1
|
Kalogiannis G, Eyre-Walker A. The Effect of the Presence and Absence of DNA Repair Genes on the Rate and Pattern of Mutation in Bacteria. Genome Biol Evol 2024; 16:evae216. [PMID: 39376054 PMCID: PMC11493085 DOI: 10.1093/gbe/evae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
Bacteria lose and gain repair genes as they evolve. Here, we investigate the consequences of gain and loss of 11 DNA repair genes across a broad range of bacteria. Using synonymous polymorphisms from bacteria and a set of 50 phylogenetically independent contrasts, we find no evidence that the presence or absence of these 11 genes affects either the overall level of diversity or the pattern of mutation. Using phylogenetic generalized linear squares yields a similar conclusion. It seems likely that the lack of an effect is due to variation in the genetic background and the environment which obscures any effects that the presence or absence of individual genes might have.
Collapse
Affiliation(s)
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
2
|
Garushyants SK, Sane M, Selifanova MV, Agashe D, Bazykin GA, Gelfand MS. Mutational Signatures in Wild Type Escherichia coli Strains Reveal Predominance of DNA Polymerase Errors. Genome Biol Evol 2024; 16:evae035. [PMID: 38401265 PMCID: PMC10995721 DOI: 10.1093/gbe/evae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
While mutational processes operating in the Escherichia coli genome have been revealed by multiple laboratory experiments, the contribution of these processes to accumulation of bacterial polymorphism and evolution in natural environments is unknown. To address this question, we reconstruct signatures of distinct mutational processes from experimental data on E. coli hypermutators, and ask how these processes contribute to differences between naturally occurring E. coli strains. We show that both mutations accumulated in the course of evolution of wild-type strains in nature and in the lab-grown nonmutator laboratory strains are explained predominantly by the low fidelity of DNA polymerases II and III. By contrast, contributions specific to disruption of DNA repair systems cannot be detected, suggesting that temporary accelerations of mutagenesis associated with such disruptions are unimportant for within-species evolution. These observations demonstrate that accumulation of diversity in bacterial strains in nature is predominantly associated with errors of DNA polymerases.
Collapse
Affiliation(s)
- Sofya K Garushyants
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
| | - Mrudula Sane
- National Centre for Biological Sciences, Bengaluru, India
| | - Maria V Selifanova
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Deepa Agashe
- National Centre for Biological Sciences, Bengaluru, India
| | - Georgii A Bazykin
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
| | - Mikhail S Gelfand
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| |
Collapse
|
3
|
A Single Nucleotide Change in the polC DNA Polymerase III in Clostridium thermocellum Is Sufficient To Create a Hypermutator Phenotype. Appl Environ Microbiol 2022; 88:e0153121. [PMID: 35015978 DOI: 10.1128/aem.01531-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium thermocellum is a thermophilic, anaerobic bacterium that natively ferments cellulose to ethanol and is a candidate for cellulosic biofuel production. Recently, we identified a hypermutator strain of C. thermocellum with a C669Y mutation in the polC gene, which encodes a DNA polymerase III enzyme. Here, we reintroduced this mutation using recently developed CRISPR tools to demonstrate that this mutation is sufficient to recreate the hypermutator phenotype. The resulting strain shows an approximately 30-fold increase in the mutation rate. This mutation is hypothesized to function by interfering with metal ion coordination in the PHP (polymerase and histidinol phosphatase) domain, which is responsible for proofreading. The ability to selectively increase the mutation rate in C. thermocellum is a useful tool for future directed evolution experiments. IMPORTANCE Cellulosic biofuels are a promising approach to decarbonize the heavy-duty-transportation sector. A longstanding barrier to cost-effective cellulosic biofuel production is the recalcitrance of cellulose to solubilization. Native cellulose-consuming organisms, such as Clostridium thermocellum, are promising candidates for cellulosic biofuel production; however, they often need to be genetically modified to improve product formation. One approach is adaptive laboratory evolution. Our findings demonstrate a way to increase the mutation rate in this industrially relevant organism, which can reduce the time needed for adaptive evolution experiments.
Collapse
|
4
|
Schlegel S, Genevaux P, de Gier JW. Isolating Escherichia coli strains for recombinant protein production. Cell Mol Life Sci 2016; 74:891-908. [PMID: 27730255 PMCID: PMC5306230 DOI: 10.1007/s00018-016-2371-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/22/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Escherichia coli has been widely used for the production of recombinant proteins. To improve protein production yields in E. coli, directed engineering approaches have been commonly used. However, there are only few reported examples of the isolation of E. coli protein production strains using evolutionary approaches. Here, we first give an introduction to bacterial evolution and mutagenesis to set the stage for discussing how so far selection- and screening-based approaches have been used to isolate E. coli protein production strains. Finally, we discuss how evolutionary approaches may be used in the future to isolate E. coli strains with improved protein production characteristics.
Collapse
Affiliation(s)
- Susan Schlegel
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrheniusväg 16C, 106 91, Stockholm, Sweden.
| |
Collapse
|
5
|
Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing. Proc Natl Acad Sci U S A 2015; 112:E5990-9. [PMID: 26460006 DOI: 10.1073/pnas.1512136112] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A complete understanding of evolutionary processes requires that factors determining spontaneous mutation rates and spectra be identified and characterized. Using mutation accumulation followed by whole-genome sequencing, we found that the mutation rates of three widely diverged commensal Escherichia coli strains differ only by about 50%, suggesting that a rate of 1-2 × 10(-3) mutations per generation per genome is common for this bacterium. Four major forces are postulated to contribute to spontaneous mutations: intrinsic DNA polymerase errors, endogenously induced DNA damage, DNA damage caused by exogenous agents, and the activities of error-prone polymerases. To determine the relative importance of these factors, we studied 11 strains, each defective for a major DNA repair pathway. The striking result was that only loss of the ability to prevent or repair oxidative DNA damage significantly impacted mutation rates or spectra. These results suggest that, with the exception of oxidative damage, endogenously induced DNA damage does not perturb the overall accuracy of DNA replication in normally growing cells and that repair pathways may exist primarily to defend against exogenously induced DNA damage. The thousands of mutations caused by oxidative damage recovered across the entire genome revealed strong local-sequence biases of these mutations. Specifically, we found that the identity of the 3' base can affect the mutability of a purine by oxidative damage by as much as eightfold.
Collapse
|
6
|
Abstract
Early research on the origins and mechanisms of mutation led to the establishment of the dogma that, in the absence of external forces, spontaneous mutation rates are constant. However, recent results from a variety of experimental systems suggest that mutation rates can increase in response to selective pressures. This chapter summarizes data demonstrating that,under stressful conditions, Escherichia coli and Salmonella can increase the likelihood of beneficial mutations by modulating their potential for genetic change.Several experimental systems used to study stress-induced mutagenesis are discussed, with special emphasison the Foster-Cairns system for "adaptive mutation" in E. coli and Salmonella. Examples from other model systems are given to illustrate that stress-induced mutagenesis is a natural and general phenomenon that is not confined to enteric bacteria. Finally, some of the controversy in the field of stress-induced mutagenesis is summarized and discussed, and a perspective on the current state of the field is provided.
Collapse
|
7
|
Interactions and Localization of Escherichia coli Error-Prone DNA Polymerase IV after DNA Damage. J Bacteriol 2015; 197:2792-809. [PMID: 26100038 DOI: 10.1128/jb.00101-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/11/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Escherichia coli's DNA polymerase IV (Pol IV/DinB), a member of the Y family of error-prone polymerases, is induced during the SOS response to DNA damage and is responsible for translesion bypass and adaptive (stress-induced) mutation. In this study, the localization of Pol IV after DNA damage was followed using fluorescent fusions. After exposure of E. coli to DNA-damaging agents, fluorescently tagged Pol IV localized to the nucleoid as foci. Stepwise photobleaching indicated ∼60% of the foci consisted of three Pol IV molecules, while ∼40% consisted of six Pol IV molecules. Fluorescently tagged Rep, a replication accessory DNA helicase, was recruited to the Pol IV foci after DNA damage, suggesting that the in vitro interaction between Rep and Pol IV reported previously also occurs in vivo. Fluorescently tagged RecA also formed foci after DNA damage, and Pol IV localized to them. To investigate if Pol IV localizes to double-strand breaks (DSBs), an I-SceI endonuclease-mediated DSB was introduced close to a fluorescently labeled LacO array on the chromosome. After DSB induction, Pol IV localized to the DSB site in ∼70% of SOS-induced cells. RecA also formed foci at the DSB sites, and Pol IV localized to the RecA foci. These results suggest that Pol IV interacts with RecA in vivo and is recruited to sites of DSBs to aid in the restoration of DNA replication. IMPORTANCE DNA polymerase IV (Pol IV/DinB) is an error-prone DNA polymerase capable of bypassing DNA lesions and aiding in the restart of stalled replication forks. In this work, we demonstrate in vivo localization of fluorescently tagged Pol IV to the nucleoid after DNA damage and to DNA double-strand breaks. We show colocalization of Pol IV with two proteins: Rep DNA helicase, which participates in replication, and RecA, which catalyzes recombinational repair of stalled replication forks. Time course experiments suggest that Pol IV recruits Rep and that RecA recruits Pol IV. These findings provide in vivo evidence that Pol IV aids in maintaining genomic stability not only by bypassing DNA lesions but also by participating in the restoration of stalled replication forks.
Collapse
|
8
|
A ΔdinB mutation that sensitizes Escherichia coli to the lethal effects of UV- and X-radiation. Mutat Res 2014; 763-764:19-27. [PMID: 24657250 DOI: 10.1016/j.mrfmmm.2014.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 03/09/2014] [Accepted: 03/12/2014] [Indexed: 11/23/2022]
Abstract
The DinB (PolIV) protein of Escherichia coli participates in several cellular functions. We investigated a dinB mutation, Δ(dinB-yafN)883(::kan) [referred to as ΔdinB883], which strongly sensitized E. coli cells to both UV- and X-radiation killing. Earlier reports indicated dinB mutations had no obvious effect on UV radiation sensitivity which we confirmed by showing that normal UV radiation sensitivity is conferred by the ΔdinB749 allele. Compared to a wild-type strain, the ΔdinB883 mutant was most sensitive (160-fold) in early to mid-logarithmic growth phase and much less sensitive (twofold) in late log or stationary phases, thus showing a growth phase-dependence for UV radiation sensitivity. This sensitizing effect of ΔdinB883 is assumed to be completely dependent upon the presence of UmuDC protein; since the ΔdinB883 mutation did not sensitize the ΔumuDC strain to UV radiation killing throughout log phase and early stationary phase growth. The DNA damage checkpoint activity of UmuDC was clearly affected by ΔdinB883 as shown by testing a umuC104 ΔdinB883 double-mutant. The sensitivities of the ΔumuDC strain and the ΔdinB883 ΔumuDC double-mutant strain were significantly greater than for the ΔdinB883 strain, suggesting that the ΔdinB883 allele only partially suppresses UmuDC activity. The ΔdinB883 mutation partially sensitized (fivefold) uvrA and uvrB strains to UV radiation, but did not sensitize a ΔrecA strain. A comparison of the DNA sequences of the ΔdinB883 allele with the sequences of the Δ(dinB-yafN)882(::kan) and ΔdinB749 alleles, which do not sensitize cells to UV radiation, revealed ΔdinB883 is likely a "gain-of-function" mutation. The ΔdinB883 allele encodes the first 54 amino acids of wild-type DinB followed by 29 predicted residues resulting from the continuation of the dinB reading frame into an adjacent insertion fragment. The resulting polypeptide is proposed to interfere directly or indirectly with UmuDC function(s) involved in protecting cells against the lethal effects of radiation.
Collapse
|
9
|
Abstract
Solar ultraviolet (UV) radiation, mainly UV-B (280-315 nm), is one of the most potent genotoxic agents that adversely affects living organisms by altering their genomic stability. DNA through its nucleobases has absorption maxima in the UV region and is therefore the main target of the deleterious radiation. The main biological relevance of UV radiation lies in the formation of several cytotoxic and mutagenic DNA lesions such as cyclobutane pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers (DEWs), as well as DNA strand breaks. However, to counteract these DNA lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, excision repair, and mismatch repair (MMR). Photoreactivation involving the enzyme photolyase is the most frequently used repair mechanism in a number of organisms. Excision repair can be classified as base excision repair (BER) and nucleotide excision repair (NER) involving a number of glycosylases and polymerases, respectively. In addition to this, double-strand break repair, SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms to ensure genomic stability. This review concentrates on the UV-induced DNA damage and the associated repair mechanisms as well as various damage detection methods.
Collapse
Affiliation(s)
- Richa
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | | | | |
Collapse
|
10
|
Sharma A, Kottur J, Narayanan N, Nair DT. A strategically located serine residue is critical for the mutator activity of DNA polymerase IV from Escherichia coli. Nucleic Acids Res 2013; 41:5104-14. [PMID: 23525461 PMCID: PMC3643571 DOI: 10.1093/nar/gkt146] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Y-family DNA polymerase IV or PolIV (Escherichia coli) is the founding member of the DinB family and is known to play an important role in stress-induced mutagenesis. We have determined four crystal structures of this enzyme in its pre-catalytic state in complex with substrate DNA presenting the four possible template nucleotides that are paired with the corresponding incoming nucleotide triphosphates. In all four structures, the Ser42 residue in the active site forms interactions with the base moieties of the incipient Watson–Crick base pair. This residue is located close to the centre of the nascent base pair towards the minor groove. In vitro and in vivo assays show that the fidelity of the PolIV enzyme increases drastically when this Ser residue was mutated to Ala. In addition, the structure of PolIV with the mismatch A:C in the active site shows that the Ser42 residue plays an important role in stabilizing dCTP in a conformation compatible with catalysis. Overall, the structural, biochemical and functional data presented here show that the Ser42 residue is present at a strategic location to stabilize mismatches in the PolIV active site, and thus facilitate the appearance of transition and transversion mutations.
Collapse
Affiliation(s)
- Amit Sharma
- National Centre for Biological Sciences (NCBS-TIFR), UAS-GKVK Campus, Bellary Road, Bangalore 560065, India
| | | | | | | |
Collapse
|
11
|
Multiple strategies for translesion synthesis in bacteria. Cells 2012; 1:799-831. [PMID: 24710531 PMCID: PMC3901139 DOI: 10.3390/cells1040799] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/29/2012] [Accepted: 09/30/2012] [Indexed: 12/16/2022] Open
Abstract
Damage to DNA is common and can arise from numerous environmental and endogenous sources. In response to ubiquitous DNA damage, Y-family DNA polymerases are induced by the SOS response and are capable of bypassing DNA lesions. In Escherichia coli, these Y-family polymerases are DinB and UmuC, whose activities are modulated by their interaction with the polymerase manager protein UmuD. Many, but not all, bacteria utilize DinB and UmuC homologs. Recently, a C-family polymerase named ImuC, which is similar in primary structure to the replicative DNA polymerase DnaE, was found to be able to copy damaged DNA and either carry out or suppress mutagenesis. ImuC is often found with proteins ImuA and ImuB, the latter of which is similar to Y‑family polymerases, but seems to lack the catalytic residues necessary for polymerase activity. This imuAimuBimuC mutagenesis cassette represents a widespread alternative strategy for translesion synthesis and mutagenesis in bacteria. Bacterial Y‑family and ImuC DNA polymerases contribute to replication past DNA damage and the acquisition of antibiotic resistance.
Collapse
|
12
|
Baxter JC, Sutton MD. Evidence for roles of the Escherichia coli Hda protein beyond regulatory inactivation of DnaA. Mol Microbiol 2012; 85:648-68. [PMID: 22716942 DOI: 10.1111/j.1365-2958.2012.08129.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ATP-bound form of the Escherichia coli DnaA protein binds 'DnaA boxes' present in the origin of replication (oriC) and operator sites of several genes, including dnaA, to co-ordinate their transcription with initiation of replication. The Hda protein, together with the β sliding clamp, stimulates the ATPase activity of DnaA via a process termed regulatory inactivation of DnaA (RIDA), to regulate the activity of DnaA in DNA replication. Here, we used the mutant dnaN159 strain, which expresses the β159 clamp protein, to gain insight into how the actions of Hda are co-ordinated with replication. Elevated expression of Hda impeded growth of the dnaN159 strain in a Pol II- and Pol IV-dependent manner, suggesting a role for Hda managing the actions of these Pols. In a wild-type strain, elevated levels of Hda conferred sensitivity to nitrofurazone, and suppressed the frequency of -1 frameshift mutations characteristic of Pol IV, while loss of hda conferred cold sensitivity. Using the dnaN159 strain, we identified 24 novel hda alleles, four of which supported E. coli viability despite their RIDA defect. Taken together, these findings suggest that although one or more Hda functions are essential for cell viability, RIDA may be dispensable.
Collapse
Affiliation(s)
- Jamie C Baxter
- Department of Biochemistry, The School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | |
Collapse
|
13
|
Csörgo B, Fehér T, Tímár E, Blattner FR, Pósfai G. Low-mutation-rate, reduced-genome Escherichia coli: an improved host for faithful maintenance of engineered genetic constructs. Microb Cell Fact 2012; 11:11. [PMID: 22264280 PMCID: PMC3280934 DOI: 10.1186/1475-2859-11-11] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/20/2012] [Indexed: 01/24/2023] Open
Abstract
Background Molecular mechanisms generating genetic variation provide the basis for evolution and long-term survival of a population in a changing environment. In stable, laboratory conditions, the variation-generating mechanisms are dispensable, as there is limited need for the cell to adapt to adverse conditions. In fact, newly emerging, evolved features might be undesirable when working on highly refined, precise molecular and synthetic biological tasks. Results By constructing low-mutation-rate variants, we reduced the evolutionary capacity of MDS42, a reduced-genome E. coli strain engineered to lack most genes irrelevant for laboratory/industrial applications. Elimination of diversity-generating, error-prone DNA polymerase enzymes involved in induced mutagenesis achieved a significant stabilization of the genome. The resulting strain, while retaining normal growth, showed a significant decrease in overall mutation rates, most notably under various stress conditions. Moreover, the error-prone polymerase-free host allowed relatively stable maintenance of a toxic methyltransferase-expressing clone. In contrast, the parental strain produced mutant clones, unable to produce functional methyltransferase, which quickly overgrew the culture to a high ratio (50% of clones in a 24-h induction period lacked functional methyltransferase activity). The surprisingly large stability-difference observed between the strains was due to the combined effects of high stress-induced mutagenesis in the parental strain, growth inhibition by expression of the toxic protein, and selection/outgrowth of mutants no longer producing an active, toxic enzyme. Conclusions By eliminating stress-inducible error-prone DNA-polymerases, the genome of the mobile genetic element-free E. coli strain MDS42 was further stabilized. The resulting strain represents an improved host in various synthetic and molecular biological applications, allowing more stable production of growth-inhibiting biomolecules.
Collapse
Affiliation(s)
- Bálint Csörgo
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, 62 Temesvári krt, H6726 Szeged, Hungary
| | | | | | | | | |
Collapse
|
14
|
Abstract
Bacterial replicases are complex, tripartite replicative machines. They contain a polymerase, polymerase III (Pol III), a β₂ processivity factor, and a DnaX complex ATPase that loads β₂ onto DNA and chaperones Pol III onto the newly loaded β₂. Bacterial replicases are highly processive, yet cycle rapidly during Okazaki fragment synthesis in a regulated way. Many bacteria encode both a full-length τ and a shorter γ form of DnaX by a variety of mechanisms. γ appears to be uniquely placed in a single position relative to two τ protomers in a pentameric ring. The polymerase catalytic subunit of Pol III, α, contains a PHP domain that not only binds to a prototypical ε Mg²⁺-dependent exonuclease, but also contains a second Zn²⁺-dependent proofreading exonuclease, at least in some bacteria. This review focuses on a critical evaluation of recent literature and concepts pertaining to the above issues and suggests specific areas that require further investigation.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| |
Collapse
|
15
|
Sladewski TE, Hetrick KM, Foster PL. Escherichia coli Rep DNA helicase and error-prone DNA polymerase IV interact physically and functionally. Mol Microbiol 2011; 80:524-41. [PMID: 21320186 DOI: 10.1111/j.1365-2958.2011.07590.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Escherichia coli DNA polymerase IV, encoded by the dinB gene, is a member of the Y family of specialized DNA polymerases. Pol IV is capable of synthesizing past DNA lesions and may help to restart stalled replication forks. However, Pol IV is error-prone, contributing to both DNA damage-induced and stress-induced (adaptive) mutations. Here we demonstrate that Pol IV interacts in vitro with Rep DNA helicase and that this interaction enhances Rep's helicase activity. In addition, Pol IV polymerase activity is stimulated by interacting with Rep, and Pol IV β clamp-binding motif appears to be required for this stimulation. However, neither Rep's helicase activity nor its ability to bind DNA is required for it to stimulate Pol IV's polymerase activity. The interaction between Rep and Pol IV is biologically significant in vivo as Rep enhances Pol IV's mutagenic activity in stationary-phase cells. These data indicate a new role for Rep in contributing to Pol IV-dependent adaptive mutation. This functional interaction also provides new insight into how the cell might control or target Pol IV's mutagenic activity.
Collapse
|
16
|
Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010; 2010:592980. [PMID: 21209706 PMCID: PMC3010660 DOI: 10.4061/2010/592980] [Citation(s) in RCA: 628] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/15/2010] [Accepted: 09/28/2010] [Indexed: 11/20/2022] Open
Abstract
DNA is one of the prime molecules, and its stability is of utmost importance for proper functioning and existence of all living systems. Genotoxic chemicals and radiations exert adverse effects on genome stability. Ultraviolet radiation (UVR) (mainly UV-B: 280-315 nm) is one of the powerful agents that can alter the normal state of life by inducing a variety of mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers as well as DNA strand breaks by interfering the genome integrity. To counteract these lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Additionally, double-strand break repair (by homologous recombination and nonhomologous end joining), SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms with the expense of specific gene products. This review deals with UV-induced alterations in DNA and its maintenance by various repair mechanisms.
Collapse
Affiliation(s)
- Rajesh P Rastogi
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | | | | | | | | |
Collapse
|
17
|
The SMC-like protein complex SbcCD enhances DNA polymerase IV-dependent spontaneous mutation in Escherichia coli. J Bacteriol 2010; 193:660-9. [PMID: 21131491 DOI: 10.1128/jb.01166-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Escherichia coli, RpoS, the general stress response sigma factor, regulates the activity of the specialized DNA polymerase DNA polymerase IV (Pol IV) both in stationary-phase and in exponential-phase cells. Because during exponential phase dinB, the gene encoding Pol IV, is transcribed independently of RpoS, RpoS must regulate Pol IV activity in growing cells indirectly via one or more intermediate factors. The results presented here show that one of these intermediate factors is SbcCD, an SMC-like protein and an ATP-dependent nuclease. By initiating or participating in double-strand break repair, SbcCD may provide DNA substrates for Pol IV polymerase activity.
Collapse
|
18
|
Ollivierre JN, Fang J, Beuning PJ. The Roles of UmuD in Regulating Mutagenesis. J Nucleic Acids 2010; 2010. [PMID: 20936072 PMCID: PMC2948943 DOI: 10.4061/2010/947680] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 08/01/2010] [Indexed: 11/20/2022] Open
Abstract
All organisms are subject to DNA damage from both endogenous and environmental sources. DNA damage that is not fully repaired can lead to mutations. Mutagenesis is now understood to be an active process, in part facilitated by lower-fidelity DNA polymerases that replicate DNA in an error-prone manner. Y-family DNA polymerases, found throughout all domains of life, are characterized by their lower fidelity on undamaged DNA and their specialized ability to copy damaged DNA. Two E. coli Y-family DNA polymerases are responsible for copying damaged DNA as well as for mutagenesis. These DNA polymerases interact with different forms of UmuD, a dynamic protein that regulates mutagenesis. The UmuD gene products, regulated by the SOS response, exist in two principal forms: UmuD(2), which prevents mutagenesis, and UmuD(2)', which facilitates UV-induced mutagenesis. This paper focuses on the multiple conformations of the UmuD gene products and how their protein interactions regulate mutagenesis.
Collapse
Affiliation(s)
- Jaylene N Ollivierre
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 102 Hurtig Hall, Boston, MA 02115, USA
| | | | | |
Collapse
|
19
|
RpoS, the stress response sigma factor, plays a dual role in the regulation of Escherichia coli's error-prone DNA polymerase IV. J Bacteriol 2010; 192:3639-44. [PMID: 20472798 DOI: 10.1128/jb.00358-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RpoS, Escherichia coli's general stress response sigma factor, regulates error-prone DNA polymerase IV (Pol IV) (encoded by the dinB gene). Pol IV is induced in stationary-phase cells, and thereafter, levels of the protein remain elevated for several days of continuous incubation. This induction and persistence in stationary-phase cells are dependent on RpoS. Data presented here show that this regulation is direct via the RpoS-directed transcription of the dinB gene. However, a loss of RpoS also results in a decrease in Pol IV-dependent mutation when Pol IV is overexpressed from an RpoS-independent promoter in exponentially growing cells. The loss of RpoS also increases cell sensitivity to 4-nitroquinoline-1-oxide, indicating that RpoS affects the ability of Pol IV to bypass DNA lesions. Thus, in addition to directly driving the transcription of the dinB gene in stationary-phase cells, RpoS regulates the activity of Pol IV in exponentially growing cells via a second, indirect pathway.
Collapse
|
20
|
Affiliation(s)
- R Jayaraman
- R. H. 35, Palaami Enclave, New Natham Road, Madurai 625 014, India.
| |
Collapse
|
21
|
Pitsikas P, Polosina YY, Cupples CG. Interaction between the mismatch repair and nucleotide excision repair pathways in the prevention of 5-azacytidine-induced CG-to-GC mutations in Escherichia coli. DNA Repair (Amst) 2009; 8:354-9. [DOI: 10.1016/j.dnarep.2008.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 11/14/2008] [Accepted: 11/20/2008] [Indexed: 01/07/2023]
|
22
|
Abstract
As a first step towards describing the role of proteolysis in maintaining genomic integrity, we have determined the effect of the loss of ClpXP, a major energy-dependent cytoplasmic protease that degrades truncated proteins as well as a number of regulatory proteins, on spontaneous mutagenesis. In a rifampicin-sensitive to rifampicin-resistance assay that detects base substitution mutations in the essential rpoB gene, there is a modest, but appreciable increase in mutagenesis in Delta(clpP-clpX) cells relative to wild-type cells. A colony papillation analysis using a set of lacZ strains revealed that genetic -1 frameshift mutations are strongly elevated in Clp-defective cells. A quantitative analysis using a valine-sensitive to valine-resistance assay that detects frameshift mutations showed that mutagenesis is elevated 50-fold in Clp-defective cells. Elevated frameshift mutagenesis observed in Clp-deficient cells is essentially abolished in lexA1[Ind(-)] (SOS-uninducible) cells, and in cells deleted for the SOS gene dinB, which codes for DNA polymerase IV. In contrast, mutagenesis is unaffected or stimulated in cells deleted for umuC or umuD, which code for critical components of DNA polymerase V. Loss of rpoS, which codes for a stress-response sigma factor known to upregulate dinB expression in stationary phase, does not affect mutagenesis. We propose that elevated DinB expression, as well as stabilization of UmuD/UmuD' heterodimers in Delta(clpP-clpX) cells, contributes to elevated mutagenesis. These findings suggest that in normal cells, Clp-mediated proteolysis plays an important role in preventing gratuitous mutagenesis.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Department of Microbiology and Molecular Genetics, International Center for Public Health, Newark, NJ 07101, USA
| | | |
Collapse
|
23
|
Curti E, McDonald JP, Mead S, Woodgate R. DNA polymerase switching: effects on spontaneous mutagenesis in Escherichia coli. Mol Microbiol 2008; 71:315-31. [PMID: 19019142 PMCID: PMC2680738 DOI: 10.1111/j.1365-2958.2008.06526.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Escherichia coli possesses five known DNA polymerases (pols). Pol III holoenzyme is the cell's main replicase, while pol I is responsible for the maturation of Okazaki fragments and filling gaps generated during nucleotide excision repair. Pols II, IV and V are significantly upregulated as part of the cell's global SOS response to DNA damage and under these conditions, may alter the fidelity of DNA replication by potentially interfering with the ability of pols I and III to complete their cellular functions. To test this hypothesis, we determined the spectrum of rpoB mutations arising in an isogenic set of mutL strains differentially expressing the chromosomally encoded pols. Interestingly, mutagenic hot spots in rpoB were identified that are susceptible to the actions of pols I–V. For example, in a recA730 lexA(Def) mutL background most transversions were dependent upon pols IV and V. In contrast, transitions were largely dependent upon pol I and to a lesser extent, pol III. Furthermore, the extent of pol I-dependent mutagenesis at one particular site was modulated by pols II and IV. Our observations suggest that there is considerable interplay among all five E. coli polymerases that either reduces or enhances the mutagenic load on the E. coli chromosome.
Collapse
Affiliation(s)
- Elena Curti
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Bacteria spend their lives buffeted by changing environmental conditions. To adapt to and survive these stresses, bacteria have global response systems that result in sweeping changes in gene expression and cellular metabolism. These responses are controlled by master regulators, which include: alternative sigma factors, such as RpoS and RpoH; small molecule effectors, such as ppGpp; gene repressors such as LexA; and, inorganic molecules, such as polyphosphate. The response pathways extensively overlap and are induced to various extents by the same environmental stresses. These stresses include nutritional deprivation, DNA damage, temperature shift, and exposure to antibiotics. All of these global stress responses include functions that can increase genetic variability. In particular, up-regulation and activation of error-prone DNA polymerases, down-regulation of error-correcting enzymes, and movement of mobile genetic elements are common features of several stress responses. The result is that under a variety of stressful conditions, bacteria are induced for genetic change. This transient mutator state may be important for adaptive evolution.
Collapse
Affiliation(s)
- Patricia L Foster
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
25
|
Cirz RT, Romesberg FE. Controlling mutation: intervening in evolution as a therapeutic strategy. Crit Rev Biochem Mol Biol 2008; 42:341-54. [PMID: 17917871 DOI: 10.1080/10409230701597741] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mutation is the driving force behind many processes linked to human disease, including cancer, aging, and the evolution of drug resistance. Mutations have traditionally been considered the inevitable consequence of replicating large genomes with polymerases of finite fidelity. Observations over the past several decades, however, have led to a new perspective on the process of mutagenesis. It has become clear that, under some circumstances, mutagenesis is a regulated process that requires the induction of pro-mutagenic enzymes and that, at least in bacteria, this induction may facilitate evolution. Herein, we review what is known about induced mutagenesis in bacteria as well as evidence that it contributes to the evolution of antibiotic resistance. Finally, we discuss the possibility that components of induced mutation pathways might be targeted for inhibition as a novel therapeutic strategy to prevent the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Ryan T Cirz
- The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
26
|
Role of accessory DNA polymerases in DNA replication in Escherichia coli: analysis of the dnaX36 mutator mutant. J Bacteriol 2007; 190:1730-42. [PMID: 18156258 DOI: 10.1128/jb.01463-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dnaX36(TS) mutant of Escherichia coli confers a distinct mutator phenotype characterized by enhancement of transversion base substitutions and certain (-1) frameshift mutations. Here, we have further investigated the possible mechanism(s) underlying this mutator effect, focusing in particular on the role of the various E. coli DNA polymerases. The dnaX gene encodes the tau subunit of DNA polymerase III (Pol III) holoenzyme, the enzyme responsible for replication of the bacterial chromosome. The dnaX36 defect resides in the C-terminal domain V of tau, essential for interaction of tau with the alpha (polymerase) subunit, suggesting that the mutator phenotype is caused by an impaired or altered alpha-tau interaction. We previously proposed that the mutator activity results from aberrant processing of terminal mismatches created by Pol III insertion errors. The present results, including lack of interaction of dnaX36 with mutM, mutY, and recA defects, support our assumption that dnaX36-mediated mutations originate as errors of replication rather than DNA damage-related events. Second, an important role is described for DNA Pol II and Pol IV in preventing and producing, respectively, the mutations. In the system used, a high fraction of the mutations is dependent on the action of Pol IV in a (dinB) gene dosage-dependent manner. However, an even larger but opposing role is deduced for Pol II, revealing Pol II to be a major editor of Pol III mediated replication errors. Overall, the results provide insight into the interplay of the various DNA polymerases, and of tau subunit, in securing a high fidelity of replication.
Collapse
|
27
|
Tsvetkova NA, Golyasnaya NV. Induction of the SOS response in Escherichia coli cells under osmotic stress and in the presence of N-methyl-N′-nitro-N-nitrosoguanidine. Microbiology (Reading) 2007. [DOI: 10.1134/s0026261707040029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Bjedov I, Dasgupta CN, Slade D, Le Blastier S, Selva M, Matic I. Involvement of Escherichia coli DNA polymerase IV in tolerance of cytotoxic alkylating DNA lesions in vivo. Genetics 2007; 176:1431-40. [PMID: 17483416 PMCID: PMC1931539 DOI: 10.1534/genetics.107.072405] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 05/03/2007] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli PolIV, a DNA polymerase capable of catalyzing synthesis past replication-blocking DNA lesions, belongs to the most ubiquitous branch of Y-family DNA polymerases. The goal of this study is to identify spontaneous DNA damage that is bypassed specifically and accurately by PolIV in vivo. We increased the amount of spontaneous DNA lesions using mutants deficient for different DNA repair pathways and measured mutation frequency in PolIV-proficient and -deficient backgrounds. We found that PolIV performs an error-free bypass of DNA damage that accumulates in the alkA tag genetic background. This result indicates that PolIV is involved in the error-free bypass of cytotoxic alkylating DNA lesions. When the amount of cytotoxic alkylating DNA lesions is increased by the treatment with chemical alkylating agents, PolIV is required for survival in an alkA tag-proficient genetic background as well. Our study, together with the reported involvement of the mammalian PolIV homolog, Polkappa, in similar activity, indicates that Y-family DNA polymerases from the DinB branch can be added to the list of evolutionarily conserved molecular mechanisms that counteract cytotoxic effects of DNA alkylation. This activity is of major biological relevance because alkylating agents are continuously produced endogenously in all living cells and are also present in the environment.
Collapse
Affiliation(s)
- Ivana Bjedov
- INSERM U571, Faculté de Médecine, Université Paris 5, 75730 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
29
|
Martins-Pinheiro M, Marques RCP, Menck CFM. Genome analysis of DNA repair genes in the alpha proteobacterium Caulobacter crescentus. BMC Microbiol 2007; 7:17. [PMID: 17352799 PMCID: PMC1839093 DOI: 10.1186/1471-2180-7-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 03/12/2007] [Indexed: 11/10/2022] Open
Abstract
Background The integrity of DNA molecules is fundamental for maintaining life. The DNA repair proteins protect organisms against genetic damage, by removal of DNA lesions or helping to tolerate them. DNA repair genes are best known from the gamma-proteobacterium Escherichia coli, which is the most understood bacterial model. However, genome sequencing raises questions regarding uniformity and ubiquity of these DNA repair genes and pathways, reinforcing the need for identifying genes and proteins, which may respond to DNA damage in other bacteria. Results In this study, we employed a bioinformatic approach, to analyse and describe the open reading frames potentially related to DNA repair from the genome of the alpha-proteobacterium Caulobacter crescentus. This was performed by comparison with known DNA repair related genes found in public databases. As expected, although C. crescentus and E. coli bacteria belong to separate phylogenetic groups, many of their DNA repair genes are very similar. However, some important DNA repair genes are absent in the C. crescentus genome and other interesting functionally related gene duplications are present, which do not occur in E. coli. These include DNA ligases, exonuclease III (xthA), endonuclease III (nth), O6-methylguanine-DNA methyltransferase (ada gene), photolyase-like genes, and uracil-DNA-glycosylases. On the other hand, the genes imuA and imuB, which are involved in DNA damage induced mutagenesis, have recently been described in C. crescentus, but are absent in E. coli. Particularly interesting are the potential atypical phylogeny of one of the photolyase genes in alpha-proteobacteria, indicating an origin by horizontal transfer, and the duplication of the Ada orthologs, which have diverse structural configurations, including one that is still unique for C. crescentus. Conclusion The absence and the presence of certain genes are discussed and predictions are made considering the particular aspects of the C. crescentus among other known DNA repair pathways. The observed differences enlarge what is known for DNA repair in the Bacterial world, and provide a useful framework for further experimental studies in this organism.
Collapse
Affiliation(s)
- Marinalva Martins-Pinheiro
- Department of Microbiology, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, SP, Brazil
| | - Regina CP Marques
- Department of Microbiology, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, SP, Brazil
| | - Carlos FM Menck
- Department of Microbiology, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, SP, Brazil
| |
Collapse
|
30
|
Jacob KD, Eckert KA. Escherichia coli DNA polymerase IV contributes to spontaneous mutagenesis at coding sequences but not microsatellite alleles. Mutat Res 2007; 619:93-103. [PMID: 17397877 PMCID: PMC2703455 DOI: 10.1016/j.mrfmmm.2007.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 02/16/2007] [Accepted: 02/26/2007] [Indexed: 11/21/2022]
Abstract
Slipped strand mispairing during DNA synthesis is one proposed mechanism for microsatellite or short tandem repeat (STR) mutation. However, the DNA polymerase(s) responsible for STR mutagenesis have not been determined. In this study, we investigated the effect of the Escherichia colidinB gene product (Pol IV) on mononucleotide and dinucleotide repeat stability, using an HSV-tk gene episomal reporter system for microsatellite mutations. For the control vector (HSV-tk gene only) we observed a statistically significant 3.5-fold lower median mutation frequency in dinB(-) than dinB(+) cells (p<0.001, Wilcoxon Mann Whitney Test). For vectors containing an in-frame mononucleotide allele ([G/C](10)) or either of two dinucleotide alleles ([GT/CA](10) and [TC/AG](11)) we observed no statistically significant difference in the overall HSV-tk mutation frequency observed between dinB(+) and dinB(-) strains. To determine if a mutational bias exists for mutations made by Pol IV, mutational spectra were generated for each STR vector and strain. No statistically significant differences between strains were observed for either the proportion of mutational events at the STR or STR specificity among the three vectors. However, the specificity of mutational events at the STR alleles in each strain varied in a statistically significant manner as a consequence of microsatellite sequence. Our results indicate that while Pol IV contributes to spontaneous mutations within the HSV-tk coding sequence, Pol IV does not play a significant role in spontaneous mutagenesis at [G/C](10), [GT/CA](10), or [TC/AG](11) microsatellite alleles. Our data demonstrate that in a wild type genetic background, the major factor influencing microsatellite mutagenesis is the allelic sequence composition.
Collapse
Affiliation(s)
| | - Kristin A. Eckert
- Corresponding Author Information: 500 University Drive, H059 – Gittlen Cancer Research Foundation, Hershey, PA 17033, Phone: (717) 531-4056, Fax: (717) 531-5634, E-mail:
| |
Collapse
|
31
|
Abstract
In nature, microbes live under a variety of harsh conditions, such as excess DNA damage, starvation, pH shift, or high temperatures. Microbial cells respond to such stressful conditions mostly by switching global patterns of gene expression to relieve the environmental stress. The SOS response, which is induced by DNA damage, is one such global network of gene expression that plays a crucial role in balancing the genomic stability and flexibility that are necessary to adapt to harsh environments. Here, I review the roles of SOS-inducible and noninducible lesion-bypass DNA polymerases in mutagenesis induced by environmental stress, and discuss how these polymerases are coordinated for the replication of damaged chromosomes. Possible contributions of lesion-bypass DNA polymerase in hyperthermophilic archaea, e.g., Sulfolobus solfataricus, to genome maintenance are also discussed.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| |
Collapse
|
32
|
Sanders LH, Rockel A, Lu H, Wozniak DJ, Sutton MD. Role of Pseudomonas aeruginosa dinB-encoded DNA polymerase IV in mutagenesis. J Bacteriol 2006; 188:8573-85. [PMID: 17041045 PMCID: PMC1698252 DOI: 10.1128/jb.01481-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a human opportunistic pathogen that chronically infects the lungs of cystic fibrosis patients and is the leading cause of morbidity and mortality of people afflicted with this disease. A striking correlation between mutagenesis and the persistence of P. aeruginosa has been reported. In other well-studied organisms, error-prone replication by Y family DNA polymerases contributes significantly to mutagenesis. Based on an analysis of the PAO1 genome sequence, P. aeruginosa contains a single Y family DNA polymerase encoded by the dinB gene. As part of an effort to understand the mechanisms of mutagenesis in P. aeruginosa, we have cloned the dinB gene of P. aeruginosa and utilized a combination of genetic and biochemical approaches to characterize the activity and regulation of the P. aeruginosa DinB protein (DinB(Pa)). Our results indicate that DinB(Pa) is a distributive DNA polymerase that lacks intrinsic proofreading activity in vitro. Modest overexpression of DinB(Pa) from a plasmid conferred a mutator phenotype in both Escherichia coli and P. aeruginosa. An examination of this mutator phenotype indicated that DinB(Pa) has a propensity to promote C-->A transversions and -1 frameshift mutations within poly(dGMP) and poly(dAMP) runs. The characterization of lexA+ and DeltalexA::aacC1 P. aeruginosa strains, together with in vitro DNA binding assays utilizing cell extracts or purified P. aeruginosa LexA protein (LexA(Pa)), indicated that the transcription of the dinB gene is regulated as part of an SOS-like response. The deletion of the dinB(Pa) gene sensitized P. aeruginosa to nitrofurazone and 4-nitroquinoline-1-oxide, consistent with a role for DinB(Pa) in translesion DNA synthesis over N2-dG adducts. Finally, P. aeruginosa exhibited a UV-inducible mutator phenotype that was independent of dinB(Pa) function and instead required polA and polC, which encode DNA polymerase I and the second DNA polymerase III enzyme, respectively. Possible roles of the P. aeruginosa dinB, polA, and polC gene products in mutagenesis are discussed.
Collapse
Affiliation(s)
- Laurie H Sanders
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 3435 Main Street, 140 Farber Hall, Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
33
|
van den Broek D, Bloemberg GV, Lugtenberg B. The role of phenotypic variation in rhizosphere Pseudomonas bacteria. Environ Microbiol 2006; 7:1686-97. [PMID: 16232284 DOI: 10.1111/j.1462-2920.2005.00912.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Colony phase variation is a regulatory mechanism at the DNA level which usually results in high frequency, reversible switches between colonies with a different phenotype. A number of molecular mechanisms underlying phase variation are known: slipped-strand mispairing, genomic rearrangements, spontaneous mutations and epigenetic mechanisms such as differential methylation. Most examples of phenotypic variation or phase variation have been described in the context of host-pathogen interactions as mechanisms allowing pathogens to evade host immune responses. Recent reports indicate that phase variation is also relevant in competitive root colonization and biological control of phytopathogens. Many rhizospere Pseudomonas species show phenotypic variation, based on spontaneous mutation of the gacA and gacS genes. These morphological variants do not express secondary metabolites and have improved growth characteristics. The latter could contribute to efficient root colonization and success in competition, especially since (as shown for one strain) these variants were observed to revert to their wild-type form. The observation that these variants are present in rhizosphere-competent Pseudomonas bacteria suggests the existence of a conserved strategy to increase their success in the rhizosphere.
Collapse
Affiliation(s)
- Daan van den Broek
- Leiden University, Institute of Biology, Clusius Laboratory, Wassenaarseweg 64, 2333 AL Leiden, the Netherlands.
| | | | | |
Collapse
|
34
|
Kashiwagi K, Isogai Y, Nishiguchi KI, Shiba K. Frame shuffling: a novel method for in vitro protein evolution. Protein Eng Des Sel 2006; 19:135-40. [PMID: 16415043 DOI: 10.1093/protein/gzj008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We describe 'frame shuffling', a novel method for preparing artificial protein libraries. With this method, a Y-family DNA polymerase known to introduce frame shift mutations at high rates is utilized to scramble the reading frames of a parental gene. The resultant progeny produce mutant proteins having segmental sequence changes. Such frame-shuffled mutant proteins exhibit physicochemical properties that differ from those of proteins obtained using conventional mutagenesis.
Collapse
Affiliation(s)
- Kenji Kashiwagi
- Department of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Ariake, Koto-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
35
|
Pavlov YI, Shcherbakova PV, Rogozin IB. Roles of DNA Polymerases in Replication, Repair, and Recombination in Eukaryotes. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:41-132. [PMID: 17178465 DOI: 10.1016/s0074-7696(06)55002-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The functioning of the eukaryotic genome depends on efficient and accurate DNA replication and repair. The process of replication is complicated by the ongoing decomposition of DNA and damage of the genome by endogenous and exogenous factors. DNA damage can alter base coding potential resulting in mutations, or block DNA replication, which can lead to double-strand breaks (DSB) and to subsequent chromosome loss. Replication is coordinated with DNA repair systems that operate in cells to remove or tolerate DNA lesions. DNA polymerases can serve as sensors in the cell cycle checkpoint pathways that delay cell division until damaged DNA is repaired and replication is completed. Eukaryotic DNA template-dependent DNA polymerases have different properties adapted to perform an amazingly wide spectrum of DNA transactions. In this review, we discuss the structure, the mechanism, and the evolutionary relationships of DNA polymerases and their possible functions in the replication of intact and damaged chromosomes, DNA damage repair, and recombination.
Collapse
Affiliation(s)
- Youri I Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, Departments of Biochemistry and Molecular Biology, and Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | |
Collapse
|
36
|
Imai M, Tago YI, Endo K, Ohnishi G, Nagata Y, Nunoshiba T, Yamamoto K. Spontaneous Mutagenesis in Escherichia coli and Saccharomyces cerevisiae. Genes Environ 2006. [DOI: 10.3123/jemsge.28.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
37
|
Sutton MD, Duzen JM. Specific amino acid residues in the beta sliding clamp establish a DNA polymerase usage hierarchy in Escherichia coli. DNA Repair (Amst) 2005; 5:312-23. [PMID: 16338175 DOI: 10.1016/j.dnarep.2005.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/19/2005] [Accepted: 10/25/2005] [Indexed: 10/25/2022]
Abstract
Escherichia coli dnaN159 strains encode a mutant form of the beta sliding clamp (beta159), causing them to display altered DNA polymerase (pol) usage. In order to better understand mechanisms of pol selection/switching in E. coli, we have further characterized pol usage in the dnaN159 strain. The dnaN159 allele contains two amino acid substitutions: G66E (glycine-66 to glutamic acid) and G174A (glycine-174 to alanine). Our results indicated that the G174A substitution impaired interaction of the beta clamp with the alpha catalytic subunit of pol III. In light of this finding, we designed two additional dnaN alleles. One of these dnaN alleles contained a G174A substitution (beta-G174A), while the other contained D173A, G174A and H175A substitutions (beta-173-175). Examination of strains bearing these different dnaN alleles indicated that each conferred a distinct UV sensitive phenotype that was dependent upon a unique combination of Delta polB (pol II), Delta dinB (pol IV) and/or Delta umuDC (pol V) alleles. Taken together, these findings indicate that mutations in the beta clamp differentially affect the functions of these three pols, and suggest that pol II, pol IV and pol V are capable of influencing each others' abilities to gain access to the replication fork. These findings are discussed in terms of a model whereby amino acid residues in the vicinity of those mutated in beta159 (G66 and G174) help to define a DNA polymerase usage hierarchy in E. coli following UV irradiation.
Collapse
Affiliation(s)
- Mark D Sutton
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, 3435 Main Street, 140 Farber Hall, Buffalo, NY 14214, USA.
| | | |
Collapse
|
38
|
Maul RW, Sutton MD. Roles of the Escherichia coli RecA protein and the global SOS response in effecting DNA polymerase selection in vivo. J Bacteriol 2005; 187:7607-18. [PMID: 16267285 PMCID: PMC1280315 DOI: 10.1128/jb.187.22.7607-7618.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Escherichia coli beta sliding clamp protein is proposed to play an important role in effecting switches between different DNA polymerases during replication, repair, and translesion DNA synthesis. We recently described how strains bearing the dnaN159 allele, which encodes a mutant form of the beta clamp (beta159), display a UV-sensitive phenotype that is suppressed by inactivation of DNA polymerase IV (M. D. Sutton, J. Bacteriol. 186:6738-6748, 2004). As part of an ongoing effort to understand mechanisms of DNA polymerase management in E. coli, we have further characterized effects of the dnaN159 allele on polymerase usage. Three of the five E.coli DNA polymerases (II, IV, and V) are regulated as part of the global SOS response. Our results indicate that elevated expression of the dinB-encoded polymerase IV is sufficient to result in conditional lethality of the dnaN159 strain. In contrast, chronically activated RecA protein, expressed from the recA730 allele, is lethal to the dnaN159 strain, and this lethality is suppressed by mutations that either mitigate RecA730 activity (i.e., DeltarecR), or impair the activities of DNA polymerase II or DNA polymerase V (i.e., DeltapolB or DeltaumuDC). Thus, we have identified distinct genetic requirements whereby each of the three different SOS-regulated DNA polymerases are able to confer lethality upon the dnaN159 strain, suggesting the presence of multiple mechanisms by which the actions of the cell's different DNA polymerases are managed in vivo.
Collapse
Affiliation(s)
- Robert W Maul
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 14214, USA
| | | |
Collapse
|
39
|
Kuban W, Banach-Orlowska M, Bialoskorska M, Lipowska A, Schaaper RM, Jonczyk P, Fijalkowska IJ. Mutator phenotype resulting from DNA polymerase IV overproduction in Escherichia coli: preferential mutagenesis on the lagging strand. J Bacteriol 2005; 187:6862-6. [PMID: 16166552 PMCID: PMC1251572 DOI: 10.1128/jb.187.19.6862-6866.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the mutator effect resulting from overproduction of Escherichia coli DNA polymerase IV. Using lac mutational targets in the two possible orientations on the chromosome, we observed preferential mutagenesis during lagging strand synthesis. The mutator activity likely results from extension of mismatches produced by polymerase III holoenzyme.
Collapse
Affiliation(s)
- Wojciech Kuban
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02106 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
40
|
Tago YI, Imai M, Ihara M, Atofuji H, Nagata Y, Yamamoto K. Escherichia coli mutator (Delta)polA is defective in base mismatch correction: the nature of in vivo DNA replication errors. J Mol Biol 2005; 351:299-308. [PMID: 16005896 DOI: 10.1016/j.jmb.2005.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 06/07/2005] [Accepted: 06/09/2005] [Indexed: 10/25/2022]
Abstract
We constructed a set of Escherichia coli strains containing deletions in genes encoding three SOS polymerases, and defective in MutS and DNA polymerase I (PolI) mismatch repair, and estimated the rate and specificity of spontaneous endogenous tonB(+)-->tonB- mutations. The rate and specificity of mutations in strains proficient or deficient in three SOS polymerases was compared and found that there was no contribution of SOS polymerases to the chromosomal tonB mutations. MutS-deficient strains displayed elevated spontaneous mutation rates, consisting of dominantly minus frameshifts and transitions. Minus frameshifts are dominated by warm spots at run-bases. Among 57 transitions (both G:C-->A:T and A:T-->G:C), 35 occurred at two hotspot sites. PolI-deficient strains possessed an increased rate of deletions and frameshifts, because of a deficiency in postreplicative deletion and frameshift mismatch corrections. Frameshifts in PolI-deficient strains occurred within the entire tonB gene at non-run and run sequences. MutS and PolI double deficiency indicated a synergistic increase in the rate of deletions, frameshifts and transitions. In this case, mutS-specific hotspots for frameshifts and transitions disappeared. The results suggested that, unlike the case previously known pertaining to postreplicative MutS mismatch repair for frameshifts and transitions and PolI mismatch repair for frameshifts and deletions, PolI can recognize and correct transition mismatches. Possible mechanisms for distinct MutS and PolI mismatch repair are discussed. A strain containing deficiencies in three SOS polymerases, MutS mismatch repair and PolI mismatch repair was also constructed. The spectrum of spontaneous mutations in this strain is considered to represent the spectrum of in vivo DNA polymerase III replication errors. The mutation rate of this strain was 219x10(-8), about a 100-fold increase relative to the wild-type strain. Uncorrected polymerase III replication errors were predominantly frameshifts and base substitutions followed by deletions.
Collapse
Affiliation(s)
- Yu-ichiro Tago
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The inactivation of a replication protein causes the disassembly of the replication machinery and creates a need for replication reactivation. In several replication mutants, restart occurs after the fork has been isomerized into a four-armed junction, a reaction called replication fork reversal. The repair helicase UvrD is essential for replication fork reversal upon inactivation of the polymerase (DnaE) or the beta-clamp (DnaN) subunits of the Escherichia coli polymerase III, and for the viability of dnaEts and dnaNts mutants at semi-permissive temperature. We show here that the inactivation of recA, recFOR, recJ or recQ recombination genes suppresses the requirement for UvrD for replication fork reversal and suppresses the lethality conferred by uvrD inactivation to Pol IIIts mutants at semi-permissive temperature. We propose that RecA binds inappropriately to blocked replication forks in the dnaEts and dnaNts mutants in a RecQ- RecJ- RecFOR-dependent way and that UvrD acts by removing RecA or a RecA-made structure, allowing replication fork reversal. This work thus reveals the existence of a futile reaction of RecA binding to blocked replication forks, that requires the action of UvrD for fork-clearing and proper replication restart.
Collapse
Affiliation(s)
- Maria-José Florés
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas Cedex, France
| | | | | |
Collapse
|
42
|
Strauss B, Kelly K, Ekiert D. Cytochrome oxidase deficiency protects Escherichia coli from cell death but not from filamentation due to thymine deficiency or DNA polymerase inactivation. J Bacteriol 2005; 187:2827-35. [PMID: 15805529 PMCID: PMC1070382 DOI: 10.1128/jb.187.8.2827-2835.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Temperature-sensitive DNA polymerase mutants (dnaE) are protected from cell death on incubation at nonpermissive temperature by mutation in the cydA gene controlling cytochrome bd oxidase. Protection is observed in complex (Luria-Bertani [LB]) medium but not on minimal medium. The cydA mutation protects a thymine-deficient strain from death in the absence of thymine on LB but not on minimal medium. Both dnaE and Deltathy mutants filament under nonpermissive conditions. Filamentation per se is not the cause of cell death, because the dnaE cydA double mutant forms long filaments after 24 h of incubation in LB medium at nonpermissive temperature. These filaments have multiply dispersed nucleoids and produce colonies on return to permissive conditions. The protective effect of a deficiency of cydA at high temperature is itself suppressed by overexpression of cytochrome bo3, indicating that the phenomenon is related to energy metabolism rather than to a specific effect of the cydA protein. We propose that filamentation and cell death resulting from thymine deprivation or slowing of DNA synthesis are not sequential events but occur in response to the same or a similar signal which is modulated in complex medium by cytochrome bd oxidase. The events which follow inhibition of replication fork progression due to either polymerase inactivation, thymine deprivation, or hydroxyurea inhibition differ in detail from those following actual DNA damage.
Collapse
Affiliation(s)
- Bernard Strauss
- Center for Molecular and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
43
|
Foster PL. Stress responses and genetic variation in bacteria. Mutat Res 2005; 569:3-11. [PMID: 15603749 PMCID: PMC2729700 DOI: 10.1016/j.mrfmmm.2004.07.017] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 06/30/2004] [Accepted: 07/20/2004] [Indexed: 11/28/2022]
Abstract
Under stressful conditions mechanisms that increase genetic variation can bestow a selective advantage. Bacteria have several stress responses that provide ways in which mutation rates can be increased. These include the SOS response, the general stress response, the heat-shock response, and the stringent response, all of which impact the regulation of error-prone polymerases. Adaptive mutation appears to be process by which cells can respond to selective pressure specifically by producing mutations. In Escherichia coli strain FC40 adaptive mutation involves the following inducible components: (i) a recombination pathway that generates mutations; (ii) a DNA polymerase that synthesizes error-containing DNA; and (iii) stress responses that regulate cellular processes. In addition, a subpopulation of cells enters into a state of hypermutation, giving rise to about 10% of the single mutants and virtually all of the mutants with multiple mutations. These bacterial responses have implications for the development of cancer and other genetic disorders in higher organisms.
Collapse
Affiliation(s)
- Patricia L Foster
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
44
|
Layton JC, Foster PL. Error-prone DNA polymerase IV is regulated by the heat shock chaperone GroE in Escherichia coli. J Bacteriol 2005; 187:449-57. [PMID: 15629916 PMCID: PMC543561 DOI: 10.1128/jb.187.2.449-457.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An insertion in the promoter of the operon that encodes the molecular chaperone GroE was isolated as an antimutator for stationary-phase or adaptive mutation. The groE operon consists of two genes, groES and groEL; point mutations in either gene conferred the same phenotype, reducing Lac+ adaptive mutation 10- to 20-fold. groE mutant strains had 1/10 the amount of error-prone DNA polymerase IV (Pol IV). In recG+ strains, the reduction in Pol IV was sufficient to account for their low rate of adaptive mutation, but in recG mutant strains, a deficiency of GroE had some additional effect on adaptive mutation. Pol IV is induced as part of the SOS response, but the effect of GroE on Pol IV was independent of LexA. We were unable to show that GroE interacts directly with Pol IV, suggesting that GroE may act indirectly. Together with previous results, these findings indicate that Pol IV is a component of several cellular stress responses.
Collapse
Affiliation(s)
- Jill C Layton
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third St., Bloomington, IN 47405, USA
| | | |
Collapse
|
45
|
Sutton MD. The Escherichia coli dnaN159 mutant displays altered DNA polymerase usage and chronic SOS induction. J Bacteriol 2004; 186:6738-48. [PMID: 15466025 PMCID: PMC522196 DOI: 10.1128/jb.186.20.6738-6748.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli beta sliding clamp, which is encoded by the dnaN gene, is reported to interact with a variety of proteins involved in different aspects of DNA metabolism. Recent findings indicate that many of these partner proteins interact with a common surface on the beta clamp, suggesting that competition between these partners for binding to the clamp might help to coordinate both the nature and order of the events that take place at a replication fork. The purpose of the experiments discussed in this report was to test a prediction of this model, namely, that a mutant beta clamp protein impaired for interactions with the replicative DNA polymerase (polymerase III [Pol III]) would likewise have impaired interactions with other partner proteins and hence would display pleiotropic phenotypes. Results discussed herein indicate that the dnaN159-encoded mutant beta clamp protein (beta159) is impaired for interactions with the alpha catalytic subunit of Pol III. Moreover, the dnaN159 mutant strain displayed multiple replication and repair phenotypes, including sensitivity to UV light, an absolute dependence on the polymerase activity of Pol I for viability, enhanced Pol V-dependent mutagenesis, and altered induction of the global SOS response. Furthermore, epistasis analyses indicated that the UV sensitivity of the dnaN159 mutant was suppressed by (not epistatic with) inactivation of Pol IV (dinB gene product). Taken together, these findings suggest that in the dnaN159 mutant, DNA polymerase usage, and hence DNA replication, repair, and translesion synthesis, are altered. These findings are discussed in terms of a model to describe how the beta clamp might help to coordinate protein traffic at the replication fork.
Collapse
Affiliation(s)
- Mark D Sutton
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 3435 Main St., 140 Farber Hall, Buffalo, NY 14214.
| |
Collapse
|
46
|
Kuban W, Jonczyk P, Gawel D, Malanowska K, Schaaper RM, Fijalkowska IJ. Role of Escherichia coli DNA polymerase IV in in vivo replication fidelity. J Bacteriol 2004; 186:4802-7. [PMID: 15231812 PMCID: PMC438567 DOI: 10.1128/jb.186.14.4802-4807.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated whether DNA polymerase IV (Pol IV; the dinB gene product) contributes to the error rate of chromosomal DNA replication in Escherichia coli. We compared mutation frequencies in mismatch repair-defective strains that were either dinB positive or dinB deficient, using a series of mutational markers, including lac targets in both orientations on the chromosome. Virtually no contribution of Pol IV to the chromosomal mutation rate was observed. On the other hand, a significant effect of dinB was observed for reversion of a lac allele when the lac gene resided on an F'(pro-lac) episome.
Collapse
Affiliation(s)
- Wojciech Kuban
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego. 5A, 02106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
47
|
Wolff E, Kim M, Hu K, Yang H, Miller JH. Polymerases leave fingerprints: analysis of the mutational spectrum in Escherichia coli rpoB to assess the role of polymerase IV in spontaneous mutation. J Bacteriol 2004; 186:2900-5. [PMID: 15090533 PMCID: PMC387785 DOI: 10.1128/jb.186.9.2900-2905.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We compared the distribution of mutations in rpoB that lead to rifampin resistance in strains with differing levels of polymerase IV (Pol IV), including strains with deletions of the Pol IV-encoding dinB gene, strains with a chromosomal copy of dinB, strains with the F'128 plasmid, and strains with plasmid amplification of either the dinB operon (dinB-yafNOP) or the dinB gene alone. This analysis identifies several hot spots specific to Pol IV which are virtually absent from the normal spontaneous spectrum, indicating that Pol IV does not contribute significantly to mutations occurring during exponential growth in liquid culture.
Collapse
Affiliation(s)
- Erika Wolff
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, 609 Charles E. Young #1602, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
48
|
Strauss B, Kelly K, Dincman T, Ekiert D, Biesieda T, Song R. Cell death in Escherichia coli dnaE(Ts) mutants incubated at a nonpermissive temperature is prevented by mutation in the cydA gene. J Bacteriol 2004; 186:2147-55. [PMID: 15028700 PMCID: PMC374420 DOI: 10.1128/jb.186.7.2147-2155.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells of the Escherichia coli dnaE(Ts) dnaE74 and dnaE486 mutants die after 4 h of incubation at 40 degrees C in Luria-Bertani medium. Cell death is preceded by elongation, is inhibited by chloramphenicol, tetracycline, or rifampin, and is dependent on cell density. Cells survive at 40 degrees C when they are incubated at a high population density or at a low density in conditioned medium, but they die when the medium is supplemented with glucose and amino acids. Deletion of recA or sulA has no effect. We isolated suppressors which survived for long periods at 40 degrees C but did not form colonies. The suppressors protected against hydroxyurea-induced killing. Sequence and complementation analysis indicated that suppression was due to mutation in the cydA gene. The DNA content of dnaE mutants increased about eightfold in 4 h at 40 degrees C, as did the DNA content of the suppressed strains. The amount of plasmid pBR322 in a dnaE74 strain increased about fourfold, as measured on gels, and the electrophoretic pattern appeared to be normal even though the viability of the parent cells decreased 2 logs. Transformation activity also increased. 4',6'-diamidino-2-phenylindole staining demonstrated that there were nucleoids distributed throughout the dnaE filaments formed at 40 degrees C, indicating that there was segregation of the newly formed DNA. We concluded that the DNA synthesized was physiologically competent, particularly since the number of viable cells of the suppressed strain increased during the first few hours of incubation. These observations support the view that E. coli senses the rate of DNA synthesis and inhibits septation when the rate of DNA synthesis falls below a critical level relative to the level of RNA and protein synthesis.
Collapse
Affiliation(s)
- Bernard Strauss
- Center for Molecular Oncology, Department of Molecular Genetics and Cell Biology, Biological Sciences Collegiate Division, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Fuchs RP, Fujii S, Wagner J. Properties and functions of Escherichia coli: Pol IV and Pol V. ADVANCES IN PROTEIN CHEMISTRY 2004; 69:229-64. [PMID: 15588845 DOI: 10.1016/s0065-3233(04)69008-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Escherichia coli possesses two members of the newly discovered class of Y DNA polymerases (Ohmori et al., 2001): Pol IV (dinB) and Pol V (umuD'C). Polymerases that belong to this family are often referred to as specialized or error-prone DNA polymerases to distinguish them from the previously discovered DNA polymerases (Pol I, II, and III) that are essentially involved in DNA replication or error-free DNA repair. Y-family DNA polymerases are characterized by their capacity to replicate DNA, through chemically damaged template bases, or to elongate mismatched primer termini. These properties stem from their capacity to accommodate and use distorted primer templates within their active site and from the lack of an associated exonuclease activity. Even though both belong to the Y-family, Pol IV and Pol V appear to perform distinct physiological functions. Although Pol V is clearly the major lesion bypass polymerase involved in damage-induced mutagenesis, the role of Pol IV remains enigmatic. Indeed, compared to a wild-type strain, a dinB mutant exhibits no clear phenotype with respect to survival or mutagenesis following treatment with DNA-damaging agents. Subtler dinB phenotypes will be discussed below. Moreover, despite the fact that both dinB and umuDC loci are controlled by the SOS response, their constitutive and induced levels of expression are dramatically different. In noninduced cells, Pol V is undetectable by Western analysis. In contrast, it is estimated that there are about 250 copies of Pol IV per cell. On SOS induction, it is believed that only about 15 molecules of Pol V are assembled per cell (S. Sommer, personal communication), whereas Pol IV levels reach approximately 2500 molecules. In fact, despite extensive knowledge of the individual enzymatic properties of all five E. coli DNA polymerases, much more work is needed to understand how their activities are orchestrated within a living cell.
Collapse
Affiliation(s)
- Robert P Fuchs
- Cancérogenèse et Mutagenèse Moléculaire et Structurale, CNRS ESBS, 67400 Strasbourg, France
| | | | | |
Collapse
|
50
|
Viguera E, Petranovic M, Zahradka D, Germain K, Ehrlich DS, Michel B. Lethality of bypass polymerases in Escherichia coli cells with a defective clamp loader complex of DNA polymerase III. Mol Microbiol 2003; 50:193-204. [PMID: 14507374 DOI: 10.1046/j.1365-2958.2003.03658.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli DNA polymerase III (Pol III) is one of the best studied replicative DNA polymerases. Here we report the properties of an E. coli mutant that lacks one of the subunits of the Pol III clamp loader complex, Psi (psi), as a result of the complete inactivation of the holD gene. We show that, in this mutant, chronic induction of the SOS response in a RecFOR-dependent way leads to lethality at high temperature. The SOS-induced proteins that are lethal in the holD mutant are the specialized DNA polymerases Pol II and Pol IV, combined with the division inhibitor SfiA. Prevention of SOS induction or inactivation of Pol II, Pol IV and SfiA encoding genes allows growth of the holD mutant, although at a reduced rate compared to a wild-type cell. In contrast, the SOS-induced Pol V DNA polymerase does not participate to the lethality of the holD mutant. We conclude that: (i) Psi is essential for efficient replication of the E. coli chromosome; (ii) SOS-induction of specialized DNA polymerases can be lethal in cells in which the replicative polymerase is defective, and (iii) specialized DNA polymerases differ in respect to their access to inactivated replication forks.
Collapse
Affiliation(s)
- Enrique Viguera
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | | | | | | | | | | |
Collapse
|