1
|
Khattab SMR, Watanabe T. Replacing Glycerol-3-Phosphate Dehydrogenase with NADH Oxidase: Effects on Glucose Fermentation and Product Formation in Saccharomyces cerevisiae. Arch Microbiol 2024; 207:3. [PMID: 39585475 DOI: 10.1007/s00203-024-04187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/04/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024]
Abstract
The NADH/NAD+ balance plays a critical role in regulating cellular and metabolic pathways. In Saccharomyces cerevisiae, glycerol-3-phosphate dehydrogenase (ScGPD) enzymes are essential for NADH homeostasis, glycerol biosynthesis, and osmotic stress adaptation. This study investigates the replacement of ScGPD isoforms with the water-forming NADH oxidase from Lactococcus lactis (LlnoxE) and its effects on 10% glucose fermentation dynamics in minimal medium under microaerobic conditions. We engineered S. cerevisiae strains by individually or sequentially deleting or substituting ScGPD isoforms with LlnoxE, generating strains with varying NADH oxidation levels, fermentation rates, and byproduct formation. The engineered strains exhibited three distinct fermentation profiles: faster strains (∆GPD2 and ∆GPD1,2), five medium-speed strains (native, ∆GPD1, LlnoxE/∆GPD1, LlnoxE/∆GPD2, and LlnoxE with GPD), and three slower strains (LlnoxE/∆GPD1,2, LlnoxE/∆GPD1-∆GPD2, and LlnoxE/∆GPD2-∆GPD1). Increased NADH oxidation correlated strongly with higher acetic acid production, which inhibited cell growth and reduced fermentation speed, especially when glycerol biosynthesis was abolished. For instance, LlnoxE/ΔGPD1 reduced glycerol production by 88% and increased ethanol yield by 6.2%, despite a 9% increase in acetic acid production. This study underscores the importance of NADH oxidation in optimizing fermentation efficiency and metabolic balance in S. cerevisiae strains lacking GPD during glucose fermentation.
Collapse
Affiliation(s)
- Sadat Mohamed Rezk Khattab
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
- Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt.
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
2
|
Otto M, Liu D, Siewers V. Saccharomyces cerevisiae as a Heterologous Host for Natural Products. Methods Mol Biol 2022; 2489:333-367. [PMID: 35524059 DOI: 10.1007/978-1-0716-2273-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell factories can provide a sustainable supply of natural products with applications as pharmaceuticals, food-additives or biofuels. Besides being an important model organism for eukaryotic systems, Saccharomyces cerevisiae is used as a chassis for the heterologous production of natural products. Its success as a cell factory can be attributed to the vast knowledge accumulated over decades of research, its overall ease of engineering and its robustness. Many methods and toolkits have been developed by the yeast metabolic engineering community with the aim of simplifying and accelerating the engineering process.In this chapter, a range of methodologies are highlighted, which can be used to develop novel natural product cell factories or to improve titer, rate and yields of an existing cell factory with the goal of developing an industrially relevant strain. The addressed topics are applicable for different stages of a cell factory engineering project and include the choice of a natural product platform strain, expression cassette design for heterologous or native genes, basic and advanced genetic engineering strategies, and library screening methods using biosensors. The many engineering methods available and the examples of yeast cell factories underline the importance and future potential of this host for industrial production of natural products.
Collapse
Affiliation(s)
- Maximilian Otto
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Dany Liu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
3
|
Klim J, Zielenkiewicz U, Skoneczny M, Skoneczna A, Kurlandzka A, Kaczanowski S. Genetic interaction network has a very limited impact on the evolutionary trajectories in continuous culture-grown populations of yeast. BMC Ecol Evol 2021; 21:99. [PMID: 34039270 PMCID: PMC8157726 DOI: 10.1186/s12862-021-01830-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
Background The impact of genetic interaction networks on evolution is a fundamental issue. Previous studies have demonstrated that the topology of the network is determined by the properties of the cellular machinery. Functionally related genes frequently interact with one another, and they establish modules, e.g., modules of protein complexes and biochemical pathways. In this study, we experimentally tested the hypothesis that compensatory evolutionary modifications, such as mutations and transcriptional changes, occur frequently in genes from perturbed modules of interacting genes. Results Using Saccharomyces cerevisiae haploid deletion mutants as a model, we investigated two modules lacking COG7 or NUP133, which are evolutionarily conserved genes with many interactions. We performed laboratory evolution experiments with these strains in two genetic backgrounds (with or without additional deletion of MSH2), subjecting them to continuous culture in a non-limiting minimal medium. Next, the evolved yeast populations were characterized through whole-genome sequencing and transcriptome analyses. No obvious compensatory changes resulting from inactivation of genes already included in modules were identified. The supposedly compensatory inactivation of genes in the evolved strains was only rarely observed to be in accordance with the established fitness effect of the genetic interaction network. In fact, a substantial majority of the gene inactivations were predicted to be neutral in the experimental conditions used to determine the interaction network. Similarly, transcriptome changes during continuous culture mostly signified adaptation to growth conditions rather than compensation of the absence of the COG7, NUP133 or MSH2 genes. However, we noticed that for genes whose inactivation was deleterious an upregulation of transcription was more common than downregulation. Conclusions Our findings demonstrate that the genetic interactions and the modular structure of the network described by others have very limited effects on the evolutionary trajectory following gene deletion of module elements in our experimental conditions and has no significant impact on short-term compensatory evolution. However, we observed likely compensatory evolution in functionally related (albeit non-interacting) genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01830-9.
Collapse
Affiliation(s)
- Joanna Klim
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Urszula Zielenkiewicz
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Anna Kurlandzka
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Szymon Kaczanowski
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
4
|
Daran JMG. Entering GATTACA: yeast genomes: analysis, insights and applications. FEMS Yeast Res 2020; 20:6041023. [PMID: 33332537 DOI: 10.1093/femsyr/foaa064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| |
Collapse
|
5
|
Klim J, Zielenkiewicz U, Kurlandzka A, Kaczanowski S, Skoneczny M. Slow Adaptive Response of Budding Yeast Cells to Stable Conditions of Continuous Culture Can Occur without Genome Modifications. Genes (Basel) 2020; 11:genes11121419. [PMID: 33261040 PMCID: PMC7759791 DOI: 10.3390/genes11121419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/20/2022] Open
Abstract
Continuous cultures assure the invariability of environmental conditions and the metabolic state of cultured microorganisms, whereas batch-cultured cells undergo constant changes in nutrients availability. For that reason, continuous culture is sometimes employed in the whole transcriptome, whole proteome, or whole metabolome studies. However, the typical method for establishing uniform growth of a cell population, i.e., by limited chemostat, results in the enrichment of the cell population gene pool with mutations adaptive for starvation conditions. These adaptive changes can skew the results of large-scale studies. It is commonly assumed that these adaptations reflect changes in the genome, and this assumption has been confirmed experimentally in rare cases. Here we show that in a population of budding yeast cells grown for over 200 generations in continuous culture in non-limiting minimal medium and therefore not subject to selection pressure, remodeling of transcriptome occurs, but not as a result of the accumulation of adaptive mutations. The observed changes indicate a shift in the metabolic balance towards catabolism, a decrease in ribosome biogenesis, a decrease in general stress alertness, reorganization of the cell wall, and transactions occurring at the cell periphery. These adaptive changes signify the acquisition of a new lifestyle in a stable nonstressful environment. The absence of underlying adaptive mutations suggests these changes may be regulated by another mechanism.
Collapse
Affiliation(s)
- Joanna Klim
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.K.); (U.Z.)
| | - Urszula Zielenkiewicz
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.K.); (U.Z.)
| | - Anna Kurlandzka
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland;
| | - Szymon Kaczanowski
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland;
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-5921217
| |
Collapse
|
6
|
Myers KS, Riley NM, MacGilvray ME, Sato TK, McGee M, Heilberger J, Coon JJ, Gasch AP. Rewired cellular signaling coordinates sugar and hypoxic responses for anaerobic xylose fermentation in yeast. PLoS Genet 2019; 15:e1008037. [PMID: 30856163 PMCID: PMC6428351 DOI: 10.1371/journal.pgen.1008037] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/21/2019] [Accepted: 02/20/2019] [Indexed: 01/08/2023] Open
Abstract
Microbes can be metabolically engineered to produce biofuels and biochemicals, but rerouting metabolic flux toward products is a major hurdle without a systems-level understanding of how cellular flux is controlled. To understand flux rerouting, we investigated a panel of Saccharomyces cerevisiae strains with progressive improvements in anaerobic fermentation of xylose, a sugar abundant in sustainable plant biomass used for biofuel production. We combined comparative transcriptomics, proteomics, and phosphoproteomics with network analysis to understand the physiology of improved anaerobic xylose fermentation. Our results show that upstream regulatory changes produce a suite of physiological effects that collectively impact the phenotype. Evolved strains show an unusual co-activation of Protein Kinase A (PKA) and Snf1, thus combining responses seen during feast on glucose and famine on non-preferred sugars. Surprisingly, these regulatory changes were required to mount the hypoxic response when cells were grown on xylose, revealing a previously unknown connection between sugar source and anaerobic response. Network analysis identified several downstream transcription factors that play a significant, but on their own minor, role in anaerobic xylose fermentation, consistent with the combinatorial effects of small-impact changes. We also discovered that different routes of PKA activation produce distinct phenotypes: deletion of the RAS/PKA inhibitor IRA2 promotes xylose growth and metabolism, whereas deletion of PKA inhibitor BCY1 decouples growth from metabolism to enable robust fermentation without division. Comparing phosphoproteomic changes across ira2Δ and bcy1Δ strains implicated regulatory changes linked to xylose-dependent growth versus metabolism. Together, our results present a picture of the metabolic logic behind anaerobic xylose flux and suggest that widespread cellular remodeling, rather than individual metabolic changes, is an important goal for metabolic engineering.
Collapse
Affiliation(s)
- Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Nicholas M. Riley
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Matthew E. MacGilvray
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Trey K. Sato
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Mick McGee
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Justin Heilberger
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
- Morgridge Institute for Research, Madison, WI, United States of America
| | - Audrey P. Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
7
|
Effect of Trehalose and Glycerol on the Resistance of Recombinant Saccharomyces cerevisiae Strains to Desiccation, Freeze-Thaw and Osmotic Stresses. SCIENCE AND INNOVATION 2018. [DOI: 10.15407/scine14.06.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
8
|
Powell C, Fischborn T. Serial Repitching of Dried Lager Yeast. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2010-0125-01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Anaerobiosis revisited: growth of Saccharomyces cerevisiae under extremely low oxygen availability. Appl Microbiol Biotechnol 2018; 102:2101-2116. [DOI: 10.1007/s00253-017-8732-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
|
10
|
Lawrence SJ, Gibson BR, Smart KA. Expression of the Cell Wall Mannoprotein GenesCWPandDANduring Industrial-Scale Lager Fermentations. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2009-0114-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- S. J. Lawrence
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - B. R. Gibson
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - K. A. Smart
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| |
Collapse
|
11
|
Shimizu M. NAD +/NADH homeostasis affects metabolic adaptation to hypoxia and secondary metabolite production in filamentous fungi. Biosci Biotechnol Biochem 2018; 82:216-224. [PMID: 29327656 DOI: 10.1080/09168451.2017.1422972] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Filamentous fungi are used to produce fermented foods, organic acids, beneficial secondary metabolites and various enzymes. During such processes, these fungi balance cellular NAD+:NADH ratios to adapt to environmental redox stimuli. Cellular NAD(H) status in fungal cells is a trigger of changes in metabolic pathways including those of glycolysis, fermentation, and the production of organic acids, amino acids and secondary metabolites. Under hypoxic conditions, high NADH:NAD+ ratios lead to the inactivation of various dehydrogenases, and the metabolic flow involving NAD+ is down-regulated compared with normoxic conditions. This review provides an overview of the metabolic mechanisms of filamentous fungi under hypoxic conditions that alter the cellular NADH:NAD+ balance. We also discuss the relationship between the intracellular redox balance (NAD/NADH ratio) and the production of beneficial secondary metabolites that arise from repressing the HDAC activity of sirtuin A via Nudix hydrolase A (NdxA)-dependent NAD+ degradation.
Collapse
Affiliation(s)
- Motoyuki Shimizu
- a Faculty of Agriculture, Department of Applied Biological Chemistry , Meijo University , Nagoya , Japan
| |
Collapse
|
12
|
A Novel Sterol-Signaling Pathway Governs Azole Antifungal Drug Resistance and Hypoxic Gene Repression in Saccharomyces cerevisiae. Genetics 2017; 208:1037-1055. [PMID: 29263028 DOI: 10.1534/genetics.117.300554] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/19/2017] [Indexed: 12/26/2022] Open
Abstract
During antifungal drug treatment and hypoxia, genetic and epigenetic changes occur to maintain sterol homeostasis and cellular function. In this study, we show that SET domain-containing epigenetic factors govern drug efficacy to the medically relevant azole class of antifungal drugs. Upon this discovery, we determined that Set4 is induced when Saccharomyces cerevisiae are treated with azole drugs or grown under hypoxic conditions; two conditions that deplete cellular ergosterol and increase sterol precursors. Interestingly, Set4 induction is controlled by the sterol-sensing transcription factors, Upc2 and Ecm22 To determine the role of Set4 on gene expression under hypoxic conditions, we performed RNA-sequencing analysis and showed that Set4 is required for global changes in gene expression. Specifically, loss of Set4 led to an upregulation of nearly all ergosterol genes, including ERG11 and ERG3, suggesting that Set4 functions in gene repression. Furthermore, mass spectrometry analysis revealed that Set4 interacts with the hypoxic-specific transcriptional repressor, Hap1, where this interaction is necessary for Set4 recruitment to ergosterol gene promoters under hypoxia. Finally, an erg3Δ strain, which produces precursor sterols but lacks ergosterol, expresses Set4 under untreated aerobic conditions. Together, our data suggest that sterol precursors are needed for Set4 induction through an Upc2-mediated mechanism. Overall, this new sterol-signaling pathway governs azole antifungal drug resistance and mediates repression of sterol genes under hypoxic conditions.
Collapse
|
13
|
Curiel JA, Morales P, Gonzalez R, Tronchoni J. Different Non- Saccharomyces Yeast Species Stimulate Nutrient Consumption in S. cerevisiae Mixed Cultures. Front Microbiol 2017; 8:2121. [PMID: 29163412 PMCID: PMC5671574 DOI: 10.3389/fmicb.2017.02121] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/18/2017] [Indexed: 01/31/2023] Open
Abstract
The growing interest of the winemaking industry on the use of non-Saccharomyces starters has prompted several studies about the physiological features of this diverse group of microorganisms. The fact that the proposed use of these new starters will almost invariably involve either simultaneous or sequential inoculation with Saccharomyces cerevisiae has also driven the attention to the potential biological interactions between different starters during wine fermentation. Our current understanding is that alternative yeast starters will affect wine features by both direct and indirect mechanisms (through metabolic or other types of interactions with S. cerevisiae). There are still few studies addressing the question of yeast-yeast interactions in winemaking by a transcriptomic approach. In a previous report, we revealed early responses of S. cerevisiae and Torulaspora delbrueckii to the presence of each other under anaerobic conditions, mainly the overexpression of genes related with sugar consumption and cell proliferation. We have now studied the response, under aerobic conditions, of S. cerevisiae to other two non-Saccharomyces species, Hanseniaspora uvarum and Candida sake, keeping T. delbrueckii as a reference; and always focusing on the early stages of the interaction. Results point to some common features of the way S. cerevisiae modifies its transcriptome in front of other yeast species, namely activation of glucose and nitrogen metabolism, being the later specific for aerobic conditions.
Collapse
Affiliation(s)
- Jose A Curiel
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas - Universidad de La Rioja, Gobierno de La Rioja, Logroño, Spain
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas - Universidad de La Rioja, Gobierno de La Rioja, Logroño, Spain
| | - Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas - Universidad de La Rioja, Gobierno de La Rioja, Logroño, Spain
| | - Jordi Tronchoni
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas - Universidad de La Rioja, Gobierno de La Rioja, Logroño, Spain
| |
Collapse
|
14
|
Malek R, Bonnarme P, Irlinger F, Frey-Klett P, Onésime D, Aubert J, Loux V, Beckerich JM. Transcriptomic response of Debaryomyces hansenii during mixed culture in a liquid model cheese medium with Yarrowia lipolytica. Int J Food Microbiol 2017; 264:53-62. [PMID: 29111498 DOI: 10.1016/j.ijfoodmicro.2017.10.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 12/31/2022]
Abstract
Yeasts play a crucial role in cheese ripening. They contribute to the curd deacidification, the establishment of acid-sensitive bacterial communities, and flavour compounds production via proteolysis and catabolism of amino acids (AA). Negative yeast-yeast interaction was observed between the yeast Yarrowia lipolytica 1E07 (YL1E07) and the yeast Debaryomyces hansenii 1L25 (DH1L25) in a model cheese but need elucidation. YL1E07 and DH1L25 were cultivated in mono and co-cultures in a liquid synthetic medium (SM) mimicking the cheese environment and the growth inhibition of DH1L25 in the presence of YL1E07 was reproduced. We carried out microbiological, biochemical (lactose, lactate, AA consumption and ammonia production) and transcriptomic analyses by microarray technology to highlight the interaction mechanisms. We showed that the DH1L25 growth inhibition in the presence of YL1E07 was neither due to the ammonia production nor to the nutritional competition for the medium carbon sources between the two yeasts. The transcriptomic study was the key toward the comprehension of yeast-yeast interaction, and revealed that the inhibition of DH1L25 in co-culture is due to a decrease of the mitochondrial respiratory chain functioning.
Collapse
Affiliation(s)
- Reine Malek
- UMR 1319 MICALIS, INRA, AgroParisTech, CBAI, BP01, 78850 Thiverval Grignon, France.
| | - Pascal Bonnarme
- INRA, AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France
| | - Françoise Irlinger
- INRA, AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France
| | - Pascale Frey-Klett
- UMR 1136 INRA-Université de Lorraine Interactions Arbres/Microorganismes, 54280 Champenoux, France
| | - Djamila Onésime
- UMR 1319 MICALIS, INRA, AgroParisTech, CBAI, BP01, 78850 Thiverval Grignon, France
| | - Julie Aubert
- UMR 518 Mathématiques et Informatiques Appliquées, AgroParisTech, INRA, 16 rue Claude Bernard, 75231 Paris Cedex 05, France
| | - Valentin Loux
- INRA, Unité Mathématique, Informatique et Génome UR1077, 78352 Jouy-en-Josas, France
| | - Jean-Marie Beckerich
- UMR 1319 MICALIS, INRA, AgroParisTech, CBAI, BP01, 78850 Thiverval Grignon, France
| |
Collapse
|
15
|
Willis SD, Hossian AKMN, Evans N, Hickman MJ. Measuring mRNA Levels Over Time During the Yeast S. cerevisiae Hypoxic Response. J Vis Exp 2017:56226. [PMID: 28829420 PMCID: PMC5614221 DOI: 10.3791/56226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Complex changes in gene expression typically mediate a large portion of a cellular response. Each gene may change expression with unique kinetics as the gene is regulated by the particular timing of one of many stimuli, signaling pathways or secondary effects. In order to capture the entire gene expression response to hypoxia in the yeast S. cerevisiae, RNA-seq analysis was used to monitor the mRNA levels of all genes at specific times after exposure to hypoxia. Hypoxia was established by growing cells in ~100% N2 gas. Importantly, unlike other hypoxic studies, ergosterol and unsaturated fatty acids were not added to the media because these metabolites affect gene expression. Time points were chosen in the range of 0 - 4 h after hypoxia because that period captures the major changes in gene expression. At each time point, mid-log hypoxic cells were quickly filtered and frozen, limiting exposure to O2 and concomitant changes in gene expression. Total RNA was extracted from cells and used to enrich for mRNA, which was then converted to cDNA. From this cDNA, multiplex libraries were created and eight or more samples were sequenced in one lane of a next-generation sequencer. A post-sequencing pipeline is described, which includes quality base trimming, read mapping and determining the number of reads per gene. DESeq2 within the R statistical environment was used to identify genes that change significantly at any one of the hypoxic time points. Analysis of three biological replicates revealed high reproducibility, genes of differing kinetics and a large number of expected O2-regulated genes. These methods can be used to study how the cells of various organisms respond to hypoxia over time and adapted to study gene expression during other cellular responses.
Collapse
Affiliation(s)
- Stephen D Willis
- Department of Molecular Biology, Rowan School of Osteopathic Medicine
| | | | - Nathan Evans
- Department of Biological Sciences, Rowan University
| | | |
Collapse
|
16
|
Hanoudi S, Donato M, Draghici S. Identifying biologically relevant putative mechanisms in a given phenotype comparison. PLoS One 2017; 12:e0176950. [PMID: 28486531 PMCID: PMC5423614 DOI: 10.1371/journal.pone.0176950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 04/19/2017] [Indexed: 11/19/2022] Open
Abstract
A major challenge in life science research is understanding the mechanism involved in a given phenotype. The ability to identify the correct mechanisms is needed in order to understand fundamental and very important phenomena such as mechanisms of disease, immune systems responses to various challenges, and mechanisms of drug action. The current data analysis methods focus on the identification of the differentially expressed (DE) genes using their fold change and/or p-values. Major shortcomings of this approach are that: i) it does not consider the interactions between genes; ii) its results are sensitive to the selection of the threshold(s) used, and iii) the set of genes produced by this approach is not always conducive to formulating mechanistic hypotheses. Here we present a method that can construct networks of genes that can be considered putative mechanisms. The putative mechanisms constructed by this approach are not limited to the set of DE genes, but also considers all known and relevant gene-gene interactions. We analyzed three real datasets for which both the causes of the phenotype, as well as the true mechanisms were known. We show that the method identified the correct mechanisms when applied on microarray datasets from mouse. We compared the results of our method with the results of the classical approach, showing that our method produces more meaningful biological insights.
Collapse
Affiliation(s)
- Samer Hanoudi
- Department of Computer Science, Wayne State University, Detroit, MI, United States of America
| | - Michele Donato
- Department of Computer Science, Wayne State University, Detroit, MI, United States of America
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Detroit, MI, United States of America
| |
Collapse
|
17
|
Joshua IM, Höfken T. From Lipid Homeostasis to Differentiation: Old and New Functions of the Zinc Cluster Proteins Ecm22, Upc2, Sut1 and Sut2. Int J Mol Sci 2017; 18:ijms18040772. [PMID: 28379181 PMCID: PMC5412356 DOI: 10.3390/ijms18040772] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 12/27/2022] Open
Abstract
Zinc cluster proteins are a large family of transcriptional regulators with a wide range of biological functions. The zinc cluster proteins Ecm22, Upc2, Sut1 and Sut2 have initially been identified as regulators of sterol import in the budding yeast Saccharomyces cerevisiae. These proteins also control adaptations to anaerobic growth, sterol biosynthesis as well as filamentation and mating. Orthologs of these zinc cluster proteins have been identified in several species of Candida. Upc2 plays a critical role in antifungal resistance in these important human fungal pathogens. Upc2 is therefore an interesting potential target for novel antifungals. In this review we discuss the functions, mode of actions and regulation of Ecm22, Upc2, Sut1 and Sut2 in budding yeast and Candida.
Collapse
Affiliation(s)
| | - Thomas Höfken
- Division of Biosciences, Brunel University London, Uxbridge UB8 3PH, UK.
| |
Collapse
|
18
|
Time-Course Analysis of Gene Expression During the Saccharomyces cerevisiae Hypoxic Response. G3-GENES GENOMES GENETICS 2017; 7:221-231. [PMID: 27883312 PMCID: PMC5217111 DOI: 10.1534/g3.116.034991] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many cells experience hypoxia, or low oxygen, and respond by dramatically altering gene expression. In the yeast Saccharomyces cerevisiae, genes that respond are required for many oxygen-dependent cellular processes, such as respiration, biosynthesis, and redox regulation. To more fully characterize the global response to hypoxia, we exposed yeast to hypoxic conditions, extracted RNA at different times, and performed RNA sequencing (RNA-seq) analysis. Time-course statistical analysis revealed hundreds of genes that changed expression by up to 550-fold. The genes responded with varying kinetics suggesting that multiple regulatory pathways are involved. We identified most known oxygen-regulated genes and also uncovered new regulated genes. Reverse transcription-quantitative PCR (RT-qPCR) analysis confirmed that the lysine methyltransferase EFM6 and the recombinase DMC1, both conserved in humans, are indeed oxygen-responsive. Looking more broadly, oxygen-regulated genes participate in expected processes like respiration and lipid metabolism, but also in unexpected processes like amino acid and vitamin metabolism. Using principle component analysis, we discovered that the hypoxic response largely occurs during the first 2 hr and then a new steady-state expression state is achieved. Moreover, we show that the oxygen-dependent genes are not part of the previously described environmental stress response (ESR) consisting of genes that respond to diverse types of stress. While hypoxia appears to cause a transient stress, the hypoxic response is mostly characterized by a transition to a new state of gene expression. In summary, our results reveal that hypoxia causes widespread and complex changes in gene expression to prepare the cell to function with little or no oxygen.
Collapse
|
19
|
Granucci N, Pinu FR, Han TL, Villas-Boas SG. Can we predict the intracellular metabolic state of a cell based on extracellular metabolite data? MOLECULAR BIOSYSTEMS 2016; 11:3297-304. [PMID: 26400772 DOI: 10.1039/c5mb00292c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The analysis of extracellular metabolites presents many technical advantages over the analysis of intracellular compounds, which made this approach very popular in recent years as a high-throughput tool to assess the metabolic state of microbial cells. However, very little effort has been made to determine the actual relationship between intracellular and extracellular metabolite levels. The secretion of intracellular metabolites has been traditionally interpreted as a consequence of an intracellular metabolic overflow, which is based on the premise that for a metabolite to be secreted, it must be over-produced inside the cell. Therefore, we expect to find a secreted metabolite at increased levels inside the cells. Here we present a time-series metabolomics study of Saccharomyces cerevisiae growing on a glucose-limited chemostat with parallel measurements of intra- and extracellular metabolites. Although most of the extracellular metabolites were also detected in the intracellular samples and showed a typical metabolic overflow behaviour, we demonstrate that the secretion of many metabolites could not be explained by the metabolic overflow theory.
Collapse
Affiliation(s)
- Ninna Granucci
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Private Bag 92019, Auckland 1142, New Zealand.
| | - Farhana R Pinu
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Private Bag 92019, Auckland 1142, New Zealand. and The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Ting-Li Han
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Private Bag 92019, Auckland 1142, New Zealand.
| | - Silas G Villas-Boas
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
20
|
Three alcohol dehydrogenase genes and one acetyl-CoA synthetase gene are responsible for ethanol utilization in Yarrowia lipolytica. Fungal Genet Biol 2016; 95:30-38. [PMID: 27486067 DOI: 10.1016/j.fgb.2016.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 11/21/2022]
Abstract
The non-conventional yeast Yarrowia lipolytica is able to utilize a wide range of different substrates like glucose, glycerol, ethanol, acetate, proteins and various hydrophobic molecules. Although most metabolic pathways for the utilization of these substrates have been clarified by now, it was not clear whether ethanol is oxidized by alcohol dehydrogenases or by an alternative oxidation system inside the cell. In order to detect the genes that are required for ethanol utilization in Y. lipolytica, eight alcohol dehydrogenase (ADH) genes and one alcohol oxidase gene (FAO1) have been identified and respective deletion strains were tested for their ability to metabolize ethanol. As a result of this, we found that the availability of ADH1, ADH2 or ADH3 is required for ethanol utilization in Y. lipolytica. A strain with deletions in all three genes is lacking the ability to utilize ethanol as sole carbon source. Although Adh2p showed by far the highest enzyme activity in an in vitro assay, the availability of any of the three genes was sufficient to enable a decent growth. In addition to ADH1, ADH2 and ADH3, an acetyl-CoA synthetase encoding gene (ACS1) was found to be essential for ethanol utilization. As Y. lipolytica is a non-fermenting yeast, it is neither able to grow under anaerobic conditions nor to produce ethanol. To investigate whether Y. lipolytica may produce ethanol, the key genes of alcoholic fermentation in S. cerevisiae, ScADH1 and ScPDC1, were overexpressed in an ADH and an ACS1 deletion strain. However, instead of producing ethanol, the respective strains regained the ability to use ethanol as single carbon source and were still not able to grow under anaerobic conditions.
Collapse
|
21
|
Liu L, Zhang Y, Liu Z, Petranovic D, Nielsen J. Improving heterologous protein secretion at aerobic conditions by activating hypoxia-induced genes inSaccharomyces cerevisiae. FEMS Yeast Res 2015. [DOI: 10.1093/femsyr/fov070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
22
|
Bjork SM, Sjostrom SL, Andersson-Svahn H, Joensson HN. Metabolite profiling of microfluidic cell culture conditions for droplet based screening. BIOMICROFLUIDICS 2015; 9:044128. [PMID: 26392830 PMCID: PMC4560712 DOI: 10.1063/1.4929520] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/12/2015] [Indexed: 05/04/2023]
Abstract
We investigate the impact of droplet culture conditions on cell metabolic state by determining key metabolite concentrations in S. cerevisiae cultures in different microfluidic droplet culture formats. Control of culture conditions is critical for single cell/clone screening in droplets, such as directed evolution of yeast, as cell metabolic state directly affects production yields from cell factories. Here, we analyze glucose, pyruvate, ethanol, and glycerol, central metabolites in yeast glucose dissimilation to establish culture formats for screening of respiring as well as fermenting yeast. Metabolite profiling provides a more nuanced estimate of cell state compared to proliferation studies alone. We show that the choice of droplet incubation format impacts cell proliferation and metabolite production. The standard syringe incubation of droplets exhibited metabolite profiles similar to oxygen limited cultures, whereas the metabolite profiles of cells cultured in the alternative wide tube droplet incubation format resemble those from aerobic culture. Furthermore, we demonstrate retained droplet stability and size in the new better oxygenated droplet incubation format.
Collapse
|
23
|
Zhang Y, Dai Z, Krivoruchko A, Chen Y, Siewers V, Nielsen J. Functional pyruvate formate lyase pathway expressed with two different electron donors in Saccharomyces cerevisiae at aerobic growth. FEMS Yeast Res 2015; 15:fov024. [DOI: 10.1093/femsyr/fov024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2015] [Indexed: 11/14/2022] Open
|
24
|
Valavanis I, Sifakis EG, Georgiadis P, Kyrtopoulos S, Chatziioannou AA. A composite framework for the statistical analysis of epidemiological DNA methylation data with the Infinium Human Methylation 450K BeadChip. IEEE J Biomed Health Inform 2015; 18:817-23. [PMID: 24808224 DOI: 10.1109/jbhi.2014.2298351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
High-throughput DNA methylation profiling exploits microarray technologies thus providing a wealth of data, which however solicits rigorous, generic, and analytical pipelines for an efficient systems level analysis and interpretation. In this study, we utilize the Illumina's Infinium Human Methylation 450K BeadChip platform in an epidemiological cohort, targeting to associate interesting methylation patterns with breast cancer predisposition. The computational framework proposed here extends the--established in transcriptomic microarrays--logarithmic ratio of the methylated versus the unmethylated signal intensities, quoted as M-value. Moreover, intensity-based correction of the M-signal distribution is introduced in order to correct for batch effects and probe-specific errors in intensity measurements. This is accomplished through the estimation of intensity-related error measures from quality control samples included in each chip. Moreover, robust statistical measures exploiting the coefficient variation of DNA methylation measurements between control and case samples alleviate the impact of technical variation. The results presented here are juxtaposed to those derived by applying classical preprocessing and statistical selection methodologies. Overall, in comparison to traditional approaches, the superior performance of the proposed framework in terms of technical bias correction, along with its generic character, support its suitability for various microarray technologies.
Collapse
|
25
|
Physiological and transcriptional responses of anaerobic chemostat cultures of Saccharomyces cerevisiae subjected to diurnal temperature cycles. Appl Environ Microbiol 2014; 80:4433-49. [PMID: 24814792 DOI: 10.1128/aem.00785-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diurnal temperature cycling is an intrinsic characteristic of many exposed microbial ecosystems. However, its influence on yeast physiology and the yeast transcriptome has not been studied in detail. In this study, 24-h sinusoidal temperature cycles, oscillating between 12°C and 30°C, were imposed on anaerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. After three diurnal temperature cycles (DTC), concentrations of glucose and extracellular metabolites as well as CO2 production rates showed regular, reproducible circadian rhythms. DTC also led to waves of transcriptional activation and repression, which involved one-sixth of the yeast genome. A substantial fraction of these DTC-responsive genes appeared to respond primarily to changes in the glucose concentration. Elimination of known glucose-responsive genes revealed an overrepresentation of previously identified temperature-responsive genes as well as genes involved in the cell cycle and de novo purine biosynthesis. In-depth analysis demonstrated that DTC led to a partial synchronization of the cell cycle of the yeast populations in chemostat cultures, which was lost upon release from DTC. Comparison of DTC results with data from steady-state cultures showed that the 24-h DTC was sufficiently slow to allow S. cerevisiae chemostat cultures to acclimate their transcriptome and physiology at the DTC temperature maximum and to approach acclimation at the DTC temperature minimum. Furthermore, this comparison and literature data on growth rate-dependent cell cycle phase distribution indicated that cell cycle synchronization was most likely an effect of imposed fluctuations of the relative growth rate (μ/μmax) rather than a direct effect of temperature.
Collapse
|
26
|
Anhydrobiosis in yeast: is it possible to reach anhydrobiosis for yeast grown in conditions with severe oxygen limitation? Antonie van Leeuwenhoek 2014; 106:211-7. [PMID: 24791685 DOI: 10.1007/s10482-014-0182-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/18/2014] [Indexed: 01/26/2023]
Abstract
The yeast Saccharomyces cerevisiae was shown to be extremely sensitive to dehydration-rehydration treatments when stationary phase cells were subjected to conditions of severe oxygen limitation, unlike the same cells grown in aerobic conditions. The viability of dehydrated anaerobically grown yeast cells never exceeded 2 %. It was not possible to increase this viability using gradual rehydration of dry cells in water vapour, which usually strongly reduces damage to intracellular membranes. Specific pre-dehydration treatments significantly increased the resistance of anaerobic yeast to drying. Thus, incubation of cells with trehalose (100 mM), increased the viability of dehydrated cells after slow rehydration in water vapour to 30 %. Similarly, pre-incubation of cells in 1 M xylitol or glycerol enabled up to 50-60 % of cells to successfully enter a viable state of anhydrobiosis after subsequent rehydration. We presume that trehalose and sugar alcohols function mainly according to a water replacement hypothesis, as well as initiating various protective intracellular reactions.
Collapse
|
27
|
Bühligen F, Rüdinger P, Fetzer I, Stahl F, Scheper T, Harms H, Müller S. Sustainability of industrial yeast serial repitching practice studied by gene expression and correlation analysis. J Biotechnol 2013; 168:718-28. [DOI: 10.1016/j.jbiotec.2013.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 12/24/2022]
|
28
|
Dissecting plant iron homeostasis under short and long-term iron fluctuations. Biotechnol Adv 2013; 31:1292-307. [PMID: 23680191 DOI: 10.1016/j.biotechadv.2013.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/18/2013] [Accepted: 05/05/2013] [Indexed: 12/30/2022]
Abstract
A wealth of information on the different aspects of iron homeostasis in plants has been obtained during the last decade. However, there is no clear road-map integrating the relationships between the various components. The principal aim of the current review is to fill this gap. In this context we discuss the lack of low affinity iron uptake mechanisms in plants, the utilization of a different uptake mechanism by graminaceous plants compared to the others, as well as the roles of riboflavin, ferritin isoforms, nitric oxide, nitrosylation, heme, aconitase, and vacuolar pH. Cross-homeostasis between elements is also considered, with a specific emphasis on the relationship between iron homeostasis and phosphorus and copper deficiencies. As the environment is a crucial parameter for modulating plant responses, we also highlight how diurnal fluctuations govern iron metabolism. Evolutionary aspects of iron homeostasis have so far attracted little attention. Looking into the past can inform us on how long-term oxygen and iron-availability fluctuations have influenced the evolution of iron uptake mechanisms. Finally, we evaluate to what extent this homeostastic road map can be used for the development of novel biofortification strategies in order to alleviate iron deficiency in human.
Collapse
|
29
|
Abstract
Chemostats are continuous culture systems in which cells are grown in a tightly controlled, chemically constant environment where culture density is constrained by limiting specific nutrients.1,2 Data from chemostats are highly reproducible for the measurement of quantitative phenotypes as they provide a constant growth rate and environment at steady state. For these reasons, chemostats have become useful tools for fine-scale characterization of physiology through analysis of gene expression3-6 and other characteristics of cultures at steady-state equilibrium.7 Long-term experiments in chemostats can highlight specific trajectories that microbial populations adopt during adaptive evolution in a controlled environment. In fact, chemostats have been used for experimental evolution since their invention.8 A common result in evolution experiments is for each biological replicate to acquire a unique repertoire of mutations.9-13 This diversity suggests that there is much left to be discovered by performing evolution experiments with far greater throughput. We present here the design and operation of a relatively simple, low cost array of miniature chemostats—or ministats—and validate their use in determination of physiology and in evolution experiments with yeast. This approach entails growth of tens of chemostats run off a single multiplexed peristaltic pump. The cultures are maintained at a 20 ml working volume, which is practical for a variety of applications. It is our hope that increasing throughput, decreasing expense, and providing detailed building and operation instructions may also motivate research and industrial application of this design as a general platform for functionally characterizing large numbers of strains, species, and growth parameters, as well as genetic or drug libraries.
Collapse
Affiliation(s)
- Aaron W Miller
- Department of Genome Sciences, University of Washington, WA, USA
| | | | | | | |
Collapse
|
30
|
Fujiwara H, Kawai S, Murata K. Significance of sulfiredoxin/peroxiredoxin and mitochondrial respiratory chain in response to and protection from 100% O(2) in Saccharomyces cerevisiae. Mitochondrion 2013; 13:52-8. [PMID: 23291433 DOI: 10.1016/j.mito.2012.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/01/2012] [Accepted: 12/20/2012] [Indexed: 11/26/2022]
Abstract
The mechanisms underlying organisms respond to and protect from hyperoxia remain elusive. We establish a system for cultivating the yeast Saccharomyces cerevisiae cells in liquid medium under 100% O(2) and revealed that SRX1, encoding sulfiredoxin, is significantly induced by 100% O(2) dependently on transcription factors Yap1 and Skn7. Sulfiredoxin has a role in restoring the abundant peroxiredoxin, Tsa1. Tsa1 was indispensable for protection from 100% O(2) in the presence of antimycin A, an inhibitor of complex III in the mitochondrial respiratory chain, collectively emphasizing the significance of sulfiredoxin, peroxiredoxin, and mitochondrial respiratory chain to respond to and to protect from 100% O(2).
Collapse
Affiliation(s)
- Hiroki Fujiwara
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food and Biological Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | | | | |
Collapse
|
31
|
Slavov N, Botstein D. Decoupling nutrient signaling from growth rate causes aerobic glycolysis and deregulation of cell size and gene expression. Mol Biol Cell 2012; 24:157-68. [PMID: 23135997 PMCID: PMC3541962 DOI: 10.1091/mbc.e12-09-0670] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nutrition and the growth rate of a cell are two interacting factors with pervasive physiological effects. Our experiments decouple these factors and demonstrate the role of a growth rate signal, independent of the actual rate of biomass increase, on gene regulation, the cell division cycle, and the switch to a respiro-fermentative metabolism. To survive and proliferate, cells need to coordinate their metabolism, gene expression, and cell division. To understand this coordination and the consequences of its failure, we uncoupled biomass synthesis from nutrient signaling by growing, in chemostats, yeast auxotrophs for histidine, lysine, or uracil in excess of natural nutrients (i.e., sources of carbon, nitrogen, sulfur, and phosphorus), such that their growth rates (GRs) were regulated by the availability of their auxotrophic requirements. The physiological and transcriptional responses to GR changes of these cultures differed markedly from the respective responses of prototrophs whose growth-rate is regulated by the availability of natural nutrients. The data for all auxotrophs at all GRs recapitulated the features of aerobic glycolysis, fermentation despite high oxygen levels in the growth media. In addition, we discovered wide bimodal distributions of cell sizes, indicating a decoupling between the cell division cycle (CDC) and biomass production. The aerobic glycolysis was reflected in a general signature of anaerobic growth, including substantial reduction in the expression levels of mitochondrial and tricarboxylic acid genes. We also found that the magnitude of the transcriptional growth-rate response (GRR) in the auxotrophs is only 40–50% of the magnitude in prototrophs. Furthermore, the auxotrophic cultures express autophagy genes at substantially lower levels, which likely contributes to their lower viability. Our observations suggest that a GR signal, which is a function of the abundance of essential natural nutrients, regulates fermentation/respiration, the GRR, and the CDC.
Collapse
Affiliation(s)
- Nikolai Slavov
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
32
|
Transcriptional regulation of desaturase genes in Pichia pastoris GS115. Lipids 2012; 47:1099-108. [PMID: 22961009 DOI: 10.1007/s11745-012-3712-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/06/2012] [Indexed: 10/27/2022]
Abstract
Here we investigated the regulation of Pichia pastoris desaturase genes by low temperature and exogenous fatty acids in the late-exponential phase at the transcriptional level. Time-course studies of gene expression showed that mRNA levels of four desaturase genes were rapidly and transiently enhanced by low temperature and suppressed by exogenous oleic acid. Stearic acid showed no obvious repression of mRNA levels of Fad12 and Fad15 and a slight increase in Fad9A and Fad9B mRNA levels. Using a promoter-reporter gene construct, we demonstrated that the pFAD15 promoter activity was induced by low temperature in a time-dependent manner and reduced in a dose- and time-dependent manner by unsaturated fatty acids. Also, there was no absolute correlation between mRNA abundance and production of corresponding fatty acids. Disruption of Spt23 resulted in a decrease in transcript levels of Fad9A and Fad9B, but had little effect on the other desaturase genes. Consistent with these observations, a decrease in the relative amount of oleic acid (OLA) and an increase in the relative content of linoleic acid and ALA with different degrees were clearly observed in the stationary phase cells of ΔSpt23 mutant. Further analysis showed that the effect of low-temperature activation and OLA inhibition on expression of Fad9A and Fad9B seemed to disappear after disruption of the Spt23 gene, which indicated that Spt23p is essential for the expression of two Δ9-desaturase genes internally and probably involved in the regulation of Δ9-desaturase genes transcription in response to external stimuli, and thereby plays a role in the synthesis of OLA.
Collapse
|
33
|
Jouhten P, Wiebe M, Penttilä M. Dynamic flux balance analysis of the metabolism ofSaccharomyces cerevisiaeduring the shift from fully respirative or respirofermentative metabolic states to anaerobiosis. FEBS J 2012; 279:3338-54. [DOI: 10.1111/j.1742-4658.2012.08649.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Many Saccharomyces cerevisiae Cell Wall Protein Encoding Genes Are Coregulated by Mss11, but Cellular Adhesion Phenotypes Appear Only Flo Protein Dependent. G3-GENES GENOMES GENETICS 2012; 2:131-41. [PMID: 22384390 PMCID: PMC3276193 DOI: 10.1534/g3.111.001644] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/21/2011] [Indexed: 01/01/2023]
Abstract
The outer cell wall of the yeast Saccharomyces cerevisiae serves as the interface with the surrounding environment and directly affects cell-cell and cell-surface interactions. Many of these interactions are facilitated by specific adhesins that belong to the Flo protein family. Flo mannoproteins have been implicated in phenotypes such as flocculation, substrate adhesion, biofilm formation, and pseudohyphal growth. Genetic data strongly suggest that individual Flo proteins are responsible for many specific cellular adhesion phenotypes. However, it remains unclear whether such phenotypes are determined solely by the nature of the expressed FLO genes or rather as the result of a combination of FLO gene expression and other cell wall properties and cell wall proteins. Mss11 has been shown to be a central element of FLO1 and FLO11 gene regulation and acts together with the cAMP-PKA-dependent transcription factor Flo8. Here we use genome-wide transcription analysis to identify genes that are directly or indirectly regulated by Mss11. Interestingly, many of these genes encode cell wall mannoproteins, in particular, members of the TIR and DAN families. To examine whether these genes play a role in the adhesion properties associated with Mss11 expression, we assessed deletion mutants of these genes in wild-type and flo11Δ genetic backgrounds. This analysis shows that only FLO genes, in particular FLO1/10/11, appear to significantly impact on such phenotypes. Thus adhesion-related phenotypes are primarily dependent on the balance of FLO gene expression.
Collapse
|
35
|
Vargas FA, Pizarro F, Pérez-Correa JR, Agosin E. Expanding a dynamic flux balance model of yeast fermentation to genome-scale. BMC SYSTEMS BIOLOGY 2011; 5:75. [PMID: 21595919 PMCID: PMC3118138 DOI: 10.1186/1752-0509-5-75] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 05/19/2011] [Indexed: 12/03/2022]
Abstract
Background Yeast is considered to be a workhorse of the biotechnology industry for the production of many value-added chemicals, alcoholic beverages and biofuels. Optimization of the fermentation is a challenging task that greatly benefits from dynamic models able to accurately describe and predict the fermentation profile and resulting products under different genetic and environmental conditions. In this article, we developed and validated a genome-scale dynamic flux balance model, using experimentally determined kinetic constraints. Results Appropriate equations for maintenance, biomass composition, anaerobic metabolism and nutrient uptake are key to improve model performance, especially for predicting glycerol and ethanol synthesis. Prediction profiles of synthesis and consumption of the main metabolites involved in alcoholic fermentation closely agreed with experimental data obtained from numerous lab and industrial fermentations under different environmental conditions. Finally, fermentation simulations of genetically engineered yeasts closely reproduced previously reported experimental results regarding final concentrations of the main fermentation products such as ethanol and glycerol. Conclusion A useful tool to describe, understand and predict metabolite production in batch yeast cultures was developed. The resulting model, if used wisely, could help to search for new metabolic engineering strategies to manage ethanol content in batch fermentations.
Collapse
Affiliation(s)
- Felipe A Vargas
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Casilla, Correo, Santiago CHILE
| | | | | | | |
Collapse
|
36
|
The Hog1 mitogen-activated protein kinase mediates a hypoxic response in Saccharomyces cerevisiae. Genetics 2011; 188:325-38. [PMID: 21467572 DOI: 10.1534/genetics.111.128322] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have studied hypoxic induction of transcription by studying the seripauperin (PAU) genes of Saccharomyces cerevisiae. Previous studies showed that PAU induction requires the depletion of heme and is dependent upon the transcription factor Upc2. We have now identified additional factors required for PAU induction during hypoxia, including Hog1, a mitogen-activated protein kinase (MAPK) whose signaling pathway originates at the membrane. Our results have led to a model in which heme and ergosterol depletion alters membrane fluidity, thereby activating Hog1 for hypoxic induction. Hypoxic activation of Hog1 is distinct from its previously characterized response to osmotic stress, as the two conditions cause different transcriptional consequences. Furthermore, Hog1-dependent hypoxic activation is independent of the S. cerevisiae general stress response. In addition to Hog1, specific components of the SAGA coactivator complex, including Spt20 and Sgf73, are also required for PAU induction. Interestingly, the mammalian ortholog of Spt20, p38IP, has been previously shown to interact with the mammalian ortholog of Hog1, p38. Taken together, our results have uncovered a previously unknown hypoxic-response pathway that may be conserved throughout eukaryotes.
Collapse
|
37
|
Rintala E, Jouhten P, Toivari M, Wiebe MG, Maaheimo H, Penttilä M, Ruohonen L. Transcriptional responses of Saccharomyces cerevisiae to shift from respiratory and respirofermentative to fully fermentative metabolism. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:461-76. [PMID: 21348598 DOI: 10.1089/omi.2010.0082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In industrial fermentations of Saccharomyces cerevisiae, transient changes in oxygen concentration commonly occur and it is important to understand the behavior of cells during these changes. Glucose-limited chemostat cultivations were used to study the time-dependent effect of sudden oxygen depletion on the transcriptome of S. cerevisiae cells initially in fully aerobic or oxygen-limited conditions. The overall responses to anaerobic conditions of cells initially in different conditions were very similar. Independent of initial culture conditions, transient downregulation of genes related to growth and cell proliferation, mitochondrial translation and protein import, and sulphate assimilation was seen. In addition, transient or permanent upregulation of genes related to protein degradation, and phosphate and amino acid uptake was observed in all cultures. However, only in the initially oxygen-limited cultures was a transient upregulation of genes related to fatty acid oxidation, peroxisomal biogenesis, oxidative phosphorylation, TCA cycle, response to oxidative stress, and pentose phosphate pathway observed. Furthermore, from the initially oxygen-limited conditions, a rapid response around the metabolites of upper glycolysis and the pentose phosphate pathway was seen, while from the initially fully aerobic conditions, a slower response around the pathways for utilization of respiratory carbon sources was observed.
Collapse
Affiliation(s)
- Eija Rintala
- VTT Technical Research Centre of Finland, Finland.
| | | | | | | | | | | | | |
Collapse
|
38
|
Tyo KE, Nevoigt E, Stephanopoulos G. Directed Evolution of Promoters and Tandem Gene Arrays for Customizing RNA Synthesis Rates and Regulation. Methods Enzymol 2011; 497:135-55. [DOI: 10.1016/b978-0-12-385075-1.00006-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
Wang J, Jiang JC, Jazwinski SM. Gene regulatory changes in yeast during life extension by nutrient limitation. Exp Gerontol 2010; 45:621-31. [PMID: 20178842 PMCID: PMC2879456 DOI: 10.1016/j.exger.2010.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 02/11/2010] [Accepted: 02/17/2010] [Indexed: 11/23/2022]
Abstract
Genetic analyses aimed at identification of the pathways and downstream effectors of calorie restriction (CR) in the yeast Saccharomyces cerevisiae suggest the importance of central metabolism for the extension of replicative life span by CR. However, the limited gene expression studies to date are not informative, because they have been conducted using cells grown in batch culture which markedly departs from the conditions under which yeasts are grown during life span determinations. In this study, we have examined the gene expression changes that occur during either glucose limitation or elimination of nonessential-amino acids, both of which enhance yeast longevity, culturing cells in a chemostat at equilibrium, which closely mimics conditions they encounter during life span determinations. Expression of 59 genes was examined quantitatively by real-time, reverse transcriptase polymerase chain reaction (qRT-PCR), and the physiological state of the cultures was monitored. Extensive gene expression changes were detected, some of which were common to both CR regimes. The most striking of these was the induction of tricarboxylic acid (TCA) cycle and retrograde response target genes, which appears to be at least partially due to the up-regulation of the HAP4 gene. These gene regulatory events portend an increase in the generation of biosynthetic intermediates necessary for the production of daughter cells, which is the measure of yeast replicative life span.
Collapse
Affiliation(s)
- Jinqing Wang
- Department of Medicine and the Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA 70112 USA
| | - James C. Jiang
- Department of Medicine and the Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA 70112 USA
| | - S. Michal Jazwinski
- Department of Medicine and the Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA 70112 USA
| |
Collapse
|
40
|
Rosenbach A, Dignard D, Pierce JV, Whiteway M, Kumamoto CA. Adaptations of Candida albicans for growth in the mammalian intestinal tract. EUKARYOTIC CELL 2010; 9:1075-86. [PMID: 20435697 PMCID: PMC2901676 DOI: 10.1128/ec.00034-10] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 04/26/2010] [Indexed: 01/12/2023]
Abstract
Although the fungus Candida albicans is a commensal colonizer of humans, the organism is also an important opportunistic pathogen. Most infections caused by C. albicans arise from organisms that were previously colonizing the host as commensals, and therefore successful establishment of colonization is a prerequisite for pathogenicity. To elucidate fungal activities that promote colonization, an analysis of the transcription profile of C. albicans cells recovered from the intestinal tracts of mice was performed. The results showed that within the C. albicans colonizing population, cells expressed genes characteristic of the laboratory-grown exponential phase and genes characteristic of post-exponential-phase cells. Thus, gene expression both promoted the ability to grow rapidly (a characteristic of exponential-phase cells) and enhanced the ability to resist stresses (a characteristic of post-exponential-phase cells). Similarities in gene expression in commensal colonizing cells and cells invading host tissue during disease were found, showing that C. albicans cells adopt a particular cell surface when growing within a host in both situations. In addition, transcription factors Cph2p and Tec1p were shown to regulate C. albicans gene expression during intestinal colonization.
Collapse
Affiliation(s)
- Ari Rosenbach
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - Daniel Dignard
- Genetics Group, Biotechnology Research Institute, National Research Council, Montreal, Quebec H4P 2R2, Canada
| | - Jessica V. Pierce
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - Malcolm Whiteway
- Genetics Group, Biotechnology Research Institute, National Research Council, Montreal, Quebec H4P 2R2, Canada
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| |
Collapse
|
41
|
Hauser NC, Fellenberg K, Gil R, Bastuck S, Hoheisel JD, Pérez-Ortín JE. Whole genome analysis of a wine yeast strain. Comp Funct Genomics 2010; 2:69-79. [PMID: 18628902 PMCID: PMC2447197 DOI: 10.1002/cfg.73] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2000] [Accepted: 02/21/2001] [Indexed: 11/28/2022] Open
Abstract
Saccharomyces cerevisiae strains frequently exhibit rather specific phenotypic features
needed for adaptation to a special environment. Wine yeast strains are able to ferment
musts, for example, while other industrial or laboratory strains fail to do so. The genetic
differences that characterize wine yeast strains are poorly understood, however. As a first
search of genetic differences between wine and laboratory strains, we performed DNA-array
analyses on the typical wine yeast strain T73 and the standard laboratory
background in S288c. Our analysis shows that even under normal conditions, logarithmic
growth in YPD medium, the two strains have expression patterns that differ significantly in
more than 40 genes. Subsequent studies indicated that these differences correlate with
small changes in promoter regions or variations in gene copy number. Blotting copy
numbers vs. transcript levels produced patterns, which were specific for the individual
strains and could be used for a characterization of unknown samples.
Collapse
Affiliation(s)
- N C Hauser
- Functional Genome Analysis, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 506, Heidelberg D-69120, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Transcriptional response to hypoxia in the aquatic fungus Blastocladiella emersonii. EUKARYOTIC CELL 2010; 9:915-25. [PMID: 20418381 DOI: 10.1128/ec.00047-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Global gene expression analysis was carried out with Blastocladiella emersonii cells subjected to oxygen deprivation (hypoxia) using cDNA microarrays. In experiments of gradual hypoxia (gradual decrease in dissolved oxygen) and direct hypoxia (direct decrease in dissolved oxygen), about 650 differentially expressed genes were observed. A total of 534 genes were affected directly or indirectly by oxygen availability, as they showed recovery to normal expression levels or a tendency to recover when cells were reoxygenated. In addition to modulating many genes with no putative assigned function, B. emersonii cells respond to hypoxia by readjusting the expression levels of genes responsible for energy production and consumption. At least transcriptionally, this fungus seems to favor anaerobic metabolism through the upregulation of genes encoding glycolytic enzymes and lactate dehydrogenase and the downregulation of most genes coding for tricarboxylic acid (TCA) cycle enzymes. Furthermore, genes involved in energy-costly processes, like protein synthesis, amino acid biosynthesis, protein folding, and transport, had their expression profiles predominantly downregulated during oxygen deprivation, indicating an energy-saving effort. Data also revealed similarities between the transcriptional profiles of cells under hypoxia and under iron(II) deprivation, suggesting that Fe(2+) ion could have a role in oxygen sensing and/or response to hypoxia in B. emersonii. Additionally, treatment of fungal cells prior to hypoxia with the antibiotic geldanamycin, which negatively affects the stability of mammalian hypoxia transcription factor HIF-1alpha, caused a significant decrease in the levels of certain upregulated hypoxic genes.
Collapse
|
43
|
Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microb Cell Fact 2010; 9:16. [PMID: 20219100 PMCID: PMC2847541 DOI: 10.1186/1475-2859-9-16] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 03/10/2010] [Indexed: 11/17/2022] Open
Abstract
Background In spite of the substantial metabolic engineering effort previously devoted to the development of Saccharomyces cerevisiae strains capable of fermenting both the hexose and pentose sugars present in lignocellulose hydrolysates, the productivity of reported strains for conversion of the naturally most abundant pentose, xylose, is still a major issue of process efficiency. Protein engineering for targeted alteration of the nicotinamide cofactor specificity of enzymes catalyzing the first steps in the metabolic pathway for xylose was a successful approach of reducing xylitol by-product formation and improving ethanol yield from xylose. The previously reported yeast strain BP10001, which expresses heterologous xylose reductase from Candida tenuis in mutated (NADH-preferring) form, stands for a series of other yeast strains designed with similar rational. Using 20 g/L xylose as sole source of carbon, BP10001 displayed a low specific uptake rate qxylose (g xylose/g dry cell weight/h) of 0.08. The study presented herein was performed with the aim of analysing (external) factors that limit qxylose of BP10001 under xylose-only and mixed glucose-xylose substrate conditions. We also carried out a comprehensive investigation on the currently unclear role of coenzyme utilization, NADPH compared to NADH, for xylose reduction during co-fermentation of glucose and xylose. Results BP10001 and BP000, expressing C. tenuis xylose reductase in NADPH-preferring wild-type form, were used. Glucose and xylose (each at 10 g/L) were converted sequentially, the corresponding qsubstrate values being similar for each strain (glucose: 3.0; xylose: 0.05). The distribution of fermentation products from glucose was identical for both strains whereas when using xylose, BP10001 showed enhanced ethanol yield (BP10001 0.30 g/g; BP000 0.23 g/g) and decreased yields of xylitol (BP10001 0.26 g/g; BP000 0.36 g/g) and glycerol (BP10001 0.023 g/g; BP000 0.072 g/g) as compared to BP000. Increase in xylose concentration from 10 to 50 g/L resulted in acceleration of substrate uptake by BP10001 (0.05 - 0.14 g/g CDW/h) and reduction of the xylitol yield (0.28 g/g - 0.15 g/g). In mixed substrate batches, xylose was taken up at low glucose concentrations (< 4 g/L) and up to fivefold enhanced xylose uptake rate was found towards glucose depletion. A fed-batch process designed to maintain a "stimulating" level of glucose throughout the course of xylose conversion provided a qxylose that had an initial value of 0.30 ± 0.04 g/g CDW/h and decreased gradually with time. It gave product yields of 0.38 g ethanol/g total sugar and 0.19 g xylitol/g xylose. The effect of glucose on xylose utilization appears to result from the enhanced flux of carbon through glycolysis and the pentose phosphate pathway under low-glucose reaction conditions. Conclusions Relative improvements in the distribution of fermentation products from xylose that can be directly related to a change in the coenzyme preference of xylose reductase from NADPH in BP000 to NADH in BP10001 increase in response to an increase in the initial concentration of the pentose substrate from 10 to 50 g/L. An inverse relationship between xylose uptake rate and xylitol yield for BP10001 implies that xylitol by-product formation is controlled not only by coenzyme regeneration during two-step oxidoreductive conversion of xylose into xylulose. Although xylose is not detectably utilized at glucose concentrations greater than 4 g/L, the presence of a low residual glucose concentration (< 2 g/L) promotes the uptake of xylose and its conversion into ethanol with only moderate xylitol by-product formation. A fed-batch reaction that maintains glucose in the useful concentration range and provides a constant qglucose may be useful for optimizing qxylose in processes designed for co-fermentation of glucose and xylose.
Collapse
|
44
|
Mustroph A, Lee SC, Oosumi T, Zanetti ME, Yang H, Ma K, Yaghoubi-Masihi A, Fukao T, Bailey-Serres J. Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. PLANT PHYSIOLOGY 2010; 152:1484-500. [PMID: 20097791 PMCID: PMC2832244 DOI: 10.1104/pp.109.151845] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 01/14/2010] [Indexed: 05/17/2023]
Abstract
High-throughput technology has facilitated genome-scale analyses of transcriptomic adjustments in response to environmental perturbations with an oxygen deprivation component, such as transient hypoxia or anoxia, root waterlogging, or complete submergence. We showed previously that Arabidopsis (Arabidopsis thaliana) seedlings elevate the levels of hundreds of transcripts, including a core group of 49 genes that are prioritized for translation across cell types of both shoots and roots. To recognize low-oxygen responses that are evolutionarily conserved versus species specific, we compared the transcriptomic reconfiguration in 21 organisms from four kingdoms (Plantae, Animalia, Fungi, and Bacteria). Sorting of organism proteomes into clusters of putative orthologs identified broadly conserved responses associated with glycolysis, fermentation, alternative respiration, metabolite transport, reactive oxygen species amelioration, chaperone activity, and ribosome biogenesis. Differentially regulated genes involved in signaling and transcriptional regulation were poorly conserved across kingdoms. Strikingly, nearly half of the induced mRNAs of Arabidopsis seedlings encode proteins of unknown function, of which over 40% had up-regulated orthologs in poplar (Populus trichocarpa), rice (Oryza sativa), or Chlamydomonas reinhardtii. Sixteen HYPOXIA-RESPONSIVE UNKNOWN PROTEIN (HUP) genes, including four that are Arabidopsis specific, were ectopically overexpressed and evaluated for their effect on seedling tolerance to oxygen deprivation. This allowed the identification of HUPs coregulated with genes associated with anaerobic metabolism and other processes that significantly enhance or reduce stress survival when ectopically overexpressed. These findings illuminate both broadly conserved and plant-specific low-oxygen stress responses and confirm that plant-specific HUPs with limited phylogenetic distribution influence low-oxygen stress endurance.
Collapse
|
45
|
Abstract
Over the past two decades, the incidence of fungal infections has dramatically increased. This is primarily due to increases in the population of immunocompromised individuals attributed to the HIV/AIDS pandemic and immunosuppression therapies associated with organ transplantation, cancer, and other diseases where new immunomodulatory therapies are utilized. Significant advances have been made in understanding how fungi cause disease, but clearly much remains to be learned about the pathophysiology of these often lethal infections. Fungal pathogens face numerous environmental challenges as they colonize and infect mammalian hosts. Regardless of a pathogen's complexity, its ability to adapt to environmental changes is critical for its survival and ability to cause disease. For example, at sites of fungal infections, the significant influx of immune effector cells and the necrosis of tissue by the invading pathogen generate hypoxic microenvironments to which both the pathogen and host cells must adapt in order to survive. However, our current knowledge of how pathogenic fungi adapt to and survive in hypoxic conditions during fungal pathogenesis is limited. Recent studies have begun to observe that the ability to adapt to various levels of hypoxia is an important component of the virulence arsenal of pathogenic fungi. In this review, we focus on known oxygen sensing mechanisms that non-pathogenic and pathogenic fungi utilize to adapt to hypoxic microenvironments and their possible relation to fungal virulence.
Collapse
Affiliation(s)
- Nora Grahl
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717
| | - Robert A. Cramer
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717
| |
Collapse
|
46
|
Regulatory factors controlling transcription of Saccharomyces cerevisiae IXR1 by oxygen levels: a model of transcriptional adaptation from aerobiosis to hypoxia implicating ROX1 and IXR1 cross-regulation. Biochem J 2009; 425:235-43. [PMID: 19807692 DOI: 10.1042/bj20091500] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ixr1p from Saccharomyces cerevisiae has been previously studied because it binds to DNA containing intrastrand cross-links formed by the anticancer drug cisplatin. Ixr1p is also a transcriptional regulator of anaerobic/hypoxic genes, such as SRP1/TIR1, which encodes a stress-response cell wall manoprotein, and COX5B, which encodes the Vb subunit of the mitochondrial complex cytochrome c oxidase. However, factors controlling IXR1 expression remained unexplored. In the present study we show that IXR1 mRNA levels are controlled by oxygen availability and increase during hypoxia. In aerobiosis, low levels of IXR1 expression are maintained by Rox1p repression through the general co-repressor complex Tup1-Ssn6. Ixr1p itself is necessary for full IXR1 expression under hypoxic conditions. Deletion analyses have identified the region in the IXR1 promoter responsible for this positive auto-control (nucleotides -557 to -376). EMSA (electrophoretic mobility-shift assay) and ChIP (chromatin immunoprecipitation) assays show that Ixr1p binds to the IXR1 promoter both in vitro and in vivo. Ixr1p is also required for hypoxic repression of ROX1 and binds to its promoter. UPC2 deletion has opposite effects on IXR1 and ROX1 transcription during hypoxia. Ixr1p is also necessary for resistance to oxidative stress generated by H2O2. IXR1 expression is moderately activated by H2O2 and this induction is Yap1p-dependent. A model of IXR1 regulation as a relay for sensing different signals related to change in oxygen availability is proposed. In this model, transcriptional adaptation from aerobiosis to hypoxia depends on ROX1 and IXR1 cross-regulation.
Collapse
|
47
|
Fang ZA, Wang GH, Chen AL, Li YF, Liu JP, Li YY, Bolotin-Fukuhara M, Bao WG. Gene responses to oxygen availability in Kluyveromyces lactis: an insight on the evolution of the oxygen-responding system in yeast. PLoS One 2009; 4:e7561. [PMID: 19855843 PMCID: PMC2763219 DOI: 10.1371/journal.pone.0007561] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 09/16/2009] [Indexed: 11/18/2022] Open
Abstract
The whole-genome duplication (WGD) may provide a basis for the emergence of the very characteristic life style of Saccharomyces cerevisiae—its fermentation-oriented physiology and its capacity of growing in anaerobiosis. Indeed, we found an over-representation of oxygen-responding genes in the ohnologs of S. cerevisiae. Many of these duplicated genes are present as aerobic/hypoxic(anaerobic) pairs and form a specialized system responding to changing oxygen availability. HYP2/ANB1 and COX5A/COX5B are such gene pairs, and their unique orthologs in the ‘non-WGD’ Kluyveromyces lactis genome behaved like the aerobic versions of S. cerevisiae. ROX1 encodes a major oxygen-responding regulator in S. cerevisiae. The synteny, structural features and molecular function of putative KlROX1 were shown to be different from that of ROX1. The transition from the K. lactis-type ROX1 to the S. cerevisiae-type ROX1 could link up with the development of anaerobes in the yeast evolution. Bioinformatics and stochastic analyses of the Rox1p-binding site (YYYATTGTTCTC) in the upstream sequences of the S. cerevisiae Rox1p-mediated genes and of the K. lactis orthologs also indicated that K. lactis lacks the specific gene system responding to oxygen limiting environment, which is present in the ‘post-WGD’ genome of S. cerevisiae. These data suggested that the oxygen-responding system was born for the specialized physiology of S. cerevisiae.
Collapse
Affiliation(s)
- Zi-An Fang
- Université Paris Sud-11, CNRS UMR 8621, Institut de Génétique et Microbiologie, Orsay, France
- Institute of Genetics, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Guang-Hui Wang
- School of Mathematics, Shandong University, Jinan, Shandong, China
- Laboratoire Mathématiques Appliquées aux Systèmes, Ecole Centrale Paris, Châtenay-Malabry, France
| | - Ai-Lian Chen
- Department of Mathematics, Fuzhou University, Fuzhou, Fujian, China
| | - You-Fang Li
- Université Paris Sud-11, CNRS UMR 8621, Institut de Génétique et Microbiologie, Orsay, France
| | - Jian-Ping Liu
- Institute of Genetics, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu-Yang Li
- Institute of Genetics, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | | | - Wei-Guo Bao
- Université Paris Sud-11, CNRS UMR 8621, Institut de Génétique et Microbiologie, Orsay, France
- * E-mail:
| |
Collapse
|
48
|
Rintala E, Toivari M, Pitkänen JP, Wiebe MG, Ruohonen L, Penttilä M. Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae. BMC Genomics 2009; 10:461. [PMID: 19804647 PMCID: PMC2767370 DOI: 10.1186/1471-2164-10-461] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 10/05/2009] [Indexed: 12/19/2022] Open
Abstract
Background The industrially important yeast Saccharomyces cerevisiae is able to grow both in the presence and absence of oxygen. However, the regulation of its metabolism in conditions of intermediate oxygen availability is not well characterised. We assessed the effect of oxygen provision on the transcriptome and proteome of S. cerevisiae in glucose-limited chemostat cultivations in anaerobic and aerobic conditions, and with three intermediate (0.5, 1.0 and 2.8% oxygen) levels of oxygen in the feed gas. Results The main differences in the transcriptome were observed in the comparison of fully aerobic, intermediate oxygen and anaerobic conditions, while the transcriptome was generally unchanged in conditions receiving different intermediate levels (0.5, 1.0 or 2.8% O2) of oxygen in the feed gas. Comparison of the transcriptome and proteome data suggested post-transcriptional regulation was important, especially in 0.5% oxygen. In the conditions of intermediate oxygen, the genes encoding enzymes of the respiratory pathway were more highly expressed than in either aerobic or anaerobic conditions. A similar trend was also seen in the proteome and in enzyme activities of the TCA cycle. Further, genes encoding proteins of the mitochondrial translation machinery were present at higher levels in all oxygen-limited and anaerobic conditions, compared to fully aerobic conditions. Conclusion Global upregulation of genes encoding components of the respiratory pathway under conditions of intermediate oxygen suggested a regulatory mechanism to control these genes as a response to the need of more efficient energy production. Further, cells grown in three different intermediate oxygen levels were highly similar at the level of transcription, while they differed at the proteome level, suggesting post-transcriptional mechanisms leading to distinct physiological modes of respiro-fermentative metabolism.
Collapse
Affiliation(s)
- Eija Rintala
- VTT Technical Research Centre of Finland, P,O, Box 1000, FI-02044 VTT, Finland.
| | | | | | | | | | | |
Collapse
|
49
|
González-Siso MI, García-Leiro A, Tarrío N, Cerdán ME. Sugar metabolism, redox balance and oxidative stress response in the respiratory yeast Kluyveromyces lactis. Microb Cell Fact 2009; 8:46. [PMID: 19715615 PMCID: PMC2754438 DOI: 10.1186/1475-2859-8-46] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 08/30/2009] [Indexed: 12/04/2022] Open
Abstract
A lot of studies have been carried out on Saccharomyces cerevisiae, an yeast with a predominant fermentative metabolism under aerobic conditions, which allows exploring the complex response induced by oxidative stress. S. cerevisiae is considered a eukaryote model for these studies. We propose Kluyveromyces lactis as a good alternative model to analyse variants in the oxidative stress response, since the respiratory metabolism in this yeast is predominant under aerobic conditions and it shows other important differences with S. cerevisiae in catabolic repression and carbohydrate utilization. The knowledge of oxidative stress response in K. lactis is still a developing field. In this article, we summarize the state of the art derived from experimental approaches and we provide a global vision on the characteristics of the putative K. lactis components of the oxidative stress response pathway, inferred from their sequence homology with the S. cerevisiae counterparts. Since K. lactis is also a well-established alternative host for industrial production of native enzymes and heterologous proteins, relevant differences in the oxidative stress response pathway and their potential in biotechnological uses of this yeast are also reviewed.
Collapse
Affiliation(s)
- M Isabel González-Siso
- Department of Molecular and Cell Biology, University of A Coruña, Campus da Zapateira s/n, 15071- A Coruña, Spain.
| | | | | | | |
Collapse
|
50
|
Verbelen PJ, Depraetere SA, Winderickx J, Delvaux FR, Delvaux F. The influence of yeast oxygenation prior to brewery fermentation on yeast metabolism and the oxidative stress response. FEMS Yeast Res 2009; 9:226-39. [DOI: 10.1111/j.1567-1364.2008.00476.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|