complexes along the integrative (-RDF) and excisive (+RDF) reaction pathways, at 4.16-7.18Å resolution. Our findings reveal how RDF-mediated repositioning of an integrase subdomain (1) dictates which pairs of DNA sites can be assembled into a synaptic complex to initiate recombination and (2) dictates which product complexes will be conformationally locked, preventing the back reaction. These mechanistic insights provide a conceptual framework for engineering efficient and versatile genome editing tools.
Collapse
Affiliation(s)
- Heewhan Shin
- Department of Biochemistry & Molecular Biology, The University of Chicago; Chicago IL, 60637, USA
| | - Ying Pigli
- Department of Biochemistry & Molecular Biology, The University of Chicago; Chicago IL, 60637, USA
| | - Tania Peña Reyes
- Department of Biochemistry & Molecular Biology, The University of Chicago; Chicago IL, 60637, USA
| | - James R. Fuller
- Department of Biochemistry & Molecular Biology, The University of Chicago; Chicago IL, 60637, USA
| | - Femi J. Olorunniji
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University; Liverpool, L3 3AF, UK
| | - Phoebe A. Rice
- Department of Biochemistry & Molecular Biology, The University of Chicago; Chicago IL, 60637, USA
| |
Collapse
|
2
|
MacDonald AI, Baksh A, Holland A, Shin H, Rice PA, Stark WM, Olorunniji FJ. Variable orthogonality of serine integrase interactions within the ϕC31 family. Sci Rep 2024; 14:26280. [PMID: 39487291 PMCID: PMC11530663 DOI: 10.1038/s41598-024-77570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
Serine integrases are phage- (or mobile element-) encoded enzymes that catalyse site-specific recombination reactions between a short DNA sequence on the phage genome (attP) and a corresponding host genome sequence (attB), thereby integrating the phage DNA into the host genome. Each integrase has its unique pair of attP and attB sites, a feature that allows them to be used as orthogonal tools for genome modification applications. In the presence of a second protein, the Recombination Directionality Factor (RDF), integrase catalyses the reverse excisive reaction, generating new recombination sites, attR and attL. In addition to promoting attR x attL reaction, the RDF inhibits attP x attB recombination. This feature makes the directionality of integrase reactions programmable, allowing them to be useful for building synthetic biology devices. In this report, we describe the degree of orthogonality of both integrative and excisive reactions for three related integrases (ϕC31, ϕBT1, and TG1) and their RDFs. Among these, TG1 integrase is the most active, showing near complete recombination in both attP x attB and attR x attL reactions, and the most directional in the presence of its RDF. Our findings show that there is varying orthogonality among these three integrases - RDF pairs. ϕC31 integrase was the least selective, with all three RDFs activating it for attR x attL recombination. Similarly, ϕC31 RDF was the least effective among the three RDFs in promoting the excisive activities of the integrases, including its cognate ϕC31 integrase. ϕBT1 and TG1 RDFs were noticeably more effective than ϕC31 RDF at inhibiting attP x attB recombination by their respective integrases, making them more suitable for building reversible genetic switches. AlphaFold-Multimer predicts very similar structural interactions between each cognate integrase - RDF pair. The binding surface on the RDF is much more conserved than the binding surface on the integrase, an indication that specificity is determined more by the integrase than the RDF. Overall, the observed weak integrase/RDF orthogonality across the three enzymes emphasizes the need for identifying and characterizing more integrase - RDF pairs. Additionally, the ability of a particular integrase's preferred reaction direction to be controlled to varying degrees by non-cognate RDFs provides a path to tunable, non-binary genetic switches.
Collapse
Affiliation(s)
- Alasdair I MacDonald
- School of Molecular Biosciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Aron Baksh
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, L3 3AF, Liverpool, UK
| | - Alexandria Holland
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, L3 3AF, Liverpool, UK
| | - Heewhan Shin
- Department of Biochemistry and Molecular Biology, The University of Chicago, 60637, Chicago, IL, USA
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, 60637, Chicago, IL, USA
| | - W Marshall Stark
- School of Molecular Biosciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Femi J Olorunniji
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, L3 3AF, Liverpool, UK.
| |
Collapse
|
3
|
Lai S, Wang H, Bork P, Chen WH, Zhao XM. Long-read sequencing reveals extensive gut phageome structural variations driven by genetic exchange with bacterial hosts. SCIENCE ADVANCES 2024; 10:eadn3316. [PMID: 39141729 PMCID: PMC11323893 DOI: 10.1126/sciadv.adn3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/10/2024] [Indexed: 08/16/2024]
Abstract
Genetic variations are instrumental for unraveling phage evolution and deciphering their functional implications. Here, we explore the underlying fine-scale genetic variations in the gut phageome, especially structural variations (SVs). By using virome-enriched long-read metagenomic sequencing across 91 individuals, we identified a total of 14,438 nonredundant phage SVs and revealed their prevalence within the human gut phageome. These SVs are mainly enriched in genes involved in recombination, DNA methylation, and antibiotic resistance. Notably, a substantial fraction of phage SV sequences share close homology with bacterial fragments, with most SVs enriched for horizontal gene transfer (HGT) mechanism. Further investigations showed that these SV sequences were genetic exchanged between specific phage-bacteria pairs, particularly between phages and their respective bacterial hosts. Temperate phages exhibit a higher frequency of genetic exchange with bacterial chromosomes and then virulent phages. Collectively, our findings provide insights into the genetic landscape of the human gut phageome.
Collapse
Affiliation(s)
- Senying Lai
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Huarui Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Wei-Hua Chen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Xing-Ming Zhao
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Liu Y, Kong J, Liu G, Li Z, Xiao Y. Precise Gene Knock-In Tools with Minimized Risk of DSBs: A Trend for Gene Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401797. [PMID: 38728624 PMCID: PMC11267366 DOI: 10.1002/advs.202401797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Gene knock-in refers to the insertion of exogenous functional genes into a target genome to achieve continuous expression. Currently, most knock-in tools are based on site-directed nucleases, which can induce double-strand breaks (DSBs) at the target, following which the designed donors carrying functional genes can be inserted via the endogenous gene repair pathway. The size of donor genes is limited by the characteristics of gene repair, and the DSBs induce risks like genotoxicity. New generation tools, such as prime editing, transposase, and integrase, can insert larger gene fragments while minimizing or eliminating the risk of DSBs, opening new avenues in the development of animal models and gene therapy. However, the elimination of off-target events and the production of delivery carriers with precise requirements remain challenging, restricting the application of the current knock-in treatments to mainly in vitro settings. Here, a comprehensive review of the knock-in tools that do not/minimally rely on DSBs and use other mechanisms is provided. Moreover, the challenges and recent advances of in vivo knock-in treatments in terms of the therapeutic process is discussed. Collectively, the new generation of DSBs-minimizing and large-fragment knock-in tools has revolutionized the field of gene editing, from basic research to clinical treatment.
Collapse
Affiliation(s)
- Yongfeng Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Mudi Meng Honors CollegeChina Pharmaceutical UniversityNanjing210009China
| | - Jianping Kong
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Gongyu Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Zhaoxing Li
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Yibei Xiao
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| |
Collapse
|
5
|
MacDonald AI, Baksh A, Holland A, Shin H, Rice PA, Stark WM, Olorunniji FJ. Variable orthogonality of RDF - large serine integrase interactions within the ϕC31 family. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587898. [PMID: 38617232 PMCID: PMC11014563 DOI: 10.1101/2024.04.03.587898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Large serine integrases are phage- (or mobile element-) encoded enzymes that catalyse site-specific recombination reactions between a short DNA sequence on the phage genome (attP) and a corresponding host genome sequence (attB), thereby integrating the phage DNA into the host genome. Each integrase has its unique pair of attP and attB sites, a feature that allows them to be used as orthogonal tools for genome modification applications. In the presence of a second protein, the Recombination Directionality Factor (RDF), integrase catalyses the reverse, excisive reaction, generating new recombination sites, attR and attL. In addition to promoting attR x attL reaction, the RDF inhibits attP x attB recombination. This feature makes the directionality of integrase reactions programmable, allowing them to be useful for building synthetic biology devices. In this report, we describe the degree of orthogonality of both integrative and excisive reactions for three related integrases (ϕC31, ϕBT1, and TG1) and their RDFs. Among these, TG1 integrase is the most active, showing near complete recombination in both attP x attB and attR x attL reactions, and the most directional in the presence of its RDF. Our findings show that there is varying orthogonality among these three integrases - RDF pairs: ϕC31 integrase was the least selective, with all three RDFs activating it for attR x attL recombination. Similarly, ϕC31 RDF was the least effective among the three RDFs in promoting the excisive activities of the integrases, including its cognate ϕC31 integrase. ϕBT1 and TG1 RDFs were noticeably more effective than ϕC31 RDF at inhibiting attP x attB recombination by their respective integrases, making them more suitable for building reversible genetic switches. AlphaFold-Multimer predicts very similar structural interactions between each cognate integrase - RDF pair. The binding surface on RDF is much more conserved than the binding surface on integrase, an indication that specificity is determined more by the integrase than the RDF. Overall, the observed weak integrase/RDF orthogonality across the three enzymes emphasizes the need for identifying and characterizing more integrase - RDF pairs. Additionally, the ability of a particular integrase's preferred reaction direction to be controlled to varying degrees by non-cognate RDFs provides a path to tunable, non-binary genetic switches.
Collapse
Affiliation(s)
- Alasdair I. MacDonald
- School of Molecular Biosciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, U.K
| | - Aron Baksh
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| | - Alex Holland
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| | - Heewhan Shin
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Phoebe A. Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - W. Marshall Stark
- School of Molecular Biosciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, U.K
| | - Femi J. Olorunniji
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| |
Collapse
|
6
|
Abe K, Takahashi T, Sato T. Extreme C-terminal element of SprA serine integrase is a potential component of the "molecular toggle switch" which controls the recombination and its directionality. Mol Microbiol 2020; 115:1110-1121. [PMID: 33244797 DOI: 10.1111/mmi.14654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/26/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022]
Abstract
In Bacillus subtilis, a sporulation-related gene, spsM, is disrupted by SPβ prophage, but reconstituted during sporulation through SPβ excision. The spsM reconstitution is catalyzed by a site-specific DNA recombinase, SprA, and its cognate recombination directionality factor, SprB. SprB interacts with SprA, directing the SprA-mediated recombination reaction from integration to excision; however, the details of the directionality control remains unclear. Here, we demonstrate the importance of the extreme C-terminal region (ECT) of SprA in the DNA recombination and directionality control. We created a series of SprA C-terminal deletants and examined their DNA-binding and recombination activities. Deletions in the ECT caused a loss of integration and excision activity, the magnitudes of which positively correlated with the deletion size. Gel shift study revealed that the loss of the integration activity was attributable to the failure of synaptic complex formation. The excision deficiency was caused by defective interaction with SprB. Moreover, alanine scanning analysis revealed that Phe532 is essential to interact with SprB. SprAF532A , therefore, showed almost no excision activity, while retaining the integration activity. Collectively, these results suggest that the ECT plays the crucial roles in the interaction of SprA with SprB and possibly in the directional control of the recombination.
Collapse
Affiliation(s)
- Kimihiro Abe
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Japan
| | - Takumi Takahashi
- Department of Frontier Bioscience, Hosei University, Koganei, Japan
| | - Tsutomu Sato
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Japan.,Department of Frontier Bioscience, Hosei University, Koganei, Japan
| |
Collapse
|
7
|
Fan HF, Su BY, Ma CH, Rowley PA, Jayaram M. A bipartite thermodynamic-kinetic contribution by an activating mutation to RDF-independent excision by a phage serine integrase. Nucleic Acids Res 2020; 48:6413-6430. [PMID: 32479633 PMCID: PMC7337939 DOI: 10.1093/nar/gkaa401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Streptomyces phage ϕC31 integrase (Int)—a large serine site-specific recombinase—is autonomous for phage integration (attP x attB recombination) but is dependent on the phage coded gp3, a recombination directionality factor (RDF), for prophage excision (attL x attR recombination). A previously described activating mutation, E449K, induces Int to perform attL x attR recombination in the absence of gp3, albeit with lower efficiency. E449K has no adverse effect on the competence of Int for attP x attB recombination. Int(E449K) resembles Int in gp3 mediated stimulation of attL x attR recombination and inhibition of attP x attB recombination. Using single-molecule analyses, we examined the mechanism by which E449K activates Int for gp3-independent attL x attR recombination. The contribution of E449K is both thermodynamic and kinetic. First, the mutation modulates the relative abundance of Int bound attL-attR site complexes, favoring pre-synaptic (PS) complexes over non-productively bound complexes. Roughly half of the synaptic complexes formed from Int(E449K) pre-synaptic complexes are recombination competent. By contrast, Int yields only inactive synapses. Second, E449K accelerates the dissociation of non-productively bound complexes and inactive synaptic complexes formed by Int. The extra opportunities afforded to Int(E499K) in reattempting synapse formation enhances the probability of success at fruitful synapsis.
Collapse
Affiliation(s)
- Hsiu-Fang Fan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Sizihwan, Kaohsiung 804, Taiwan.,Department of Chemistry, National Sun Yat-sen University, Sizihwan, Kaohsiung 804, Taiwan.,Aerosol Science Research Center, National Sun Yat-sen University, Sizihwan, Kaohsiung 804, Taiwan
| | - Bo-Yu Su
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Chien-Hui Ma
- Department of Molecular Biosciences, UT Austin, Austin, TX 78712, USA
| | - Paul A Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences, UT Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Pedersen M, Neergaard JT, Cassias J, Rasmussen KK, Lo Leggio L, Sneppen K, Hammer K, Kilstrup M. Repression of the lysogenic P R promoter in bacteriophage TP901-1 through binding of a CI-MOR complex to a composite O M-O R operator. Sci Rep 2020; 10:8659. [PMID: 32457340 PMCID: PMC7250872 DOI: 10.1038/s41598-020-65493-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/04/2020] [Indexed: 11/09/2022] Open
Abstract
A functional genetic switch from the lactococcal bacteriophage TP901-1, deciding which of two divergently transcribing promoters becomes most active and allows this bi-stable decision to be inherited in future generations requires a DNA region of less than 1 kb. The fragment encodes two repressors, CI and MOR, transcribed from the PR and PL promoters respectively. CI can repress the transcription of the mor gene at three operator sites (OR, OL, and OD), leading to the immune state. Repression of the cI gene, leading to the lytic (anti-immune) state, requires interaction between CI and MOR by an unknown mechanism, but involving a CI:MOR complex. A consensus for putative MOR binding sites (OM sites), and a common topology of three OM sites adjacent to the OR motif was here identified in diverse phage switches that encode CI and MOR homologs, in a search for DNA sequences similar to the TP901-1 switch. The OR site and all putative OM sites are important for establishment of the anti-immune repression of PR, and a putative DNA binding motif in MOR is needed for establishment of the anti-immune state. Direct evidence for binding between CI and MOR is here shown by pull-down experiments, chemical crosslinking, and size exclusion chromatography. The results are consistent with two possible models for establishment of the anti-immune repression of cI expression at the PR promoter.
Collapse
Affiliation(s)
- Margit Pedersen
- University of Copenhagen, Department of Biology, Copenhagen, DK2200, Denmark
| | - Jesper Tvenge Neergaard
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, DK2800, Denmark
| | - Johan Cassias
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, DK2800, Denmark
| | | | - Leila Lo Leggio
- University of Copenhagen, Department of Chemistry, Copenhagen, DK2200, Denmark
| | - Kim Sneppen
- University of Copenhagen, Center for Models of Life, Copenhagen, DK2200, Denmark
| | - Karin Hammer
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, DK2800, Denmark
| | - Mogens Kilstrup
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, DK2800, Denmark.
| |
Collapse
|
9
|
Fogg PCM, Younger E, Fernando BD, Khaleel T, Stark WM, Smith MCM. Recombination directionality factor gp3 binds ϕC31 integrase via the zinc domain, potentially affecting the trajectory of the coiled-coil motif. Nucleic Acids Res 2019; 46:1308-1320. [PMID: 29228292 PMCID: PMC5814800 DOI: 10.1093/nar/gkx1233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/29/2017] [Indexed: 11/24/2022] Open
Abstract
To establish a prophage state, the genomic DNA of temperate bacteriophages normally becomes integrated into the genome of their host bacterium by integrase-mediated, site-specific DNA recombination. Serine integrases catalyse a single crossover between an attachment site in the host (attB) and a phage attachment site (attP) on the circularized phage genome to generate the integrated prophage DNA flanked by recombinant attachment sites, attL and attR. Exiting the prophage state and entry into the lytic growth cycle requires an additional phage-encoded protein, the recombination directionality factor or RDF, to mediate recombination between attL and attR and excision of the phage genome. The RDF is known to bind integrase and switch its activity from integration (attP x attB) to excision (attL x attR) but its precise mechanism is unclear. Here, we identify amino acid residues in the RDF, gp3, encoded by the Streptomyces phage ϕC31 and within the ϕC31 integrase itself that affect the gp3:Int interaction. We show that residue substitutions in integrase that reduce gp3 binding adversely affect both excision and integration reactions. The mutant integrase phenotypes are consistent with a model in which the RDF binds to a hinge region at the base of the coiled-coil motif in ϕC31 integrase.
Collapse
Affiliation(s)
- Paul C M Fogg
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ellen Younger
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Booshini D Fernando
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Thanafez Khaleel
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Margaret C M Smith
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.,Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
10
|
McShan WM, McCullor KA, Nguyen SV. The Bacteriophages of Streptococcus pyogenes. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0059-2018. [PMID: 31111820 PMCID: PMC11314938 DOI: 10.1128/microbiolspec.gpp3-0059-2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
The bacteriophages of Streptococcus pyogenes (group A streptococcus) play a key role in population shaping, genetic transfer, and virulence of this bacterial pathogen. Lytic phages like A25 can alter population distributions through elimination of susceptible serotypes but also serve as key mediators for genetic transfer of virulence genes and antibiotic resistance via generalized transduction. The sequencing of multiple S. pyogenes genomes has uncovered a large and diverse population of endogenous prophages that are vectors for toxins and other virulence factors and occupy multiple attachment sites in the bacterial genomes. Some of these sites for integration appear to have the potential to alter the bacterial phenotype through gene disruption. Remarkably, the phage-like chromosomal islands (SpyCI), which share many characteristics with endogenous prophages, have evolved to mediate a growth-dependent mutator phenotype while acting as global transcriptional regulators. The diverse population of prophages appears to share a large pool of genetic modules that promotes novel combinations that may help disseminate virulence factors to different subpopulations of S. pyogenes. The study of the bacteriophages of this pathogen, both lytic and lysogenic, will continue to be an important endeavor for our understanding of how S. pyogenes continues to be a significant cause of human disease.
Collapse
Affiliation(s)
- W Michael McShan
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117
| | - Kimberly A McCullor
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117
| | - Scott V Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117
| |
Collapse
|
11
|
Abstract
Serine integrases catalyze precise rearrangement of DNA through site-specific recombination of small sequences of DNA called attachment (att) sites. Unlike other site-specific recombinases, the recombination reaction driven by serine integrases is highly directional and can only be reversed in the presence of an accessory protein called a recombination directionality factor (RDF). The ability to control reaction directionality has led to the development of serine integrases as tools for controlled rearrangement and modification of DNA in synthetic biology, gene therapy, and biotechnology. This review discusses recent advances in serine integrase technologies focusing on their applications in genome engineering, DNA assembly, and logic and data storage devices.
Collapse
Affiliation(s)
- Christine A. Merrick
- School
of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum
Brown Road, Edinburgh EH9
3FF, U.K
| | - Jia Zhao
- Novo
Nordisk (China) Pharmaceuticals Co., Ltd., Lei Shing Hong Center, Guangshunnan Avenue, Beijing 100102, China
| | - Susan J. Rosser
- School
of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum
Brown Road, Edinburgh EH9
3FF, U.K
| |
Collapse
|
12
|
Abe K, Takamatsu T, Sato T. Mechanism of bacterial gene rearrangement: SprA-catalyzed precise DNA recombination and its directionality control by SprB ensure the gene rearrangement and stable expression of spsM during sporulation in Bacillus subtilis. Nucleic Acids Res 2017; 45:6669-6683. [PMID: 28535266 PMCID: PMC5499854 DOI: 10.1093/nar/gkx466] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022] Open
Abstract
A sporulation-specific gene, spsM, is disrupted by an active prophage, SPβ, in the genome of Bacillus subtilis. SPβ excision is required for two critical steps: the onset of the phage lytic cycle and the reconstitution of the spsM-coding frame during sporulation. Our in vitro study demonstrated that SprA, a serine-type integrase, catalyzed integration and excision reactions between attP of SPβ and attB within spsM, while SprB, a recombination directionality factor, was necessary only for the excision between attL and attR in the SPβ lysogenic chromosome. DNA recombination occurred at the center of the short inverted repeat motif in the unique conserved 16 bp sequence among the att sites (5΄-ACAGATAA/AGCTGTAT-3΄; slash, breakpoint; underlines, inverted repeat), where SprA produced the 3΄-overhanging AA and TT dinucleotides for rejoining the DNA ends through base-pairing. Electrophoretic mobility shift assay showed that SprB promoted synapsis of SprA subunits bound to the two target sites during excision but impaired it during integration. In vivo data demonstrated that sprB expression that lasts until the late stage of sporulation is crucial for stable expression of reconstituted spsM without reintegration of the SPβ prophage. These results present a deeper understanding of the mechanism of the prophage-mediated bacterial gene regulatory system.
Collapse
Affiliation(s)
- Kimihiro Abe
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-0003, Japan
| | - Takuo Takamatsu
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Tsutomu Sato
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-0003, Japan.,Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
13
|
Gupta K, Sharp R, Yuan JB, Li H, Van Duyne GD. Coiled-coil interactions mediate serine integrase directionality. Nucleic Acids Res 2017; 45:7339-7353. [PMID: 28549184 PMCID: PMC5499577 DOI: 10.1093/nar/gkx474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/15/2017] [Indexed: 11/14/2022] Open
Abstract
Serine integrases are bacteriophage enzymes that carry out site-specific integration and excision of their viral genomes. The integration reaction is highly directional; recombination between the phage attachment site attP and the host attachment site attB to form the hybrid sites attL and attR is essentially irreversible. In a recent model, extended coiled-coil (CC) domains in the integrase subunits are proposed to interact in a way that favors the attPxattB reaction but inhibits the attLxattR reaction. Here, we show for the Listeria innocua integrase (LI Int) system that the CC domain promotes self-interaction in isolated Int and when Int is bound to attachment sites. Three independent crystal structures of the CC domain reveal the molecular nature of the CC dimer interface. Alanine substitutions of key residues in the interface support the functional significance of the structural model and indicate that the same interaction is responsible for promoting integration and for inhibiting excision. An updated model of a LI Int•attL complex that incorporates the high resolution CC dimer structure provides insights that help to explain the unusual CC dimer structure and potential sources of stability in Int•attL and Int•attR complexes. Together, the data provide a molecular basis for understanding serine integrase directionality.
Collapse
MESH Headings
- Amino Acid Sequence
- Attachment Sites, Microbiological
- Bacteriophages/genetics
- Bacteriophages/metabolism
- Binding Sites
- Cloning, Molecular
- Crystallography, X-Ray
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Integrases/chemistry
- Integrases/genetics
- Integrases/metabolism
- Kinetics
- Listeria/genetics
- Listeria/metabolism
- Listeria/virology
- Models, Molecular
- Mutagenesis, Insertional
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Interaction Domains and Motifs
- Protein Multimerization
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Recombination, Genetic
- Sequence Alignment
- Sequence Homology, Amino Acid
- Serine/chemistry
- Serine/metabolism
- Substrate Specificity
- Thermodynamics
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Kushol Gupta
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 10104, USA
| | - Robert Sharp
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 10104, USA
| | - Jimmy B. Yuan
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 10104, USA
| | - Huiguang Li
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 10104, USA
| | - Gregory D. Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 10104, USA
- To whom correspondence should be addressed. Tel: +1 215 898 3058;
| |
Collapse
|
14
|
Control of Recombination Directionality by the Listeria Phage A118 Protein Gp44 and the Coiled-Coil Motif of Its Serine Integrase. J Bacteriol 2017; 199:JB.00019-17. [PMID: 28289084 DOI: 10.1128/jb.00019-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/06/2017] [Indexed: 02/04/2023] Open
Abstract
The serine integrase of phage A118 catalyzes integrative recombination between attP on the phage and a specific attB locus on the chromosome of Listeria monocytogenes, but it is unable to promote excisive recombination between the hybrid attL and attR sites found on the integrated prophage without assistance by a recombination directionality factor (RDF). We have identified and characterized the phage-encoded RDF Gp44, which activates the A118 integrase for excision and inhibits integration. Gp44 binds to the C-terminal DNA binding domain of integrase, and we have localized the primary binding site to be within the mobile coiled-coil (CC) motif but distinct from the distal tip of the CC that is required for recombination. This interaction is sufficient to inhibit integration, but a second interaction involving the N-terminal end of Gp44 is also required to activate excision. We provide evidence that these two contacts modulate the trajectory of the CC motifs as they extend out from the integrase core in a manner dependent upon the identities of the four att sites. Our results support a model whereby Gp44 shapes the Int-bound complexes to control which att sites can synapse and recombine.IMPORTANCE Serine integrases mediate directional recombination between bacteriophage and bacterial chromosomes. These highly regulated site-specific recombination reactions are integral to the life cycle of temperate phage and, in the case of Listeria monocytogenes lysogenized by A118 family phage, are an essential virulence determinant. Serine integrases are also utilized as tools for genetic engineering and synthetic biology because of their exquisite unidirectional control of the DNA exchange reaction. Here, we identify and characterize the recombination directionality factor (RDF) that activates excision and inhibits integration reactions by the phage A118 integrase. We provide evidence that the A118 RDF binds to and modulates the trajectory of the long coiled-coil motif that extends from the large carboxyl-terminal DNA binding domain and is postulated to control the early steps of recombination site synapsis.
Collapse
|
15
|
Genome Integration and Excision by a New Streptomyces Bacteriophage, ϕJoe. Appl Environ Microbiol 2017; 83:AEM.02767-16. [PMID: 28003200 PMCID: PMC5311408 DOI: 10.1128/aem.02767-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/18/2016] [Indexed: 01/27/2023] Open
Abstract
Bacteriophages are the source of many valuable tools for molecular biology and genetic manipulation. In Streptomyces, most DNA cloning vectors are based on serine integrase site-specific DNA recombination systems derived from phage. Because of their efficiency and simplicity, serine integrases are also used for diverse synthetic biology applications. Here, we present the genome of a new Streptomyces phage, ϕJoe, and investigate the conditions for integration and excision of the ϕJoe genome. ϕJoe belongs to the largest Streptomyces phage cluster (R4-like) and encodes a serine integrase. The attB site from Streptomyces venezuelae was used efficiently by an integrating plasmid, pCMF92, constructed using the ϕJoe int-attP locus. The attB site for ϕJoe integrase was occupied in several Streptomyces genomes, including that of S. coelicolor, by a mobile element that varies in gene content and size between host species. Serine integrases require a phage-encoded recombination directionality factor (RDF) to activate the excision reaction. The ϕJoe RDF was identified, and its function was confirmed in vivo. Both the integrase and RDF were active in in vitro recombination assays. The ϕJoe site-specific recombination system is likely to be an important addition to the synthetic biology and genome engineering toolbox. IMPORTANCEStreptomyces spp. are prolific producers of secondary metabolites, including many clinically useful antibiotics. Bacteriophage-derived integrases are important tools for genetic engineering, as they enable integration of heterologous DNA into the Streptomyces chromosome with ease and high efficiency. Recently, researchers have been applying phage integrases for a variety of applications in synthetic biology, including rapid assembly of novel combinations of genes, biosensors, and biocomputing. An important requirement for optimal experimental design and predictability when using integrases, however, is the need for multiple enzymes with different specificities for their integration sites. In order to provide a broad platform of integrases, we identified and validated the integrase from a newly isolated Streptomyces phage, ϕJoe. ϕJoe integrase is active in vitro and in vivo. The specific recognition site for integration is present in a wide range of different actinobacteria, including Streptomyces venezuelae, an emerging model bacterium in Streptomyces research.
Collapse
|
16
|
Bowyer J, Zhao J, Subsoontorn P, Wong W, Rosser S, Bates D. Mechanistic Modeling of a Rewritable Recombinase Addressable Data Module. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2016; 10:1161-1170. [PMID: 27244749 DOI: 10.1109/tbcas.2016.2526668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Many of the most important applications predicted to arise from Synthetic Biology will require engineered cellular memory with the capability to store data in a rewritable and reversible manner upon induction by transient stimuli. DNA recombination provides an ideal platform for cellular data storage and has allowed the development of a rewritable recombinase addressable data (RAD) module, capable of efficient data storage within a chromosome. Here, we develop the first detailed mechanistic model of DNA recombination, and validate it against a new set of in vitro data on recombination efficiencies across a range of different concentrations of integrase and gp3. Investigation of in vivo recombination dynamics using our model reveals the importance of fully accounting for all mechanistic features of DNA recombination in order to accurately predict the effect of different switching strategies on RAD module performance, and highlights its usefulness as a design tool for building future synthetic circuitry.
Collapse
|
17
|
Abstract
The large serine recombinases (LSRs) are a family of enzymes, encoded in temperate phage genomes or on mobile elements, that precisely cut and recombine DNA in a highly controllable and predictable way. In phage integration, the LSRs act at specific sites, the attP site in the phage and the attB site in the host chromosome, where cleavage and strand exchange leads to the integrated prophage flanked by the recombinant sites attL and attR. The prophage can excise by recombination between attL and attR but this requires a phage-encoded accessory protein, the recombination directionality factor (RDF). Although the LSRs can bind specifically to all the recombination sites, only specific integrase-bound sites can pair in a synaptic complex prior to strand exchange. Recent structural information has led to a breakthrough in our understanding of the mechanism of the LSRs, notably how the LSRs bind to their substrates and how LSRs display this site-selectivity. We also understand that the RDFs exercise control over the LSRs by protein-protein interactions. Other recent work with the LSRs have contributed to our understanding of how all serine recombinases undergo strand exchange subunit rotation, facilitated by surfaces that resemble a molecular bearing.
Collapse
|
18
|
Xu Z, Brown WRA. Comparison and optimization of ten phage encoded serine integrases for genome engineering in Saccharomyces cerevisiae. BMC Biotechnol 2016; 16:13. [PMID: 26860416 PMCID: PMC4748531 DOI: 10.1186/s12896-016-0241-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phage-encoded serine integrases, such as ϕC31 integrase, are widely used for genome engineering but have not been optimized for use in Saccharomyces cerevisiae although this organism is a widely used organism in biotechnology. RESULTS The activities of derivatives of fourteen serine integrases that either possess or lack a nuclear localization signal were compared using a standardized recombinase mediated cassette exchange reaction. The relative activities of these integrases in S. cerevisiae and in mammalian cells suggested that the major determinant of the activity of an integrase is the enzyme itself and not the cell in which it is working. We used an inducible promoter to show that six integrases were toxic as judged by their effects upon the proliferative ability of transformed yeast. We show that in general the active phage-encoded serine integrases were an order of magnitude more efficient in promoting genome integration reactions than a simple homologous recombination. CONCLUSIONS The results of our study allow us to identify the integrases of the phage ϕBT1, TP901 ~ nls, R4, Bxb1, MR11, A118, ϕK38, ϕC31 ~ nls, Wβ and SPBC ~ nls as active in S. cerevisiae and indicate that vertebrate cells are more restricted than yeast in terms of which integrases are active.
Collapse
Affiliation(s)
- Zhengyao Xu
- School of Life Sciences, Queens Medical Centre, Nottingham University, Nottingham, NG7 2UH, UK.
| | - William R A Brown
- School of Life Sciences, Queens Medical Centre, Nottingham University, Nottingham, NG7 2UH, UK.
| |
Collapse
|
19
|
Merrick C, Wardrope C, Paget J, Colloms S, Rosser S. Rapid Optimization of Engineered Metabolic Pathways with Serine Integrase Recombinational Assembly (SIRA). Methods Enzymol 2016; 575:285-317. [DOI: 10.1016/bs.mie.2016.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
20
|
Koberg S, Mohamed MDA, Faulhaber K, Neve H, Heller KJ. Identification and characterization of cis- and trans-acting elements involved in prophage induction in Streptococcus thermophilus J34. Mol Microbiol 2015; 98:535-52. [PMID: 26193959 DOI: 10.1111/mmi.13140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2015] [Indexed: 11/29/2022]
Abstract
The genetic switch region of temperate Streptococcus thermophilus phage TP-J34 contains two divergently oriented promoters and several predicted operator sites. It separates lytic cycle-promoting genes from those promoting lysogeny. A polycistronic transcript comprises the genes coding for repressor Crh, metalloproteinase-motif protein Rir and superinfection exclusion lipoprotein Ltp. Weak promoters effecting monocistronic transcripts were localized for ltp and int (encoding integrase) by Northern blot and 5'-RACE-PCR. These transcripts appeared in lysogenic as well as lytic state. A polycistronic transcript comprising genes coh (encoding Cro homolog), ant (encoding putative antirepressor), orf7, orf8 and orf9 was only detected in the lytic state. Four operator sites, of which three were located in the intergenic regions between crh and coh, and one between coh and ant, were identified by competition electromobility shift assays. Cooperative binding of Crh to two operator sites immediately upstream of coh could be demonstrated. Coh was shown to bind to the operator closest to crh only. Oligomerization was proven by cross-linking Crh by glutaraldehyde. Knock-out of rir revealed a key role in prophage induction. Rir and Crh were shown to form a complex in solution and Rir prevented binding of Crh to its operator sites.
Collapse
Affiliation(s)
- Sabrina Koberg
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| | - Mazhar Desouki Ali Mohamed
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| | - Katharina Faulhaber
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| | - Knut J Heller
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| |
Collapse
|
21
|
Fogg PCM, Colloms S, Rosser S, Stark M, Smith MCM. New applications for phage integrases. J Mol Biol 2014; 426:2703-16. [PMID: 24857859 PMCID: PMC4111918 DOI: 10.1016/j.jmb.2014.05.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022]
Abstract
Within the last 25 years, bacteriophage integrases have rapidly risen to prominence as genetic tools for a wide range of applications from basic cloning to genome engineering. Serine integrases such as that from ϕC31 and its relatives have found an especially wide range of applications within diverse micro-organisms right through to multi-cellular eukaryotes. Here, we review the mechanisms of the two major families of integrases, the tyrosine and serine integrases, and the advantages and disadvantages of each type as they are applied in genome engineering and synthetic biology. In particular, we focus on the new areas of metabolic pathway construction and optimization, biocomputing, heterologous expression and multiplexed assembly techniques. Integrases are versatile and efficient tools that can be used in conjunction with the various extant molecular biology tools to streamline the synthetic biology production line. Phage integrases are site-specific recombinases that mediate controlled and precise DNA integration and excision. The serine integrases, such as ϕC31 integrase, can be used for efficient recombination in heterologous hosts as they use short recombination substrates, they are directional and they do not require host factors. Both serine and tyrosine integrases, such as λ integrase, are versatile tools for DNA cloning and assembly in vivo and in vitro. Controlled expression of orthologous serine integrases and their cognate recombination directionality factors can be used to generate living biocomputers. Serine integrases are increasingly being exploited for synthetic biology applications.
Collapse
Affiliation(s)
- Paul C M Fogg
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Sean Colloms
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Susan Rosser
- School of Biological Sciences, University of Edinburgh, King's Building, Edinburgh EH9 3JR, UK
| | - Marshall Stark
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Margaret C M Smith
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
22
|
Rutherford K, Van Duyne GD. The ins and outs of serine integrase site-specific recombination. Curr Opin Struct Biol 2014; 24:125-31. [PMID: 24509164 DOI: 10.1016/j.sbi.2014.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/27/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022]
Abstract
Serine integrases catalyze the integration and excision of phage genomes into and out of bacterial chromosomes in a highly specific and directional manner, making these proteins powerful tools for genome engineering. In 2013, the first structure of a serine integrase-DNA complex was reported. This work revealed how the phage attP sequence is recognized by the integrase and provided important clues about how serine integrases bind to other attachment site sequences. The resulting structural models indicate that distinct spatial arrangements of integrase domains are present for each attachment site complex. Here we describe how serine integrases may exploit this site-dependent domain arrangement to regulate the direction of recombination. We also discuss how phage-encoded recombination directionality factors could change this directionality by altering the nature of inter-subunit interactions.
Collapse
Affiliation(s)
- Karen Rutherford
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
23
|
Zhang L, Zhu B, Dai R, Zhao G, Ding X. Control of directionality in Streptomyces phage φBT1 integrase-mediated site-specific recombination. PLoS One 2013; 8:e80434. [PMID: 24278283 PMCID: PMC3836970 DOI: 10.1371/journal.pone.0080434] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 10/02/2013] [Indexed: 11/19/2022] Open
Abstract
Streptomyces phage φBT1 integrates its genome into the attB site of the host chromosome with the attP site to generate attL and attR. The φBT1 integrase belongs to the large serine recombinase subfamily which directly binds to target sites to initiate double strand breakage and exchange. A recombination directionality factor (RDF) is commonly required for switching integration to excision. Here we report the characterization of the RDF protein for φBT1 recombination. The RDF, is a phage-encoded gp3 gene product (28 KDa), which allows efficient active excision between attL and attR, and inhibits integration between attB and attP; Gp3 can also catalyze topological relaxation with the integrase of supercoiled plasmids containing a single excision site. Further study showed that Gp3 could form a dimer and interact with the integrase whether it bound to the substrate or not. The synapse formation of attL or attR alone with integrase and Gp3 showed that synapsis did not discriminate between the two sites, indicating that complementarity of central dinucleotides is the sole determinant of outcome in correct excision synapses. Furthermore, both in vitro and in vivo evidence support that the RDFs of φBT1 and φC31 were fully exchangeable, despite the low amino acid sequence identity of the two integrases.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Synthetic biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Binyan Zhu
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ruixue Dai
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Guoping Zhao
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Synthetic biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- * E-mail: (GZ); (XD)
| | - Xiaoming Ding
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (GZ); (XD)
| |
Collapse
|
24
|
Xu Z, Thomas L, Davies B, Chalmers R, Smith M, Brown W. Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotechnol 2013; 13:87. [PMID: 24139482 PMCID: PMC4015280 DOI: 10.1186/1472-6750-13-87] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/09/2013] [Indexed: 11/18/2022] Open
Abstract
Background Phage-encoded serine integrases, such as φC31 integrase, are widely used for genome engineering. Fifteen such integrases have been described but their utility for genome engineering has not been compared in uniform assays. Results We have compared fifteen serine integrases for their utility for DNA manipulations in mammalian cells after first demonstrating that all were functional in E. coli. Chromosomal recombination reporters were used to show that seven integrases were active on chromosomally integrated DNA in human fibroblasts and mouse embryonic stem cells. Five of the remaining eight enzymes were active on extra-chromosomal substrates thereby demonstrating that the ability to mediate extra-chromosomal recombination is no guide to ability to mediate site-specific recombination on integrated DNA. All the integrases that were active on integrated DNA also promoted DNA integration reactions that were not mediated through conservative site-specific recombination or damaged the recombination sites but the extent of these aberrant reactions varied over at least an order of magnitude. Bxb1 integrase yielded approximately two-fold more recombinants and displayed about two fold less damage to the recombination sites than the next best recombinase; φC31 integrase. Conclusions We conclude that the Bxb1 and φC31 integrases are the reagents of choice for genome engineering in vertebrate cells and that DNA damage repair is a major limitation upon the utility of this class of site-specific recombinase.
Collapse
Affiliation(s)
| | | | | | | | | | - William Brown
- Queens Medical Centre, School of Life Sciences, Nottingham University, Nottingham NG7 2UH, UK.
| |
Collapse
|
25
|
Van Duyne GD, Rutherford K. Large serine recombinase domain structure and attachment site binding. Crit Rev Biochem Mol Biol 2013; 48:476-91. [PMID: 23980849 DOI: 10.3109/10409238.2013.831807] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Large serine recombinases (LSRs) catalyze the movement of DNA elements into and out of bacterial chromosomes using site-specific recombination between short DNA "attachment sites". The LSRs that function as bacteriophage integrases carry out integration between attachment sites in the phage (attP) and in the host (attB). This process is highly directional; the reverse excision reaction between the product attL and attR sites does not occur in the absence of a phage-encoded recombination directionality factor, nor does recombination typically occur between other pairings of attachment sites. Although the mechanics of strand exchange are reasonably well understood through studies of the closely related resolvase and invertase serine recombinases, many of the fundamental aspects of the LSR reactions have until recently remained poorly understood on a structural level. In this review, we discuss the results of several years worth of biochemical and molecular genetic studies of LSRs in light of recently described structural models of LSR-DNA complexes. The focus is understanding LSR domain structure, how LSRs bind to the attP and attB attachment sites, and the differences between attP-binding and attB-binding modes. The simplicity, site-selectivity and strong directionality of the LSRs has led to their use as important tools in a number of genetic engineering applications in a wide variety of organisms. Given the important potential role of LSR enzymes in genetic engineering and gene therapy, understanding the structure and DNA-binding properties of LSRs is of fundamental importance for those seeking to enhance or alter specificity and functionality in these systems.
Collapse
Affiliation(s)
- Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia , USA
| | | |
Collapse
|
26
|
Repetitive, marker-free, site-specific integration as a novel tool for multiple chromosomal integration of DNA. Appl Environ Microbiol 2013; 79:3563-9. [PMID: 23542630 DOI: 10.1128/aem.00346-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present a tool for repetitive, marker-free, site-specific integration in Lactococcus lactis, in which a nonreplicating plasmid vector (pKV6) carrying a phage attachment site (attP) can be integrated into a bacterial attachment site (attB). The novelty of the tool described here is the inclusion of a minimal bacterial attachment site (attB(min)), two mutated loxP sequences (lox66 and lox71) allowing for removal of undesirable vector elements (antibiotic resistance marker), and a counterselection marker (oroP) for selection of loxP recombination on the pKV6 vector. When transformed into L. lactis expressing the phage TP901-1 integrase, pKV6 integrates with high frequency into the chromosome, where it is flanked by attL and attR hybrid attachment sites. After expression of Cre recombinase from a plasmid that is not able to replicate in L. lactis, loxP recombinants can be selected for by using 5-fluoroorotic acid. The introduced attB(min) site can subsequently be used for a second round of integration. To examine if attP recombination was specific to the attB site, integration was performed in strains containing the attB, attL, and attR sites or the attL and attR sites only. Only attP-attB recombination was observed when all three sites were present. In the absence of the attB site, a low frequency of attP-attL recombination was observed. To demonstrate the functionality of the system, the xylose utilization genes (xylABR and xylT) from L. lactis strain KF147 were integrated into the chromosome of L. lactis strain MG1363 in two steps.
Collapse
|
27
|
Mandali S, Dhar G, Avliyakulov NK, Haykinson MJ, Johnson RC. The site-specific integration reaction of Listeria phage A118 integrase, a serine recombinase. Mob DNA 2013; 4:2. [PMID: 23282060 PMCID: PMC3556126 DOI: 10.1186/1759-8753-4-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/25/2012] [Indexed: 11/25/2022] Open
Abstract
Background A large subfamily of serine recombinases contains long polypeptide segments appended to the C-terminal end of the conserved catalytic domain. Members of this subfamily often function as phage integrases but also mediate transposition and regulate terminal differentiation processes in eubacteria. Although a few members of this subfamily have been studied in purified in vitro systems, key mechanistic aspects of reactions promoted by these recombinases remain to be determined, particularly with respect to the functions of the large C-terminal domain. Results We have developed and characterized a robust in vitro recombination reaction by the Listeria phage A118 integrase, a member of the subfamily of serine recombinases containing a large C-terminal domain. The reaction occurs in a simple buffered salt solution and exhibits a modest stimulation by divalent cations or spermidine and DNA supercoiling. Recombination with purified A118 integrase is unidirectional, being efficient only between attP and attB DNA sites to either join separate DNA molecules (intermolecular recombination) or to generate deletions or inversions depending on the relative orientation of att sites in cis (intramolecular recombination). The minimal attP site is 50 bp but requires only 44 bp of base sequence information, whereas the minimal attB site is 42 bp and requires 38 bp of base sequence information. DNA exchange occurs between the central 2 bp of attP and attB. Identity between these two base pairs is required for recombination, and they solely determine the orientation of recombination sites. The integrase dimer binds efficiently to full att sites, including the attL and attR integration products, but poorly and differentially to each half-site. The large C-terminal domain can be separated from the N-terminal catalytic by partial proteolysis and mediates non-cooperative DNA binding to att sites. Conclusions The basic properties of the phage A118 integrase reaction and its substrate requirements have been elucidated. A118 integrase thus joins the handful of biochemically characterized serine integrases that are serving as models for mechanistic studies on this important class of recombinases. Information reported here will also be useful in exploiting this recombinase for genetic engineering.
Collapse
Affiliation(s)
- Sridhar Mandali
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1737, USA.
| | | | | | | | | |
Collapse
|
28
|
Savinov A, Pan J, Ghosh P, Hatfull GF. The Bxb1 gp47 recombination directionality factor is required not only for prophage excision, but also for phage DNA replication. Gene 2011; 495:42-8. [PMID: 22227494 DOI: 10.1016/j.gene.2011.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 11/15/2022]
Abstract
Mycobacteriophage Bxb1 encodes a serine-integrase that catalyzes both integrative and excisive site-specific recombination. However, excision requires a second phage-encoded protein, gp47, which serves as a recombination directionality factor (RDF). The viability of a Bxb1 mutant containing an S153A substitution in gp47 that eliminates the RDF activity of Bxb1 gp47 shows that excision is not required for Bxb1 lytic growth. However, the inability to construct a Δ47 deletion mutant of Bxb1 suggests that gp47 provides a second function that is required for lytic growth, although the possibility of an essential cis-acting site cannot be excluded. Characterization of a mutant prophage of mycobacteriophage L5 in which gene 54 - a homologue of Bxb1 gene 47 - is deleted shows that it also is defective in induced lytic growth, and exhibits a strong defect in DNA replication. Bxb1 gp47 and its relatives are also unusual in containing conserved motifs associated with a phosphoesterase function, although we have not been able to show robust phosphoesterase activity of the proteins, and amino acid substitutions with the conserved motifs do not interfere with RDF activity. We therefore propose that Bxb1 gp47 and its relatives provide an important function in phage DNA replication that has been co-opted by the integration machinery of the serine-integrases to control the directionality of recombination.
Collapse
Affiliation(s)
- Andrew Savinov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | | | | | | |
Collapse
|
29
|
Site-specific recombinases as tools for heterologous gene integration. Appl Microbiol Biotechnol 2011; 92:227-39. [DOI: 10.1007/s00253-011-3519-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/19/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
|
30
|
Khaleel T, Younger E, McEwan AR, Varghese AS, Smith MCM. A phage protein that binds φC31 integrase to switch its directionality. Mol Microbiol 2011; 80:1450-63. [DOI: 10.1111/j.1365-2958.2011.07696.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Abstract
To establish a lysogenic lifestyle, the temperate bacteriophage φC31 integrates its genome into the chromosome of its Streptomyces host, by site-specific recombination between attP (the attachment site in the phage DNA) and attB (the chromosomal attachment site). This reaction is promoted by a phage-encoded serine recombinase Int. To return to the lytic lifestyle, the prophage excises its DNA by a similar Int-mediated reaction between the recombinant sites flanking the prophage, attL and attR. φC31 Int has been developed into a popular experimental tool for integration of transgenic DNA into the genomes of eukaryotic organisms. However, until now it has not been possible to use Int to promote the reverse reaction, excision. In many other phages, the presence of a recombination directionality factor (RDF) protein biases the phage-encoded integrase towards prophage excision, whereas absence of the RDF favours integration; but the φC31 RDF had proved elusive. In this issue of Molecular Microbiology, Khaleel et al. (2011) report the identification and purification of the φC31 RDF, and show that it both promotes excision and inhibits integration by direct protein-protein interactions with Int itself.
Collapse
Affiliation(s)
- W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
32
|
Stevens RH, Ektefaie MR, Fouts DE. The annotated complete DNA sequence of Enterococcus faecalis bacteriophage φEf11 and its comparison with all available phage and predicted prophage genomes. FEMS Microbiol Lett 2011; 317:9-26. [PMID: 21204936 DOI: 10.1111/j.1574-6968.2010.02203.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
φEf11 is a temperate Siphoviridae bacteriophage isolated by induction from a lysogenic Enterococcus faecalis strain. The φEf11 DNA was completely sequenced and found to be 42,822 bp in length, with a G+C mol% of 34.4%. Genome analysis revealed 65 ORFs, accounting for 92.8% of the DNA content. All except for seven of the ORFs displayed sequence similarities to previously characterized proteins. The genes were arranged in functional modules, organized similar to that of several other phages of low GC Gram-positive bacteria; however, the number and arrangement of lysis-related genes were atypical of these bacteriophages. A 159 bp noncoding region between predicted cI and cro genes is highly similar to the functionally characterized early promoter region of lactococcal temperate phage TP901-1, and possessed a predicted stem-loop structure in between predicted P(L) and P(R) promoters, suggesting a novel mechanism of repression of these two bacteriophages from the λ paradigm. Comparison with all available phage and predicted prophage genomes revealed that the φEf11 genome displays unique features, suggesting that φEf11 may be a novel member of a larger family of temperate prophages that also includes lactococcal phages. Trees based on the blast score ratio grouped this family by tail fiber similarity, suggesting that these trees are useful for identifying phages with similar tail fibers.
Collapse
Affiliation(s)
- Roy H Stevens
- Department of Endodontology, Temple University Kornberg School of Dentistry, Philadelphia, PA 19140, USA.
| | | | | |
Collapse
|
33
|
Wang L, Archer GL. Roles of CcrA and CcrB in excision and integration of staphylococcal cassette chromosome mec, a Staphylococcus aureus genomic island. J Bacteriol 2010; 192:3204-12. [PMID: 20382769 PMCID: PMC2901700 DOI: 10.1128/jb.01520-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 03/30/2010] [Indexed: 11/20/2022] Open
Abstract
The gene encoding resistance to methicillin and other beta-lactam antibiotics in staphylococci, mecA, is carried on a genomic island, SCCmec (for staphylococcal cassette chromosome mec). The chromosomal excision and integration of types I to IV SCCmec are catalyzed by the site-specific recombinases CcrA and CcrB, the genes for which are encoded on each element. We sought to identify the relative contributions of CcrA and CcrB in the excision and integration of SCCmec. Purified CcrB but not CcrA was shown to mediate the gel shift of chromosomal target integration sequences (attB) in electrophoretic mobility shift assays. However, preincubation of CcrB-DNA complexes with increasing concentrations of CcrA blocked gel shift. The interaction of CcrB and CcrA was confirmed by Escherichia coli two-hybrid analysis. SCCmec excision mediated by plasmid-encoded and inducible ccrA, ccrB, or both genes was assessed by PCR in Staphylococcus aureus. CcrB alone could mediate excision but excision was at an alternate att site (attR2) within the right extremity of SCCmec. In contrast, both CcrB and CcrA were required to mediate excision at the chromosomal attB site (called attR when SCCmec is integrated). Insertion of a plasmid containing the SCCmec att site (attS) into the chromosome required both CcrA and CcrB, but CcrA overexpression lowered integration frequency. Thus, while CcrB binds DNA, interaction between CcrA and CcrB, in a precise ratio, is required for attB site-specific excision and SCCmec chromosomal insertion.
Collapse
Affiliation(s)
- Lei Wang
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, McGuire Hall Room 103, 1112 East Clay Street, Richmond, Virginia 23298
| | - Gordon L. Archer
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, McGuire Hall Room 103, 1112 East Clay Street, Richmond, Virginia 23298
| |
Collapse
|
34
|
Site-specific recombination by φC31 integrase and other large serine recombinases. Biochem Soc Trans 2010; 38:388-94. [DOI: 10.1042/bst0380388] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most temperate phages encode an integrase for integration and excision of the prophage. Integrases belong either to the λ Int family of tyrosine recombinases or to a subgroup of the serine recombinases, the large serine recombinases. Integration by purified serine integrases occurs efficiently in vitro in the presence of their cognate (~50 bp) phage and host attachment sites, attP and attB respectively. Serine integrases require an accessory protein, Xis, to promote excision, a reaction in which the products of the integration reaction, attL and attR, recombine to regenerate attP and attB. Unlike other directional recombinases, serine integrases are not controlled by proteins occupying accessory DNA-binding sites. Instead, it is thought that different integrase conformations, induced by binding to the DNA substrates, control protein–protein interactions, which in turn determine whether recombination proceeds. The present review brings together the evidence for this model derived from the studies on φC31 integrase, Bxb1 integrase and other related proteins.
Collapse
|
35
|
Control of directionality in bacteriophage mv4 site-specific recombination: functional analysis of the Xis factor. J Bacteriol 2009; 192:624-35. [PMID: 19948798 DOI: 10.1128/jb.00986-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrase of the temperate bacteriophage mv4 catalyzes site-specific recombination between the phage attP site and the host attB site during Lactobacillus delbrueckii lysogenization. The mv4 prophage is excised during the induction of lytic growth. Excisive site-specific recombination between the attR and attL sites is also catalyzed by the phage-encoded recombinase, but the directionality of the recombination is determined by a second phage-encoded protein, the recombination directionality factor (RDF). We have identified and functionally characterized the RDF involved in site-specific excision of the prophage genome. The mv4 RDF, (mv4)Xis, is encoded by the second gene of the early lytic operon. It is a basic protein of 56 amino acids. Electrophoretic mobility shift assays demonstrated that (mv4)Xis binds specifically to the attP and attR sites via two DNA-binding sites, introducing a bend into the DNA. In vitro experiments and in vivo recombination assays with plasmids in Escherichia coli and Lactobacillus plantarum demonstrated that (mv4)Xis is absolutely required for inter- or intramolecular recombination between the attR and attL sites. In contrast to the well-known phage site-specific recombination systems, the integrative recombination between the attP and attB sites seems not to be inhibited by the presence of (mv4)Xis.
Collapse
|
36
|
Identification and characterization of the phage gene sav, involved in sensitivity to the lactococcal abortive infection mechanism AbiV. Appl Environ Microbiol 2009; 75:2484-94. [PMID: 19270128 DOI: 10.1128/aem.02093-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis phage mutants that are insensitive to the recently characterized abortive infection mechanism AbiV were isolated and analyzed in an effort to elucidate factors involved in the sensitivity to AbiV. Whole-genome sequencing of the phage mutants p2.1 and p2.2 revealed mutations in an orf that is transcribed early, indicating that this orf was responsible for AbiV sensitivity. Sequencing of the homologous regions in the genomes of other AbiV-insensitive mutants derived from p2 and six other lactococcal wild-type phages revealed point mutations in the homologous orf sequences. The orf was named sav (for sensitivity to AbiV), and the encoded polypeptide was named SaV. The purification of a His-tagged SaV polypeptide by gel filtration suggested that the polypeptide formed a dimer in its native form. The overexpression of SaV in L. lactis and Escherichia coli led to a rapid toxic effect. Conserved, evolutionarily related regions in SaV polypeptides of different phage groups are likely to be responsible for the AbiV-sensitive phenotype and the toxicity.
Collapse
|
37
|
Plasmid pCS1966, a new selection/counterselection tool for lactic acid bacterium strain construction based on the oroP gene, encoding an orotate transporter from Lactococcus lactis. Appl Environ Microbiol 2008; 74:4772-5. [PMID: 18539798 DOI: 10.1128/aem.00134-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this paper we describe the new selection/counterselection vector pCS1966, which is suitable for both sequence-specific integration based on homologous recombination and integration in a bacteriophage attachment site. This plasmid harbors oroP, which encodes a dedicated orotate transporter, and can replicate only in Escherichia coli. Selection for integration is performed primarily by resistance to erythromycin; alternatively, the ability to utilize orotate as a pyrimidine source in a pyrimidine auxotrophic mutant could be utilized. Besides allowing the cell to utilize orotate, the transporter renders the cell sensitive to 5-fluoroorotate. This sensitivity is used to select for loss of the plasmid. When expressed from its own promoter, oroP was toxic to E. coli, whereas in Lactococcus lactis the level of expression of oroP from a chromosomal copy was too low to confer 5-fluoroorotate sensitivity. In order to obtain a plasmid that confers 5-fluoroorotate sensitivity when it is integrated into the chromosome of L. lactis and at the same time can be stably maintained in E. coli, the expression of the oroP gene was controlled from a synthetic promoter conferring these traits. To demonstrate its use, a number of L. lactis strains expressing triosephosphate isomerase (tpiA) at different levels were constructed.
Collapse
|
38
|
The role of prophage for genome diversification within a clonal lineage of Lactobacillus johnsonii: characterization of the defective prophage LJ771. J Bacteriol 2008; 190:5806-13. [PMID: 18515417 DOI: 10.1128/jb.01802-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two independent isolates of the gut commensal Lactobacillus johnsonii were sequenced. These isolates belonged to the same clonal lineage and differed mainly by a 40.8-kb prophage, LJ771, belonging to the Sfi11 phage lineage. LJ771 shares close DNA sequence identity with Lactobacillus gasseri prophages. LJ771 coexists as an integrated prophage and excised circular phage DNA, but phage DNA packaged into extracellular phage particles was not detected. Between the phage lysin gene and attR a likely mazE ("antitoxin")/pemK ("toxin") gene cassette was detected in LJ771 but not in the L. gasseri prophages. Expressed pemK could be cloned in Escherichia coli only together with the mazE gene. LJ771 was shown to be highly stable and could be cured only by coexpression of mazE from a plasmid. The prophage was integrated into the methionine sulfoxide reductase gene (msrA) and complemented the 5' end of this gene, creating a protein with a slightly altered N-terminal sequence. The two L. johnsonii strains had identical in vitro growth and in vivo gut persistence phenotypes. Also, in an isogenic background, the presence of the prophage resulted in no growth disadvantage.
Collapse
|
39
|
Two-step site selection for serine-integrase-mediated excision: DNA-directed integrase conformation and central dinucleotide proofreading. Proc Natl Acad Sci U S A 2008; 105:3238-43. [PMID: 18299577 DOI: 10.1073/pnas.0711649105] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage-encoded serine-integrases are members of the large family of serine-recombinases and catalyze site-specific integrative recombination between a phage attP site and a bacterial attB site to form an integrated prophage. Prophage excision involves a second site-specific recombination event, in which the sites generated by integration, attL and attR, are used as substrates to regenerate attP and attB. Excision is catalyzed by integrase but also requires a phage-encoded recombination directionality factor (RDF). The Bxb1 recombination sites, attP and attB, are small (<50 bp), different in sequence, and quasisymmetrical, and they give rise to attL- and attR-recombinant products that are asymmetric but similar to each other, each being composed of B- and P-type half-sites. We show here that the determination of correct excision products is a two-step process, with a presynaptic RDF-dependent step that aligns attL and attR in the correct orientation and a postsynaptic step in which the nonpalindromic central dinucleotide confers identity to attL and attR and prevents each from recombining with itself.
Collapse
|
40
|
Defoor E, Kryger MB, Martinussen J. The orotate transporter encoded by oroP from Lactococcus lactis is required for orotate utilization and has utility as a food-grade selectable marker. Microbiology (Reading) 2007; 153:3645-3659. [DOI: 10.1099/mic.0.2007/005959-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Els Defoor
- Center for Systems Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Maj-Britt Kryger
- Center for Systems Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jan Martinussen
- Center for Systems Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
41
|
Ghosh P, Wasil LR, Hatfull GF. Control of phage Bxb1 excision by a novel recombination directionality factor. PLoS Biol 2007; 4:e186. [PMID: 16719562 PMCID: PMC1470463 DOI: 10.1371/journal.pbio.0040186] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 04/05/2006] [Indexed: 12/22/2022] Open
Abstract
Mycobacteriophage Bxb1 integrates its DNA at the
attB site of the
Mycobacterium smegmatis genome using the viral
attP site and a phage-encoded integrase generating the recombinant junctions
attL and
attR. The Bxb1 integrase is a member of the serine recombinase family of site-specific recombination proteins and utilizes small (<50 base pair) substrates for recombination, promoting strand exchange without the necessity for complex higher order macromolecular architectures. To elucidate the regulatory mechanism for the integration and excision reactions, we have identified a Bxb1-encoded recombination directionality factor (RDF), the product of gene
47. Bxb1 gp47 is an unusual RDF in that it is relatively large (˜28 kDa), unrelated to all other RDFs, and presumably performs dual functions since it is well conserved in mycobacteriophages that utilize unrelated integration systems. Furthermore, unlike other RDFs, Bxb1 gp47 does not bind DNA and functions solely through direct interaction with integrase–DNA complexes. The nature and consequences of this interaction depend on the specific DNA substrate to which integrase is bound, generating electrophoretically stable tertiary complexes with either
attB or
attP that are unable to undergo integrative recombination, and weakly bound, electrophoretically unstable complexes with either
attL or
attR that gain full potential for excisive recombination.
The authors identify a protein that employs a new mechanism to regulate the directionality of integration of a mycobacteriophage integrase into its host genome.
Collapse
Affiliation(s)
- Pallavi Ghosh
- 1Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Laura R Wasil
- 1Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Graham F Hatfull
- 1Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Adams V, Lucet IS, Tynan FE, Chiarezza M, Howarth PM, Kim J, Rossjohn J, Lyras D, Rood JI. Two distinct regions of the large serine recombinase TnpX are required for DNA binding and biological function. Mol Microbiol 2006; 60:591-601. [PMID: 16629663 DOI: 10.1111/j.1365-2958.2006.05120.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The large serine recombinase, TnpX, from the Clostridium perfringens integrative mobilizable element Tn4451, consists of three domains and has two known DNA binding regions. In this study random and site-directed mutagenesis was used to identify other regions of TnpX that were required for biological activity. Genetic and biochemical analysis of these mutants led to the identification of important TnpX residues in the N-terminal catalytic pocket. In addition, another region of TnpX (aa 243-261), which is conserved within large serine recombinases, was shown to be essential for both excision and insertion. Mutation of charged residues within this region led to a loss of biological activity and aberrant DNA binding. This phenotype was mediated by interaction with the distal DNA binding region (aa 598-707). In these mutants, removal of residues 598-707 resulted in loss of DNA binding, despite the presence of the primary DNA binding region (aa 533-583). Analysis of mutations within the aa 243-261 region indicated that different protein conformations were involved in the insertion and the excision reactions. In summary, we have shown that TnpX is a complex protein that has multiple intra- and intermolecular interaction sites, providing insight into the structural and functional complexity of this important enzyme family.
Collapse
Affiliation(s)
- Vicki Adams
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Vic. 3800, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tian Y, James S, Zuo J, Fritzsch B, Beisel KW. Conditional and inducible gene recombineering in the mouse inner ear. Brain Res 2006; 1091:243-54. [PMID: 16488403 PMCID: PMC3901521 DOI: 10.1016/j.brainres.2006.01.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 12/30/2005] [Accepted: 01/05/2006] [Indexed: 12/21/2022]
Abstract
Genetically engineered mice have greatly improved our understanding of gene functions and disease mechanisms. Nevertheless, the traditional knock-out approach has limitations in the overall viability of mutants. The application of the Cre/loxP system in the inner ear can help bypass this difficulty by generation of conditional gene recombineering. However, to do so requires an expression system that allows ear-specific temporally inducible, gene abrogation of one or more of the increasingly available floxed genes. To date, three approaches have been successfully used to create murine inner ear-specific Cre lines: conventional transgenesis, BAC transgenesis, and gene knock-in. Unfortunately, timing of conditional Cre activity does not extend beyond the regulatory range of the gene controlling Cre expression. Rectification of this problem requires the generation of tamoxifen or tetracycline inducible systems in the inner ear. Examination of integrase expression at different loci will facilitate studies on the expression of exogenous transgenes. These genetic applications for the mouse genome will dramatically advance in vivo gene function studies.
Collapse
Affiliation(s)
- Yong Tian
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sally James
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Bernd Fritzsch
- Department of Biomedical Sciences, Creighton University, School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | - Kirk W. Beisel
- Department of Biomedical Sciences, Creighton University, School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
- Corresponding author: Fax: +1 402 280 2690. (K.W. Beisel)
| |
Collapse
|
44
|
Kilstrup M, Hammer K, Ruhdal Jensen P, Martinussen J. Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiol Rev 2005. [DOI: 10.1016/j.fmrre.2005.04.006] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
Bibb LA, Hancox MI, Hatfull GF. Integration and excision by the large serine recombinase phiRv1 integrase. Mol Microbiol 2005; 55:1896-910. [PMID: 15752208 DOI: 10.1111/j.1365-2958.2005.04517.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Mycobacterium tuberculosis prophage-like element phiRv1 encodes a site-specific recombination system utilizing an integrase of the serine recombinase family. Recombination occurs between a putative attP site and the host chromosome, but is unusual in that the attB site lies within a redundant repetitive element (REP13E12) of which there are seven copies in the M. tuberculosis genome; four of these elements contain attB sites suitable for phiRv1 integration in vivo. Although the mechanism of directional control of large serine integrases is poorly understood, a recombination directionality factor (RDF) has been identified that is required for phiRv1 integrase-mediated excisive recombination in vivo. Here we describe defined in vitro recombination reactions for both phiRv1 integrase-mediated integration and excision and show that the phiRv1 RDF is not only required for excision but inhibits integrative recombination; neither reaction requires DNA supercoiling, host factors, or high-energy cofactors. Integration, excision and excise-mediated inhibition of integration require simple substrates sites, indicating that the control of directionality does not involve the manipulation of higher-order protein-DNA architectures as described for the tyrosine integrases.
Collapse
Affiliation(s)
- Lori A Bibb
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
46
|
Vegge CS, Brøndsted L, Neve H, Mc Grath S, van Sinderen D, Vogensen FK. Structural characterization and assembly of the distal tail structure of the temperate lactococcal bacteriophage TP901-1. J Bacteriol 2005; 187:4187-97. [PMID: 15937180 PMCID: PMC1151708 DOI: 10.1128/jb.187.12.4187-4197.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tail structures of bacteriophages infecting gram-positive bacteria are largely unexplored, although the phage tail mediates the initial interaction with the host cell. The temperate Lactococcus lactis phage TP901-1 of the Siphoviridae family has a long noncontractile tail with a distal baseplate. In the present study, we investigated the distal tail structures and tail assembly of phage TP901-1 by introducing nonsense mutations into the late transcribed genes dit (orf46), tal(TP901-1) (orf47), bppU (orf48), bppL (orf49), and orf50. Transmission electron microscopy examination of mutant and wild-type TP901-1 phages showed that the baseplate consisted of two different disks and that a central tail fiber is protruding below the baseplate. Evaluation of the mutant tail morphologies with protein profiles and Western blots revealed that the upper and lower baseplate disks consist of the proteins BppU and BppL, respectively. Likewise, Dit and Tal(TP901-1) were shown to be structural tail proteins essential for tail formation, and Tal(TP901-1) was furthermore identified as the tail fiber protein by immunogold labeling experiments. Determination of infection efficiencies of the mutant phages showed that the baseplate is fundamental for host infection and the lower disk protein, BppL, is suggested to interact with the host receptor. In contrast, ORF50 was found to be nonessential for tail assembly and host infection. A model for TP901-1 tail assembly, in which the function of eight specific proteins is considered, is presented.
Collapse
Affiliation(s)
- Christina S Vegge
- Department of Food Science, The Royal Veterinary and Agricultural University, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|
47
|
Lucet IS, Tynan FE, Adams V, Rossjohn J, Lyras D, Rood JI. Identification of the structural and functional domains of the large serine recombinase TnpX from Clostridium perfringens. J Biol Chem 2004; 280:2503-11. [PMID: 15542858 DOI: 10.1074/jbc.m409702200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the large serine resolvase family of site-specific recombinases are responsible for the movement of several mobile genetic elements; however, little is known regarding the structure or function of these proteins. TnpX is a serine recombinase that is responsible for the movement of the chloramphenicol resistance elements of the Tn4451/3 family. We have shown that TnpX binds differentially to its transposon and target sites, suggesting that resolvase-like excision and insertion were two distinct processes. To analyze the structural and functional domains of TnpX and, more specifically, to define the domains involved in protein-DNA and protein-protein interactions, we conducted limited proteolysis studies on the wild-type dimeric TnpX(1-707) protein and its functional truncation mutant, TnpX(1-597). The results showed that TnpX was organized into three major domains: domain I (amino acids (aa) 1-170), which included the resolvase catalytic domain; domain II (aa 170-266); and domain III (aa 267-707), which contained the dimerization region and two separate regions involved in binding to the DNA target. A small polypeptide (aa 533-587) was shown to bind specifically to the TnpX binding sites providing further evidence that it was the primary DNA binding region. In addition, a previously unidentified DNA binding site was shown to be located between residues 583 and 707. Finally, the DNA binding and multerimization but not the catalytic functions of TnpX could be reconstituted by recombining separate polypeptides that contain the N- and C-terminal regions of the protein. These data provide evidence that TnpX has separate catalytic, DNA binding, and multimerization domains.
Collapse
Affiliation(s)
- Isabelle S Lucet
- Department of Microbiology, Australian Bacterial Pathogenesis Program, Monash University, Victoria 3800, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Adams V, Lucet IS, Lyras D, Rood JI. DNA binding properties of TnpX indicate that different synapses are formed in the excision and integration of the Tn4451 family. Mol Microbiol 2004; 53:1195-207. [PMID: 15306021 DOI: 10.1111/j.1365-2958.2004.04198.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-specific recombination is an important mechanism for genetic exchange. Insertional recombination mediated by the recently delineated large resolvase or serine recombinase proteins is unique within the resolvase family as integration was thought to be a reaction catalysed only by members of the integrase or tyrosine recombinase family of site-specific recombinases. The large resolvase TnpX is a serine recombinase that is responsible for the movement of the Tn4451/3 family of chloramphenicol resistance elements, which are found within two genera of the medically important clostridia. Deletion analysis of TnpX showed that the last 110 amino acids (aa) of TnpX, which comprise a cysteine rich region, were not essential for its biological function and that a region required for DNA binding was located between aa 493-597. Purified TnpX was shown to bind to the ends of the element and to the joint of the circular intermediate with high affinity but, most unusually, to bind to its target sites with a considerably lower affinity. Therefore, it was concluded that the resolvase-like excision and insertion reactions mediated by TnpX were distinct processes even though the same serine recombinase mechanism was involved. TnpX is the first large serine recombinase in which differential binding to its transposon and target sites has been demonstrated.
Collapse
Affiliation(s)
- Vicki Adams
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
49
|
Kim AI, Ghosh P, Aaron MA, Bibb LA, Jain S, Hatfull GF. Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol Microbiol 2004; 50:463-73. [PMID: 14617171 DOI: 10.1046/j.1365-2958.2003.03723.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacteriophage Bxb1 is a temperate phage of Mycobacterium smegmatis and forms stable lysogens in which the Bxb1 genome is integrated into the host chromosome. Bxb1 encodes an integrase of the large serine recombinase family that catalyses integration and excision of the Bxb1 genome. We show here that Bxb1 integrates into a chromosomal attB site located within the 3' end of the groEL1 gene such that integration results in alteration of the C-terminal 21 amino acid residues. An integration-proficient plasmid vector containing the Bxb1 integrase gene and flanking DNA sequences efficiently transforms M. smegmatis via integration at attB. Bxb1-integrated recombinants are stable and fully compatible with L5 integration vectors. Strand exchange occurs within an 8 bp common core sequence present in attB and within an attP site situated immediately upstream of the phage integrase gene. Establishment of a defined in vitro system for Bxb1 integration shows that recombination occurs efficiently without requirement for high-energy cofactors, divalent metals, DNA supercoiling or additional proteins.
Collapse
Affiliation(s)
- Amy I Kim
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
50
|
Smith MCA, Till R, Brady K, Soultanas P, Thorpe H, Smith MCM. Synapsis and DNA cleavage in phiC31 integrase-mediated site-specific recombination. Nucleic Acids Res 2004; 32:2607-17. [PMID: 15141031 PMCID: PMC419440 DOI: 10.1093/nar/gkh538] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Streptomyces phage phiC31 encodes an integrase belonging to the serine recombinase family of site-specific recombinases. The well studied serine recombinases, the resolvase/invertases, bring two recombination sites together in a synapse, and then catalyse a concerted four-strand staggered break in the DNA substrates whilst forming transient covalent attachments with the recessed 5' ends. Rotation of one pair of half sites by 180 degrees relative to the other pair occurs, to form the recombinant configuration followed by ligation of the DNA backbone. Here we address the nature of the recombination intermediates formed by phiC31 integrase when acting on its substrates attP and attB. We have identified intermediates containing integrase covalently attached to cleaved DNA substrates, attB or attP, by analysis of complexes in gels and after treatment of these complexes with proteinases. Using a catalytically inactive integrase mutant, S12A, the synaptic complexes containing integrase, attP and attB were identified. Furthermore, we have shown that attB mutants containing insertions or deletions are blocked in recombination at the stage of strand cleavage. Thus, there is a strict spacing requirement within attB, possibly for correct positioning of the catalytic serine relative to the scissile phosphate in the active site. Finally, using integrase S12A we confirmed the inability of attL and attR or other combinations of sites to form a stable synapse, indicating that the directionality of integrative recombination is determined at synapsis.
Collapse
Affiliation(s)
- Matthew C A Smith
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | | | | | | | | | | |
Collapse
|