1
|
Deng Q, Li N, Bai S, Cao J, Jin YL, Zhang HE, Wang JK, Wang Q. SbPL1CE8 from Segatella bryantii combines with SbGH28GH105 in a multi-enzyme cascade for pectic biomass utilization. Int J Biol Macromol 2024; 279:135217. [PMID: 39216572 DOI: 10.1016/j.ijbiomac.2024.135217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Pectinases are useful biocatalysts for pectic biomass processing and are extensively used in the food/feed, textile and papermaking industries. Two pectinase genes, a pectate lyase (SbPL1CE8) and a polygalacturonase (SbGH28GH105) were isolated from Segatella bryantii and functionally characterized. Recombinant rSbPL1CE8 was most active against polygalacturonic acid (PGA) and pectin with a 60 % degree of esterification, with kcat/Km values of 721.18 ± 64.77 and 327.02 ± 22.44 mL/s/mg, respectively. Truncated rSbPL1 acted as a mesophilic alkaline pectate lyase, which was highly resistant to inactivation by methanol and ethanol. The rSbPL1CE8 exclusively digested PGA and pectin into unsaturated digalacturonate (uG2), which was further converted into galacturonic acid by rSbGH28GH105. The rSbPL1CE8 was highly effective for saccharification of waste materials from Zea mays, Oryza sativa and Arachis hypogaea processing, and for ramie fiber degumming. This novel pectate lyase has great potential for application in industrial pectic biomass processing.
Collapse
Affiliation(s)
- Qian Deng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530000, China
| | - Nuo Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuning Bai
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiaqi Cao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Lan Jin
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui-En Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Jia-Kun Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Bleich RM, Li C, Sun S, Ahn JH, Dogan B, Barlogio CJ, Broberg CA, Franks AR, Bulik-Sullivan E, Carroll IM, Simpson KW, Fodor AA, Arthur JC. A consortia of clinical E. coli strains with distinct in vitro adherent/invasive properties establish their own co-colonization niche and shape the intestinal microbiota in inflammation-susceptible mice. MICROBIOME 2023; 11:277. [PMID: 38124090 PMCID: PMC10731797 DOI: 10.1186/s40168-023-01710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/26/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) patients experience recurrent episodes of intestinal inflammation and often follow an unpredictable disease course. Mucosal colonization with adherent-invasive Escherichia coli (AIEC) are believed to perpetuate intestinal inflammation. However, it remains unclear if the 24-year-old AIEC in vitro definition fully predicts mucosal colonization in vivo. To fill this gap, we have developed a novel molecular barcoding approach to distinguish strain variants in the gut and have integrated this approach to explore mucosal colonization of distinct patient-derived E. coli isolates in gnotobiotic mouse models of colitis. RESULTS Germ-free inflammation-susceptible interleukin-10-deficient (Il10-/-) and inflammation-resistant WT mice were colonized with a consortium of AIEC and non-AIEC strains, then given a murine fecal transplant to provide niche competition. E. coli strains isolated from human intestinal tissue were each marked with a unique molecular barcode that permits identification and quantification by barcode-targeted sequencing. 16S rRNA sequencing was used to evaluate the microbiome response to E. coli colonization. Our data reveal that specific AIEC and non-AIEC strains reproducibly colonize the intestinal mucosa of WT and Il10-/- mice. These E. coli expand in Il10-/- mice during inflammation and induce compositional dysbiosis to the microbiome in an inflammation-dependent manner. In turn, specific microbes co-evolve in inflamed mice, potentially diversifying E. coli colonization patterns. We observed no selectivity in E. coli colonization patterns in the fecal contents, indicating minimal selective pressure in this niche from host-microbe and interbacterial interactions. Because select AIEC and non-AIEC strains colonize the mucosa, this suggests the in vitro AIEC definition may not fully predict in vivo colonization potential. Further comparison of seven E. coli genomes pinpointed unique genomic features contained only in highly colonizing strains (two AIEC and two non-AIEC). Those colonization-associated features may convey metabolic advantages (e.g., iron acquisition and carbohydrate consumption) to promote efficient mucosal colonization. CONCLUSIONS Our findings establish the in vivo mucosal colonizer, not necessarily AIEC, as a principal dysbiosis driver through crosstalk with host and associated microbes. Furthermore, we highlight the utility of high-throughput screens to decode the in vivo colonization dynamics of patient-derived bacteria in murine models. Video Abstract.
Collapse
Affiliation(s)
- Rachel M Bleich
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biology, Appalachian State University, Boone, NC, USA
| | - Chuang Li
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shan Sun
- College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Ju-Hyun Ahn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Belgin Dogan
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Cassandra J Barlogio
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher A Broberg
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adrienne R Franks
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Bulik-Sullivan
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ian M Carroll
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth W Simpson
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Anthony A Fodor
- College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Bleich RM, Li C, Sun S, Barlogio CJ, Broberg CA, Franks AR, Bulik-Sullivan E, Dogan B, Simpson KW, Carroll IM, Fodor AA, Arthur JC. A consortia of clinical E. coli strains with distinct in-vitro adherent/invasive properties establish their own co-colonization niche and shape the intestinal microbiota in inflammation-susceptible mice. RESEARCH SQUARE 2023:rs.3.rs-2899665. [PMID: 37214858 PMCID: PMC10197778 DOI: 10.21203/rs.3.rs-2899665/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Inflammatory bowel disease (IBD) patients experience recurrent episodes of intestinal inflammation and often follow an unpredictable disease course. Mucosal colonization with adherent-invasive Escherichia coli (AIEC) are believed to perpetuate intestinal inflammation. However, it remains unclear if the 24-year-old AIEC in-vitro definition fully predicts mucosal colonization in-vivo. To fill this gap, we have developed a novel molecular barcoding approach to distinguish strain variants in the gut and have integrated this approach to explore mucosal colonization of distinct patient-derived E. coli isolates in gnotobiotic mouse models of colitis. Results Germ-free inflammation-susceptible interleukin-10-deficient (Il10-/-) and inflammation-resistant WT mice were colonized with a consortia of AIEC and non-AIEC strains, then given a murine fecal transplant to provide niche competition. E. coli strains isolated from human intestinal tissue were each marked with a unique molecular barcode that permits identification and quantification by barcode-targeted sequencing. 16S rRNA sequencing was used to evaluate the microbiome response to E. coli colonization. Our data reveal that specific AIEC and non-AIEC strains reproducibly colonize the intestinal mucosa of WT and Il10-/- mice. These E. coli expand in Il10-/- mice during inflammation and induce compositional dysbiosis to the microbiome in an inflammation-dependent manner. In turn, specific microbes co-evolve in inflamed mice, potentially diversifying E. coli colonization patterns. We observed no selectivity in E. coli colonization patterns in the fecal contents, indicating minimal selective pressure in this niche from host-microbe and interbacterial interactions. Because select AIEC and non-AIEC strains colonize the mucosa, this suggests the in vitro AIEC definition may not fully predict in vivo colonization potential. Further comparison of seven E. coli genomes pinpointed unique genomic features contained only in highly colonizing strains (two AIEC and two non-AIEC). Those colonization-associated features may convey metabolic advantages (e.g., iron acquisition and carbohydrate consumption) to promote efficient mucosal colonization. Conclusions Our findings establish the in-vivo mucosal colonizer, not necessarily AIEC, as a principal dysbiosis driver through crosstalk with host and associated microbes. Furthermore, we highlight the utility of high-throughput screens to decode the in-vivo colonization dynamics of patient-derived bacteria in murine models.
Collapse
Affiliation(s)
| | - Chuang Li
- University of North Carolina at Chapel Hill
| | - Shan Sun
- University of North Carolina at Charlotte
| | | | | | | | | | - Belgin Dogan
- Cornell University College of Veterinary Medicine
| | | | | | | | | |
Collapse
|
4
|
Long C, Qi XL, Venema K. Chemical and nutritional characteristics, and microbial degradation of rapeseed meal recalcitrant carbohydrates: A review. Front Nutr 2022; 9:948302. [PMID: 36245487 PMCID: PMC9554435 DOI: 10.3389/fnut.2022.948302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Approximately 35% of rapeseed meal (RSM) dry matter (DM) are carbohydrates, half of which are water-soluble carbohydrates. The cell wall of rapeseed meal contains arabinan, galactomannan, homogalacturonan, rhamnogalacturonan I, type II arabinogalactan, glucuronoxylan, XXGG-type and XXXG-type xyloglucan, and cellulose. Glycoside hydrolases including in the degradation of RSM carbohydrates are α-L-Arabinofuranosidases (EC 3.2.1.55), endo-α-1,5-L-arabinanases (EC 3.2.1.99), Endo-1,4-β-mannanase (EC 3.2.1.78), β-mannosidase (EC 3.2.1.25), α-galactosidase (EC 3.2.1.22), reducing-end-disaccharide-lyase (pectate disaccharide-lyase) (EC 4.2.2.9), (1 → 4)-6-O-methyl-α-D-galacturonan lyase (pectin lyase) (EC 4.2.2.10), (1 → 4)-α-D-galacturonan reducing-end-trisaccharide-lyase (pectate trisaccharide-lyase) (EC 4.2.2.22), α-1,4-D-galacturonan lyase (pectate lyase) (EC 4.2.2.2), (1 → 4)-α-D-galacturonan glycanohydrolase (endo-polygalacturonase) (EC 3.2.1.15), Rhamnogalacturonan hydrolase, Rhamnogalacturonan lyase (EC 4.2.2.23), Exo-β-1,3-galactanase (EC 3.2.1.145), endo-β-1,6-galactanase (EC 3.2.1.164), Endo-β-1,4-glucanase (EC 3.2.1.4), α-xylosidase (EC 3.2.1.177), β-glucosidase (EC 3.2.1.21) endo-β-1,4-glucanase (EC 3.2.1.4), exo-β-1,4-glucanase (EC 3.2.1.91), and β-glucosidase (EC 3.2.1.21). In conclusion, this review summarizes the chemical and nutritional compositions of RSM, and the microbial degradation of RSM cell wall carbohydrates which are important to allow to develop strategies to improve recalcitrant RSM carbohydrate degradation by the gut microbiota, and eventually to improve animal feed digestibility, feed efficiency, and animal performance.
Collapse
Affiliation(s)
- Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
- Faculty of Science and Engineering, Centre for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, Venlo, Netherlands
| | - Xiao-Long Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Koen Venema
- Faculty of Science and Engineering, Centre for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, Venlo, Netherlands
- *Correspondence: Koen Venema
| |
Collapse
|
5
|
Suzuki H, Morishima T, Handa A, Tsukagoshi H, Kato M, Shimizu M. Biochemical Characterization of a Pectate Lyase AnPL9 from Aspergillus nidulans. Appl Biochem Biotechnol 2022; 194:5627-5643. [PMID: 35802235 DOI: 10.1007/s12010-022-04036-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Pectinolytic enzymes have diverse industrial applications. Among these, pectate lyases act on the internal α-1,4-linkage of the pectate backbone, playing a critical role in pectin degradation. While most pectate lyases characterized thus far are of bacterial origin, fungi can also be excellent sources of pectinolytic enzymes. In this study, we performed biochemical characterization of the pectate lyase AnPL9 belonging to the polysaccharide lyase family 9 (PL9) from the filamentous fungus Aspergillus nidulans. Recombinant AnPL9 was produced using a Pichia pastoris expression system and purified. AnPL9 exhibited high activity on homogalacturonan (HG), pectin from citrus peel, pectin from apple, and the HG region in rhamnogalacturonan-I. Although digalacturonic acid and trigalacturonic acid were not degraded by AnPL9, tetragalacturonic acid was converted to 4,5-unsaturated digalacturonic acid and digalacturonic acid. These results indicate that AnPL9 degrades HG oligosaccharides with a degree of polymerization > 4. Furthermore, AnPL9 was stable within a neutral-to-alkaline pH range (pH 6.0-11.0). Our findings suggest that AnPL9 is a candidate pectate lyase for biotechnological applications in the food, paper, and textile industries. This is the first report on a fungal pectate lyase belonging to the PL9 family.
Collapse
Affiliation(s)
- Hiromitsu Suzuki
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-0073, Japan
| | - Toshiki Morishima
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-0073, Japan
| | - Atsuya Handa
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-0073, Japan
| | | | - Masashi Kato
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-0073, Japan
| | - Motoyuki Shimizu
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-0073, Japan.
| |
Collapse
|
6
|
Yuan Y, Zhang XY, Zhao Y, Zhang H, Zhou YF, Gao J. A Novel PL9 Pectate Lyase from Paenibacillus polymyxa KF-1: Cloning, Expression, and Its Application in Pectin Degradation. Int J Mol Sci 2019; 20:E3060. [PMID: 31234557 PMCID: PMC6627557 DOI: 10.3390/ijms20123060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/27/2022] Open
Abstract
Pectate lyases play an important role in pectin degradation, and therefore are highly useful in the food and textile industries. Here, we report on the cloning of an alkaline pectate lyase gene (pppel9a) from Paenibacillus polymyxa KF-1. The full-length gene (1350 bp) encodes for a 449-residue protein that belongs to the polysaccharide lyase family 9 (PL9). Recombinant PpPel9a produced in Escherichia coli was purified to electrophoretic homogeneity in a single step using Ni2+-NTA affinity chromatography. The enzyme activity of PpPel9a (apparent molecular weight of 45.3 kDa) was found to be optimal at pH 10.0 and 40 °C, with substrate preference for homogalacturonan type (HG) pectins vis-à-vis rhamnogalacturonan-I (RG-I) type pectins. Using HG-type pectins as substrate, PpPel9a showed greater activity with de-esterified HGs. In addition, PpPel9a was active against water-soluble pectins isolated from different plants. Using this lyase, we degraded citrus pectin, purified fractions using Diethylaminoethyl (DEAE)-sepharose column chromatography, and characterized the main fraction MCP-0.3. High-performance gel permeation chromatography (HPGPC) analysis showed that the molecular mass of citrus pectin (~230.2 kDa) was reduced to ~24 kDa upon degradation. Ultra-performance liquid chromatography - tandem mass spectrometer (UPLC-MS) and monosaccharide composition analyses demonstrated that PpPel9a worked as an endo-pectate lyase, which acted primarily on the HG domain of citrus pectin. In vitro testing showed that the degradation product MCP-0.3 significantly promotes the growth of Lactobacillus plantarum and L. rhamnosus. In this regard, the enzyme has potential in the preparation of pharmacologically active pectin products.
Collapse
Affiliation(s)
- Ye Yuan
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Xin-Yu Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Yan Zhao
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Han Zhang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yi-Fa Zhou
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Juan Gao
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
7
|
Kamijo J, Sakai K, Suzuki H, Suzuki K, Kunitake E, Shimizu M, Kato M. Identification and characterization of a thermostable pectate lyase from Aspergillus luchuensis var. saitoi. Food Chem 2019; 276:503-510. [DOI: 10.1016/j.foodchem.2018.10.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/06/2018] [Accepted: 10/11/2018] [Indexed: 10/28/2022]
|
8
|
Kunishige Y, Iwai M, Nakazawa M, Ueda M, Tada T, Nishimura S, Sakamoto T. Crystal structure of exo‐rhamnogalacturonan lyase fromPenicillium chrysogenumas a member of polysaccharide lyase family 26. FEBS Lett 2018; 592:1378-1388. [DOI: 10.1002/1873-3468.13034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/02/2018] [Accepted: 03/07/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Yuika Kunishige
- Division of Applied Life Sciences Graduate School of Life and Environmental Sciences Osaka Prefecture University Sakai Japan
| | - Marin Iwai
- Division of Applied Life Sciences Graduate School of Life and Environmental Sciences Osaka Prefecture University Sakai Japan
| | - Masami Nakazawa
- Division of Applied Life Sciences Graduate School of Life and Environmental Sciences Osaka Prefecture University Sakai Japan
| | - Mitsuhiro Ueda
- Division of Applied Life Sciences Graduate School of Life and Environmental Sciences Osaka Prefecture University Sakai Japan
| | - Toshiji Tada
- Department of Biological Science Graduate School of Science Osaka Prefecture University Sakai Japan
| | - Shigenori Nishimura
- Division of Applied Life Sciences Graduate School of Life and Environmental Sciences Osaka Prefecture University Sakai Japan
| | - Tatsuji Sakamoto
- Division of Applied Life Sciences Graduate School of Life and Environmental Sciences Osaka Prefecture University Sakai Japan
| |
Collapse
|
9
|
Zhou C, Xue Y, Ma Y. Characterization and overproduction of a thermo-alkaline pectate lyase from alkaliphilic Bacillus licheniformis with potential in ramie degumming. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Zhou C, Xue Y, Ma Y. Cloning, evaluation, and high-level expression of a thermo-alkaline pectate lyase from alkaliphilic Bacillus clausii with potential in ramie degumming. Appl Microbiol Biotechnol 2017; 101:3663-3676. [DOI: 10.1007/s00253-017-8110-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/28/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022]
|
11
|
Hugouvieux-Cotte-Pattat N. Metabolism and Virulence Strategies in Dickeya-Host Interactions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:93-129. [PMID: 27571693 DOI: 10.1016/bs.pmbts.2016.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dickeya, a genus of the Enterobacteriaceae family, all cause plant diseases. They are aggressive necrotrophs that have both a wide geographic distribution and a wide host range. As a plant pathogen, Dickeya has had to adapt to a vegetarian diet. Plants constitute a large storage of carbohydrates; they contain substantial amounts of soluble sugars and the plant cell wall is composed of long polysaccharides. Metabolic functions used by Dickeya in order to multiply during infection are essential aspects of pathogenesis. Dickeya is able to catabolize a large range of oligosaccharides and glycosides of plant origin. Glucose, fructose, and sucrose are all efficiently metabolized by the bacteria. To avoid the formation of acidic products, their final catabolism involves the butanediol pathway, a nonacidifying fermentative pathway. The assimilation of plant polysaccharides necessitates their prior cleavage into oligomers. Notably, the Dickeya virulence strategy is based on its capacity to dissociate the plant cell wall and, for this, the bacteria secrete an extensive set of polysaccharide degrading enzymes, composed mostly of pectinases. Since pectic polymers have a major role in plant tissue cohesion, pectinase action results in plant rot. The pectate lyases secreted by Dickeya play a double role as virulence factors and as nutrient providers. This dual function implies that the pel gene expression is regulated by both metabolic and virulence regulators. The control of sugar assimilation by specific or global regulators enables Dickeya to link its nutritional status to virulence, a coupling that optimizes the different phases of infection.
Collapse
Affiliation(s)
- N Hugouvieux-Cotte-Pattat
- Microbiology Adaptation and Pathogenesis, CNRS, University of Lyon, University Claude Bernard Lyon 1, INSA Lyon, Villeurbanne, France.
| |
Collapse
|
12
|
Su H, Qiu W, Kong Q, Mi S, Han Y. Thermostable pectate lyase from Caldicellulosiruptor kronotskyensis provides an efficient addition for plant biomass deconstruction. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Living in an Extremely Polluted Environment: Clues from the Genome of Melanin-Producing Aeromonas salmonicida subsp. pectinolytica 34melT. Appl Environ Microbiol 2015; 81:5235-48. [PMID: 26025898 DOI: 10.1128/aem.00903-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/20/2015] [Indexed: 11/20/2022] Open
Abstract
Aeromonas salmonicida subsp. pectinolytica 34mel(T) can be considered an extremophile due to the characteristics of the heavily polluted river from which it was isolated. While four subspecies of A. salmonicida are known fish pathogens, 34mel(T) belongs to the only subspecies isolated solely from the environment. Genome analysis revealed a high metabolic versatility, the capability to cope with diverse stress agents, and the lack of several virulence factors found in pathogenic Aeromonas. The most relevant phenotypic characteristics of 34mel(T) are pectin degradation, a distinctive trait of A. salmonicida subsp. pectinolytica, and melanin production. Genes coding for three pectate lyases were detected in a cluster, unique to this microorganism, that contains all genes needed for pectin degradation. Melanin synthesis in 34mel(T) is hypothesized to occur through the homogentisate pathway, as no tyrosinases or laccases were detected and the homogentisate 1,2-dioxygenase gene is inactivated by a transposon insertion, leading to the accumulation of the melanin precursor homogentisate. Comparative genome analysis of other melanogenic Aeromonas strains revealed that this gene was inactivated by transposon insertions or point mutations, indicating that melanin biosynthesis in Aeromonas occurs through the homogentisate pathway. Horizontal gene transfer could have contributed to the adaptation of 34mel(T) to a highly polluted environment, as 13 genomic islands were identified in its genome, some of them containing genes coding for fitness-related traits. Heavy metal resistance genes were also found, along with others associated with oxidative and nitrosative stresses. These characteristics, together with melanin production and the ability to use different substrates, may explain the ability of this microorganism to live in an extremely polluted environment.
Collapse
|
14
|
Chakraborty S, Fernandes VO, Dias FMV, Prates JAM, Ferreira LMA, Fontes CMGA, Goyal A, Centeno MSJ. Role of pectinolytic enzymes identified in Clostridium thermocellum cellulosome. PLoS One 2015; 10:e0116787. [PMID: 25658912 PMCID: PMC4319962 DOI: 10.1371/journal.pone.0116787] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/09/2014] [Indexed: 11/30/2022] Open
Abstract
The cloning, expression and characterization of three cellulosomal pectinolytic enzymes viz., two variants of PL1 (PL1A and PL1B) and PL9 from Clostridium thermocellum was carried out. The comparison of the primary sequences of PL1A, PL1B and PL9 revealed that these proteins displayed considerable sequence similarities with family 1 and 9 polysaccharide lyases, respectively. PL1A, PL1B and PL9 are the putative catalytic domains of protein sequence ABN54148.1 and ABN53381.1 respectively. These two protein sequences also contain putative carbohydrate binding module (CBM) and type-I dockerin. The associated putative CBM of PL1A showed strong homology with family 6 CBMs while those of PL1B and PL9 showed homology with family 35 CBMs. Recombinant derivatives of these three enzymes showed molecular masses of approximately 34 kDa, 40 kDa and 32 kDa for PL1A, PL1B and PL9, respectively. PL1A, PL1B and PL9 displayed high activity toward polygalacturonic acid and pectin (up to 55% methyl-esterified) from citrus fruits. However, PL1B showed relatively higher activity towards 55% and 85% methyl-esterified pectin (citrus). PL1A and PL9 showed higher activity on rhamnogalacturonan than PL1B. Both PL1A and PL9 displayed maximum activity at pH 8.5 with optimum temperature of 50°C and 60°C respectively. PL1B achieved highest activity at pH 9.8, under an optimum temperature of 50°C. PL1A, PL1B and PL9 all produced two or more unsaturated galacturonates from pectic substrates as displayed by TLC analysis confirming that they are endo-pectate lyase belonging to family 1 and 9, respectively. This report reveals that pectinolytic activity displayed by Clostridium thermocellum cellulosome is coordinated by a sub-set of at least three multi-modular enzymes.
Collapse
Affiliation(s)
- Soumyadeep Chakraborty
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Vania O. Fernandes
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Fernando M. V. Dias
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Jose A. M. Prates
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Luis M. A. Ferreira
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | | | - Arun Goyal
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- * E-mail: (AG); (MSJC)
| | - Maria S. J. Centeno
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- * E-mail: (AG); (MSJC)
| |
Collapse
|
15
|
Hugouvieux-Cotte-Pattat N, Condemine G, Shevchik VE. Bacterial pectate lyases, structural and functional diversity. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:427-40. [PMID: 25646533 DOI: 10.1111/1758-2229.12166] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pectate lyases are enzymes involved in plant cell wall degradation. They cleave pectin using a β-elimination mechanism, specific for acidic polysaccharides. They are mainly produced by plant pathogens and plant-associated organisms, and only rarely by animals. Pectate lyases are also commonly produced in the bacterial world, either by bacteria living in close proximity with plants or by gut bacteria that find plant material in the digestive tract of their hosts. The role of pectate lyases is essential for plant pathogens, such as Dickeya dadantii, that use a set of pectate lyases as their main virulence factor. Symbiotic bacteria produce their own pectate lyases, but they also induce plant pectate lyases to initiate the symbiosis. Pectin degradation products may act as signals affecting the plant–bacteria interactions. Bacterial pectate lyases are also essential for using the pectin of dead or living plants as a carbon source for growth. In the animal gut, Bacteroides pectate lyases degrade the pectin of ingested food, and this is particularly important for herbivores that depend on their microflora for the digestion of pectin. Some human pathogens, such as Yersinia enterocolitica, produce a few intracellular pectate lyases that can facilitate their growth in the presence of highly pectinolytic bacteria, at the plant surface, in the soil or in the animal gut.
Collapse
|
16
|
Li X, Wang H, Zhou C, Ma Y, Li J, Song J. Cloning, expression and characterization of a pectate lyase from Paenibacillus sp. 0602 in recombinant Escherichia coli. BMC Biotechnol 2014; 14:18. [PMID: 24612647 PMCID: PMC4007691 DOI: 10.1186/1472-6750-14-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biotechnological applications of microbial pectate lyases (Pels) in plant fiber processing are considered as environmentally friendly. As such, they become promising substitutes for conventional chemical degumming process. Since applications of Pels in various fields are widening, it is necessary to explore new pectolytic microorganisms and enzymes for efficient and effective usage. Here, we describe the cloning, expression, characterization and application of the recombinant Pel protein from a pectolytic bacterium of the genus Paenibacillus in Escherichia coli. RESULTS A Pel gene (pelN) was cloned using degenerate PCR and inverse PCR from the chromosomal DNA of Paenibacillus sp. 0602. The open reading frame of pelN encodes a 30 amino acid signal peptide and a 445 amino acid mature protein belonging to the polysaccharide lyase family 1. The maximum Pel activity produced by E. coli in shake flasks reached 2,467.4 U mL⁻¹, and the purified recombinant enzyme exhibits a specific activity of 2,060 U mg⁻¹ on polygalacturonic acid (PGA). The maximum activity was observed in a buffer with 5 mM Ca²⁺ at pH 9.8 and 65°C. PelN displays a half-life of around 9 h and 42 h at 50°C and 45°C, respectively. The biochemical treatment achieved the maximal reduction of percentage weight (30.5%) of the ramie bast fiber. CONCLUSIONS This work represents the first study that describes the extracellular expression of a Pel gene from Paenibacillus species in E. coli. The high yield of the extracellular overexpression, relevant thermostability and efficient degumming using combined treatments indicate its strong potential for large-scale industrial production.
Collapse
Affiliation(s)
| | | | | | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | | | | |
Collapse
|
17
|
Taurino M, Abelenda JA, Río-Alvarez I, Navarro C, Vicedo B, Farmaki T, Jiménez P, García-Agustín P, López-Solanilla E, Prat S, Rojo E, Sánchez-Serrano JJ, Sanmartín M. Jasmonate-dependent modifications of the pectin matrix during potato development function as a defense mechanism targeted by Dickeya dadantii virulence factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:418-29. [PMID: 24286390 DOI: 10.1111/tpj.12393] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 05/20/2023]
Abstract
The plant cell wall constitutes an essential protection barrier against pathogen attack. In addition, cell-wall disruption leads to accumulation of jasmonates (JAs), which are key signaling molecules for activation of plant inducible defense responses. However, whether JAs in return modulate the cell-wall composition to reinforce this defensive barrier remains unknown. The enzyme 13-allene oxide synthase (13-AOS) catalyzes the first committed step towards biosynthesis of JAs. In potato (Solanum tuberosum), there are two putative St13-AOS genes, which we show here to be differentially induced upon wounding. We also determine that both genes complement an Arabidopsis aos null mutant, indicating that they encode functional 13-AOS enzymes. Indeed, transgenic potato plants lacking both St13-AOS genes (CoAOS1/2 lines) exhibited a significant reduction of JAs, a concomitant decrease in wound-responsive gene activation, and an increased severity of soft rot disease symptoms caused by Dickeya dadantii. Intriguingly, a hypovirulent D. dadantii pel strain lacking the five major pectate lyases, which causes limited tissue maceration on wild-type plants, regained infectivity in CoAOS1/2 plants. In line with this, we found differences in pectin methyl esterase activity and cell-wall pectin composition between wild-type and CoAOS1/2 plants. Importantly, wild-type plants had pectins with a lower degree of methyl esterification, which are the substrates of the pectate lyases mutated in the pel strain. These results suggest that, during development of potato plants, JAs mediate modification of the pectin matrix to form a defensive barrier that is counteracted by pectinolytic virulence factors from D. dadantii.
Collapse
Affiliation(s)
- Marco Taurino
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
PelN is a new pectate lyase of Dickeya dadantii with unusual characteristics. J Bacteriol 2013; 195:2197-206. [PMID: 23475966 DOI: 10.1128/jb.02118-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plant-pathogenic bacterium Dickeya dadantii produces several pectinolytic enzymes that play a major role in the soft-rot disease. Eight characterized endopectate lyases are secreted in the extracellular medium by the type II secretion system, Out. They cleave internal glycosidic bonds of pectin, leading to plant tissue maceration. The D. dadantii pectate lyases belong to different families, namely, PL1, PL2, PL3, and PL9. Analysis of the D. dadantii 3937 genome revealed a gene encoding a new protein of the PL9 family, which already includes the secreted endopectate lyase PelL and the periplasmic exopectate lyase PelX. We demonstrated that PelN is an additional extracellular protein secreted by the Out system. However, PelN has some unusual characteristics. Although most pectate lyases require a very alkaline pH and Ca²⁺ for their activity, the PelN activity is optimal at pH 7.4 and in the presence of Fe²⁺ as a cofactor. PelN is only weakly affected by the degree of pectin methyl esterification. The PelN structural model, constructed on the basis of the PelL structure, suggests that the PelL global topology and its catalytic amino acids are conserved in PelN. Notable differences concern the presence of additional loops at the PelN surface, and the replacement of PelL charged residues, involved in substrate binding, by aromatic residues in PelN. The pelN expression is affected by different environmental conditions, such as pH, osmolarity, and temperature. It is controlled by the repressors KdgR and PecS and by the activator GacA, three regulators of D. dadantii pectinase genes. Since a pelN mutant had reduced virulence on chicory leaves, the PelN enzyme plays a role in plant infection, despite its low specific activity and its unusual cofactor requirement.
Collapse
|
19
|
Babujee L, Apodaca J, Balakrishnan V, Liss P, Kiley PJ, Charkowski AO, Glasner JD, Perna NT. Evolution of the metabolic and regulatory networks associated with oxygen availability in two phytopathogenic enterobacteria. BMC Genomics 2012; 13:110. [PMID: 22439737 PMCID: PMC3349551 DOI: 10.1186/1471-2164-13-110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/22/2012] [Indexed: 01/31/2023] Open
Abstract
Background Dickeya dadantii and Pectobacterium atrosepticum are phytopathogenic enterobacteria capable of facultative anaerobic growth in a wide range of O2 concentrations found in plant and natural environments. The transcriptional response to O2 remains under-explored for these and other phytopathogenic enterobacteria although it has been well characterized for animal-associated genera including Escherichia coli and Salmonella enterica. Knowledge of the extent of conservation of the transcriptional response across orthologous genes in more distantly related species is useful to identify rates and patterns of regulon evolution. Evolutionary events such as loss and acquisition of genes by lateral transfer events along each evolutionary branch results in lineage-specific genes, some of which may have been subsequently incorporated into the O2-responsive stimulon. Here we present a comparison of transcriptional profiles measured using densely tiled oligonucleotide arrays for two phytopathogens, Dickeya dadantii 3937 and Pectobacterium atrosepticum SCRI1043, grown to mid-log phase in MOPS minimal medium (0.1% glucose) with and without O2. Results More than 7% of the genes of each phytopathogen are differentially expressed with greater than 3-fold changes under anaerobic conditions. In addition to anaerobic metabolism genes, the O2 responsive stimulon includes a variety of virulence and pathogenicity-genes. Few of these genes overlap with orthologous genes in the anaerobic stimulon of E. coli. We define these as the conserved core, in which the transcriptional pattern as well as genetic architecture are well preserved. This conserved core includes previously described anaerobic metabolic pathways such as fermentation. Other components of the anaerobic stimulon show variation in genetic content, genome architecture and regulation. Notably formate metabolism, nitrate/nitrite metabolism, and fermentative butanediol production, differ between E. coli and the phytopathogens. Surprisingly, the overlap of the anaerobic stimulon between the phytopathogens is also relatively small considering that they are closely related, occupy similar niches and employ similar strategies to cause disease. There are cases of interesting divergences in the pattern of transcription of genes between Dickeya and Pectobacterium for virulence-associated subsystems including the type VI secretion system (T6SS), suggesting that fine-tuning of the stimulon impacts interaction with plants or competing microbes. Conclusions The small number of genes (an even smaller number if we consider operons) comprising the conserved core transcriptional response to O2 limitation demonstrates the extent of regulatory divergence prevalent in the Enterobacteriaceae. Our orthology-driven comparative transcriptomics approach indicates that the adaptive response in the eneterobacteria is a result of interaction of core (regulators) and lineage-specific (structural and regulatory) genes. Our subsystems based approach reveals that similar phenotypic outcomes are sometimes achieved by each organism using different genes and regulatory strategies.
Collapse
Affiliation(s)
- Lavanya Babujee
- Biotechnology Center, University of Wisconsin-Madison, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Damak N, Hadj-Taieb N, Bonnin E, Ben Bacha A, Gargouri A. Purification and biochemical characterization of a novel thermoactive fungal pectate lyase from Penicillium occitanis. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Hassan S, Hugouvieux-Cotte-Pattat N. Identification of two feruloyl esterases in Dickeya dadantii 3937 and induction of the major feruloyl esterase and of pectate lyases by ferulic acid. J Bacteriol 2011; 193:963-70. [PMID: 21169494 PMCID: PMC3028667 DOI: 10.1128/jb.01239-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/03/2010] [Indexed: 11/20/2022] Open
Abstract
The plant-pathogenic bacterium Dickeya dadantii (formerly Erwinia chrysanthemi) produces a large array of plant cell wall-degrading enzymes. Using an in situ detection test, we showed that it produces two feruloyl esterases, FaeD and FaeT. These enzymes cleave the ester link between ferulate and the pectic or xylan chains. FaeD and FaeT belong to the carbohydrate esterase family CE10, and they are the first two feruloyl esterases to be identified in this family. Cleavage of synthetic substrates revealed strong activation of FaeD and FaeT by ferulic acid. The gene faeT appeared to be weakly expressed, and its product, FaeT, is a cytoplasmic protein. In contrast, the gene faeD is strongly induced in the presence of ferulic acid, and FaeD is an extracellular protein secreted by the Out system, responsible for pectinase secretion. The product of the adjacent gene faeR is involved in the positive control of faeD in response to ferulic acid. Moreover, ferulic acid acts in synergy with polygalacturonate to induce pectate lyases, the main virulence determinant of soft rot disease. Feruloyl esterases dissociate internal cross-links in the polysaccharide network of the plant cell wall, suppress the polysaccharide esterifications, and liberate ferulic acid, which contributes to the induction of pectate lyases. Together, these effects of feruloyl esterases could facilitate soft rot disease caused by pectinolytic bacteria.
Collapse
Affiliation(s)
- Susan Hassan
- Université de Lyon, Université Lyon 1; INSA-Lyon; and Microbiologie Adaptation et Pathogénie, CNRS UMR5240, Domaine Scientifique de la Doua, Villeurbanne F-69622, France
| | - Nicole Hugouvieux-Cotte-Pattat
- Université de Lyon, Université Lyon 1; INSA-Lyon; and Microbiologie Adaptation et Pathogénie, CNRS UMR5240, Domaine Scientifique de la Doua, Villeurbanne F-69622, France
| |
Collapse
|
22
|
Abbott DW, Gilbert HJ, Boraston AB. The active site of oligogalacturonate lyase provides unique insights into cytoplasmic oligogalacturonate beta-elimination. J Biol Chem 2010; 285:39029-38. [PMID: 20851883 DOI: 10.1074/jbc.m110.153981] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Oligogalacturonate lyases (OGLs; now also classified as pectate lyase family 22) are cytoplasmic enzymes found in pectinolytic members of Enterobacteriaceae, such as the enteropathogen Yersinia enterocolitica. OGLs utilize a β-elimination mechanism to preferentially catalyze the conversion of saturated and unsaturated digalacturonate into monogalacturonate and the 4,5-unsaturated monogalacturonate-like molecule, 5-keto-4-deoxyuronate. To provide mechanistic insights into the specificity of this enzyme activity, we have characterized the OGL from Y. enterocolitica, YeOGL, on oligogalacturonides and determined its three-dimensional x-ray structure to 1.65 Å. The model contains a Mn(2+) atom in the active site, which is coordinated by three histidines, one glutamine, and an acetate ion. The acetate mimics the binding of the uronate group of galactourono-configured substrates. These findings, in combination with enzyme kinetics and metal supplementation assays, provide a framework for modeling the active site architecture of OGL. This enzyme appears to contain a histidine for the abstraction of the α-proton in the -1 subsite, a residue that is highly conserved throughout the OGL family and represents a unique catalytic base among pectic active lyases. In addition, we present a hypothesis for an emerging relationship observed between the cellular distribution of pectate lyase folding and the distinct metal coordination chemistries of pectate lyases.
Collapse
Affiliation(s)
- D Wade Abbott
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
23
|
Biochemical properties of pectate lyases produced by three different Bacillus strains isolated from fermenting cocoa beans and characterization of their cloned genes. Appl Environ Microbiol 2010; 76:5214-20. [PMID: 20543060 DOI: 10.1128/aem.00705-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pectinolytic enzymes play an important role in cocoa fermentation. In this study, we characterized three extracellular pectate lyases (Pels) produced by bacilli isolated from fermenting cocoa beans. These enzymes, named Pel-22, Pel-66, and Pel-90, were synthesized by Bacillus pumilus BS22, Bacillus subtilis BS66, and Bacillus fusiformis BS90, respectively. The three Pels were produced under their natural conditions and purified from the supernatants using a one-step chromatography method. The purified enzymes exhibited optimum activity at 60 degrees C, and the half-time of thermoinactivation at this temperature was approximately 30 min. Pel-22 had a low specific activity compared with the other two enzymes. However, it displayed high affinity for the substrate, about 2.5-fold higher than those of Pel-66 and Pel-90. The optimum pHs were 7.5 for Pel-22 and 8.0 for Pel-66 and Pel-90. The three enzymes trans-eliminated polygalacturonate in a random manner to generate two long oligogalacturonides, as well as trimers and dimers. A synergistic effect was observed between Pel-22 and Pel-66 and between Pel-22 and Pel-90, but not between Pel-90 and Pel-66. The Pels were also strongly active on highly methylated pectins (up to 60% for Pel-66 and Pel-90 and up to 75% for Pel-22). Fe(2+) was found to be a better cofactor than Ca(2+) for Pel-22 activity, while Ca(2+) was the best cofactor for Pel-66 and Pel-90. The amino acid sequences deduced from the cloned genes showed the characteristics of Pels belonging to Family 1. The pel-66 and pel-90 genes appear to be very similar, but they are different from the pel-22 gene. The characterized enzymes form two groups, Pel-66/Pel-90 and Pel-22; members of the different groups might cooperate to depolymerize pectin during the fermentation of cocoa beans.
Collapse
|
24
|
Enzymatic degradation of amylouronate (α-(1→4)-linked glucuronan) by α-glucuronidase from Paenibacillus sp. TH501b. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2008.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Michaud P, Da Costa A, Courtois B, Courtois J. Polysaccharide Lyases: Recent Developments as Biotechnological Tools. Crit Rev Biotechnol 2008; 23:233-66. [PMID: 15224891 DOI: 10.1080/07388550390447043] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Polysaccharide lyases, which are polysaccharide cleavage enzymes, act mainly on anionic polysaccharides. Produced by prokaryote and eukaryote organisms, these enzymes degrade (1,4) glycosidic bond by a beta elimination mechanism and have unsaturated oligosaccharides as major products. New polysaccharides are cleaved only by their specific polysaccharide lyases. From anionic polysaccharides controlled degradations, various biotechnological applications were investigated. This review catalogues the degradation of bacterial, plant and animal polysaccharides (neutral and anionic) by this family of carbohydrate acting enzymes.
Collapse
Affiliation(s)
- P Michaud
- Laboratoire des Glucides--LPMV, IUT/Génie Biologique, Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, 80025 Amiens Cedex, France.
| | | | | | | |
Collapse
|
26
|
|
27
|
Structural biology of pectin degradation by Enterobacteriaceae. Microbiol Mol Biol Rev 2008; 72:301-16, table of contents. [PMID: 18535148 DOI: 10.1128/mmbr.00038-07] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
SUMMARY Pectin is a structural polysaccharide that is integral for the stability of plant cell walls. During soft rot infection, secreted virulence factors from pectinolytic bacteria such as Erwinia spp. degrade pectin, resulting in characteristic plant cell necrosis and tissue maceration. Catabolism of pectin and its breakdown products by pectinolytic bacteria occurs within distinct cellular environments. This process initiates outside the cell, continues within the periplasmic space, and culminates in the cytoplasm. Although pectin utilization is well understood at the genetic and biochemical levels, an inclusive structural description of pectinases and pectin binding proteins by both extracellular and periplasmic enzymes has been lacking, especially following the recent characterization of several periplasmic components and protein-oligogalacturonide complexes. Here we provide a comprehensive analysis of the protein folds and mechanisms of pectate lyases, polygalacturonases, and carbohydrate esterases and the binding specificities of two periplasmic pectic binding proteins from Enterobacteriaceae. This review provides a structural understanding of the molecular determinants of pectin utilization and the mechanisms driving catabolite selectivity and flow through the pathway.
Collapse
|
28
|
Abbott DW, Boraston AB. A family 2 pectate lyase displays a rare fold and transition metal-assisted beta-elimination. J Biol Chem 2007; 282:35328-36. [PMID: 17881361 DOI: 10.1074/jbc.m705511200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The family 2 pectate lyase from Yersinia enterocolitica (YePL2A), solved to 1.5A, reveals it to be the first prokaryotic protein reported to display the rare (alpha/alpha)(7) barrel fold. In addition to its apo form, we have also determined the structure of a metal-bound form of YePL2A (to 2.0A) and a trigalacturonic acid-bound substrate complex (to 2.1A) Although its fold is rare, the catalytic center of YePL2A can be superimposed with structurally unrelated families, underlining the conserved catalytic amino acid architecture of the beta-elimination mechanism. In addition to its overall structure, YePL2A also has two other unique features: 1) it utilizes a metal atom other than calcium for catalysis, and 2) its Brønstead base is in an alternate conformation and directly interacts with the uronate group of the substrate.
Collapse
Affiliation(s)
- D Wade Abbott
- Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | | |
Collapse
|
29
|
Abbott DW, Boraston AB. Specific recognition of saturated and 4,5-unsaturated hexuronate sugars by a periplasmic binding protein involved in pectin catabolism. J Mol Biol 2007; 369:759-70. [PMID: 17451747 DOI: 10.1016/j.jmb.2007.03.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/14/2007] [Accepted: 03/16/2007] [Indexed: 11/30/2022]
Abstract
The process of pectin depolymerization by pectate lyases and glycoside hydrolases produced by pectinolytic organisms, particularly the phytopathogens from the genus Erwinia, is reasonably well understood. Indeed each extracellular and intracellular catabolic stage has been identified using either genetic, bioinformatic or biochemical approaches. Nevertheless, the molecular details of many of these stages remain unknown. In particular, the mechanism and ligand binding profiles for the transport of pectin degradation products between cellular compartments remain entirely uninvestigated. Here we present the structure of TogB, a 45.7 kDa periplasmic binding protein from Yersinia enterocolitica. This protein is a component of the TogMNAB ABC transporter involved in the periplasmic transport of oligogalacturonides. In addition to the unliganded complex (at 2.2 A), we have also determined the structures of TogB in complex with digalacturonic acid (at 2.2 A), trigalacturonic acid (at 1.8 A) and 4,5-unsaturated digalacutronic acid (at 2.3 A). The molecular determinants of oligogalacturonide binding include a novel salt-bridge between the non-reducing sugar uronate group, selectivity for the unsaturated ligand, and the overall sugar configuration. Complementing this are UV difference and isothermal titration calorimetry experiments that highlight the thermodynamic basis of ligand specificity. The ligand binding profiles of the TogMNAB transporter complex nicely complement pectate lyase-mediated pectin degradation, which is a significant component of pectin depolymerization reactions.
Collapse
Affiliation(s)
- D Wade Abbott
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, Canada V8W 3P6
| | | |
Collapse
|
30
|
Qin G, Tian S, Chan Z, Li B. Crucial role of antioxidant proteins and hydrolytic enzymes in pathogenicity of Penicillium expansum: analysis based on proteomics approach. Mol Cell Proteomics 2006; 6:425-38. [PMID: 17194899 DOI: 10.1074/mcp.m600179-mcp200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Penicillium expansum, a widespread filamentous fungus, is a major causative agent of fruit decay and may lead to the production of mycotoxin that causes harmful effects on human health. In this study, we compared the cellular and extracellular proteomes of P. expansum in the absence and presence of borate, which affects the virulence of the fungal pathogen. The differentially expressed proteins were identified using ESI-Q-TOF-MS/MS. Several proteins related to stress response (glutathione S-transferase, catalase, and heat shock protein 60) and basic metabolism (glyceraldehyde-3-phosphate dehydrogenase, dihydroxy-acid dehydratase, and arginase) were identified in the cellular proteome. Catalase and glutathione S-transferase, the two antioxidant enzymes, exhibited reduced levels of expression upon exposure to borate. Because catalase and glutathione S-transferase are related to oxidative stress response, we further investigated the reactive oxygen species (ROS) levels and oxidative protein carbonylation (damaged proteins) in P. expansum. Higher amounts of ROS and carbonylated proteins were observed after borate treatment, indicating that catalase and glutathione S-transferase are important in scavenging ROS and protecting cellular proteins from oxidative damage. Additionally to find secretory proteins that contribute to the virulence, we studied the extracellular proteome of P. expansum under stress condition with reduced virulence. The expression of three protein spots were repressed in the presence of borate and identified as the same hydrolytic enzyme, polygalacturonase.
Collapse
Affiliation(s)
- Guozheng Qin
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|
31
|
Soriano M, Diaz P, Pastor FIJ. Pectate lyase C from Bacillus subtilis: a novel endo-cleaving enzyme with activity on highly methylated pectin. MICROBIOLOGY-SGM 2006; 152:617-625. [PMID: 16514142 DOI: 10.1099/mic.0.28562-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene yvpA from Bacillus subtilis was cloned and expressed in Escherichia coli. It encoded a pectate lyase of 221 amino acids that was denominated PelC. The heterologously expressed enzyme was purified by His-tag affinity chromatography and characterized. PelC depolymerized polygalacturonate and pectins of methyl esterification degree from 22 % to 89 %, exhibiting maximum activity on 22 % esterified citrus pectin. It showed an absolute Ca2+ requirement and the optimum temperature and pH were 65 degrees C and pH 10, respectively. The deduced amino acid sequence of PelC showed 53 % identity to pectate lyase PelA from Paenibacillus barcinonensis, which was also characterized. Similarly to PelC, purified PelA showed activity on polygalacturonate and pectins with a high degree of methyl esterification. The two enzymes cleaved pectic polymers to a mixture of oligogalacturonates, indicating an endo mode of action. Analysis of activity on trigalacturonate showed that PelC cleaved it to galacturonic acid and unsaturated digalacturonate, whereas PelA did not show activity on this substrate. PelC and PelA showed high homology to a few recently identified pectate lyases of family 3 and form with them a cluster of small-sized pectate lyases from non-pathogenic micro-organisms.
Collapse
Affiliation(s)
- Margarita Soriano
- Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Pilar Diaz
- Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Francisco I Javier Pastor
- Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
32
|
Coulthurst SJ, Lilley KS, Salmond GPC. Genetic and proteomic analysis of the role of luxS in the enteric phytopathogen, Erwinia carotovora. MOLECULAR PLANT PATHOLOGY 2006; 7:31-45. [PMID: 20507426 DOI: 10.1111/j.1364-3703.2005.00314.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Erwinia carotovora is a Gram-negative phytopathogen that is an important cause of soft rot disease, including stem and tuber rot in potatoes. Quorum sensing is the process by which bacteria detect their population density and regulate gene expression accordingly. Quorum sensing, an important example of intercellular communication, involves the production and detection of chemical signal molecules. The enzyme LuxS is responsible for the production of Autoinducer-2 (AI-2), a molecule that has been implicated in quorum sensing in many bacterial species. In this study, the role of luxS in Erwinia carotovora ssp. carotovora strain ATTn10 and Erwinia carotovora ssp. atroseptica SCRI1043 has been examined. Both strains have been shown to produce luxS-dependent extracellular AI-2 activity and the phenotypes of defined luxS mutants in these strains have been characterized. Inactivation of luxS in Er. carotovora was found to have a strain-dependent impact on the intracellular proteome (using two-dimensional difference in gel electrophoresis), secreted proteins, motility and virulence in planta. No link was detected with the N-acyl-l-homoserine lactone quorum sensing system in these organisms. Although the molecular mechanism(s) of luxS regulation in Erwinia remain to be determined, this is the first report of any luxS-dependent phenotypes in a plant pathogen.
Collapse
Affiliation(s)
- Sarah J Coulthurst
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | | |
Collapse
|
33
|
Pemberton CL, Whitehead NA, Sebaihia M, Bell KS, Hyman LJ, Harris SJ, Matlin AJ, Robson ND, Birch PRJ, Carr JP, Toth IK, Salmond GPC. Novel quorum-sensing-controlled genes in Erwinia carotovora subsp. carotovora: identification of a fungal elicitor homologue in a soft-rotting bacterium. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:343-53. [PMID: 15828686 DOI: 10.1094/mpmi-18-0343] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Seven new genes controlled by the quorum-sensing signal molecule N-(3-oxohexanoyl)-L-homoserine lactone (OHHL) have been identified in Erwinia carotovora subsp. carotovora. Using TnphoA as a mutagen, we enriched for mutants defective in proteins that could play a role in the interaction between E. carotovora subsp. carotovora and its plant hosts, and identified NipEcc and its counterpart in E. carotovora subsp. atroseptica. These are members of a growing family of proteins related to Nep1 from Fusarium oxysporum which can induce necrotic responses in a variety of dicotyledonous plants. NipEcc produced necrosis in tobacco, NipEca affected potato stem rot, and both affected virulence in potato tubers. In E. carotovora subsp. carotovora, nip was shown to be subject to weak repression by the LuxR family regulator, EccR, and may be regulated by the negative global regulator RsmA.
Collapse
|
34
|
Soriano M, Diaz P, Pastor FIJ. Pectinolytic systems of two aerobic sporogenous bacterial strains with high activity on pectin. Curr Microbiol 2005; 50:114-8. [PMID: 15717229 DOI: 10.1007/s00284-004-4382-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 09/30/2004] [Indexed: 10/25/2022]
Abstract
Strains Paenibacillus sp. BP-23 and Bacillus sp. BP-7, previously isolated from soil from a rice field, secreted high levels of pectinase activity in media supplemented with pectin. Production of pectinases in strain Paenibacillus sp. BP-23 showed catabolite repression, while in Bacillus sp. BP-7 production of pectin degrading enzymes was not negatively affected by glucose. The two strains showed lyase activities as the predominant pectinases, while hydrolase activity was very low. Analysis of Paenibacillus sp. BP-23 in SDS-polyacrylamide gels and zymograms showed five pectinase activity bands. The strict requirement of Ca(2+) for lyase activity of the strain indicates that correspond to pectate lyases. For Bacillus sp. BP-7, zymograms showed four bands of different size. The strain showed a Ca(2+) requirement for lyase activity on pectate but not on pectin, indicating that the pectinolytic system of Bacillus sp. BP-7 is comprised of pectate lyases and pectin lyases. The results show differences in pectin degrading systems between the two aerobic sporogenous bacterial strains studied.
Collapse
Affiliation(s)
- Margarita Soriano
- Department of Microbiology, Faculty of Biology, University of Barcelona, Avenida Diagonal 645, 08028 Barcelona, Spain
| | | | | |
Collapse
|
35
|
Hugouvieux-Cotte-Pattat N. The RhaS activator controls the Erwinia chrysanthemi 3937 genes rhiN, rhiT and rhiE involved in rhamnogalacturonan catabolism. Mol Microbiol 2004; 51:1361-74. [PMID: 14982630 DOI: 10.1046/j.1365-2958.2003.03908.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Erwinia chrysanthemi causes soft-rot diseases of various plants by enzymatic degradation of the pectin in plant cell walls. The linear regions of pectin are composed of an acidic sugar, D-galacturonic acid. The ramified regions of pectin also include neutral sugars, and are rich in L-rhamnose residues. E. chrysanthemi is able to degrade these polysaccharides, polygalacturonate and rhamnogalacturonate. In E. chrysanthemi, the production of pectinases acting on linear regions is induced in the presence of polygalacturonate by a mechanism involving the repressor KdgR. The induction of the two adjacent E. chrysanthemi genes, designated rhiT and rhiN, is maximal after the simultaneous addition of both polygalacturonate and L-rhamnose. The rhiT product is homologous to the oligogalacturonide transporter TogT of E. chrysanthemi. The rhiN product is homologous to various proteins of unknown function, including a protein encoded by the plant-inducible locus picA of Agrobacterium tumefaciens. Both rhiT and rhiN are highly induced during plant infection. Various data suggest that RhiT and RhiN are involved in rhamnogalacturonate catabolism. RhiN is able to degrade the oligomers liberated by the rhamnogalacturonate lyase RhiE. The induction of the rhiTN operon in the presence of polygalacturonate results from control by the repressor KdgR. The additional induction of these genes by rhamnose is directly mediated by RhaS, a protein homologous to the activator of rhamnose catabolism in Escherichia coli. The virulence of an E. chrysanthemi rhaS mutant towards different host plants was clearly reduced. In this phytopathogenic bacterial species, RhaS positively regulates the transcription of the rhaBAD operon, involved in rhamnose catabolism, of the rhiE gene and of the rhiTN operon. The regulator RhaS plays a larger role in E. chrysanthemi than in other enterobacteria. Indeed, the RhaS control is not restricted to the catabolism of rhamnose but is extended to the degradation of plant polysaccharides that contain this sugar.
Collapse
Affiliation(s)
- Nicole Hugouvieux-Cotte-Pattat
- Unité de Microbiologie et Génétique-Composante INSA, UMR CNRS-INSA-UCB 5122, bat Lwoff, 10 rue Dubois, Domaine Scientifique de la Doua, 69622 Villeurbanne Cedex, France.
| |
Collapse
|
36
|
Zhai C, Cao J, Wang Y. Cloning and expression of a pectate lyase gene from Bacillus alcalophillus NTT33. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00091-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Kluskens LD, van Alebeek GJWM, Voragen AGJ, de Vos WM, van der Oost J. Molecular and biochemical characterization of the thermoactive family 1 pectate lyase from the hyperthermophilic bacterium Thermotoga maritima. Biochem J 2003; 370:651-9. [PMID: 12443532 PMCID: PMC1223193 DOI: 10.1042/bj20021595] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2002] [Revised: 11/19/2002] [Accepted: 11/20/2002] [Indexed: 11/17/2022]
Abstract
The ability of the hyperthermophilic bacterium Thermotoga maritima to grow on pectin as a sole carbon source coincides with the secretion of a pectate lyase A (PelA) in the extracellular medium. The pel A gene of T. maritima was functionally expressed in Escherichia coli as the first heterologously produced thermophilic pectinase, and purified to homogeneity. Gel filtration indicated that the native form of PelA is tetrameric. Highest activity (422 units/mg, with a K(m) of 0.06 mM) was demonstrated on polygalacturonic acid (PGA), whereas pectins with an increasing degree of methylation were degraded at a decreasing rate. In the tradition of pectate lyases, PelA demonstrated full dependency on Ca(2+) for stability and activity. The enzyme is highly thermoactive and thermostable, operating optimally at 90 degrees C and pH 9.0, with a half-life for thermal inactivation of almost 2 h at 95 degrees C, and an apparent melting temperature of 102.5 degrees C. Detailed characterization of the product formation with PGA indicated that PelA has a unique eliminative exo-cleavage pattern liberating unsaturated trigalacturonate as the major product, in contrast with unsaturated digalacturonate for other exopectate lyases known. The unique exo-acting mode of action was supported by progression profiles of PelA on oligogalacturonides (degree of polymerization, 3-8) and the examination of the bond cleavage frequencies.
Collapse
Affiliation(s)
- Leon D Kluskens
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, NL-6703, CT, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
38
|
Franza T, Michaud-Soret I, Piquerel P, Expert D. Coupling of iron assimilation and pectinolysis in Erwinia chrysanthemi 3937. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:1181-1191. [PMID: 12423024 DOI: 10.1094/mpmi.2002.15.11.1181] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two major virulence determinants of the plant-pathogenic enterobacterium Erwinia chrysanthemi strain 3937 are the production of pectate lyase enzymes that degrade plant cell walls and expression of two high-affinity iron uptake systems mediated by two structurally unrelated siderophores, chrysobactin and achromobactin. Low iron availability is a signal that triggers transcription of the genes encoding pectate lyases PelD and PelE as well as that of genes involved in iron transport. This metalloregulation is mediated by the transcriptional repressor Fur. In this study, we analyzed the molecular mechanisms of this control. We purified the Erwinia chrysanthemi Fur protein. Band shift assays showed that Fur specifically binds in vitro to the regulatory regions of the genes encoding the ferrichrysobactin outer membrane receptor Fct and the pectate lyases PelD and PelE. We identified the Fur-binding sites of these promoter regions by performing DNase I footprinting experiments. From these data, we propose that Fur could inhibit the activation of the pelD and pelE genes by the cAMP receptor protein CRP according to an anti-activation mechanism. To identify other possible effectors involved in this control, we screened a bank of insertion mutants for an increase in transcriptional activity of pelD and fct genes in response to iron limitation. We isolated a mutant affected in the kdgK gene encoding the 2-keto-3-deoxygluconate (KDG) kinase, an enzyme involved in pectin catabolism. The growth of this mutant in the presence of pectic compounds led to a constitutive expression of iron transport genes as well as complete derepression of the pectinolysis genes. This effect was caused by intracellular accumulation of KDG. However, the derepression of iron transport genes by KDG does not involve the KdgR regulator of pectinolysis genes, which uses KDG as inducer. Thus, in Erwinia chrysanthemi, iron depletion or presence of KDG induces transcription of the genes involved in iron assimilation and pectinolysis. These important pathogenicity functions are coregulated by responding to common signals encountered in planta.
Collapse
Affiliation(s)
- Thierry Franza
- Laboratoire de Pathologie Végétale UMR 217 INRA/INA-PG/Université Paris 6, France.
| | | | | | | |
Collapse
|
39
|
Hugouvieux-Cotte-Pattat N, Shevchik VE, Nasser W. PehN, a polygalacturonase homologue with a low hydrolase activity, is coregulated with the other Erwinia chrysanthemi polygalacturonases. J Bacteriol 2002; 184:2664-73. [PMID: 11976295 PMCID: PMC135015 DOI: 10.1128/jb.184.10.2664-2673.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erwinia chrysanthemi 3937 secretes an arsenal of pectinolytic enzymes, including at least eight endo-pectate lyases encoded by pel genes, which play a major role in the soft-rot disease caused by this bacterium on various plants. E. chrysanthemi also produces some hydrolases that cleave pectin. Three adjacent hydrolase genes, pehV, pehW, and pehX, encoding exo-poly-alpha-D-galacturonosidases, have been characterized. These enzymes liberate digalacturonides from the nonreducing end of pectin. We report the identification of a novel gene, named pehN, encoding a protein homologous to the glycosyl hydrolases of family 28, which includes mainly polygalacturonases. PehN has a low hydrolase activity on polygalacturonate and on various pectins. PehN action favors the activity of the secreted endo-pectate lyases, mainly PelB and PelC, and that of the periplasmic exo-pectate lyase PelX. However, removal of the pehN gene does not significantly alter the virulence of E. chrysanthemi. Regulation of pehN transcription was analyzed by using gene fusions. Like other pectinase genes, pehN transcription is dependent on several environmental conditions. It is induced by pectic catabolic products and is affected by growth phase, catabolite repression, osmolarity, anaerobiosis, nitrogen starvation, and the presence of calcium ions. The transcription of pehN is modulated by the repressor KdgR, which controls almost all the steps of pectin catabolism, and by cyclic AMP receptor protein (CRP), the global activator of sugar catabolism. The regulator PecS, which represses the transcription of the pel genes but activates that of pehV, pehW, and pehX, also activates transcription of pehN. The three regulators KdgR, PecS, and CRP act by direct interaction with the pehN promoter region. The sequences involved in the binding of these three regulators and of RNA polymerase have been precisely defined. Analysis of the simultaneous binding of these proteins indicates that CRP and RNA polymerase bind cooperatively and that the binding of KdgR could prevent pehN transcription. In contrast, the activator effect of PecS is not linked to competition with KdgR or to cooperation with CRP or RNA polymerase. This effect probably results from competition between PecS and an unidentified repressor involved in peh regulation.
Collapse
Affiliation(s)
- Nicole Hugouvieux-Cotte-Pattat
- Unité de Microbiologie et Génétique, CNRS-INSA-UCB UMR 5122, INSA, Batiment Louis Pasteur, 11 Avenue Jean Capelle, 69621 Villeurbanne Cedex, France.
| | | | | |
Collapse
|
40
|
Blot N, Berrier C, Hugouvieux-Cotte-Pattat N, Ghazi A, Condemine G. The oligogalacturonate-specific porin KdgM of Erwinia chrysanthemi belongs to a new porin family. J Biol Chem 2002; 277:7936-44. [PMID: 11773048 DOI: 10.1074/jbc.m109193200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phytopathogenic Gram-negative bacteria Erwinia chrysanthemi secretes pectinases, which are able to degrade the pectic polymers of plant cell walls, and uses the degradation products as a carbon source for growth. We characterized a major outer membrane protein, KdgM, whose synthesis is strongly induced in the presence of pectic derivatives. The corresponding gene was characterized. Analysis of transcriptional fusions showed that the kdgM expression is controlled by the general repressor of pectinolytic genes, KdgR, by the repressor of hexuronate catabolism genes, ExuR, by the pectinase gene repressor, PecS, and by catabolite repression via the cyclic AMP receptor protein (CRP) transcriptional activator. A kdgM mutant is unable to grow on oligogalacturonides longer than trimers, and its virulence is affected. Electrophysiological experiments with planar lipid bilayers showed that KdgM behaves like a voltage-dependent porin that is slightly selective for anions and that exhibits fast block in the presence of trigalacturonate. In contrast to most porins, KdgM seems to be monomeric. KdgM has no homology with currently known porins, but proteins similar to KdgM are present in several bacteria. Therefore, these proteins might constitute a new family of porin channels.
Collapse
Affiliation(s)
- Nicolas Blot
- Unité de Microbiologie et Génétique, Composante INSA, UMR-CNRS 5122, INSA, Bâtiment Louis Pasteur, 11 Avenue Jean Capelle, 69621 Villeurbanne Cedex, France
| | | | | | | | | |
Collapse
|
41
|
Hugouvieux-Cotte-Pattat N, Blot N, Reverchon S. Identification of TogMNAB, an ABC transporter which mediates the uptake of pectic oligomers in Erwinia chrysanthemi 3937. Mol Microbiol 2001; 41:1113-23. [PMID: 11555291 DOI: 10.1046/j.1365-2958.2001.02564.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bacterium Erwinia chrysanthemi, which causes soft rot disease on various plants, is able to use pectin as a carbon source for growth. Knowledge of the critical step in pectin catabolism which allows the entry of pectic oligomers into the cells is scarce. We report here the first example of a transport system involved in the uptake of pectic oligomers. The TogMNAB transporter of E. chrysanthemi is a member of the ATP-binding cassette (ABC) superfamily. TogM and TogN are homologous to the inner membrane components, TogA exhibits the signature of ABC ATPases and TogB shows similarity with periplasmic ligand-binding proteins. The TogMNAB transporter is a new member of the carbohydrate uptake transporter-1 family (CUT1, TC no. 3.1.1), which is specialized in the transport of complex sugars. The four genes, togM, togN, togA and togB, are apparently co-transcribed in a large operon which also includes the pectate lyase gene pelW. The transcription of the tog operon is induced in the presence of pectic derivatives and is affected by catabolite repression. It is controlled by the KdgR repressor and the CRP activator. The TogMNAB system is able to provide Escherichia coli with the ability to transport oligogalacturonides. In E. chrysanthemi, the TogMNAB system seems to play a major role in switching on the induction of pectin catabolism. TogB also acts as a specific receptor for chemotaxis towards oligogalacturonides. The decreased capacity of maceration of a togM mutant indicates the importance of transport and/or attraction of oligogalacturonides for E. chrysanthemi pathogenicity.
Collapse
Affiliation(s)
- N Hugouvieux-Cotte-Pattat
- Unité Microbiologie et Génétique--composante INSA, UMR UCB-INSA-CNRS 5122, Bat Louis Pasteur, INSA, 11 Avenue Jean Capelle, F-69621 Villeurbanne Cedex, France.
| | | | | |
Collapse
|
42
|
Tamaru Y, Doi RH. Pectate lyase A, an enzymatic subunit of the Clostridium cellulovorans cellulosome. Proc Natl Acad Sci U S A 2001; 98:4125-9. [PMID: 11259664 PMCID: PMC31190 DOI: 10.1073/pnas.071045598] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2000] [Accepted: 01/29/2001] [Indexed: 11/18/2022] Open
Abstract
Clostridium cellulovorans uses not only cellulose but also xylan, mannan, pectin, and several other carbon sources for its growth and produces an extracellular multienzyme complex called the cellulosome, which is involved in plant cell wall degradation. Here we report a gene for a cellulosomal subunit, pectate lyase A (PelA), lying downstream of the engY gene, which codes for cellulosomal enzyme EngY. pelA is composed of an ORF of 2,742 bp and encodes a protein of 914 aa with a molecular weight of 94,458. The amino acid sequence derived from pelA revealed a multidomain structure, i.e., an N-terminal domain partially homologous to the C terminus of PelB of Erwinia chrysanthemi belonging to family 1 of pectate lyases, a putative cellulose-binding domain, a catalytic domain homologous to PelL and PelX of E. chrysanthemi that belongs to family 4 of pectate lyases, and a duplicated sequence (or dockerin) at the C terminus that is highly conserved in enzymatic subunits of the C. cellulovorans cellulosome. The recombinant truncated enzyme cleaved polygalacturonic acid to digalacturonic acid (G2) and trigalacturonic acid (G3) but did not act on G2 and G3. There have been no reports available to date on pectate lyase genes from Clostridia.
Collapse
Affiliation(s)
- Y Tamaru
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
43
|
Park SR, Cho SJ, Yun HD. Cloning and sequencing of pel gene responsible for CMCase activity from Erwinia chrysanthemi PY35. Biosci Biotechnol Biochem 2000; 64:925-30. [PMID: 10879460 DOI: 10.1271/bbb.64.925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The phytopathogenic bacterium Erwinia chrysanthemi secretes multiple isozymes of plant cell wall disrupting enzymes such as pectate lyase and endoglucanase. We cloned genomic DNA from Erwinia chrysanthemi PY35. One of the E. coli XL1-Blue clones contained a 5.1-kb BamHI fragment and hydrolyzed carboxymethyl cellulose and polygalacturonic acid. By subsequent subcloning, we obtained a 2.9-kb fragment (pPY100) that contained the pel gene responsible for CMCase and pectate lyase activities. The pel gene had an open reading frame (ORF) of 1,278 bp encoding 425 amino acids with a signal peptide of 25 amino acids. Since the deduced amino acid sequence of this protein was very similar to that of PelL of E. chrysanthemi EC16, we concluded that it belonged to the pectate lyase family EC 4.2.2.2, and we designated it PelL1. Sequencing showed that the PeIL1 protein contains 400 amino acids and has a calculated pI of 7.15 and a molecular mass of 42,925 Da. The molecular mass of PelL1 protein expressed in E. coli XL1-Blue, as analyzed by SDS-PAGE, appeared to be 43 kDa. The optimum pH for its enzymatic activity was 9, and the optimum temperature was about 40 decreased C.
Collapse
Affiliation(s)
- S R Park
- Department of Agricultural Chemistry, Gyeongsang National University, Chinju, Korea
| | | | | |
Collapse
|
44
|
Kester HC, Magaud D, Roy C, Anker D, Doutheau A, Shevchik V, Hugouvieux-Cotte-Pattat N, Benen JA, Visser J. Performance of selected microbial pectinases on synthetic monomethyl-esterified di- and trigalacturonates. J Biol Chem 1999; 274:37053-9. [PMID: 10601263 DOI: 10.1074/jbc.274.52.37053] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two monomethyl esters of alpha-(1-4)-linked D-galacturonic dimers and three monomethyl esters of alpha-(1-4)-linked D-galacturonic acid trimers were synthesized chemically and further used as substrates in order to establish the substrate specificity of six different endopolygalacturonases from Aspergillus niger, one exopolygalacturonase from Aspergillus tubingensis, and four selected Erwinia chrysanthemi pectinases; exopolygalacturonan hydrolase X (PehX), exopolygalacturonate lyase X (PelX), exopectate lyase W (PelW), and oligogalacturonan lyase (Ogl). All A. niger endopolygalacturonases (PGs) were unable to hydrolyze the two monomethyldigalacturonates and 2-methyltrigalacturonate, whereas 1-methyltrigalacturonate was only cleaved by PGI, PGII, and PGB albeit at an extremely low rate. The hydrolysis of 3-methyltrigalacturonate into 2-methyldigalacturonate and galacturonate by all endopolygalacturonases demonstrates that these enzymes can accommodate a methylgalacturonate at subsite -2. The A. tubingensis exopolygalacturonase hydrolyzed the monomethyl-esterified digalacturonates and trigalacturonates although at lower rates than for the corresponding oligogalacturonates. 1-Methyltrigalacturonate was hydrolyzed at the same rate as trigalacturonate which demonstrates that the presence of a methyl ester at the third galacturonic acid from the nonreducing end does not have any effect on the performance of exopolygalacturonase. Of the four E. chrysanthemi pectinases, Ogl was the only enzyme able to cleave digalacturonate, whereas all four enzymes cleaved trigalacturonate. Ogl does not cleave monomethyl-esterified digalacturonate and trigalacturonate in case the second galacturonic acid residue from the reducing end is methyl-esterified. PehX did not hydrolyze any of the monomethyl-esterified trigalacturonates. The two lyases, PelX and PelW, were both only able to cleave 1-methyltrigalacturonate into Delta4,5-unsaturated 1-methyldigalacturonate and galacturonate.
Collapse
Affiliation(s)
- H C Kester
- Section of Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nasser W, Shevchik VE, Hugouvieux-Cotte-Pattat N. Analysis of three clustered polygalacturonase genes in Erwinia chrysanthemi 3937 revealed an anti-repressor function for the PecS regulator. Mol Microbiol 1999; 34:641-50. [PMID: 10564505 DOI: 10.1046/j.1365-2958.1999.01609.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Erwinia chrysanthemi 3937 secretes an arsenal of pectinolytic enzymes including several pectate lyases encoded by the pel genes. We characterized a novel cluster of pectinolytic genes consisting of the three adjacent genes pehV, pehW and pehX, whose products have polygalacturonase activity. The high similarity between the three genes suggests that they result from duplication of an ancestral gene. The transcription of pehV, pehW and pehX is dependent on several environmental conditions. They are induced by pectin catabolic products and this induction results from inactivation of the KdgR repressor which controls almost all the steps of pectin catabolism. The presence of calcium ions strongly reduced the transcription of the three peh genes. Their expression was also affected by growth phase, osmolarity, oxygen limitation and nitrogen starvation. In addition, the pehX transcription is affected by catabolite repression and controlled by the activator protein CRP. PecS, which was initially isolated as a repressor of virulence factors, acts as an activator of the peh transcription. We showed that the three regulators KdgR, PecS and CRP act by direct interaction with the promoter regions of the peh genes. Analysis of simultaneous binding of KdgR, PecS, CRP and RNA polymerase indicated that the activator effect of PecS results from a competition between PecS and KdgR for the occupation of overlapping binding sites. Thus, to activate peh transcription, PecS behaves as an anti-repressor against KdgR.
Collapse
Affiliation(s)
- W Nasser
- Unité Microbiologie et Génétique - composante INSA, UMR INSA-UCB-CNRS 5577, Bat 406, INSA, 20, Avenue Albert Einstein, F-69621 Villeurbanne Cedex, France
| | | | | |
Collapse
|
46
|
Shevchik VE, Condemine G, Robert-Baudouy J, Hugouvieux-Cotte-Pattat N. The exopolygalacturonate lyase PelW and the oligogalacturonate lyase Ogl, two cytoplasmic enzymes of pectin catabolism in Erwinia chrysanthemi 3937. J Bacteriol 1999; 181:3912-9. [PMID: 10383957 PMCID: PMC93879 DOI: 10.1128/jb.181.13.3912-3919.1999] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erwinia chrysanthemi 3937 secretes into the external medium several pectinolytic enzymes, among which are eight isoenzymes of the endo-cleaving pectate lyases: PelA, PelB, PelC, PelD, and PelE (family 1); PelI (family 4); PelL (family 3); and PelZ (family 5). In addition, one exo-cleaving pectate lyase, PelX (family 3), has been found in the periplasm of E. chrysanthemi. The E. chrysanthemi 3937 gene kdgC has been shown to exhibit a high degree of similarity to the genes pelY of Yersinia pseudotuberculosis and pelB of Erwinia carotovora, which encode family 2 pectate lyases. However, no pectinolytic activity has been assigned to the KdgC protein. After verification of the corresponding nucleotide sequence, we cloned a longer DNA fragment and showed that this gene encodes a 553-amino-acid protein exhibiting an exo-cleaving pectate lyase activity. Thus, the kdgC gene was renamed pelW. PelW catalyzes the formation of unsaturated digalacturonates from polygalacturonate or short oligogalacturonates. PelW is located in the bacterial cytoplasm. In this compartment, PelW action could complete the degradation of pectic oligomers that was initiated by the extracellular or periplasmic pectinases and precede the action of the cytoplasmic oligogalacturonate lyase, Ogl. Both cytoplasmic pectinases, PelW and Ogl, seem to act in sequence during oligogalacturonate depolymerization, since oligomers longer than dimers are very poor substrates for Ogl but are good substrates for PelW. The estimated number of binding subsites for PelW is three, extending from subsite -2 to +1, while it is probably two for Ogl, extending from subsite -1 to +1. The activities of the two cytoplasmic lyases, PelW and Ogl, are dependent on the presence of divalent cations, since both enzymes are inhibited by EDTA. In contrast to the extracellular pectate lyases, Ca2+ is unable to restore the activity of PelW or Ogl, while several other cations, including Co2+, Mn2+, and Ni2+, can activate both cytoplasmic lyases.
Collapse
Affiliation(s)
- V E Shevchik
- Laboratoire de Génétique Moléculaire des Microorganismes et des Interactions Cellulaires, UMR-CNRS 5577, INSA, F-69621 Villeurbanne Cedex, France.
| | | | | | | |
Collapse
|
47
|
Roy C, Kester H, Visser J, Shevchik V, Hugouvieux-Cotte-Pattat N, Robert-Baudouy J, Benen J. Modes of action of five different endopectate lyases from Erwinia chrysanthemi 3937. J Bacteriol 1999; 181:3705-9. [PMID: 10368144 PMCID: PMC93847 DOI: 10.1128/jb.181.12.3705-3709.1999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Five endopectate lyases from the phytopathogenic bacterium Erwinia chrysanthemi, PelA, PelB, PelD, PelI, and PelL, were analyzed with respect to their modes of action on polymeric and oligomeric substrates (degree of polymerization, 2 to 8). On polygalacturonate, PelB showed higher reaction rates than PelD, PelI, and PelA, whereas the reaction rates for PelL were extremely low. The product progression during polygalacturonate cleavage showed a typical depolymerization profile for each enzyme and demonstrated their endolytic character. PelA, PelI, and PelL released oligogalacturonates of different sizes, whereas PelD and PelB released mostly unsaturated dimer and unsaturated trimer, respectively. Upon prolonged incubation, all enzymes degraded the primary products further, to unsaturated dimer and trimer, except for PelL, which degraded the primary products to unsaturated tetramer and pentamer in addition to unsaturated dimer and trimer. The bond cleavage frequencies on oligogalacturonates revealed differences in the modes of action of these enzymes that were commensurate with the product progression profiles. The preferential products formed from the oligogalacturonates were unsaturated dimer for PelD, unsaturated trimer for PelB, and unsaturated tetramer for PelI and PelL. For PelA, preferential products were dependent on the sizes of the oligogalacturonates. Whereas PelB and PelD displayed their highest activities on hexagalacturonate and tetragalacturonate, respectively, PelA, PelI, and PelL were most active on the octamer, the largest substrate used. The bond cleavage frequencies and reaction rates were used to estimate the number of subsites of each enzyme.
Collapse
Affiliation(s)
- C Roy
- Molecular Genetics of Industrial Micro-organisms, Wageningen Agricultural University, 6703 HA Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|