1
|
Jamdar SN, Yadav P, Kulkarni BS, Sudesh, Kumar A, Makde RD. Crystal structure of a newly identified M61 family aminopeptidase with broad substrate specificity that is solely responsible for recycling acidic amino acids. FEBS J 2024; 291:3211-3232. [PMID: 38646733 DOI: 10.1111/febs.17133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/10/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
Aminopeptidases with varied substrate specificities are involved in different crucial physiological processes of cellular homeostasis. They also have wide applications in food and pharma industries. Within the bacterial cell, broad specificity aminopeptidases primarily participate in the recycling of amino acids by degrading oligopeptides generated via primary proteolysis mediated by cellular ATP-dependent proteases. However, in bacteria, a truly broad specificity enzyme, which can cleave off acidic, basic, Gly and hydrophobic amino acid residues, is extremely rare. Here, we report structure-function of a putative glycyl aminopeptidase (M61xc) from Xanthomonas campestris pv campestris (Xcc) belonging to the M61 peptidase family. The enzyme exhibits broad specificity and cleaves Ala, Leu, Asp, Glu, Met, Ser, Phe, Tyr, Gly, Arg, and Lys at the N terminus, optimally of peptides with a length of 3-7 amino acids. Further, we report the high-resolution crystal structure of M61xc in the apo form (2.1 Å) and bestatin-bound form (1.95 Å), detailing its catalytic and substrate preference mechanisms. Comparative analysis of enzyme activity in crude cell extracts from both wild-type and m61xc-knockout mutant strains of Xcc has elucidated the unique intracellular role of M61xc. This study suggests that M61xc is the exclusive enzyme in these bacteria that is responsible for liberating Asp/Glu residues from the N-termini of peptides. Also, in view of its broad specificity and peptide degradation ability, it could be considered equivalent to M1 or other oligomeric peptidases from families like M17, M18, M42 or S9, who have an important auxiliary role in post-proteasomal protein degradation in prokaryotes.
Collapse
Affiliation(s)
- Sahayog N Jamdar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Pooja Yadav
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| | | | - Sudesh
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashwani Kumar
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Ravindra D Makde
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
2
|
Song P, Zhang X, Wang S, Xu W, Wang F, Fu R, Wei F. Microbial proteases and their applications. Front Microbiol 2023; 14:1236368. [PMID: 37779686 PMCID: PMC10537240 DOI: 10.3389/fmicb.2023.1236368] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Proteases (proteinases or peptidases) are a class of hydrolases that cleave peptide chains in proteins. Endopeptidases are a type of protease that hydrolyze the internal peptide bonds of proteins, forming shorter peptides; exopeptidases hydrolyze the terminal peptide bonds from the C-terminal or N-terminal, forming free amino acids. Microbial proteases are a popular instrument in many industrial applications. In this review, the classification, detection, identification, and sources of microbial proteases are systematically introduced, as well as their applications in food, detergents, waste treatment, and biotechnology processes in the industry fields. In addition, recent studies on techniques used to express heterologous microbial proteases are summarized to describe the process of studying proteases. Finally, future developmental trends for microbial proteases are discussed.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shuhua Wang
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Fei Wang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Feng Wei
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
Panpetch P, Sirikantaramas S. Fruit ripening-associated leucylaminopeptidase with cysteinylglycine dipeptidase activity from durian suggests its involvement in glutathione recycling. BMC PLANT BIOLOGY 2021; 21:69. [PMID: 33526024 PMCID: PMC7852106 DOI: 10.1186/s12870-021-02845-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Durian (Durio zibethinus L.) is a highly popular fruit in Thailand and several other Southeast Asian countries. It is abundant in essential nutrients and sulphur-containing compounds such as glutathione (GSH) and γ-glutamylcysteine (γ-EC). Cysteinylglycine (Cys-Gly) is produced by GSH catabolism and occurs in durian fruit pulp. Cysteine (Cys) is a precursor of sulphur-containing volatiles generated during fruit ripening. The aforementioned substances contribute to the strong odour and flavour of the ripe fruit. However, the genes encoding plant Cys-Gly dipeptidases are unknown. The aim of this study was to measure leucylaminopeptidase (LAP) activity in durian fruit pulp. RESULTS We identified DzLAP1 and DzLAP2, which the former was highly expressed in the fruit pulp. DzLAP1 was expressed at various ripening stages and in response to ethephon/1-MCP treatment. Hence, DzLAP1 is active at the early stages of fruit ripening. DzLAP1 is a metalloenzyme ~ 63 kDa in size. It is activated by Mg2+ or Mn2+ and, like other LAPs, its optimal alkaline pH is 9.5. Kinetic studies revealed that DzLAP1 has Km = 1.62 mM for its preferred substrate Cys-Gly. DzLAP1-GFP was localised to the cytosol and targeted the plastids. In planta Cys-Gly hydrolysis was confirmed for Nicotiana benthamiana leaves co-infiltrated with Cys-Gly and expressing DzLAP1. CONCLUSIONS DzLAP1 has Cys-Gly dipeptidase activity in the γ-glutamyl cycle. The present study revealed that the LAPs account for the high sulphur-containing compound levels identified in fully ripened durian fruit pulp.
Collapse
Affiliation(s)
- Pawinee Panpetch
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Supaart Sirikantaramas
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
- Omics Sciences and Bioinformatics Centre, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Park SY, Scranton MA, Stajich JE, Yee A, Walling LL. Chlorophyte aspartyl aminopeptidases: Ancient origins, expanded families, new locations, and secondary functions. PLoS One 2017; 12:e0185492. [PMID: 29023459 PMCID: PMC5638241 DOI: 10.1371/journal.pone.0185492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/13/2017] [Indexed: 11/19/2022] Open
Abstract
M18 aspartyl aminopeptidases (DAPs) are well characterized in microbes and animals with likely functions in peptide processing and vesicle trafficking. In contrast, there is a dearth of knowledge on plant aminopeptidases with a preference for proteins and peptides with N-terminal acidic residues. During evolution of the Plantae, there was an expansion and diversification of the M18 DAPs. After divergence of the ancestral green algae from red and glaucophyte algae, a duplication yielded the DAP1 and DAP2 lineages. Subsequently DAP1 genes were lost in chlorophyte algae. A duplication of DAP2-related genes occurred early in green plant evolution. DAP2 genes were retained in land plants and picoeukaryotic algae and lost in green algae. In contrast, DAP2-like genes persisted in picoeukaryotic and green algae, while this lineage was lost in land plants. Consistent with this evolutionary path, Arabidopsis thaliana has two DAP gene lineages (AtDAP1 and AtDAP2). Similar to animal and yeast DAPs, AtDAP1 is localized to the cytosol or vacuole; while AtDAP2 harbors an N-terminal transit peptide and is chloroplast localized. His6-DAP1 and His6-DAP2 expressed in Escherichia coli were enzymatically active and dodecameric with masses exceeding 600 kDa. His6-DAP1 and His6-DAP2 preferentially hydrolyzed Asp-p-nitroanilide and Glu-p-nitroanilide. AtDAPs are highly conserved metallopeptidases activated by MnCl2 and inhibited by ZnCl2 and divalent ion chelators. The protease inhibitor PMSF inhibited and DTT stimulated both His6-DAP1 and His6-DAP2 activities suggesting a role for thiols in the AtDAP catalytic mechanism. The enzymes had distinct pH and temperature optima, as well as distinct kinetic parameters. Both enzymes had high catalytic efficiencies (kcat/Km) exceeding 1.0 x 107 M-1 sec-1. Using established molecular chaperone assays, AtDAP1 and AtDAP2 prevented thermal denaturation. AtDAP1 also prevented protein aggregation and promoted protein refolding. Collectively, these data indicate that plant DAPs have a complex evolutionary history and have evolved new biochemical features that may enable their role in vivo.
Collapse
Affiliation(s)
- Sang-Youl Park
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Melissa A. Scranton
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Jason E. Stajich
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Ashley Yee
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Linda L. Walling
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Ortiz-Román L, Riquelme-Neira R, RobertoVidal, Oñate A. Roles of genomic island 3 (GI-3) BAB1_0267 and BAB1_0270 open reading frames (ORFs) in the virulence of Brucella abortus 2308. Vet Microbiol 2014; 172:279-84. [DOI: 10.1016/j.vetmic.2014.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/29/2014] [Accepted: 05/04/2014] [Indexed: 12/25/2022]
|
6
|
Arthur IN, Hennessy JE, Padmakshan D, Stigers DJ, Lesturgez S, Fraser SA, Liutkus M, Otting G, Oakeshott JG, Easton CJ. In Situ Deprotection and Incorporation of Unnatural Amino Acids during Cell-Free Protein Synthesis. Chemistry 2013; 19:6824-30. [DOI: 10.1002/chem.201203923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/15/2013] [Indexed: 01/15/2023]
|
7
|
Preparation of optically active alkoxy-serines from amino-amide racemate catalyzed by Escherichia coli cells with peptidase B activity. Chem Res Chin Univ 2012. [DOI: 10.1007/s40242-012-2249-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Poon JCH, Josephy PD. Hydrolysis of S-aryl-cysteinylglycine conjugates catalyzed by porcine kidney cortex membrane dipeptidase. Xenobiotica 2012; 42:1178-86. [DOI: 10.3109/00498254.2012.700427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
The antibiotic dehydrophos is converted to a toxic pyruvate analog by peptide bond cleavage in Salmonella enterica. Antimicrob Agents Chemother 2011; 55:3357-62. [PMID: 21537024 DOI: 10.1128/aac.01483-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metabolic processing of dehydrophos, a broad-spectrum peptide antibiotic containing an unusual vinyl-phosphonate moiety, was examined by using a panel of Salmonella enterica mutants deficient in peptide uptake and catabolism. Dehydrophos bioactivity is lost in opp tpp double mutants, demonstrating a requirement for uptake via nonspecific oligopeptide permeases. Dehydrophos bioactivity is also abolished in a quadruple Salmonella mutant lacking the genes encoding peptidases A, B, D, and N, showing that hydrolysis of the peptide bond is required for activity. (31)P nuclear magnetic resonance spectroscopy was used to assess the fate of dehydrophos following in vitro digestion of the antibiotic with purified PepA. The results suggest that the initial product of peptidase processing is 1-aminovinyl-phosphonate O-methyl ester. This phosphonate analogue of dehydroalanine undergoes rearrangement to the more stable imine, followed by spontaneous hydrolysis to yield O-methyl-acetylphosphonate, a structural analogue of pyruvate. This compound is a known inhibitor of pyruvate dehydrogenase and pyruvate oxidase and is probably the active species responsible for dehydrophos bioactivity.
Collapse
|
10
|
Bhosale M, Pande S, Kumar A, Kairamkonda S, Nandi D. Characterization of two M17 family members in Escherichia coli, Peptidase A and Peptidase B. Biochem Biophys Res Commun 2010; 395:76-81. [PMID: 20350528 DOI: 10.1016/j.bbrc.2010.03.142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 03/23/2010] [Indexed: 11/25/2022]
Abstract
Escherichia coli encodes two aminopeptidases belonging to the M17 family: Peptidase A (PepA) and Peptidase B (PepB). To gain insights into their substrate specificities, PepA or PepB were overexpressed in Delta pepN, which shows greatly reduced activity against the majority of amino acid substrates. Overexpression of PepA or PepB increases catalytic activity of several aminopeptidase substrates and partially rescues growth of Delta pepN during nutritional downshift and high temperature stress. Purified PepA and PepB display broad substrate specificity and Leu, Lys, Met and Gly are preferred substrates. However, distinct differences are observed between these two paralogs: PepA is more stable at high temperature whereas PepB displays broader substrate specificity as it cleaves Asp and insulin B chain peptide. Importantly, this strategy, i.e. overexpression of peptidases in Delta pepN and screening a panel of substrates for cleavage, can be used to rapidly identify peptidases with novel substrate specificities encoded in genomes of different organisms.
Collapse
Affiliation(s)
- Manoj Bhosale
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
11
|
Patil V, Kumar A, Kuruppath S, Nandi D. Peptidase N encoded by Salmonella enterica serovar Typhimurium modulates systemic infection in mice. ACTA ACUST UNITED AC 2007; 51:431-42. [PMID: 17877733 DOI: 10.1111/j.1574-695x.2007.00323.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cytosolic protein degradation pathway, involving ATP-dependent proteases and ATP-independent peptidases, is important for modulating several cellular responses. The involvement of pathogen-encoded ATP-dependent proteases is well established during infection. However, the roles of ATP-independent peptidases in this process are not well studied. The functional role of Peptidase N (PepN), an ATP-independent enzyme belonging to the M1 family, during systemic infection of mice by Salmonella enterica serovar Typhimurium (Salmonella typhimurium) was investigated. In a systemic model of infection, the number of CFU of S. typhimurium containing a targeted deletion in peptidase N (DeltapepN), compared with wild type, was significantly higher in the lymph node and spleen. In addition, S. typhimurium replicated in the thymus and greatly reduced the number of immature CD4(+)CD8(+) thymocytes in a dose- and time-dependent manner. Strains lacking or overexpressing pepN were used to show that the reduction in the number of thymocytes, but not lymph node cells, depends on a critical number of CFU. These findings establish a role for PepN in reducing the in vivo CFU of S. typhimurium during systemic infection. The implications of these results, in the context of the roles of proteases and peptidases, during host-pathogen interactions are discussed.
Collapse
Affiliation(s)
- Veerupaxagouda Patil
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | | | | | | |
Collapse
|
12
|
Lin WY, Chang JY, Tsai PC, Pan TM. Metabolic protein patterns and monascorubrin production revealed through proteomic approach for Monascus pilosus treated with cycloheximide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:5559-68. [PMID: 17559225 DOI: 10.1021/jf070162f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Monascus species have the unique ability to economically produce many secondary metabolites. However, most metabolic regulation processes in the production of secondary metabolites in Monascus remain unclear. We found that the translational inhibitor cycloheximide induced different expression patterns between the monascorubrin pigment production and the growth in Monascus pilosus. Here, we used the proteomic approach of two-dimensional gel electrophoresis, matrix-assisted laser desorption ionization time-of-flight/time-of-flight liquid chromatography-mass spectrometry (MALDI-TOF/TOF LC-MS), and tandem mass spectrometry (MS/MS) to identify the intracellular and mitochondrial proteins of M. pilosus between the cycloheximide treatment and the control. These results revealed that the cycloheximide-induced down-regulated proteins were involved in transcriptional regulation, peptide synthesis, and other metabolic processes, such as methylation of secondary metabolites. In contrast, the energy-related proteins, such as the transcriptional regulator rosAr and 1,4-alpha-glucan branching enzyme, were up-regulated as compared to the control.
Collapse
Affiliation(s)
- Wun-Yuan Lin
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan
| | | | | | | |
Collapse
|
13
|
Kumar A, Nandi D. Characterization and role of Peptidase N from Salmonella enterica serovar Typhimurium. Biochem Biophys Res Commun 2006; 353:706-12. [PMID: 17196937 DOI: 10.1016/j.bbrc.2006.12.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 12/12/2006] [Indexed: 11/24/2022]
Abstract
ATP-independent peptidases are important during the distal steps of cytosolic protein degradation. The contribution of a member of this group, Peptidase N (PepN) was studied in Salmonella enterica serovar Typhimurium (Salmonella typhimurium). The DeltapepN strain displays greatly reduced cleavage of 9 out of a total of 13 exopeptidase substrates, demonstrating a significant contribution of PepN to cytosolic aminopeptidase activity. The cleavage profile of purified S. typhimurium PepN is Arg>Ala>Thr, demonstrating broad specificity. Comparative biochemical studies with purified PepN from Escherichia coli and S. typhimurium revealed the latter to be distinct: S. typhimurium PepN cleaves Thr-AMC more efficiently and is less sensitive to inhibition by N-ethylmaleimide. Studies with DeltapepN and PepN overexpression demonstrated its importance for growth during nutritional downshift in combination with high temperature stress. In summary, S. typhimurium PepN contributes significantly to cytosolic aminopeptidase activity and its role is manifested under selected stress conditions.
Collapse
Affiliation(s)
- Anujith Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
14
|
Arima J, Uesugi Y, Iwabuchi M, Hatanaka T. Alteration of leucine aminopeptidase from Streptomyces septatus TH-2 to phenylalanine aminopeptidase by site-directed mutagenesis. Appl Environ Microbiol 2005; 71:7229-35. [PMID: 16269763 PMCID: PMC1287679 DOI: 10.1128/aem.71.11.7229-7235.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To tailor leucine aminopeptidase from Streptomyces septatus TH-2 (SSAP) to become a convenient biocatalyst, we are interested in Phe221 of SSAP, which is thought to interact with the side chain of the N-terminal residue of the substrate. By using saturation mutagenesis, the feasibility of altering the performance of SSAP was evaluated. The hydrolytic activities of 19 mutants were investigated using aminoacyl p-nitroanilide (pNA) derivatives as substrates. Replacement of Phe221 resulted in changes in the activities of all the mutants. Three of these mutants, F221G, F221A, and F221S, specifically hydrolyzed L-Phe-pNA, and F221I SSAP exhibited hydrolytic activity with L-Leu-pNA exceeding that of the wild type. Although the hydrolytic activities with peptide substrates decreased, the hydrolytic activities with amide and methyl ester substrates were proportional to the changes in the hydrolytic activities with pNA derivatives. Furthermore, based on a comparative kinetic study, the mechanism underlying the alteration in the preference of SSAP from leucine to phenylalanine is discussed.
Collapse
Affiliation(s)
- Jiro Arima
- Research Institute for Biological Sciences, Okayama, 7549-1 Kibichuo-cho, Kaga-gun, Okayama 716-1241, Japan
| | | | | | | |
Collapse
|
15
|
Bertin PB, Lozzi SP, Howell JK, Restrepo-Cadavid G, Neves D, Teixeira ARL, de Sousa MV, Norris SJ, Santana JM. The thermophilic, homohexameric aminopeptidase of Borrelia burgdorferi is a member of the M29 family of metallopeptidases. Infect Immun 2005; 73:2253-61. [PMID: 15784569 PMCID: PMC1087410 DOI: 10.1128/iai.73.4.2253-2261.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteases are implicated in several aspects of the physiology of microorganisms, as well as in host-pathogen interactions. Aminopeptidases are also emerging as novel drug targets in infectious agents. In this study, we have characterized an aminopeptidase from the spirochete Borrelia burgdorferi, the causative agent of Lyme disease. The aminopeptidolytic activity was identified in cell extracts from B. burgdorferi by using the substrate leucine-7-amido-4-methylcoumarin. A protein displaying this activity was purified from B. burgdorferi by a two-step chromatographic procedure, yielding a approximately 300-kDa homo-oligomeric enzyme formed by monomers of approximately 50 kDa. Gel enzymography experiments showed that enzymatic activity depends on the oligomeric structure of the protease but does not involve interchain disulfide bonds. The enzyme was identified by peptide mass fingerprinting as the putative aminopeptidase II of B. burgdorferi, encoded by the gene BB0069. It shares significant identity to members of the M29/T family of metallopeptidase, is sensitive to bestatin, has a neutral pH optimum, and displays maximal activity at 60 degrees C. Its activity is 1.75-fold higher at the temperature of the mammalian host than at that of the insect host of the pathogen. The activity of this thermophilic aminopeptidase of B. burgdorferi (TAP(Bb)) depends on Zn2+, and temperatures over 70 degrees C promoted its inactivation through a transition from the hexameric state to the monomeric state. Since B. burgdorferi is deficient in pathways for amino acid synthesis, TAP(Bb) could play a role in supplying required amino acids. Alternatively, the enzyme could be involved in peptide and/or protein processing.
Collapse
Affiliation(s)
- Patrícia B Bertin
- Chagas' Disease Multidisciplinary Research Laboratory, Institute of Biology, The University of Brasília, 70.910-900 Brasília DF, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Supuran CT, Scozzafava A, Mastrolorenzo A. Bacterial proteases: current therapeutic use and future prospects for the development of new antibiotics. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.2.221] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Ma X, Zhou X, Yoshimoto T. Purification and properties of a novel glycine amino peptidase from Actinomucor elegans and its potential application. J Appl Microbiol 2004; 97:985-91. [PMID: 15479413 DOI: 10.1111/j.1365-2672.2004.02373.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To study the properties and show the potential application of a glycine aminopeptidase from Actinomucor elegans. METHODS AND RESULTS The enzyme was estimated to have molecular mass of 320 kDa by gel filtration and the subunit size of 56.5 kDa by SDS-PAGE. It hydrolysed glycine from substrate more efficiently than other amino acids. The optimal temperature for this enzyme was 40 degrees C and at pH 8.0 it showed its highest activity. The Km and Kcat of the enzyme for glycine-beta-naphthylamine was 0.24 mm and 100.8 s(-1), respectively. Zinc, copper, cadmium and o-phenanthrolin suppressed almost all enzyme activities at the concentration of 1.0 mm. In the process of hydrolysing proteins, it could improve the protease activity considerably. CONCLUSIONS It was a hexamer metalloenzyme which was specific for the substrates with glycinse residue at the N-terminal and some metal cations were needed to maintain its activity. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates the properties of a novel aminopeptidase and shows its potential application in the process of the food industry.
Collapse
Affiliation(s)
- X Ma
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China.
| | | | | |
Collapse
|
18
|
Contreras-Rodriguez A, Ramirez-Zavala B, Contreras A, Schurig GG, Sriranganathan N, Lopez-Merino A. Purification and characterization of an immunogenic aminopeptidase of Brucella melitensis. Infect Immun 2003; 71:5238-44. [PMID: 12933870 PMCID: PMC187343 DOI: 10.1128/iai.71.9.5238-5244.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
An immunogenic aminopeptidase was purified from Brucella melitensis strain VTRM1. The purification procedure consisted of ammonium sulfate fractionation and three chromatographic steps. This procedure resulted in a yield of 29% and a 144-fold increase in specific activity. The aminopeptidase appeared to be a monomeric enzyme with a molecular mass of 96 kDa and an isoelectric point of 4.8. Its activity was optimal at pH 7.0 at 40 degrees C. The enzyme was strongly inhibited by EDTA, 1,10-phenathroline, and divalent cations (Zn(2+) and Hg(2+)), suggesting that this protein was a metalloaminopeptidase. The enzyme showed preference for alanine at the N termini of aminoacyl derivatives. The K(m) values for L-alanine-p-nitroanilide (Ala-pNA) and Lys-pNA were 0.35 and 0.18 mM, respectively. The N-terminal sequence of aminopeptidase was used for a homologous search in the genomes of B. melitensis 16M and Brucella suis 1330. The analysis revealed an exact match of the probe sequence (36 bp) with an open reading frame of 2,652 bp encoding a protein predicted to be alanyl aminopeptidase (aminopeptidase N). Collectively, these data suggest designation of the B. melitensis enzyme as an aminopeptidase N. The aminopeptidase was recognized by sera from patients with acute and chronic brucellosis, suggesting that the enzyme may have important diagnostic implications.
Collapse
|
19
|
Abstract
Extracts of a multiply peptidase-deficient (pepNABDPQTE iadA iaaA) Salmonella enterica serovar Typhimurium strain contain an aspartyl dipeptidase activity that is dependent on Mn(2+). Purification of this activity followed by N-terminal sequencing of the protein suggested that the Mn(2+)-dependent peptidase is DapE (N-succinyl-L,L-diaminopimelate desuccinylase). A dapE chromosomal disruption was constructed and transduced into a multiply peptidase-deficient (MPD) strain. Crude extracts of this strain showed no aspartyl peptidase activity, and the strain failed to utilize Asp-Leu as a leucine source. The dapE gene was cloned into expression vectors in order to overproduce either the native protein (DapE) or a hexahistidine fusion protein (DapE-His(6)). Extracts of a strain carrying the plasmid overexpresssing native DapE in the MPD dapE background showed a 3,200-fold elevation of Mn(2+)-dependent aspartyl peptidase activity relative to the MPD dapE(+) strain. In addition, purified DapE-His(6) exhibited Mn(2+)-dependent peptidase activity toward aspartyl dipeptides. Growth of the MPD strain carrying a single genomic copy of dapE on Asp-Leu as a Leu source was slow but detectable. Overproduction of DapE in the MPD dapE strain allowed growth on Asp-Leu at a much faster rate. DapE was found to be specific for N-terminal aspartyl dipeptides: no N-terminal Glu, Met, or Leu peptides were hydrolyzed, nor were any peptides containing more than two amino acids. DapE is known to bind two divalent cations: one with high affinity and the other with lower affinity. Our data indicate that the form of DapE active as a peptidase contains Zn(2+) in the high-affinity site and Mn(2+) in the low-affinity site.
Collapse
Affiliation(s)
- Daniel H Broder
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
20
|
Abstract
Serine-, cysteine-, and metalloproteases are widely spread in many pathogenic bacteria, where they play critical functions related to colonization and evasion of host immune defenses, acquisition of nutrients for growth and proliferation, facilitation of dissemination, or tissue damage during infection. Since all the antibiotics used clinically at the moment share a common mechanism of action, acting as inhibitors of the bacterial cell wall biosynthesis or affecting protein synthesis on ribosomes, resistance to these pharmacological agents represents a serious medical problem, which might be resolved by using new generation of antibiotics, possessing a different mechanism of action. Bacterial protease inhibitors constitute an interesting such possibility, due to the fact that many specific as well as ubiquitous proteases have recently been characterized in some detail in both gram-positive as well as gram-negative pathogens. Few potent, specific inhibitors for such bacterial proteases have been reported at this moment except for some signal peptidase, clostripain, Clostridium histolyticum collagenase, botulinum neurotoxin, and tetanus neurotoxin inhibitors. No inhibitors of the critically important and ubiquitous AAA proteases, degP or sortase have been reported, although such compounds would presumably constitute a new class of highly effective antibiotics. This review presents the state of the art in the design of such enzyme inhibitors with potential therapeutic applications, as well as recent advances in the use of some of these proteases in therapy.
Collapse
Affiliation(s)
- Claudiu T Supuran
- University of Florence, Dipartimento di Chimica, Laboratorio di Chimica Inorganica e Bioinorganica, Firenze, Italy.
| | | | | |
Collapse
|
21
|
Larsen RA, Knox TM, Miller CG. Aspartic peptide hydrolases in Salmonella enterica serovar typhimurium. J Bacteriol 2001; 183:3089-97. [PMID: 11325937 PMCID: PMC95209 DOI: 10.1128/jb.183.10.3089-3097.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two well-characterized enzymes in Salmonella enterica serovar Typhimurium and Escherichia coli are able to hydrolyze N-terminal aspartyl (Asp) dipeptides: peptidase B, a broad-specificity aminopeptidase, and peptidase E, an Asp-specific dipeptidase. A serovar Typhimurium strain lacking both of these enzymes, however, can still utilize most N-terminal Asp dipeptides as sources of amino acids, and extracts of such a strain contain additional enzymatic activities able to hydrolyze Asp dipeptides. Here we report two such activities from extracts of pepB pepE mutant strains of serovar Typhimurium identified by their ability to hydrolyze Asp-Leu. Although each of these activities hydrolyzes Asp-Leu at a measurable rate, the preferred substrates for both are N-terminal isoAsp peptides. One of the activities is a previously characterized isoAsp dipeptidase from E. coli, the product of the iadA gene. The other is the product of the serovar Typhimurium homolog of E. coli ybiK, a gene of previously unknown function. This gene product is a member of the N-terminal nucleophile structural family of amidohydrolases. Like most other members of this family, the mature enzyme is generated from a precursor protein by proteolytic cleavage and the active enzyme is a heterotetramer. Based on its ability to hydrolyze an N-terminal isoAsp tripeptide as well as isoAsp dipeptides, the enzyme appears to be an isoAsp aminopeptidase, and we propose that the gene encoding it be designated iaaA (isoAsp aminopeptidase). A strain lacking both IadA and IaaA in addition to peptidase B and peptidase E has been constructed. This strain utilizes Asp-Leu as a leucine source, and extracts of this strain contain at least one additional, as-yet-uncharacterized, peptidase able to cleave Asp dipeptides.
Collapse
Affiliation(s)
- R A Larsen
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|