1
|
Disruption of the tagF Orthologue in the epa Locus Variable Region of Enterococcus faecalis Causes Cell Surface Changes and Suppresses an eep-Dependent Lysozyme Resistance Phenotype. J Bacteriol 2022; 204:e0024722. [PMID: 36094307 PMCID: PMC9578411 DOI: 10.1128/jb.00247-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The disease-producing capacity of the opportunistic pathogen Enterococcus faecalis is enhanced by the ability of the bacterium to evade killing by antimicrobial agents. Survival of E. faecalis in the presence of the human antimicrobial enzyme lysozyme is mediated in part by the site 2 metalloprotease Eep; however, a complete model of enterococcal lysozyme resistance has not been elucidated. To better understand the molecular basis for lysozyme resistance in E. faecalis, we analyzed Δeep suppressor mutants that acquire resistance to lysozyme through mutation of the gene OG1RF_11713, a predicted teichoic acid biosynthesis-encoding gene located within the variable region of the enterococcal polysaccharide antigen (epa) locus. Sequence comparisons revealed that OG1RF_11713 is most similar to the cytidine-5'-diphosphate (CDP)-glycerol:poly-(glycerolphosphate)glycerophosphotransferase TagF from Staphylococcus epidermidis. Inactivation of OG1RF_11713 in both the wild-type and Δeep genetic backgrounds was sufficient to increase the resistance of E. faecalis OG1RF to lysozyme. Minimal amounts of N-acetylgalactosamine were detectable in cell wall carbohydrate extracts of OG1RF_11713 deletion mutants, and this was associated with a reduction in negative cell surface charge. Targeted disruption of OG1RF_11713 was also associated with increased susceptibility to the antibiotic polymyxin B and membrane-targeting detergents and decreased susceptibility to the lantibiotic nisin. This work implicates OG1RF_11713 as a major determinant of cell envelope integrity and provides further validation that lysozyme resistance is intrinsically linked to the modification of enterococcal cell wall polysaccharides. IMPORTANCE Enterococcus faecalis is a leading cause of health-care-associated infections for which there are limited treatment options. E. faecalis is resistant to several antibiotics and to high concentrations of the human antimicrobial enzyme lysozyme. The molecular mechanisms that mediate lysozyme resistance in E. faecalis are complex and remain incompletely characterized. This work demonstrates that a gene located within the variable region of the enterococcal polysaccharide antigen locus of E. faecalis strain OG1RF (OG1RF_11713), which is predicted to encode a component of the teichoic acid biosynthesis machinery, is part of the lysozyme resistance circuitry and is important for enterococcal cell wall integrity. These findings suggest that OG1RF_11713 is a potential target for new therapeutic strategies to combat enterococcal infections.
Collapse
|
2
|
Campylobacter jejuni Developed the Resistance to Bacteriophage CP39 by Phase Variable Expression of 06875 Encoding the CGPTase. Viruses 2022; 14:v14030485. [PMID: 35336892 PMCID: PMC8949473 DOI: 10.3390/v14030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage (phage) is regarded as an antimicrobial alternative for Campylobacter in food production. However, the development of phage resistance to the host is a main concern for the phage application. This study characterized the phage CP39 and investigated the phage resistance of CP39 in Campylobacter jejuni NCTC12662. We determined that phage CP39 belonged to the Myoviridae family by the WGS and phylogenetic analysis. Phage CP39 was confirmed as a capsular polysaccharide (CPS)-dependent phage by primary C. jejuni phage typing. It was further confirmed that the phage could not be adsorbed by the acapsular mutant ΔkpsM but showed the same lytic ability in both the wild-type strain NCTC 12662 and the ΔmotA mutant lacking motile flagella filaments. We further determined that the 06875 gene encoding CDP-glycerol:poly (glycerophosphate) glycerophosphotransferase (CGPTase) in the CPS loci was related to phage CP39 adsorption by SNP analysis and observed a rapid development of phage resistance in NCTC 12662 during the phage infection. Furthermore, we observed a high mutation frequency of 06875 (32%), which randomly occurred in nine different sites in the gene according to colony PCR sequencing. The mutation of the 06875 gene could cause the phase variable expression of non-functional protein and allow the bacteria against the phage infection by modifying the CPS. Our study confirmed the 06875 gene responsible for the CPS-phage adsorption for the first time and demonstrated the phase variable expression as a main mechanism for the bacteria to defend phage CP39. Our study provided knowledge for the evolutionary adaption of bacteria against the bacteriophage, which could add more information to understand the phage resistance mechanism before applying in the industry.
Collapse
|
3
|
LytR-CpsA-Psr Glycopolymer Transferases: Essential Bricks in Gram-Positive Bacterial Cell Wall Assembly. Int J Mol Sci 2021; 22:ijms22020908. [PMID: 33477538 PMCID: PMC7831098 DOI: 10.3390/ijms22020908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/28/2022] Open
Abstract
The cell walls of Gram-positive bacteria contain a variety of glycopolymers (CWGPs), a significant proportion of which are covalently linked to the peptidoglycan (PGN) scaffolding structure. Prominent CWGPs include wall teichoic acids of Staphylococcus aureus, streptococcal capsules, mycobacterial arabinogalactan, and rhamnose-containing polysaccharides of lactic acid bacteria. CWGPs serve important roles in bacterial cellular functions, morphology, and virulence. Despite evident differences in composition, structure and underlaying biosynthesis pathways, the final ligation step of CWGPs to the PGN backbone involves a conserved class of enzymes-the LytR-CpsA-Psr (LCP) transferases. Typically, the enzymes are present in multiple copies displaying partly functional redundancy and/or preference for a distinct CWGP type. LCP enzymes require a lipid-phosphate-linked glycan precursor substrate and catalyse, with a certain degree of promiscuity, CWGP transfer to PGN of different maturation stages, according to in vitro evidence. The prototype attachment mode is that to the C6-OH of N-acetylmuramic acid residues via installation of a phosphodiester bond. In some cases, attachment proceeds to N-acetylglucosamine residues of PGN-in the case of the Streptococcus agalactiae capsule, even without involvement of a phosphate bond. A novel aspect of LCP enzymes concerns a predicted role in protein glycosylation in Actinomyces oris. Available crystal structures provide further insight into the catalytic mechanism of this biologically important class of enzymes, which are gaining attention as new targets for antibacterial drug discovery to counteract the emergence of multidrug resistant bacteria.
Collapse
|
4
|
Budde I, Litschko C, Führing JI, Gerardy-Schahn R, Schubert M, Fiebig T. An enzyme-based protocol for cell-free synthesis of nature-identical capsular oligosaccharides from Actinobacillus pleuropneumoniae serotype 1. J Biol Chem 2020; 295:5771-5784. [PMID: 32152227 PMCID: PMC7186170 DOI: 10.1074/jbc.ra120.012961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/09/2020] [Indexed: 11/06/2022] Open
Abstract
Actinobacillus pleuropneumoniae (App) is the etiological agent of acute porcine pneumonia and responsible for severe economic losses worldwide. The capsule polymer of App serotype 1 (App1) consists of [4)-GlcNAc-β(1,6)-Gal-α-1-(PO4-] repeating units that are O-acetylated at O-6 of the GlcNAc. It is a major virulence factor and was used in previous studies in the successful generation of an experimental glycoconjugate vaccine. However, the application of glycoconjugate vaccines in the animal health sector is limited, presumably because of the high costs associated with harvesting the polymer from pathogen culture. Consequently, here we exploited the capsule polymerase Cps1B of App1 as an in vitro synthesis tool and an alternative for capsule polymer provision. Cps1B consists of two catalytic domains, as well as a domain rich in tetratricopeptide repeats (TPRs). We compared the elongation mechanism of Cps1B with that of a ΔTPR truncation (Cps1B-ΔTPR). Interestingly, the product profiles displayed by Cps1B suggested processive elongation of the nascent polymer, whereas Cps1B-ΔTPR appeared to work in a more distributive manner. The dispersity of the synthesized products could be reduced by generating single-action transferases and immobilizing them on individual columns, separating the two catalytic activities. Furthermore, we identified the O-acetyltransferase Cps1D of App1 and used it to modify the polymers produced by Cps1B. Two-dimensional NMR analyses of the products revealed O-acetylation levels identical to those of polymer harvested from App1 culture supernatants. In conclusion, we have established a protocol for the pathogen-free in vitro synthesis of tailored, nature-identical App1 capsule polymers.
Collapse
Affiliation(s)
- Insa Budde
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany
| | - Christa Litschko
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany
| | - Jana I Führing
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany; Fraunhofer International Consortium for Anti-Infective Research (iCAIR), 30625 Hannover, Germany
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany; Fraunhofer International Consortium for Anti-Infective Research (iCAIR), 30625 Hannover, Germany
| | - Mario Schubert
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany.
| |
Collapse
|
5
|
Amparo TR, Rodrigues IV, Seibert JB, Almeida TC, Cabral VAR, Vieira PMDA, Brandão GC, Oliveira MLGD, Silva GND, Santos ODHD, Vieira Filho SA, Teixeira LFM, Souza GHBD. Antibacterial substances from leaves of Protium spruceanum (Burseraceae): in vitro and in silico evaluation. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902020000118474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
6
|
Seibert JB, Viegas JSR, Almeida TC, Amparo TR, Rodrigues IV, Lanza JS, Frézard FJG, Soares RDOA, Teixeira LFM, de Souza GHB, Vieira PMA, Barichello JM, Dos Santos ODH. Nanostructured Systems Improve the Antimicrobial Potential of the Essential Oil from Cymbopogon densiflorus Leaves. JOURNAL OF NATURAL PRODUCTS 2019; 82:3208-3220. [PMID: 31815454 DOI: 10.1021/acs.jnatprod.8b00870] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The physicochemical characteristics of nanostructured suspensions are important prerequisites for the success of new drug development. This work aimed to develop nanometric systems containing Cymbopogon densiflorus leaf essential oil and to evaluate their antimicrobial activity. The essential oil was isolated by hydrodistillation from leaves and analyzed by GC-MS. The main constituents were found to be trans-p-mentha-2,8-dien-1-ol, cis-p-mentha-2,8-dien-1-ol, trans-p-mentha-1(7),8-dien-2-ol, cis-piperitol, and cis-p-mentha-1(7),8-dien-2-ol. In silico prediction analysis suggested that this oil possesses antimicrobial potential and the main mechanism of action might be the peptidoglycan glycosyltransferase inhibition. Nanoemulsions were prepared by the phase inversion method, and liposomes were made by the film hydration method. Qualitative evaluation of the antimicrobial activity was performed by the diffusion disk assay with 24 microorganisms; all of them were found to be sensitive to the essential oil. Subsequently, this property was quantified by the serial microdilution technique, where the nanoformulations demonstrated improved activity in comparison with the free oil. Bactericidal action was tested by the propidium iodide method, which revealed that free essential oil and nanoemulsion increased cytoplasmic membrane permeability, while no difference was observed between negative control and liposome. These results were confirmed by images obtained using transmission electron microscopy. This study has shown an optimization in the antimicrobial activity of C. densiflorus essential oil by a nanoemulsion and a liposomal formulation of the active substances.
Collapse
Affiliation(s)
- Janaína B Seibert
- Departamento de Farmácia , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Juliana S R Viegas
- Departamento de Farmácia , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Tamires C Almeida
- Departamento de Farmácia , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Tatiane R Amparo
- Departamento de Farmácia , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Ivanildes V Rodrigues
- Departamento de Farmácia , Universidade Federal de Juiz de Fora , Governador Valadares , 36010-041 , Brazil
| | - Juliane S Lanza
- Departamento de Fisiologia e Biofísica , Universidade Federal de Minas Gerais , Belo Horizonte , 30150-260 , Brazil
| | - Frédéric J G Frézard
- Departamento de Fisiologia e Biofísica , Universidade Federal de Minas Gerais , Belo Horizonte , 30150-260 , Brazil
| | - Rodrigo D O A Soares
- Núcleo de Pesquisas em Ciências Biológicas , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Luiz Fernando M Teixeira
- Departamento de Análises Clínicas , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Gustavo H B de Souza
- Departamento de Farmácia , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Paula M A Vieira
- Departamento de Ciências Biológicas , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - José M Barichello
- Departamento de Farmácia , Universidade Federal de Pelotas , Pelotas , 96020-000 , Brazil
| | - Orlando D H Dos Santos
- Departamento de Farmácia , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| |
Collapse
|
7
|
Structure and Mechanism of LcpA, a Phosphotransferase That Mediates Glycosylation of a Gram-Positive Bacterial Cell Wall-Anchored Protein. mBio 2019; 10:mBio.01580-18. [PMID: 30782654 PMCID: PMC6381275 DOI: 10.1128/mbio.01580-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In Gram-positive bacteria, the conserved LCP family enzymes studied to date are known to attach glycopolymers, including wall teichoic acid, to the cell envelope. It is unknown if these enzymes catalyze glycosylation of surface proteins. We show here in the actinobacterium Actinomyces oris by X-ray crystallography and biochemical analyses that A. oris LcpA is an LCP homolog, possessing pyrophosphatase and phosphotransferase activities known to belong to LCP enzymes that require conserved catalytic Arg residues, while harboring a unique disulfide bond critical for protein stability. Importantly, LcpA mediates glycosylation of the surface protein GspA via phosphotransferase activity. Our studies provide the first experimental evidence of an archetypal LCP enzyme that promotes glycosylation of a cell wall-anchored protein in Gram-positive bacteria. The widely conserved LytR-CpsA-Psr (LCP) family of enzymes in Gram-positive bacteria is known to attach glycopolymers, including wall teichoic acid, to the cell envelope. However, it is undetermined if these enzymes are capable of catalyzing glycan attachment to surface proteins. In the actinobacterium Actinomyces oris, an LCP homolog here named LcpA is genetically linked to GspA, a glycoprotein that is covalently attached to the bacterial peptidoglycan by the housekeeping sortase SrtA. Here we show by X-ray crystallography that LcpA adopts an α-β-α structural fold, akin to the conserved LCP domain, which harbors characteristic catalytic arginine residues. Consistently, alanine substitution for these residues, R149 and R266, abrogates GspA glycosylation, leading to accumulation of an intermediate form termed GspALMM, which is also observed in the lcpA mutant. Unlike other LCP proteins characterized to date, LcpA contains a stabilizing disulfide bond, mutations of which severely affect LcpA stability. In line with the established role of disulfide bond formation in oxidative protein folding in A. oris, deletion of vkor, coding for the thiol-disulfide oxidoreductase VKOR, also significantly reduces LcpA stability. Biochemical studies demonstrated that the recombinant LcpA enzyme possesses pyrophosphatase activity, enabling hydrolysis of diphosphate bonds. Furthermore, this recombinant enzyme, which weakly interacts with GspA in solution, catalyzes phosphotransfer to GspALMM. Altogether, the findings support that A. oris LcpA is an archetypal LCP enzyme that glycosylates a cell wall-anchored protein, a process that may be conserved in Actinobacteria, given the conservation of LcpA and GspA in these high-GC-content organisms.
Collapse
|
8
|
Arioli S, Eraclio G, Della Scala G, Neri E, Colombo S, Scaloni A, Fortina MG, Mora D. Role of Temperate Bacteriophage ϕ20617 on Streptococcus thermophilus DSM 20617 T Autolysis and Biology. Front Microbiol 2018; 9:2719. [PMID: 30473689 PMCID: PMC6237837 DOI: 10.3389/fmicb.2018.02719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022] Open
Abstract
Streptococcus thermophilus DSM 20167T showed autolytic behavior when cultured in lactose- and sucrose-limited conditions. The amount of cell lysis induced was inversely related to the energetic status of the cells, as demonstrated by exposing cells to membrane-uncoupling and glycolysis inhibitors. Genome sequence analysis of strain DSM 20617T revealed the presence of a pac-type temperate bacteriophage, designated Φ20617, whose genomic organization and structure resemble those of temperate streptococcal bacteriophages. The prophage integrated at the 3'-end of the gene encoding the glycolytic enzyme enolase (eno), between eno and the lipoteichoic acid synthase-encoding gene ltaS, affecting their transcription. Comparative experiments conducted on the wild-type strain and a phage-cured derivative strain revealed that the cell-wall integrity of the lysogenic strain was compromised even in the absence of detectable cell lysis. More importantly, adhesion to solid surfaces and heat resistance were significantly higher in the lysogenic strain than in the phage-cured derivative. The characterization of the phenotype of a lysogenic S. thermophilus and its phage-cured derivative is relevant to understanding the ecological constraints that drive the stable association between a temperate phage and its bacterial host.
Collapse
Affiliation(s)
- Stefania Arioli
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Giovanni Eraclio
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy.,Sacco Srl, Cadorago, Italy
| | - Giulia Della Scala
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy.,Sacco Srl, Cadorago, Italy
| | - Eros Neri
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy.,Sacco Srl, Cadorago, Italy
| | - Stefano Colombo
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo, National Research Council, Naples, Italy
| | - Maria Grazia Fortina
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Diego Mora
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Tartaglia NR, Breyne K, Meyer E, Cauty C, Jardin J, Chrétien D, Dupont A, Demeyere K, Berkova N, Azevedo V, Guédon E, Le Loir Y. Staphylococcus aureus Extracellular Vesicles Elicit an Immunostimulatory Response in vivo on the Murine Mammary Gland. Front Cell Infect Microbiol 2018; 8:277. [PMID: 30186772 PMCID: PMC6113362 DOI: 10.3389/fcimb.2018.00277] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a major pathogen responsible for bovine mastitis, the most common and costly disease affecting dairy cattle. S. aureus naturally releases extracellular vesicles (EVs) during its growth. EVs play an important role in the bacteria-bacteria and bacteria-host interactions and are notably considered as nanocarriers that deliver virulence factors to the host tissues. Whether EVs play a role in a mastitis context is still unknown. In this work, we showed that S. aureus Newbould 305 (N305), a bovine mastitis isolate, has the ability to generate EVs in vitro with a designated protein content. Purified S. aureus N305-secreted EVs were not cytotoxic when tested in vitro on MAC-T and PS, two bovine mammary epithelial cell lines. However, they induced the gene expression of inflammatory cytokines at levels similar to those induced by live S. aureus N305. The in vivo immune response to purified S. aureus N305-secreted EVs was tested in a mouse model for bovine mastitis and their immunogenic effect was compared to that of live S. aureus N305, heat-killed S. aureus N305 and to S. aureus lipoteichoic acid (LTA). Clinical and histopathological signs were evaluated and pro-inflammatory and chemotactic cytokine levels were measured in the mammary gland 24 h post-inoculation. Live S. aureus induced a significantly stronger inflammatory response than that of any other condition tested. Nevertheless, S. aureus N305-secreted EVs induced a dose-dependent neutrophil recruitment and the production of a selected set of pro-inflammatory mediators as well as chemokines. This immune response elicited by intramammary S. aureus N305-secreted EVs was comparable to that of heat-killed S. aureus N305 and, partly, by LTA. These results demonstrated that S. aureus N305-secreted EVs induce a mild inflammatory response distinct from the live pathogen after intramammary injection. Overall, our combined in vitro and in vivo data suggest that EVs are worth to be investigated to better understand the S. aureus pathogenesis and are relevant tools to develop strategies against bovine S. aureus mastitis.
Collapse
Affiliation(s)
- Natayme R. Tartaglia
- STLO, INRA, Agrocampus Ouest, Rennes, France
- Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Koen Breyne
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Denis Chrétien
- CNRS, Institut de Génétique et Développement de Rennes - UMR 6290, Université de Rennes, Rennes, France
| | - Aurélien Dupont
- CNRS, INSERM, Biologie, Santé, Innovation Technologique de Rennes - UMS 3480, Université de Rennes, Rennes, France
| | - Kristel Demeyere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Vasco Azevedo
- Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Eric Guédon
- STLO, INRA, Agrocampus Ouest, Rennes, France
| | | |
Collapse
|
10
|
A functional and genetic overview of exopolysaccharides produced by Lactobacillus plantarum. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
11
|
Brault JP, Friesen JA. Characterization of cytidylyltransferase enzyme activity through high performance liquid chromatography. Anal Biochem 2016; 510:26-32. [PMID: 27443959 DOI: 10.1016/j.ab.2016.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 11/26/2022]
Abstract
The cytidylyltransferases are a family of enzymes that utilize cytidine 5'-triphosphate (CTP) to synthesize molecules that are typically precursors to membrane phospholipids. The most extensively studied cytidylyltransferase is CTP:phosphocholine cytidylyltransferase (CCT), which catalyzes conversion of phosphocholine and CTP to cytidine diphosphocholine (CDP-choline), a step critical for synthesis of the membrane phospholipid phosphatidylcholine (PC). The current method used to determine catalytic activity of CCT measures production of radiolabeled CDP-choline from (14)C-labeled phosphocholine. The goal of this research was to develop a CCT enzyme assay that employed separation of non-radioactive CDP-choline from CTP. A C18 reverse phase column with a mobile phase of 0.1 M ammonium bicarbonate (98%) and acetonitrile (2%) (pH 7.4) resulted in separation of solutions of the substrate CTP from the product CDP-choline. A previously characterized truncated version of rat CCTα (denoted CCTα236) was used to test the HPLC enzyme assay by measuring CDP-choline product formation. The Vmax for CCTα236 was 3850 nmol/min/mg and K0.5 values for CTP and phosphocholine were 4.07 mM and 2.49 mM, respectively. The HPLC method was applied to glycerol 3-phosphate cytidylyltransferase (GCT) and CTP:2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase synthetase (CMS), members of the cytidylyltransferase family that produce CDP-glycerol and CDP-methylerythritol, respectively.
Collapse
Affiliation(s)
- James P Brault
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Jon A Friesen
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA.
| |
Collapse
|
12
|
Atila M, Luo Y. Profiling and tandem mass spectrometry analysis of aminoacylated phospholipids in Bacillus subtilis . F1000Res 2016; 5:121. [PMID: 26998233 PMCID: PMC4792211 DOI: 10.12688/f1000research.7842.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 01/13/2023] Open
Abstract
Cationic modulation of the dominantly negative electrostatic structure of phospholipids plays an important role in bacterial response to changes in the environment. In addition to zwitterionic phosphatidylethanolamine, Gram-positive bacteria are also abundant in positively charged lysyl-phosphatidylglycerol. Increased amounts of both types of lipids render Gram-positive bacterial cells more resistant to cationic antibiotic peptides such as defensins. Lysyl and alanyl-phosphatidylglycerol as well as alanyl-cardiolipin have also been studied by mass spectroscopy. Phospholipids modified by other amino acids have been discovered by chemical analysis of the lipid lysate but have yet to be studied by mass spectroscopy. We exploited the high sensitivity of modern mass spectroscopy in searching for substructures in complex mixtures to establish a sensitive and thorough screen for aminoacylated phospholipids. The search for deprotonated aminoacyl anions in lipid extracted from
Bacillus subtilis strain 168 yielded strong evidence as well as relative abundance of aminoacyl-phosphatidylglycerols, which serves as a crude measure of the specificity of aminoacyl-phosphatidylglycerol synthase MprF. No aminoacyl-cardiolipin was found. More importantly, the second most abundant species in this category is D-alanyl-phosphatidylglycerol, suggesting a possible role in the D-alanylation pathway of wall- and lipo-teichoic acids.
Collapse
Affiliation(s)
- Metin Atila
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | - Yu Luo
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
13
|
Purification and characterization of phosphonoglycans from Glycomyces sp. strain NRRL B-16210 and Stackebrandtia nassauensis NRRL B-16338. J Bacteriol 2014; 196:1768-79. [PMID: 24584498 DOI: 10.1128/jb.00036-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two related actinomycetes, Glycomyces sp. strain NRRL B-16210 and Stackebrandtia nassauensis NRRL B-16338, were identified as potential phosphonic acid producers by screening for the gene encoding phosphoenolpyruvate (PEP) mutase, which is required for the biosynthesis of most phosphonates. Using a variety of analytical techniques, both strains were subsequently shown to produce phosphonate-containing exopolysaccharides (EPS), also known as phosphonoglycans. The phosphonoglycans were purified by sequential organic solvent extractions, methanol precipitation, and ultrafiltration. The EPS from the Glycomyces strain has a mass of 40 to 50 kDa and is composed of galactose, xylose, and five distinct partially O-methylated galactose residues. Per-deutero-methylation analysis indicated that galactosyl residues in the polysaccharide backbone are 3,4-linked Gal, 2,4-linked 3-MeGal, 2,3-linked Gal, 3,6-linked 2-MeGal, and 4,6-linked 2,3-diMeGal. The EPS from the Stackebrandtia strain is comprised of glucose, galactose, xylose, and four partially O-methylated galactose residues. Isotopic labeling indicated that the O-methyl groups in the Stackebrandtia phosphonoglycan arise from S-adenosylmethionine. The phosphonate moiety in both phosphonoglycans was shown to be 2-hydroxyethylphosphonate (2-HEP) by (31)P nuclear magnetic resonance (NMR) and mass spectrometry following strong acid hydrolysis of the purified molecules. Partial acid hydrolysis of the purified EPS from Glycomyces yielded 2-HEP in ester linkage to the O-5 or O-6 position of a hexose and a 2-HEP mono(2,3-dihydroxypropyl)ester. Partial acid hydrolysis of Stackebrandtia EPS also revealed the presence of 2-HEP mono(2,3-dihydroxypropyl)ester. Examination of the genome sequences of the two strains revealed similar pepM-containing gene clusters that are likely to be required for phosphonoglycan synthesis.
Collapse
|
14
|
Abstract
Staphylococcus aureus is a facultative anaerobic Gram-positive coccus and a member of the normal skin flora, as well as that of the nasal passages of humans. However, S. aureus can also gain entry into the host and cause life-threatening infections or persist as disease foci that develop into suppurative abscesses. While genetically tractable, the manipulation of S. aureus remains challenging. This unit describes methods developed in our laboratory for gene disruption by allelic replacement and transposition. We also provide a protocol for bacteriophage-mediated transduction of mutants marked with selectable alleles and describe plasmid utilization for complementation studies.
Collapse
Affiliation(s)
- Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois
| | | |
Collapse
|
15
|
Abstract
The peptidoglycan layers of many gram-positive bacteria are densely functionalized with anionic glycopolymers known as wall teichoic acids (WTAs). These polymers play crucial roles in cell shape determination, regulation of cell division, and other fundamental aspects of gram-positive bacterial physiology. Additionally, WTAs are important in pathogenesis and play key roles in antibiotic resistance. We provide an overview of WTA structure and biosynthesis, review recent studies on the biological roles of these polymers, and highlight remaining questions. We also discuss prospects for exploiting WTA biosynthesis as a target for new therapies to overcome resistant infections.
Collapse
Affiliation(s)
- Stephanie Brown
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
16
|
Abstract
The Gram-negative bacterium Actinobacillus pleuropneumoniae is the etiologic agent of porcine contagious pleuropneumoniae, a lethal respiratory infectious disease causing great economic losses in the swine industry worldwide. In order to better interpret the genetic background of serotypic diversity, nine genomes of A. pleuropneumoniae reference strains of serovars 1, 2, 4, 6, 9, 10, 11, 12, and 13 were sequenced by using rapid high-throughput approach. Based on 12 genomes of corresponding serovar reference strains including three publicly available complete genomes (serovars 3, 5b, and 7) of this bacterium, we performed a comprehensive analysis of comparative genomics and first reported a global genomic characterization for this pathogen. Clustering of 26,012 predicted protein-coding genes showed that the pan genome of A. pleuropneumoniae consists of 3,303 gene clusters, which contain 1,709 core genome genes, 822 distributed genes, and 772 strain-specific genes. The genome components involved in the biogenesis of capsular polysaccharide and lipopolysaccharide O antigen relative to serovar diversity were compared, and their genetic diversity was depicted. Our findings shed more light on genomic features associated with serovar diversity of A. pleuropneumoniae and provide broader insight into both pathogenesis research and clinical/epidemiological application against the severe disease caused by this swine pathogen.
Collapse
|
17
|
Lovering AL, Lin LYC, Sewell EW, Spreter T, Brown ED, Strynadka NCJ. Structure of the bacterial teichoic acid polymerase TagF provides insights into membrane association and catalysis. Nat Struct Mol Biol 2010; 17:582-9. [PMID: 20400947 DOI: 10.1038/nsmb.1819] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 03/02/2010] [Indexed: 12/23/2022]
Abstract
Teichoic acid polymers are composed of polyol-phosphate units and form a major component of Gram-positive bacterial cell walls. These anionic compounds perform a multitude of important roles in bacteria and are synthesized by monotopic membrane proteins of the TagF polymerase family. We have determined the structure of Staphylococcus epidermidis TagF to 2.7-A resolution from a construct that includes both the membrane-targeting region and the glycerol-phosphate polymerase domains. TagF possesses a helical region for interaction with the lipid bilayer, placing the active site at a suitable distance for access to the membrane-bound substrate. Characterization of active-site residue variants and analysis of a CDP-glycerol substrate complex suggest a mechanism for polymer synthesis. With the importance of teichoic acid in Gram-positive physiology, this elucidation of the molecular details of TagF function provides a critical new target in the development of novel anti-infectives.
Collapse
|
18
|
Bae T, Glass EM, Schneewind O, Missiakas D. Generating a collection of insertion mutations in the Staphylococcus aureus genome using bursa aurealis. Methods Mol Biol 2008; 416:103-16. [PMID: 18392963 DOI: 10.1007/978-1-59745-321-9_7] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is the leading cause of wound and hospital-acquired infections. The emergence of strains with resistance to all antibiotics has created a serious public health problem. Transposon-based mutagenesis can be used to generate libraries of mutants and to query genomes for factors involved in nonessential pathways, such as virulence and antibiotic resistance. Ideally, such studies should employ defined and complete sets of isogenic mutants and should be conducted so as to permit acquisition and comparison of the complete data sets. Such systematic knowledge can reveal entire pathways and can be exploited for the rational design of therapies. The mariner-based transposon, bursa aurealis, can be used to generate random libraries of mutants in laboratory strains and clinical isolates of S. aureus. This chapter describes a procedure for isolating mutants and mapping the insertion sites on the chromosome.
Collapse
Affiliation(s)
- Taeok Bae
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
19
|
Bhavsar AP, Brown ED. Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms. Mol Microbiol 2007; 60:1077-90. [PMID: 16689786 DOI: 10.1111/j.1365-2958.2006.05169.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the bacterial cell wall has been the subject of decades of investigation, recent studies continue to generate novel and controversial models of its synthesis and assembly. Here we compare and contrast the transcompartmental biosyntheses of peptidoglycan and teichoic acid in Bacillus subtilis. In addition, the current paradigms of B. subtilis wall assembly and structure are distinguished from emerging models of murein insertion and organization. We discuss evidence for the directed, cytoskeleton-dependent insertion of nascent peptidoglycan and the existence of a periplasmic compartment. Furthermore, we summarize the challenges these findings represent to the existing paradigm of murein insertion. Finally, motivated by these new developments, we discuss outstanding issues that remain to be addressed and suggest research directions that may contribute to a better understanding of cell wall assembly in B. subtilis.
Collapse
Affiliation(s)
- Amit P Bhavsar
- Antimicrobial Research Centre and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
20
|
Lu GT, Ma ZF, Hu JR, Tang DJ, He YQ, Feng JX, Tang JL. A novel locus involved in extracellular polysaccharide production and virulence of Xanthomonas campestris pathovar campestris. Microbiology (Reading) 2007; 153:737-746. [PMID: 17322194 DOI: 10.1099/mic.0.2006/001388-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Xanthomonas campestris pathovar campestris (Xcc) is the causal agent of black rot disease in cruciferous plants. The extracellular polysaccharide (EPS) produced by Xcc is an important pathogenicity factor and also has a range of industrial uses. In preliminary work a number of transposon-mediated insertion mutants in Xcc with defects in EPS production were identified. Here, one of these mutated loci was investigated in detail. Six ORFs within the locus (ORFs XC3811-3816) were disrupted by plasmid integration. Mutation of XC3813, XC3814 or XC3815 resulted in significantly reduced EPS production and significantly reduced virulence on the host plant Chinese radish (Raphanus sativus). The EPS production and virulence of XC3813, XC3814 and XC3815 mutants could be restored by intact XC3813, XC3814 and XC3815 genes, respectively, when provided in trans. Although bioinformatic analysis suggested a role for XC3814 and XC3815 in lipopolysaccharide biosynthesis, the lipopolysaccharides produced by the mutants were indistinguishable from those of the wild-type, as judged by electrophoretic mobility in SDS-polyacrylamide gels. These results reveal that XC3813, XC3814 and XC3815 comprise a novel gene cluster involved in EPS production and virulence of Xcc.
Collapse
Affiliation(s)
- Guang-Tao Lu
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Zeng-Feng Ma
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jiang-Ru Hu
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Dong-Jie Tang
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Yong-Qiang He
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jia-Xun Feng
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Ji-Liang Tang
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| |
Collapse
|
21
|
Freymond PP, Lazarevic V, Soldo B, Karamata D. Poly(glucosyl-N-acetylgalactosamine 1-phosphate), a wall teichoic acid of Bacillus subtilis 168: its biosynthetic pathway and mode of attachment to peptidoglycan. Microbiology (Reading) 2006; 152:1709-1718. [PMID: 16735734 DOI: 10.1099/mic.0.28814-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ggaAB operon of Bacillus subtilis 168 encodes enzymes responsible for the synthesis of poly(glucosyl N-acetylgalactosamine 1-phosphate) [poly(GlcGalNAc 1-P)], a wall teichoic acid (WTA). Analysis of the nucleotide sequence revealed that both GgaA and GgaB contained the motif characteristic of sugar transferases, while GgaB was most likely to be bifunctional, being endowed with an additional motif present in glucosyl/glycerophosphate transferases. Transcription of the operon was thermosensitive, and took place from an unusually distant σ
A-controlled promoter. The incorporation of the poly(GlcGalNAc 1-P) precursors by various mutants deficient in the synthesis of poly(glycerol phosphate), which is the most abundant WTA of strain 168, revealed that both WTAs were most likely to be attached to peptidoglycan (PG) through the same linkage unit (LU). The incorporation of poly(GlcGalNAc 1-P) precursors by protoplasts confirmed the existence of this LU, and provided further evidence that incorporation takes place at the outer surface of the protoplast membrane. The data presented here strengthen the view that biosynthesis of the LU, and the hooking of the LU-endowed polymer to PG, offer distinct widespread targets for antibiotics specific to Gram-positive bacteria.
Collapse
Affiliation(s)
- Pierre-Philippe Freymond
- Département de Microbiologie Fondamentale, Bâtiment Biophore, Université de Lausanne, Quartier UNIL-Sorge, CH-1015 Lausanne, Switzerland
| | - Vladimir Lazarevic
- Département de Microbiologie Fondamentale, Bâtiment Biophore, Université de Lausanne, Quartier UNIL-Sorge, CH-1015 Lausanne, Switzerland
| | - Blazenka Soldo
- Département de Microbiologie Fondamentale, Bâtiment Biophore, Université de Lausanne, Quartier UNIL-Sorge, CH-1015 Lausanne, Switzerland
| | - Dimitri Karamata
- Département de Microbiologie Fondamentale, Bâtiment Biophore, Université de Lausanne, Quartier UNIL-Sorge, CH-1015 Lausanne, Switzerland
| |
Collapse
|
22
|
Tam C, Glass EM, Anderson DM, Missiakas D. Transposon mutagenesis of Bacillus anthracis strain Sterne using Bursa aurealis. Plasmid 2006; 56:74-7. [PMID: 16530833 DOI: 10.1016/j.plasmid.2006.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 01/27/2006] [Accepted: 01/30/2006] [Indexed: 11/22/2022]
Abstract
Bacillus anthracis, a spore forming Gram-positive microbe, is the causative agent of anthrax. Although plasmid encoded factors such as lethal toxin (LeTx), edema toxin (EdTx), and gamma-poly-d-glutamic acid (PGA) capsule are known to be required for disease pathogenesis, B. anthracis genes that enable spore invasion, phagosomal escape and macrophage replication are still unknown. To establish transposon mutagenesis as a tool for the characterization of anthrax genes, we employed the mariner-based mini-transposon Bursa aurealis in B. anthracis strain Sterne 7702. B. aurealis carrying an erythromycin resistance cassette and its cognate transposase were delivered by transformation of two plasmids. B. aurealis transposition can be selected for by temperature shift to prevent plasmid replication and by screening colonies for erythromycin resistance. Using inverse polymerase chain reaction, DNA fragments of 129 random erythromycin-resistant transposon mutants were amplified and submitted to DNA sequence analysis. These studies demonstrate that B. aurealis inserts randomly into the genome of B. anthracis and can therefore be employed for finding genes involved in virulence.
Collapse
Affiliation(s)
- Christina Tam
- Department of Microbiology, The University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
23
|
Makris G, Wright JD, Ingham E, Holland KT. The hyaluronate lyase of Staphylococcus aureus - a virulence factor? MICROBIOLOGY-SGM 2004; 150:2005-2013. [PMID: 15184586 DOI: 10.1099/mic.0.26942-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hyaluronate lyase (HL) gene of Staphylococcus aureus 8325-4 (hysA) was inactivated in vitro with the insertion of the erythromycin determinant, ermC, from plasmid pE194. The hysA : : ermC mutation was introduced into S. aureus via a temperature-sensitive shuttle vector, where it underwent homologous recombination with the wild-type (w.t.) allele. The insertion of ermC in the chromosomal hysA locus was confirmed by Southern blot hybridization and the loss of HL activity was demonstrated macroscopically by a plate assay. The importance of HL for pathogenicity was assessed by comparing the virulence of the HL(-) mutant strain to that of the w.t. in an established mouse abscess model of S. aureus infection. A significantly higher cell recovery was obtained from lesions infected with the w.t. strain compared to the lesions infected with the HL(-) strain (P =0.01). Although the lesion areas from both groups were not significantly different (P=0.9) they were of different morphology. A colorimetric assay was used to measure HL activity from culture supernatants of the S. aureus 8325-4 strains w.t., WA250 (agr) and PC1839 (sar) grown in a chemically defined medium. HL activity reached a maximum in the w.t. strain during mid-exponential phase (t=5 h) and while it showed a 16-fold decrease in the agr mutant it increased 35-fold in the sar mutant background. These results strongly suggest that HL is a virulence factor which is important in the early stages of subcutaneous infections.
Collapse
Affiliation(s)
- George Makris
- School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | - John D Wright
- School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | - Eileen Ingham
- School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | - Keith T Holland
- School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
24
|
Bae T, Banger AK, Wallace A, Glass EM, Aslund F, Schneewind O, Missiakas DM. Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci U S A 2004; 101:12312-7. [PMID: 15304642 PMCID: PMC514475 DOI: 10.1073/pnas.0404728101] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Indexed: 02/08/2023] Open
Abstract
Staphylococcus aureus is the leading cause of wound and hospital-acquired infections worldwide. The emergence of S. aureus strains with resistance to multiple antibiotics requires the identification of bacterial virulence genes and the development of novel therapeutic strategies. Herein, bursa aurealis, a mariner-based transposon, was used for random mutagenesis and for the isolation of 10,325 S. aureus variants with defined insertion sites. By screening for loss-of-function mutants in a Caenorhabditis elegans killing assay, 71 S. aureus virulence genes were identified. Some of these genes are also required for S. aureus abscess formation in a murine infection model.
Collapse
Affiliation(s)
- Taeok Bae
- Committee on Microbiology and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Schertzer JW, Brown ED. Purified, recombinant TagF protein from Bacillus subtilis 168 catalyzes the polymerization of glycerol phosphate onto a membrane acceptor in vitro. J Biol Chem 2003; 278:18002-7. [PMID: 12637499 DOI: 10.1074/jbc.m300706200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the first characterization of a recombinant protein involved in the polymerization of wall teichoic acid. Previously, a study of the teichoic acid polymerase activity associated with membranes from Bacillus subtilis 168 strains bearing thermosensitive mutations in tagB, tagD, and tagF implicated TagF as the poly(glycerol phosphate) polymerase (Pooley, H. M., Abellan, F. X., and Karamata, D. (1992) J. Bacteriol. 174, 646-649). In the work reported here, we have demonstrated an unequivocal role for tagF in the thermosensitivity of one such mutant (tagF1) by conditional complementation at the restrictive temperature with tagF under control of the xylose promoter at the amyE locus. We have overexpressed and purified recombinant B. subtilis TagF protein, and we provide direct biochemical evidence that this enzyme is responsible for polymerization of poly(glycerol phosphate) teichoic acid in B. subtilis 168. Recombinant hexahistidine-tagged TagF protein was purified from Escherichia coli and was used to develop a novel membrane pelleting assay to monitor poly(glycerol phosphate) polymerase activity. Purified TagF was shown to incorporate radioactivity from its substrate CDP-[(14)C]glycerol into a membrane fraction in vitro. This activity showed a saturable dependence on the concentration of CDP-glycerol (K(m) of 340 microm) and the membrane acceptor (half-maximal activity at 650 microg of protein/ml of purified B. subtilis membranes). High pressure liquid chromatography analysis confirmed the polymeric nature of the reaction product, approximately 35 glycerol phosphate units in length.
Collapse
Affiliation(s)
- Jeffrey W Schertzer
- Antimicrobial Research Centre, the Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | |
Collapse
|
26
|
Badurina DS, Zolli-Juran M, Brown ED. CTP:glycerol 3-phosphate cytidylyltransferase (TarD) from Staphylococcus aureus catalyzes the cytidylyl transfer via an ordered Bi-Bi reaction mechanism with micromolar K(m) values. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1646:196-206. [PMID: 12637027 DOI: 10.1016/s1570-9639(03)00019-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CTP:glycerol 3-phosphate cytidylyltransferase catalyzes the formation of CDP-glycerol, an activated form of glycerol 3-phosphate and key precursor to wall teichoic acid biogenesis in Gram-positive bacteria. There is high sequence identity (69%) between the CTP:glycerol 3-phosphate cytidylyltransferases from Bacillus subtilis 168 (TagD) and Staphylococcus aureus (TarD). The B. subtilis TagD protein was shown to catalyze cytidylyltransferase via a random mechanism with millimolar K(m) values for both CTP and glycerol 3-phosphate [J. Biol. Chem. 268, (1993) 16648] and exhibited negative cooperativity in the binding of substrates but not in catalysis [J. Biol. Chem. 276, (2001) 37922]. In the work described here on the S. aureus TarD protein, we have elucidated a steady state kinetic mechanism that is markedly different from that determined for B. subtilis TagD. Steady state kinetic experiments with recombinant, purified TarD employed a high-performance liquid chromatography assay developed in this work. The data were consistent with a ternary complex model. The K(m) values for CTP and glycerol 3-phosphate were 36 and 21 microM, respectively, and the k(cat) was 2.6 s(-1). Steady state kinetic analysis of the reverse (pyrophosphorylase) reaction was also consistent with a ternary complex model. Product inhibition studies indicated an ordered Bi-Bi reaction mechanism where glycerol 3-phosphate was the leading substrate and the release of CDP-glycerol preceded that of pyrophosphate. Finally, we investigated the capacity of S. aureus tarD to substitute for tagD in B. subtilis. The tarD gene was placed under control of the xylose promoter in a B. subtilis 168 mutant defective in tagD (temperature-sensitive, tag-12). Growth of the resulting strain at the restrictive temperature (47 degrees C) was shown to be xylose-dependent.
Collapse
Affiliation(s)
- David S Badurina
- Antimicrobial Research Centre, Department of Biochemistry, McMaster University, Room 4H2, 1200 Main St. West, Hamilton, Ontario, Canada L8N 3Z5
| | | | | |
Collapse
|
27
|
Bhavsar AP, Beveridge TJ, Brown ED. Precise deletion of tagD and controlled depletion of its product, glycerol 3-phosphate cytidylyltransferase, leads to irregular morphology and lysis of Bacillus subtilis grown at physiological temperature. J Bacteriol 2001; 183:6688-93. [PMID: 11673441 PMCID: PMC95502 DOI: 10.1128/jb.183.22.6688-6693.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a previously reported conditional expression system for use in Bacillus subtilis (A. P. Bhavsar, X. Zhao, and E. D. Brown, Appl. Environ. Microbiol. 67:403-410, 2001), we report the first precise deletion of a teichoic acid biosynthesis (tag) gene, tagD, in B. subtilis. This teichoic acid mutant showed a lethal phenotype when characterized at a physiological temperature and in a defined genetic background. This tagD mutant was subject to full phenotypic rescue upon expression of the complementing copy of tagD. Depletion of the tagD gene product (glycerol 3-phosphate cytidylyltransferase) via modulated expression of tagD from the amyE locus revealed structural defects centered on shape, septation, and division. Thickening of the wall and ultimately lysis followed these events.
Collapse
Affiliation(s)
- A P Bhavsar
- Antimicrobial Research Centre, Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | | | |
Collapse
|