1
|
Fang Q. The Versatile Attributes of MGMT: Its Repair Mechanism, Crosstalk with Other DNA Repair Pathways, and Its Role in Cancer. Cancers (Basel) 2024; 16:331. [PMID: 38254819 PMCID: PMC10814553 DOI: 10.3390/cancers16020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT or AGT) is a DNA repair protein with the capability to remove alkyl groups from O6-AlkylG adducts. Moreover, MGMT plays a crucial role in repairing DNA damage induced by methylating agents like temozolomide and chloroethylating agents such as carmustine, and thereby contributes to chemotherapeutic resistance when these agents are used. This review delves into the structural roles and repair mechanisms of MGMT, with emphasis on the potential structural and functional roles of the N-terminal domain of MGMT. It also explores the development of cancer therapeutic strategies that target MGMT. Finally, it discusses the intriguing crosstalk between MGMT and other DNA repair pathways.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Reconstruction and analysis of transcriptome regulatory network of Methanobrevibacter ruminantium M1. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Mielecki D, Wrzesiński M, Grzesiuk E. Inducible repair of alkylated DNA in microorganisms. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:294-305. [PMID: 25795127 DOI: 10.1016/j.mrrev.2014.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 12/15/2022]
Abstract
Alkylating agents, which are widespread in the environment, also occur endogenously as primary and secondary metabolites. Such compounds have intrinsically extremely cytotoxic and frequently mutagenic effects, to which organisms have developed resistance by evolving multiple repair mechanisms to protect cellular DNA. One such defense against alkylation lesions is an inducible Adaptive (Ada) response. In Escherichia coli, the Ada response enhances cell resistance by the biosynthesis of four proteins: Ada, AlkA, AlkB, and AidB. The glycosidic bonds of the most cytotoxic lesion, N3-methyladenine (3meA), together with N3-methylguanine (3meG), O(2)-methylthymine (O(2)-meT), and O(2)-methylcytosine (O(2)-meC), are cleaved by AlkA DNA glycosylase. Lesions such as N1-methyladenine (1meA) and N3-methylcytosine (3meC) are removed from DNA and RNA by AlkB dioxygenase. Cytotoxic and mutagenic O(6)-methylguanine (O(6)meG) is repaired by Ada DNA methyltransferase, which transfers the methyl group onto its own cysteine residue from the methylated oxygen. We review (i) the individual Ada proteins Ada, AlkA, AlkB, AidB, and COG3826, with emphasis on the ubiquitous and versatile AlkB and its prokaryotic and eukaryotic homologs; (ii) the organization of the Ada regulon in several bacterial species; (iii) the mechanisms underlying activation of Ada transcription. In vivo and in silico analysis of various microorganisms shows the widespread existence and versatile organization of Ada regulon genes, including not only ada, alkA, alkB, and aidB but also COG3826, alkD, and other genes whose roles in repair of alkylated DNA remain to be elucidated. This review explores the comparative organization of Ada response and protein functions among bacterial species beyond the classical E. coli model.
Collapse
Affiliation(s)
- Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland
| | - Michał Wrzesiński
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland.
| |
Collapse
|
4
|
The reduction in σ-promoter recognition flexibility as induced by core RNAP is required for σ to discern the optimal promoter spacing. Biochem J 2013; 455:185-93. [PMID: 23875654 DOI: 10.1042/bj20130576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sigma (σ) factors are bacterial transcription initiation factors that direct transcription at cognate promoters. The promoters recognized by primary σ are composed of -10 and -35 consensus elements separated by a spacer of 17±1 bp for optimal activity. However, how the optimal promoter spacing is sensed by the primary σ remains unclear. In the present study, we examined this issue using a transcriptionally active Bacillus subtilis N-terminally truncated σA (SND100-σA). The results of the present study demonstrate that SND100-σA binds specifically to both the -10 and -35 elements of the trnS spacing variants, of which the spacer lengths range from 14 to 21 bp, indicating that simultaneous and specific recognition of promoter -10 and -35 elements is insufficient for primary σ to discern the optimal promoter spacing. Moreover, shortening in length of the flexible linker between the two promoter DNA-binding domains of σA also does not enable SND100-σA to sense the optimal promoter spacing. Efficient recognition of optimal promoter spacing by SND100-σA requires core RNAP (RNA polymerase) which reduces the flexibility of simultaneous and specific binding of SND100-σA to both promoter -10 and -35 elements. Thus the discrimination of optimal promoter spacing by σ is core-dependent.
Collapse
|
5
|
Graf N, Altenbuchner J. Functional characterization and application of a tightly regulated MekR/P mekA expression system in Escherichia coli and Pseudomonas putida. Appl Microbiol Biotechnol 2013; 97:8239-51. [PMID: 23771781 DOI: 10.1007/s00253-013-5030-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 01/30/2023]
Abstract
A methyl ethyl ketone (MEK)-inducible system based on the broad-host-range plasmid pBBR1MCS2 and on the P mekA promoter region of the MEK degradation operon of Pseudomonas veronii MEK700 was characterized in Escherichia coli JM109 and Pseudomonas putida KT2440. For validation, β-galactosidase (lacZ) was used as a reporter. The novel system, which is positively regulated by MekR, a member of the AraC/XylS family of regulators, was shown to be subject to carbon catabolite repression by glucose, which, however, could not be attributed to the single action of the global regulators Crc and PtsN. An advantage is its extremely tight regulation accompanied with three magnitudes of fold increase of gene expression after treatment with MEK. The transcriptional start site of P mekA was identified by primer extension, thereby revealing a potential stem-loop structure at the 5' end of the mRNA. Since MekR was highly insoluble, its putative binding site was identified through sequence analysis. The operator seems to be composed of a 15-bp tandem repeat (CACCN5CTTCAA) separated by a 6-bp spacer region, which resembles known binding patterns of other members of the AraC/XylS family. Subsequent mutational modifications of the putative operator region confirmed its importance for transcriptional activation. As the -35 promoter element seems to be overlapped by the putative operator, a class II activation mechanism is assumed.
Collapse
Affiliation(s)
- Nadja Graf
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | | |
Collapse
|
6
|
Abstract
Bacteria use a variety of mechanisms to direct RNA polymerase to specific promoters in order to activate transcription in response to growth signals or environmental cues. Activation can be due to factors that interact at specific promoters, thereby increasing transcription directed by these promoters. We examine the range of architectures found at activator-dependent promoters and outline the mechanisms by which input from different factors is integrated. Alternatively, activation can be due to factors that interact with RNA polymerase and change its preferences for target promoters. We summarize the different mechanistic options for activation that are focused directly on RNA polymerase.
Collapse
Affiliation(s)
- David J Lee
- School of Biosciences, University of Birmingham, United Kingdom.
| | | | | |
Collapse
|
7
|
Decker KB, Chen Q, Hsieh ML, Boucher P, Stibitz S, Hinton DM. Different requirements for σ Region 4 in BvgA activation of the Bordetella pertussis promoters P(fim3) and P(fhaB). J Mol Biol 2011; 409:692-709. [PMID: 21536048 PMCID: PMC3141349 DOI: 10.1016/j.jmb.2011.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 12/31/2022]
Abstract
Bordetella pertussis BvgA is a global response regulator that activates virulence genes, including adhesin-encoding fim3 and fhaB. At the fhaB promoter, P(fhaB), a BvgA binding site lies immediately upstream of the -35 promoter element recognized by Region 4 of the σ subunit of RNA polymerase (RNAP). We demonstrate that σ Region 4 is required for BvgA activation of P(fhaB), a hallmark of Class II activation. In contrast, the promoter-proximal BvgA binding site at P(fim3) includes the -35 region, which is composed of a tract of cytosines that lacks specific sequence information. We demonstrate that σ Region 4 is not required for BvgA activation at P(fim3). Nonetheless, Region 4 mutations that impair its typical interactions with core and with the -35 DNA affect P(fim3) transcription. Hydroxyl radical cleavage using RNAP with σD581C-FeBABE positions Region 4 near the -35 region of P(fim3); cleavage using RNAP with α276C-FeBABE or α302C-FeBABE also positions an α subunit C-terminal domain within the -35 region, on a different helical face from the promoter-proximal BvgA~P dimer. Our results suggest that the -35 region of P(fim3) accommodates a BvgA~P dimer, an α subunit C-terminal domain, and σ Region 4. Molecular modeling suggests how BvgA, σ Region 4, and α might coexist within this DNA in a conformation that suggests a novel mechanism of activation.
Collapse
Affiliation(s)
- Kimberly B Decker
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
8
|
Hinton DM. Transcriptional control in the prereplicative phase of T4 development. Virol J 2010; 7:289. [PMID: 21029433 PMCID: PMC2988021 DOI: 10.1186/1743-422x-7-289] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 10/28/2010] [Indexed: 12/18/2022] Open
Abstract
Control of transcription is crucial for correct gene expression and orderly development. For many years, bacteriophage T4 has provided a simple model system to investigate mechanisms that regulate this process. Development of T4 requires the transcription of early, middle and late RNAs. Because T4 does not encode its own RNA polymerase, it must redirect the polymerase of its host, E. coli, to the correct class of genes at the correct time. T4 accomplishes this through the action of phage-encoded factors. Here I review recent studies investigating the transcription of T4 prereplicative genes, which are expressed as early and middle transcripts. Early RNAs are generated immediately after infection from T4 promoters that contain excellent recognition sequences for host polymerase. Consequently, the early promoters compete extremely well with host promoters for the available polymerase. T4 early promoter activity is further enhanced by the action of the T4 Alt protein, a component of the phage head that is injected into E. coli along with the phage DNA. Alt modifies Arg265 on one of the two α subunits of RNA polymerase. Although work with host promoters predicts that this modification should decrease promoter activity, transcription from some T4 early promoters increases when RNA polymerase is modified by Alt. Transcription of T4 middle genes begins about 1 minute after infection and proceeds by two pathways: 1) extension of early transcripts into downstream middle genes and 2) activation of T4 middle promoters through a process called sigma appropriation. In this activation, the T4 co-activator AsiA binds to Region 4 of σ⁷⁰, the specificity subunit of RNA polymerase. This binding dramatically remodels this portion of σ⁷⁰, which then allows the T4 activator MotA to also interact with σ⁷⁰. In addition, AsiA restructuring of σ⁷⁰ prevents Region 4 from forming its normal contacts with the -35 region of promoter DNA, which in turn allows MotA to interact with its DNA binding site, a MotA box, centered at the -30 region of middle promoter DNA. T4 sigma appropriation reveals how a specific domain within RNA polymerase can be remolded and then exploited to alter promoter specificity.
Collapse
Affiliation(s)
- Deborah M Hinton
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 2A-13, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
9
|
Zafar MA, Shah IM, Wolf RE. Protein-protein interactions between sigma(70) region 4 of RNA polymerase and Escherichia coli SoxS, a transcription activator that functions by the prerecruitment mechanism: evidence for "off-DNA" and "on-DNA" interactions. J Mol Biol 2010; 401:13-32. [PMID: 20595001 DOI: 10.1016/j.jmb.2010.05.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 05/12/2010] [Accepted: 05/21/2010] [Indexed: 10/19/2022]
Abstract
According to the prerecruitment hypothesis, Escherichia coli SoxS activates the transcription of the genes of the SoxRS regulon by forming binary complexes with RNA polymerase (RNAP) that scan the chromosome for class I and class II SoxS-dependent promoters. We showed previously that the alpha subunit's C-terminal domain plays a role in activating both classes of promoter by making protein-protein contacts with SoxS; some of these contacts are made in solution in the absence of promoter DNA, a critical prediction of the prerecruitment hypothesis. Here, we identified seven single-alanine substitutions of the region 4 of sigma(70) (sigma(70) R4) of RNAP that reduce SoxS activation of class II promoters. With genetic epistasis tests between these sigma(70) R4 mutants and positive control mutants of SoxS, we identified 10 pairs of amino acids that interact with each other in E. coli. Using the yeast two-hybrid system and affinity immobilization assays, we showed that SoxS and sigma(70) R4 can interact in solution (i.e., "off-DNA"). The interaction requires amino acids of the class I/II (but not the class II) positive control surface of SoxS, and five amino acids of sigma(70) R4 that reduce activation in E. coli also reduce the SoxS-sigma(70) R4 interaction in yeast. One of the epistatic interactions that occur in E. coli also occurs in the yeast two-hybrid system (i.e., off-DNA). Importantly, we infer that the five epistatic interactions occurring in E. coli that require an amino acid of the class II surface occur "on-DNA" at class II promoters. Finding that SoxS contacts sigma(70) R4 both off-DNA and on-DNA is consistent with the prerecruitment hypothesis. Moreover, SoxS is now the first example of an E. coli transcriptional activator that uses a single positive control surface to make specific protein-protein contacts with two different subunits of RNAP.
Collapse
Affiliation(s)
- M Ammar Zafar
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
10
|
Jones GDD, Le Pla RC, Farmer PB. Phosphotriester adducts (PTEs): DNA's overlooked lesion. Mutagenesis 2009; 25:3-16. [DOI: 10.1093/mutage/gep038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Bonocora RP, Caignan G, Woodrell C, Werner MH, Hinton DM. A basic/hydrophobic cleft of the T4 activator MotA interacts with the C-terminus of E.coli sigma70 to activate middle gene transcription. Mol Microbiol 2008; 69:331-43. [PMID: 18485078 DOI: 10.1111/j.1365-2958.2008.06276.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transcriptional activation often employs a direct interaction between an activator and RNA polymerase. For activation of its middle genes, bacteriophage T4 appropriates Escherichia coli RNA polymerase through the action of two phage-encoded proteins, MotA and AsiA. Alone, AsiA inhibits transcription from a large class of host promoters by structurally remodelling region 4 of sigma(70), the primary specificity subunit of E. coli RNA polymerase. MotA interacts both with sigma(70) region 4 and with a DNA element present in T4 middle promoters. AsiA-induced remodelling is proposed to make the far C-terminus of sigma(70) region 4 accessible for MotA binding. Here, NMR chemical shift analysis indicates that MotA uses a 'basic/hydrophobic' cleft to interact with the C-terminus of AsiA-remodelled sigma(70), but MotA does not interact with AsiA itself. Mutations within this cleft, at residues K3, K28 and Q76, both impair the interaction of MotA with sigma(70) region 4 and MotA-dependent activation. Furthermore, mutations at these residues greatly decrease phage viability. Most previously described activators that target sigma(70) directly use acidic residues to engage a basic surface of region 4. Our work supports accumulated evidence indicating that 'sigma appropriation' by MotA and AsiA uses a fundamentally different mechanism to activate transcription.
Collapse
Affiliation(s)
- Richard P Bonocora
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
12
|
Roles of effectors in XylS-dependent transcription activation: intramolecular domain derepression and DNA binding. J Bacteriol 2008; 190:3118-28. [PMID: 18296514 DOI: 10.1128/jb.01784-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
XylS, an AraC family protein, activates transcription from the benzoate degradation pathway Pm promoter in the presence of a substrate effector such as 3-methylbenzoate (3MB). We developed a procedure to obtain XylS-enriched preparations which proved suitable to analyze its activation mechanism. XylS showed specific 3MB-independent binding to its target operator, which became strictly 3MB dependent in a dimerization-defective mutant. We demonstrated that the N-terminal domain of the protein can make linker-independent interactions with the C-terminal domain and inhibit its capacity to bind DNA. Interactions are hampered in the presence of 3MB effector. We propose two independent roles for 3MB in XylS activation: in addition to its known influence favoring protein dimerization, the effector is able to modify XylS conformation to trigger N-terminal domain intramolecular derepression. We also show that activation by XylS involves RNA polymerase recruitment to the Pm promoter as demonstrated by chromatin immunoprecipitation assays. RNA polymerase switching in Pm transcription was reproduced in in vitro transcription assays. All sigma(32)-, sigma(38)-, and sigma(70)-dependent RNA polymerases were able to carry out Pm transcription in a rigorous XylS-dependent manner, as demonstrated by the formation of open complexes only in the presence of the regulator.
Collapse
|
13
|
Domínguez-Cuevas P, Marín P, Marqués S, Ramos JL. XylS-Pm promoter interactions through two helix-turn-helix motifs: identifying XylS residues important for DNA binding and activation. J Mol Biol 2007; 375:59-69. [PMID: 18005985 DOI: 10.1016/j.jmb.2007.10.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 10/15/2007] [Accepted: 10/16/2007] [Indexed: 11/25/2022]
Abstract
The XylS protein is the positive transcription regulator of the TOL plasmid meta-cleavage pathway operon Pm. XylS belongs to the AraC family of transcriptional regulators and exhibits an N-terminal domain involved in effector recognition, and a C-terminal domain, made up of seven alpha-helices conforming two helix-turn-helix DNA-binding domains. alpha-Helix 3 and alpha-helix 6 are the recognition helices. In consonance with XylS structural organization, Pm exhibits a bipartite DNA-binding motif consisting of two boxes, called A and B, whose sequences are TGCA and GGNTA, respectively. This bipartite motif is repeated at the Pm promoter so that one of the XylS monomers binds to each of the repeats. An extensive series of genetic epistasis assays combining mutant Pm promoters and XylS single substitution mutant proteins revealed that alpha-helix 3 contacts A box nucleotides, whereas alpha-helix 6 residues contact B box nucleotides. In alpha-helix 3, Asn246 and Arg242 are involved in specific contacts with the TG dinucleotide at box A, whereas Arg296 and Glu299 contact the second G and T nucleotides at box B. On the basis of our results and of the three-dimensional model of the XylS C-terminal domain, we propose that Ser243, Glu249 and Lys250 in alpha-helix 3, and Asn299 and Arg302 in alpha-helix 6 contact the phosphate backbones. Alanine substitutions at the predicted phosphate backbone-contacting residues yielded mutants with low levels of activity, suggesting that XylS-Pm binding specificity not only involves specific amino acid-base interactions, but also relies on secondary DNA structure, which, although at another level, also comes into play. We propose a model in which a XylS dimer binds to the direct repeats in Pm in a head-to-tail conformation that allows the direct interaction of the XylS proximal subunit with the RNA polymerase sigma factor.
Collapse
Affiliation(s)
- Patricia Domínguez-Cuevas
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, E-18008 Granada, Spain
| | | | | | | |
Collapse
|
14
|
Abstract
Substitutions within the interdomain linkers of the AraC/XylS family proteins RhaS and RhaR were tested to determine whether side chain identity or linker structure was required for function. Neither was found crucial, suggesting that the linkers do not play a direct role in activation, but rather simply connect the two domains.
Collapse
Affiliation(s)
- Ana Kolin
- Department of Molecular Biosciences, 1200 Sunnyside Ave., University of Kansas, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
15
|
Baxter K, Lee J, Minakhin L, Severinov K, Hinton DM. Mutational analysis of sigma70 region 4 needed for appropriation by the bacteriophage T4 transcription factors AsiA and MotA. J Mol Biol 2006; 363:931-44. [PMID: 16996538 PMCID: PMC1698951 DOI: 10.1016/j.jmb.2006.08.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 08/24/2006] [Accepted: 08/25/2006] [Indexed: 10/24/2022]
Abstract
Transcriptional activation of bacteriophage T4 middle promoters requires sigma70-containing Escherichia coli RNA polymerase, the T4 activator MotA, and the T4 co-activator AsiA. T4 middle promoters contain the sigma70 -10 DNA element. However, these promoters lack the sigma70 -35 element, having instead a MotA box centered at -30, which is bound by MotA. Previous work has indicated that AsiA and MotA interact with region 4 of sigma70, the C-terminal portion that normally contacts -35 DNA and the beta-flap structure in core. AsiA binding prevents the sigma70/beta-flap and sigma70/-35 DNA interactions, inhibiting transcription from promoters that require a -35 element. To test the importance of residues within sigma70 region 4 for MotA and AsiA function, we investigated how sigma70 region 4 mutants interact with AsiA, MotA, and the beta-flap and function in transcription assays in vitro. We find that alanine substitutions at residues 584-588 (region 4.2) do not impair the interaction of region 4 with the beta-flap or MotA, but they eliminate the interaction with AsiA and prevent AsiA inhibition and MotA/AsiA activation. In contrast, alanine substitutions at 551-552, 554-555 (region 4.1) eliminate the region 4/beta-flap interaction, significantly impair the AsiA/sigma70 interaction, and eliminate AsiA inhibition. However, the 4.1 mutant sigma70 is still fully competent for activation if both MotA and AsiA are present. A previous NMR structure shows AsiA binding to sigma70 region 4, dramatically distorting regions 4.1 and 4.2 and indirectly changing the conformation of the MotA interaction site at the sigma70 C terminus. Our analyses provide biochemical relevance for the sigma70 residues identified in the structure, indicate that the interaction of AsiA with sigma70 region 4.2 is crucial for activation, and support the idea that AsiA binding facilitates an interaction between MotA and the far C terminus of sigma70.
Collapse
Affiliation(s)
- Kimberly Baxter
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | | | | | | | |
Collapse
|
16
|
Gregory BD, Deighan P, Hochschild A. An artificial activator that contacts a normally occluded surface of the RNA polymerase holoenzyme. J Mol Biol 2005; 353:497-506. [PMID: 16185714 DOI: 10.1016/j.jmb.2005.08.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 08/16/2005] [Accepted: 08/18/2005] [Indexed: 11/26/2022]
Abstract
Many activators of transcription are sequence-specific DNA-binding proteins that stimulate transcription initiation through interaction with RNA polymerase (RNAP). Such activators can be constructed artificially by fusing a DNA-binding protein to a protein domain that can interact with an accessible surface of RNAP. In these cases, the artificial activator is directed to a target promoter bearing a recognition site for the DNA-binding protein. Here we describe an artificial activator that functions by contacting a normally occluded surface of promoter-bound RNAP holoenzyme. This artificial activator consists of a DNA-binding protein fused to the bacteriophage T4-encoded transcription regulator AsiA. On its own, AsiA inhibits transcription by Escherichia coli RNAP because it remodels the holoenzyme, disrupting an intersubunit interaction that is required for recognition of the major class of bacterial promoters. However, when tethered to the DNA via a DNA-binding protein, AsiA can exert a strong stimulatory effect on transcription by disrupting the same intersubunit interaction, contacting an otherwise occluded surface of the holoenzyme. We show that mutations that affect the intersubunit interaction targeted by AsiA modulate the stimulatory effect of this artificial activator. Our results thus demonstrate that changes in the accessibility of a normally occluded surface of the RNAP holoenzyme can modulate the activity of a gene-specific regulator of transcription.
Collapse
Affiliation(s)
- Brian D Gregory
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
17
|
Hinton DM, Pande S, Wais N, Johnson XB, Vuthoori M, Makela A, Hook-Barnard I. Transcriptional takeover by σ appropriation: remodelling of the σ 70 subunit of Escherichia coli RNA polymerase by the bacteriophage T4 activator MotA and co-activator AsiA. Microbiology (Reading) 2005; 151:1729-1740. [PMID: 15941982 DOI: 10.1099/mic.0.27972-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of bacteriophage T4 middle promoters, which occurs about 1 min after infection, uses two phage-encoded factors that change the promoter specificity of the host RNA polymerase. These phage factors, the MotA activator and the AsiA co-activator, interact with theσ70specificity subunit ofEscherichia coliRNA polymerase, which normally contacts the −10 and −35 regions of host promoter DNA. Like host promoters, T4 middle promoters have a good match to the canonicalσ70DNA element located in the −10 region. However, instead of theσ70DNA recognition element in the promoter's −35 region, they have a 9 bp sequence (a MotA box) centred at −30, which is bound by MotA. Recent work has begun to provide information about the MotA/AsiA system at a detailed molecular level. Accumulated evidence suggests that the presence of MotA and AsiA reconfigures protein–DNA contacts in the upstream promoter sequences, without significantly affecting the contacts ofσ70with the −10 region. This type of activation, which is called ‘σappropriation’, is fundamentally different from other well-characterized models of prokaryotic activation in which an activator frequently serves to forceσ70to contact a less than ideal −35 DNA element. This review summarizes the interactions of AsiA and MotA withσ70, and discusses how these interactions accomplish the switch to T4 middle promoters by inhibiting the typical contacts of the C-terminal region ofσ70, region 4, with the host −35 DNA element and with other subunits of polymerase.
Collapse
Affiliation(s)
- Deborah M Hinton
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Suchira Pande
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neelowfar Wais
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xanthia B Johnson
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Madhavi Vuthoori
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Makela
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - India Hook-Barnard
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Tropel D, van der Meer JR. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 2004; 68:474-500, table of contents. [PMID: 15353566 PMCID: PMC515250 DOI: 10.1128/mmbr.68.3.474-500.2004] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human activities have resulted in the release and introduction into the environment of a plethora of aromatic chemicals. The interest in discovering how bacteria are dealing with hazardous environmental pollutants has driven a large research community and has resulted in important biochemical, genetic, and physiological knowledge about the degradation capacities of microorganisms and their application in bioremediation, green chemistry, or production of pharmacy synthons. In addition, regulation of catabolic pathway expression has attracted the interest of numerous different groups, and several catabolic pathway regulators have been exemplary for understanding transcription control mechanisms. More recently, information about regulatory systems has been used to construct whole-cell living bioreporters that are used to measure the quality of the aqueous, soil, and air environment. The topic of biodegradation is relatively coherent, and this review presents a coherent overview of the regulatory systems involved in the transcriptional control of catabolic pathways. This review summarizes the different regulatory systems involved in biodegradation pathways of aromatic compounds linking them to other known protein families. Specific attention has been paid to describing the genetic organization of the regulatory genes, promoters, and target operon(s) and to discussing present knowledge about signaling molecules, DNA binding properties, and operator characteristics, and evidence from regulatory mutants. For each regulator family, this information is combined with recently obtained protein structural information to arrive at a possible mechanism of transcription activation. This demonstrates the diversity of control mechanisms existing in catabolic pathways.
Collapse
Affiliation(s)
- David Tropel
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf, Switzerland
| | | |
Collapse
|
19
|
Wickstrum JR, Egan SM. Amino acid contacts between sigma 70 domain 4 and the transcription activators RhaS and RhaR. J Bacteriol 2004; 186:6277-85. [PMID: 15342598 PMCID: PMC515164 DOI: 10.1128/jb.186.18.6277-6285.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RhaS and RhaR proteins are transcription activators that respond to the availability of L-rhamnose and activate transcription of the operons in the Escherichia coli L-rhamnose catabolic regulon. RhaR activates transcription of rhaSR, and RhaS activates transcription of the operon that encodes the L-rhamnose catabolic enzymes, rhaBAD, as well as the operon that encodes the L-rhamnose transport protein, rhaT. RhaS is 30% identical to RhaR at the amino acid level, and both are members of the AraC/XylS family of transcription activators. The RhaS and RhaR binding sites overlap the -35 hexamers of the promoters they regulate, suggesting they may contact the sigma70 subunit of RNA polymerase as part of their mechanisms of transcription activation. In support of this hypothesis, our lab previously identified an interaction between RhaS residue D241 and sigma70 residue R599. In the present study, we first identified two positively charged amino acids in sigma70, K593 and R599, and three negatively charged amino acids in RhaR, D276, E284, and D285, that were important for RhaR-mediated transcription activation of the rhaSR operon. Using a genetic loss-of-contact approach we have obtained evidence for a specific contact between RhaR D276 and sigma70 R599. Finally, previous results from our lab separately showed that RhaS D250A and sigma70 K593A were defective at the rhaBAD promoter. Our genetic loss-of-contact analysis of these residues indicates that they identify a second site of contact between RhaS and sigma70.
Collapse
Affiliation(s)
- Jason R Wickstrum
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | |
Collapse
|
20
|
Hsu HH, Huang WC, Chen JP, Huang LY, Wu CF, Chang BY. Properties of Bacillus subtilis sigma A factors with region 1.1 and the conserved Arg-103 at the N terminus of region 1.2 deleted. J Bacteriol 2004; 186:2366-75. [PMID: 15060039 PMCID: PMC412165 DOI: 10.1128/jb.186.8.2366-2375.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 12/17/2003] [Indexed: 11/20/2022] Open
Abstract
sigma factors in the sigma(70) family can be classified into the primary and alternative sigma factors according to their physiological functions and amino acid sequence similarities. The primary sigma factors are composed of four conserved regions, with the conserved region 1 being divided into two subregions. Region 1.1, which is absent from the alternative sigma factor, is poor in conservation; however, region 1.2 is well conserved. We investigated the importance of these two subregions to the function of Bacillus subtilis sigma(A), which belongs to a subgroup of the primary sigma factor lacking a 254-amino-acid spacer between regions 1 and 2. We found that deletion of not more than 100 amino acid residues from the N terminus of sigma(A), which removed part or all region 1.1, did not affect the overall transcription activity of the truncated sigma(A)-RNA polymerase in vitro, indicating that region 1.1 is not required for the functioning of sigma(A) in RNA polymerase holoenzyme. This finding is consistent with the complementation data obtained in vivo. However, region 1.1 is able to negatively modulate the promoter DNA-binding activity of the sigma(A)-RNA polymerase. Further deletion of the conserved Arg-103 at the N terminus of region 1.2 increased the content of stable secondary structures of the truncated sigma(A) and greatly reduced the transcription activity of the truncated sigma(A)-RNA polymerase by lowering the efficiency of transcription initiation after core binding of sigma(A). More importantly, the conserved Arg-103 was also demonstrated to be critical for the functioning of the full-length sigma(A) in RNA polymerase.
Collapse
Affiliation(s)
- Hsin-Hsien Hsu
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Johnson DC, Ishihama A, Stevens AM. Involvement of region 4 of the sigma70 subunit of RNA polymerase in transcriptional activation of the lux operon during quorum sensing. FEMS Microbiol Lett 2004; 228:193-201. [PMID: 14638424 DOI: 10.1016/s0378-1097(03)00750-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Quorum sensing-dependent activation of the luminescence (lux) genes of Vibrio fischeri relies on the formation of a complex between the autoinducer molecule, N-(3-oxohexanoyl)-L-homoserine lactone, and the autoinducer-dependent transcriptional activator LuxR. In its active conformation, LuxR binds to a site known as the lux box centered at position -42.5 relative to the luxI transcriptional start site and is thought to function as an ambidextrous activator capable of making multiple contacts with RNA polymerase (RNAP). The specific role of region 4 of the Escherichia coli sigma70 subunit of RNAP in LuxR-dependent activation of the luxI promoter has been investigated. Single-round transcription assays were performed in the presence of purified LuxRDeltaN, the autoinducer-independent C-terminal domain of LuxR, and a variant RNAP which contained a C-terminally truncated sigma70 subunit devoid of region 4. Results indicated that region 4 is essential for LuxRDeltaN-dependent luxI transcription, therefore 16 single and two triple alanine substitutions in region 4.2 of sigma70 between amino acid residues 590 and 613 were examined for their effects on LuxR- and LuxRDeltaN-dependent transcription at the luxI promoter. Taken together, the analyses performed on these variants of RpoD suggest that some individual residues in region 4.2 are important to the mechanism of activator-dependent transcription initiation under investigation.
Collapse
Affiliation(s)
- Deborah C Johnson
- Department of Biology, Virginia Tech, 2119 Derring Hall, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
22
|
Shi ZX, Wang HL, Hu K, Feng EL, Yao X, Su GF, Huang PT, Huang LY. Identification of alkA gene related to virulence of Shigella flexneri 2a by mutational analysis. World J Gastroenterol 2003; 9:2720-5. [PMID: 14669321 PMCID: PMC4612040 DOI: 10.3748/wjg.v9.i12.2720] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: In vivo induced genes are thought to play an important role during infection of host. AlkA was identified as an in vivo-induced gene by in vivo expression technology (IVET), but its virulence in Shigella flexneri was not reported. The purpose of this study was to identify the role of alkA gene in the pathogenesis of S. flexneri.
METHODS: PCR was used to amplify alkA gene of S. flexneri 2a and fragment 028pKm. The fragment was then transformed into 2457T05 strain, a S flexneri 2a strain containing Red recombination system, which was constructed with a recombinant suicide plasmid pXLkd46. By in vivo homologous recombination, alkA mutants were obtained and verified by PCR and sequencing. Intracellular survival assay and virulence assay were used to test the intracellular survival ability in HeLa cell model and the virulence in mice lung infection model respectively.
RESULTS: Deletion mutant of S. flexneri 2a alkA was successfully constructed by λ Red recombination system. The mutant exhibited significant survival defects and much significant virulence defects in mice infection assay.
CONCLUSION: AlkA gene plays an important role in the infection of epithelial cells and is a virulent gene of Shigella spp.
Collapse
Affiliation(s)
- Zhao-Xing Shi
- Beijing Institute of Biotechnology, Beijing 100071, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ross W, Schneider DA, Paul BJ, Mertens A, Gourse RL. An intersubunit contact stimulating transcription initiation by E coli RNA polymerase: interaction of the alpha C-terminal domain and sigma region 4. Genes Dev 2003; 17:1293-307. [PMID: 12756230 PMCID: PMC196054 DOI: 10.1101/gad.1079403] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The C-terminal domain of the Escherichia coli RNA polymerase (RNAP) alpha subunit (alphaCTD) stimulates transcription initiation by interacting with upstream (UP) element DNA and a variety of transcription activators. Here we identify specific substitutions in region 4.2 of sigma 70 (sigma(70)) and in alphaCTD that decrease transcription initiation from promoters containing some, but not all, UP elements. This decrease in transcription derives from a decrease in the initial equilibrium constant for RNAP binding (K(B)). The open complexes formed by the mutant and wild-type RNAPs differ in DNAse I sensitivity at the junction of the alphaCTD and sigma DNA binding sites, correlating with the differences in transcription. A model of the DNA-alphaCTD-sigma region 4.2 ternary complex, constructed from the previously determined X-ray structures of the Thermus aquaticus sigma region 4.2-DNA complex and the E. coli alphaCTD-DNA complex, indicates that the residues identified by mutation in sigma region 4.2 and in alphaCTD are in very close proximity. Our results strongly suggest that alphaCTD, when bound to an UP element proximal subsite, contacts the RNAP sigma(70) subunit, increasing transcription. Previous data from the literature suggest that this same sigma-alphaCTD interaction also plays a role in transcription factor-mediated activation.
Collapse
Affiliation(s)
- Wilma Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Bacterial sigma factors play a key role in promoter recognition, making direct contact with conserved promoter elements. Most sigma factors belong to the sigma70 family, named for the primary sigma factor in Escherichia coli. Members of the sigma70 family typically share four conserved regions and, here, we focus on region 4, which is directly involved in promoter recognition and serves as a target for a variety of regulators of transcription initiation. We review recent advances in the understanding of the mechanism of action of regulators that target region 4 of sigma.
Collapse
Affiliation(s)
- Simon L Dove
- Division of Infectious Diseases, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
25
|
Nickels BE, Dove SL, Murakami KS, Darst SA, Hochschild A. Protein-protein and protein-DNA interactions of sigma70 region 4 involved in transcription activation by lambdacI. J Mol Biol 2002; 324:17-34. [PMID: 12421556 DOI: 10.1016/s0022-2836(02)01043-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cI protein of bacteriophage lambda (lambdacI) activates transcription from promoter P(RM) through an acidic patch on the surface of its DNA-binding domain. Genetic evidence suggests that this acidic patch stimulates transcription from P(RM) through contact with the C-terminal domain (region 4) of the sigma(70) subunit of Escherichia coli RNA polymerase. Here, we identify two basic residues in region 4 of sigma(70) that are critical for lambdacI-mediated activation of transcription from P(RM). On the basis of structural modeling, we propose that one of these sigma(70) residues, K593, facilitates the interaction between lambdacI and region 4 of sigma(70) by inducing a bend in the DNA upstream of the -35 element, whereas the other, R588, interacts directly with a critical acidic residue within the activating patch of lambdacI. Residue R588 of sigma(70) has been shown to play an important role in promoter recognition; our findings suggest that the R588 side-chain has a dual function at P(RM), facilitating the interaction of region 4 with the promoter -35 element and participating directly in the protein-protein interaction with lambdacI.
Collapse
Affiliation(s)
- Bryce E Nickels
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Susan M Egan
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA.
| |
Collapse
|
27
|
Tam C, Collinet B, Lau G, Raina S, Missiakas D. Interaction of the conserved region 4.2 of sigma(E) with the RseA anti-sigma factor. J Biol Chem 2002; 277:27282-7. [PMID: 12016219 DOI: 10.1074/jbc.m202881200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Esigma(E) RNA polymerase transcribes a regulon of folding factors for the bacterial envelope and is induced by physical and chemical stresses. The RseA anti-sigma factor inhibits the activity of Esigma(E) RNA polymerase. It is shown here that the N-terminal portion of sigma(E), residues 1-153, binds core RNA polymerase. RseA interacts with residues 154-191 of sigma(E), a site that is homologous to region 4, the sigma factor binding site for promoter DNA. Mutations that reduce transcription of Esigma(E) RNA polymerase map to sigma(E) residues 178, 181, and 183. Variant sigma(E) proteins with amino acid substitutions at residues 178, 181, or 183 do not associate with RseA. A regulatory mechanism is proposed whereby RseA binds to a C-terminal peptide of sigma(E) and inhibits the transcription of Esigma(E) RNA polymerase by blocking promoter recognition.
Collapse
Affiliation(s)
- Christina Tam
- Department of Biochemistry and Molecular Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
28
|
Yu RR, DiRita VJ. Regulation of gene expression in Vibrio cholerae by ToxT involves both antirepression and RNA polymerase stimulation. Mol Microbiol 2002; 43:119-34. [PMID: 11849541 DOI: 10.1046/j.1365-2958.2002.02721.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Co-ordinate expression of many virulence genes in the human pathogen Vibrio cholerae is under the direct control of the ToxT protein, including genes whose products are required for the biogenesis of the toxin-co-regulated pilus (TCP) and cholera toxin (CTX). This work examined interactions between ToxT and the promoters of ctx and tcpA genes. We found that a minimum of three direct repeats of the sequence TTTTGAT is required for ToxT-dependent activation of the ctx promoter, and that the region from -85 to -41 of the tcpA promoter contains elements that are responsive to ToxT-dependent activation. The role of H-NS in transcription of ctx and tcpA was also analysed. The level of activation of ctx-lacZ in an E. coli hns- strain was greatly increased even in the absence of ToxT, and was further enhanced in the presence of ToxT. In contrast, H-NS plays a lesser role in the regulation of the tcpA promoter. Electrophoretic mobility shift assays demonstrated that 6x His-tagged ToxT directly, and specifically, interacts with both the ctx and tcpA promoters. DNase I footprinting analysis suggests that there may be two ToxT binding sites with different affinity in the ctx promoter and that ToxT binds to -84 to -41 of the tcpA promoter. In vitro transcription experiments demonstrated that ToxT alone is able to activate transcription from both promoters. We hypothesize that under conditions appropriate for ToxT-dependent gene expression, ToxT binds to AT-rich promoters that may have a specific secondary conformation, displaces H-NS and stimulates RNA polymerase resulting in transcription activation.
Collapse
Affiliation(s)
- Rosa R Yu
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
29
|
Ruiz R, Ramos JL. Residues 137 and 153 of XylS influence contacts with the C-terminal domain of the RNA polymerase alpha subunit. Biochem Biophys Res Commun 2001; 287:519-21. [PMID: 11554759 DOI: 10.1006/bbrc.2001.5615] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
XylS and XylS1 are transcriptional regulators that stimulate transcription from the Pm promoter for the meta-cleavage pathway operon for alkylbenzoate degradation. These regulators that differ in five amino acids interact with alpha-CTD domain of RNA polymerase. These interactions take place preferentially through residues 291 in XylS and 289 in XylS1. Substitution at position 137 and 153 in XylS influence the interactions with alpha-CTD because single and double mutants in these positions turned preferential interactions to residue 289.
Collapse
Affiliation(s)
- R Ruiz
- Department Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apartado de Correos 419, E-18008 Granada, Spain
| | | |
Collapse
|
30
|
Jishage M, Dasgupta D, Ishihama A. Mapping of the Rsd contact site on the sigma 70 subunit of Escherichia coli RNA polymerase. J Bacteriol 2001; 183:2952-6. [PMID: 11292818 PMCID: PMC99515 DOI: 10.1128/jb.183.9.2952-2956.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2000] [Accepted: 02/20/2001] [Indexed: 11/20/2022] Open
Abstract
Rsd (regulator of sigma D) is an anti-sigma factor for the Escherichia coli RNA polymerase sigma(70) subunit. The contact site of Rsd on sigma(70) was analyzed after mapping of the contact-dependent cleavage sites by Rsd-tethered iron-p-bromoacetamidobenzyl EDTA and by analysis of the complex formation between Ala-substituted sigma(70) and Rsd. Results indicate that the Rsd contact site is located downstream of the promoter -35 recognition helix-turn-helix motif within region 4, overlapping with the regions involved in interaction with both core enzyme and sigma(70) contact transcription factors.
Collapse
Affiliation(s)
- M Jishage
- National Institute of Genetics, Department of Molecular Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
31
|
Abstract
In Escherichia coli, DNA repair and protective responses are regulated at the transcriptional level. Regulatory mechanisms have evolved that allow cells to respond to DNA damage by mounting the appropriate responses. The regulatory proteins controlling these responses are activated when they recognize the presence of a specific DNA damaging agent, the production of specific DNA lesions, or the production of damage intermediates resulting from replication of lesions containing DNA. Transcription of the responses to DNA damage are induced when the activated regulatory proteins stimulate transcription of the genes they control by a variety of complex and unique molecular mechanisms.
Collapse
Affiliation(s)
- M R Volkert
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
32
|
Minakhin L, Camarero JA, Holford M, Parker C, Muir TW, Severinov K. Mapping the molecular interface between the sigma(70) subunit of E. coli RNA polymerase and T4 AsiA. J Mol Biol 2001; 306:631-42. [PMID: 11243776 DOI: 10.1006/jmbi.2001.4445] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage T4 antisigma protein AsiA (10 kDa) orchestrates a switch from the host and early viral transcription to middle viral transcription by binding to the sigma(70) subunit of E. coli RNA polymerase. The molecular determinants of sigma(70)-AsiA complex formation are not known. Here, we used combinatorial peptide chemistry, protein-protein crosslinking, and mutational analysis to study the interaction between AsiA and its target, the 33 amino acid residues-long sigma(70) peptide containing conserved region 4.2. Many region 4.2 amino acid residues contact AsiA, which likely completely occludes the DNA-binding surface of region 4.2. Though none of region 4.2 amino acid residues is singularly responsible for the very tight interaction with AsiA, sigma(70) Lys593 and Arg596 which lie outside the putative DNA recognition element of region 4.2, contribute the most. In AsiA, the first 20 amino acid residues are both necessary and sufficient for interactions with sigma(70). Our results clarify details of sigma(70)-AsiA interaction and open the way for engineering AsiA derivatives with altered specificities.
Collapse
Affiliation(s)
- L Minakhin
- Waksman Institute of Microbiology, Department of Genetics, Rutgers, The State University of New Jersey, USA
| | | | | | | | | | | |
Collapse
|
33
|
Landini P, Volkert MR. Regulatory responses of the adaptive response to alkylation damage: a simple regulon with complex regulatory features. J Bacteriol 2000; 182:6543-9. [PMID: 11073893 PMCID: PMC111391 DOI: 10.1128/jb.182.23.6543-6549.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- P Landini
- Department of Environmental Microbiology and Molecular Ecotoxicology, Swiss Institute for Environmental Technology, 8600 Duebendorf, Switzerland
| | | |
Collapse
|
34
|
Egan SM, Pease AJ, Lang J, Li X, Rao V, Gillette WK, Ruiz R, Ramos JL, Wolf RE. Transcription activation by a variety of AraC/XylS family activators does not depend on the class II-specific activation determinant in the N-terminal domain of the RNA polymerase alpha subunit. J Bacteriol 2000; 182:7075-7. [PMID: 11092872 PMCID: PMC94837 DOI: 10.1128/jb.182.24.7075-7077.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The N-terminal domain of the RNA polymerase alpha subunit (alpha-NTD) was tested for a role in transcription activation by a variety of AraC/XylS family members. Based on substitutions at residues 162 to 165 and an extensive genetic screen we conclude that alpha-NTD is not an activation target for these activators.
Collapse
Affiliation(s)
- S M Egan
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dove SL, Huang FW, Hochschild A. Mechanism for a transcriptional activator that works at the isomerization step. Proc Natl Acad Sci U S A 2000; 97:13215-20. [PMID: 11087868 PMCID: PMC27205 DOI: 10.1073/pnas.97.24.13215] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2000] [Indexed: 11/18/2022] Open
Abstract
Transcriptional activators in prokaryotes have been shown to stimulate different steps in the initiation process including the initial binding of RNA polymerase (RNAP) to the promoter and a postbinding step known as the isomerization step. Evidence suggests that activators that affect initial binding can work by a cooperative binding mechanism by making energetically favorable contacts with RNAP, but the mechanism by which activators affect the isomerization step is unclear. A well-studied example of an activator that normally exerts its effect exclusively on the isomerization step is the bacteriophage lambda cI protein (lambdacI), which has been shown genetically to interact with the C-terminal region of the final sigma(70) subunit of RNAP. We show here that the interaction between lambdacI and final sigma can stimulate transcription even when the relevant portion of final sigma is transplanted to another subunit of RNAP. This activation depends on the ability of lambdacI to stabilize the binding of the transplanted final sigma moiety to an ectopic -35 element. Based on these and previous findings, we discuss a simple model that explains how an activator's ability to stabilize the binding of an RNAP subdomain to the DNA can account for its effect on either the initial binding of RNAP to a promoter or the isomerization step.
Collapse
Affiliation(s)
- S L Dove
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
36
|
Lamberg KE, Kiley PJ. FNR-dependent activation of the class II dmsA and narG promoters of Escherichia coli requires FNR-activating regions 1 and 3. Mol Microbiol 2000; 38:817-27. [PMID: 11115116 DOI: 10.1046/j.1365-2958.2000.02172.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, the anaerobic expression of genes encoding the nitrate (narGHJI) and dimethyl sulphoxide (dmsABC) terminal reductases is stimulated by the global anaerobic regulator FNR. The ability of FNR to activate transcription initiation has been proposed to be dependent on protein-protein interactions between RNA polymerase and two activating regions (AR) of FNR, FNR-AR1 and FNR-AR3. To further our understanding of the role of FNR-AR1 and FNR-AR3 in transcription activation, we measured the effects of FNR-AR mutants on expression of the narG and dmsA promoters, PnarG and PdmsA. All the FNR-AR1 (FNR-S73F, FNR-T118A, FNR-S187P), FNR-AR3 (FNR-G85A) and FNR-AR1-AR3 (FNR-G85A-S187P) mutants that were tested decreased expression from PnarG and PdmsA in vivo. Transcription assays of PdmsA also showed that the FNR-AR mutant proteins impaired transcription activation in vitro. Furthermore, DNase I footprinting analysis confirmed that this transcription defect was not a result of altered DNA-binding properties. The function of FNR-S187P and FNR-G85A was also measured in strains containing sigma70 mutants (sigma70-K593A, sigma70-R596A and sigma70-K597A) known to be impaired in FNR-dependent transcription activation. Of all of the combinations analysed, only FNR-G85 and sigma70-K597 showed a genetic interaction, supporting the notion that FNR-AR3 and sigma70 interact functionally in the process of transcription activation. Lastly, the transcription activation defect of the FNR-AR1 and FNR-AR3 mutants was greatly reduced when expression of PnarG was assayed in the presence of nitrate. As these growth conditions promote maximal activity of PnarG as a result of the combined function of NarL, IHF and FNR, these results suggest that the requirements for FNR-AR1 and FNR-AR3 are altered in the presence of additional activators.
Collapse
Affiliation(s)
- K E Lamberg
- Departments of Bacteriology and Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
37
|
Bhende PM, Egan SM. Genetic evidence that transcription activation by RhaS involves specific amino acid contacts with sigma 70. J Bacteriol 2000; 182:4959-69. [PMID: 10940041 PMCID: PMC111377 DOI: 10.1128/jb.182.17.4959-4969.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2000] [Accepted: 06/09/2000] [Indexed: 11/20/2022] Open
Abstract
RhaS activates transcription of the Escherichia coli rhaBAD and rhaT operons in response to L-rhamnose and is a member of the AraC/XylS family of transcription activators. We wished to determine whether sigma(70) might be an activation target for RhaS. We found that sigma(70) K593 and R599 appear to be important for RhaS activation at both rhaBAD and rhaT, but only at truncated promoters lacking the binding site for the second activator, CRP. To determine whether these positively charged sigma(70) residues might contact RhaS, we constructed alanine substitutions at negatively charged residues in the C-terminal domain of RhaS. Substitutions at four RhaS residues, E181A, D182A, D186A, and D241A, were defective at both truncated promoters. Finally, we assayed combinations of the RhaS and sigma(70) substitutions and found that RhaS D241 and sigma(70) R599 met the criteria for interacting residues at both promoters. Molecular modeling suggests that sigma(70) R599 is located in very close proximity to RhaS D241; hence, this work provides the first evidence for a specific residue within an AraC/XylS family protein that may contact sigma(70). More than 50% of AraC/XylS family members have Asp or Glu at the position of RhaS D241, suggesting that this interaction with sigma(70) may be conserved.
Collapse
Affiliation(s)
- P M Bhende
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
38
|
Dhiman A, Schleif R. Recognition of overlapping nucleotides by AraC and the sigma subunit of RNA polymerase. J Bacteriol 2000; 182:5076-81. [PMID: 10960090 PMCID: PMC94654 DOI: 10.1128/jb.182.18.5076-5081.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/1999] [Accepted: 06/14/2000] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli promoter p(BAD), under the control of the AraC protein, drives the expression of mRNA encoding the AraB, AraA, and AraD gene products of the arabinose operon. The binding site of AraC at p(BAD) overlaps the RNA polymerase -35 recognition region by 4 bases, leaving 2 bases of the region not contacted by AraC. This overlap raises the question of whether AraC substitutes for the sigma subunit of RNA polymerase in recognition of the -35 region or whether both AraC and sigma make important contacts with the DNA in the -35 region. If sigma does not contact DNA near the -35 region, p(BAD) activity should be independent of the identity of the bases in the hexamer region that are not contacted by AraC. We have examined this issue in the p(BAD) promoter and in a second promoter where the AraC binding site overlaps the -35 region by only 2 bases. In both cases promoter activity is sensitive to changes in bases not contacted by AraC, showing that despite the overlap, sigma does read DNA in the -35 region. Since sigma and AraC are thus closely positioned at p(BAD), it is possible that AraC and sigma contact one another during transcription initiation. DNA migration retardation assays, however, showed that there exists only a slight degree of DNA binding cooperativity between AraC and sigma, thus suggesting either that the normal interactions between AraC and sigma are weak or that the presence of the entire RNA polymerase is necessary for significant interaction.
Collapse
Affiliation(s)
- A Dhiman
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
39
|
Rhodius VA, Busby SJ. Interactions between activating region 3 of the Escherichia coli cyclic AMP receptor protein and region 4 of the RNA polymerase sigma(70) subunit: application of suppression genetics. J Mol Biol 2000; 299:311-24. [PMID: 10860740 DOI: 10.1006/jmbi.2000.3737] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Escherichia coli cyclic AMP receptor protein, CRP, induces transcription at Class II CRP-dependent promoters by making three different activatory contacts with different surfaces of holo RNA polymerase. One contact surface of CRP, known as Activating Region 3 (AR3), is functional in the downstream subunit of the CRP dimer and is predicted to interact with region 4 of the RNAP sigma(70) subunit. We have previously shown that a mutant CRP derivative that activates transcription primarily via AR3, CRP HL159 KE101 KN52, requires the positively charged residues K593, K597 and R599 in sigma(70) for activation. Here, we have used the positive control substitution, EK58, to disrupt AR3-dependent activation by CRP HL159 KE101 KN52. We then screened random mutant libraries and an alanine scan library of sigma(70) for candidates that restore activation by CRP HL159 KE101 KN52 EK58. We found that changes at R596 and R599 in sigma(70) can restore activation by CRP HL159 KE101 KN52 EK58. This suggests that the side-chains of both R596 and R599 in sigma(70) clash with K58 in CRP. Maximal activation by CRP HL159 KE101 KN52 EK58 is achieved with the substitutions RE596 or RD596 in sigma(70). We propose that there are specific charge-charge interactions between E596 or D596 in sigma(70) and K58 in AR3. Thus, no increase in activation is observed in the presence of another positive control substitution, EG58 (CRP HL159 KE101 KN52 EG58). Similarly, both sigma(70) RE596 and sigma(70) RD596 can restore activation by CRP EK58 but not CRP EG58, and they both decrease activation by wild-type CRP. We suggest that E596 and D596 in sigma(70) can positively interact with K58 in AR3, thereby enhancing activation, but negatively interact with E58, thereby decreasing activation. The substitution, KA52 in AR3 increases Class II CRP-dependent activation by removing an inhibitory lysine residue. However, this increase is not observed in the presence of either sigma(70) RE596 or sigma(70) RD596. We conclude that the inhibitory side-chain, K52 in AR3, clashes with R596 in sigma(70). Finally, we show that the sigma(70) RE596 and RD596 substitutions affect CRP-dependent activation from Class II, but not Class I, promoters.
Collapse
Affiliation(s)
- V A Rhodius
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|
40
|
Landini P, Busby SJ. Expression of the Escherichia coli ada regulon in stationary phase: evidence for rpoS-dependent negative regulation of alkA transcription. J Bacteriol 1999; 181:6836-9. [PMID: 10542189 PMCID: PMC94152 DOI: 10.1128/jb.181.21.6836-6839.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli Ada protein activates sigma(70)-dependent transcription at three different promoters (ada, aidB, and alkA) in response to alkylation damage of DNA. During stationary phase, however, the methylated form of Ada shuts off expression of alkA; this repression is specific for sigma(S)-dependent transcription. Thus, at the alkA promoter, the Ada protein can act as both a positive and negative modulator of the adaptive response to alkylation damage, depending on the cell's physiological state.
Collapse
Affiliation(s)
- P Landini
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), 8600 Dübendorf, Switzerland.
| | | |
Collapse
|
41
|
Abstract
RhaS, an AraC family protein, activates rhaBAD transcription by binding to rhaI, a site consisting of two 17-bp inverted repeat half-sites. In this work, amino acids in RhaS that make base-specific contacts with rhaI were identified. Sequence similarity with AraC suggested that the first contacting motif of RhaS was a helix-turn-helix. Assays of rhaB-lacZ activation by alanine mutants within this potential motif indicated that residues 201, 202, 205, and 206 might contact rhaI. The second motif was identified based on the hypothesis that a region of especially high amino acid similarity between RhaS and RhaR (another AraC family member) might contact the nearly identical DNA sequences in one major groove of their half-sites. We first made targeted, random mutations and then made alanine substitutions within this region of RhaS. Our analysis identified residues 247, 248, 250, 252, 253, and 254 as potentially important for DNA binding. A genetic loss-of-contact approach was used to identify whether any of the RhaS amino acids in the first or second contacting motif make base-specific DNA contacts. In motif 1, we found that Arg202 and Arg206 both make specific contacts with bp -65 and -67 in rhaI1, and that Arg202 contacts -46 and Arg206 contacts -48 in rhaI2. In motif 2, we found that Asp250 and Asn252 both contact the bp -79 in rhaI1. Alignment with the recently crystallized MarA protein suggest that both RhaS motifs are likely helix-turn-helix DNA-binding motifs.
Collapse
Affiliation(s)
- P M Bhende
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|