1
|
Chen C, Zheng Y, Gao T, Chen M, Dong K, Shen L, Bai Y, Zhang L. Structure and function of the uracil DNA glycosylases from hyperthermophiles: Elucidating DNA uracil repair mechanisms: A review. Int J Biol Macromol 2025; 299:140137. [PMID: 39842587 DOI: 10.1016/j.ijbiomac.2025.140137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Base deamination can lead to DNA base damage, among which cytosine deamination to uracil occurs frequently. Before repair, replication of uracil in DNA will generate GC → AT transversion mutation. Since base deamination is accelerated by high temperature, genomic DNA stability of hyperthermophiles, which grow optimally above 75 °C, is facing a severe threat by the elevated base deamination created by their living high temperature environments. To counteract its potentially harmful effect, cells have employed several pathways for DNA uracil repair, among which base excision repair (BER) is one of major pathways. Uracil DNA glycosylase (UDG) is the first enzyme that initiates BER by excising uracil from DNA. Based on their sequence similarities, UDGs have been divided into six families, among which families IV and V members are predominantly found in hyperthermophiles. Besides, two novel UDGs have been reported from hyperthermophiles. Generally, UDGs from hyperthermophiles exhibit biochemical and structural characteristics distinct from other family UDG members, thereby enriching functional diversity of UDGs. Herein, we have reviewed structure and function of UDGs from hyperthermophiles to provide insights into DNA uracil repair mechanisms, focusing on difference between UDGs from various hyperthermophiles, and difference between archaeal UDGs and bacterial homologs.
Collapse
Affiliation(s)
- Cai Chen
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Yaqi Zheng
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Tian Gao
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Min Chen
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Kunming Dong
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Li Shen
- The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese, Western Medicine in Senile Diseases Control, Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China.
| | - Yanchao Bai
- College of Environmental Science and Engineering, Yangzhou University, China.
| | - Likui Zhang
- College of Environmental Science and Engineering, Yangzhou University, China.
| |
Collapse
|
2
|
Wu M, Lin T, Dong K, Gong Y, Liu X, Zhang L. Biochemical characterization and mechanistic insight of the family IV uracil DNA glycosylase from Sulfolobus islandicus REY15A. Int J Biol Macromol 2023; 230:123222. [PMID: 36639072 DOI: 10.1016/j.ijbiomac.2023.123222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
Uracil DNA glycosylase (UDG) can remove uracil from DNA, thus playing an essential role in maintaining genomic stability. Family IV UDG members are mostly widespread in hyperthermophilic Archaea and bacteria. In this work, we characterized the family IV UDG from the hyperthermophilic crenarchaeon Sulfolobus islandicus REY15A (Sis-UDGIV) biochemically, and dissected the roles of nine conserved residues in uracil excision by mutational analyses. Biochemical data demonstrate that Sis-UDGIV displays maximum efficiency for uracil excision at 50 °C ~ 70 °C and at pH 7.0-9.0. Additionally, the enzyme has displays a weak activity without a divalent metal ion, but maximum activity with Mg2+. Our mutational analyses show that residues E48 and F55 in Sis-UDGIV are essential for uracil removal, and residues E48, F55, R87, R92 and K146 are responsible for binding DNA. Importantly, we systemically revealed the roles of four conserved cysteine residues C14, C17, C86 and C102 in Sis-UDGIV that are required for being ligands of FeS cluster in maintaining the overall protein conformation and stability by circular dichroism analyses. Overall, our work has provided insights into biochemical function and DNA-binding specificity of archaeal family IV UDGs.
Collapse
Affiliation(s)
- Mai Wu
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Tan Lin
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Kunming Dong
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Yong Gong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Xipeng Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, China
| | - Likui Zhang
- College of Environmental Science and Engineering, Yangzhou University, China; Guangling College, Yangzhou University, China.
| |
Collapse
|
3
|
Pauleta SR, Grazina R, Carepo MS, Moura JJ, Moura I. Iron-sulfur clusters – functions of an ancient metal site. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:105-173. [DOI: 10.1016/b978-0-12-823144-9.00116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Wang L, Lin T, Oger P, Gong Y, Zhang L. Biochemical Characterization and Mutational Analysis of a Mismatch Glycosylase From the Hyperthermophilic Euryarchaeon Thermococcus barophilus Ch5. DNA Repair (Amst) 2022; 114:103321. [DOI: 10.1016/j.dnarep.2022.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/26/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
|
5
|
Trasviña-Arenas CH, Demir M, Lin WJ, David SS. Structure, function and evolution of the Helix-hairpin-Helix DNA glycosylase superfamily: Piecing together the evolutionary puzzle of DNA base damage repair mechanisms. DNA Repair (Amst) 2021; 108:103231. [PMID: 34649144 DOI: 10.1016/j.dnarep.2021.103231] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
The Base Excision Repair (BER) pathway is a highly conserved DNA repair system targeting chemical base modifications that arise from oxidation, deamination and alkylation reactions. BER features lesion-specific DNA glycosylases (DGs) which recognize and excise modified or inappropriate DNA bases to produce apurinic/apyrimidinic (AP) sites and coordinate AP-site hand-off to subsequent BER pathway enzymes. The DG superfamilies identified have evolved independently to cope with a wide variety of nucleobase chemical modifications. Most DG superfamilies recognize a distinct set of structurally related lesions. In contrast, the Helix-hairpin-Helix (HhH) DG superfamily has the remarkable ability to act upon structurally diverse sets of base modifications. The versatility in substrate recognition of the HhH-DG superfamily has been shaped by motif and domain acquisitions during evolution. In this paper, we review the structural features and catalytic mechanisms of the HhH-DG superfamily and draw a hypothetical reconstruction of the evolutionary path where these DGs developed diverse and unique enzymatic features.
Collapse
Affiliation(s)
| | - Merve Demir
- Department of Chemistry, University of California, Davis, CA 95616, U.S.A
| | - Wen-Jen Lin
- Department of Chemistry, University of California, Davis, CA 95616, U.S.A
| | - Sheila S David
- Department of Chemistry, University of California, Davis, CA 95616, U.S.A..
| |
Collapse
|
6
|
Bażlekowa M, Adamczyk-Popławska M, Kwiatek A. Characterization of Vsr endonucleases from Neisseria meningitidis. MICROBIOLOGY-SGM 2017; 163:1003-1015. [PMID: 28699876 DOI: 10.1099/mic.0.000492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA methylation is a common modification occurring in all living organisms. 5-methylcytosine, which is produced in a reaction catalysed by C5-methyltransferases, can spontaneously undergo deamination to thymine, leading to the formation of T:G mismatches and C→T transitions. In Escherichia coli K-12, such mismatches are corrected by the Very Short Patch (VSP) repair system, with Vsr endonuclease as the key enzyme. Neisseria meningitidis possesses genes that encode DNA methyltransferases, including C5-methyltransferases. We report on the mutagenic potential of the meningococcal C5-methyltransferases M.NmeDI and M.NmeAI resulting from deamination of 5-methylcytosine. N. meningitidis strains also possess genes encoding potential Vsr endonucleases. Phylogenetic analysis of meningococcal Vsr endonucleases indicates that they belong to two phylogenetically distinct groups (type I or type II Vsr endonucleases). N. meningitidis serogroup C (FAM18) is a representative of meningococcal strains that carry two Vsr endonuclease genes (V.Nme18IIP and V.Nme18VIP). The V.Nme18VIP (type II) endonuclease cut DNA containing T:G mismatches in all tested nucleotide contexts. V.Nme18IIP (type I) is not active in vitro, but the change of Tyr69 to His69 in the amino acid sequence of the protein restores its endonucleolytic activity. The presence of tyrosine in position 69 is a characteristic feature of type I meningococcal Vsr proteins, while type II Vsr endonucleases possess His69. In addition to the T:G mismatches, V.Nme18VIP and V.Nme18IIPY69H recognize and digest DNA with T:T or U:G mispairs. Thus, for the first time, we demonstrate that the VSP repair system may have a wider significance and broader substrate specificity than DNA lesions that only result from 5-methylcytosine deamination.
Collapse
Affiliation(s)
- Milena Bażlekowa
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Monika Adamczyk-Popławska
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Kwiatek
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
7
|
Characterization of a Thermostable 8-Oxoguanine DNA Glycosylase Specific for GO/N Mismatches from the Thermoacidophilic Archaeon Thermoplasma volcanium. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:8734894. [PMID: 27799846 PMCID: PMC5069365 DOI: 10.1155/2016/8734894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/27/2016] [Accepted: 09/07/2016] [Indexed: 01/09/2023]
Abstract
The oxidation of guanine (G) to 7,8-dihydro-8-oxoguanine (GO) forms one of the major DNA lesions generated by reactive oxygen species (ROS). The GO can be corrected by GO DNA glycosylases (Ogg), enzymes involved in base excision repair (BER). Unrepaired GO induces mismatched base pairing with adenine (A); as a result, the mismatch causes a point mutation, from G paired with cytosine (C) to thymine (T) paired with adenine (A), during DNA replication. Here, we report the characterization of a putative Ogg from the thermoacidophilic archaeon Thermoplasma volcanium. The 204-amino acid sequence of the putative Ogg (TVG_RS00315) shares significant sequence homology with the DNA glycosylases of Methanocaldococcus jannaschii (MjaOgg) and Sulfolobus solfataricus (SsoOgg). The six histidine-tagged recombinant TVG_RS00315 protein gene was expressed in Escherichia coli and purified. The Ogg protein is thermostable, with optimal activity near a pH of 7.5 and a temperature of 60°C. The enzyme displays DNA glycosylase, and apurinic/apyrimidinic (AP) lyase activities on GO/N (where N is A, T, G, or C) mismatch; yet it cannot eliminate U from U/G or T from T/G, as mismatch glycosylase (MIG) can. These results indicate that TvoOgg-encoding TVG_RS00315 is a member of the Ogg2 family of T. volcanium.
Collapse
|
8
|
Tian L, Zhang Z, Wang H, Zhao M, Dong Y, Gong Y. Sequence-Dependent T:G Base Pair Opening in DNA Double Helix Bound by Cren7, a Chromatin Protein Conserved among Crenarchaea. PLoS One 2016; 11:e0163361. [PMID: 27685992 PMCID: PMC5042384 DOI: 10.1371/journal.pone.0163361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/07/2016] [Indexed: 12/26/2022] Open
Abstract
T:G base pair arising from spontaneous deamination of 5mC or polymerase errors is a great challenge for DNA repair of hyperthermophilic archaea, especially Crenarchaea. Most strains in this phylum lack the protein homologues responsible for the recognition of the mismatch in the DNA repair pathways. To investigate whether Cren7, a highly conserved chromatin protein in Crenarchaea, serves a role in the repair of T:G mispairs, the crystal structures of Cren7-GTAATTGC and Cren7-GTGATCGC complexes were solved at 2.0 Å and 2.1 Å. In our structures, binding of Cren7 to the AT-rich DNA duplex (GTAATTGC) induces opening of T2:G15 but not T10:G7 base pair. By contrast, both T:G mispairs in the GC-rich DNA duplex (GTGATCGC) retain the classic wobble type. Structural analysis also showed DNA helical changes of GTAATTGC, especially in the steps around the open T:G base pair, as compared to GTGATCGC or the matched DNAs. Surface plasmon resonance assays revealed a 4-fold lower binding affinity of Cren7 for GTAATTGC than that for GTGATCGC, which was dominantly contributed by the decrease of association rate. These results suggested that binding of Cren7 to DNA leads to T:G mispair opening in a sequence dependent manner, and therefore propose the potential roles of Cren7 in DNA repair.
Collapse
Affiliation(s)
- Lei Tian
- Department of general surgery, Navy General Hospital, Beijing 100048, China
| | - Zhenfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hanqian Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Mohan Zhao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Gong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- * E-mail:
| |
Collapse
|
9
|
Trasviña-Arenas CH, Lopez-Castillo LM, Sanchez-Sandoval E, Brieba LG. Dispensability of the [4Fe-4S] cluster in novel homologues of adenine glycosylase MutY. FEBS J 2016; 283:521-40. [PMID: 26613369 DOI: 10.1111/febs.13608] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 11/15/2015] [Accepted: 11/24/2015] [Indexed: 01/31/2023]
Abstract
7,8-Dihydro-8-deoxyguanine (8oG) is one of the most common oxidative lesions in DNA. DNA polymerases misincorporate an adenine across from this lesion. Thus, 8oG is a highly mutagenic lesion responsible for G:C→T:A transversions. MutY is an adenine glycosylase, part of the base excision repair pathway that removes adenines, when mispaired with 8oG or guanine. Its catalytic domain includes a [4Fe-4S] cluster motif coordinated by cysteinyl ligands. When this cluster is absent, MutY activity is depleted and several studies concluded that the [4Fe-4S] cluster motif is an indispensable component for DNA binding, substrate recognition and enzymatic activity. In the present study, we identified 46 MutY homologues that lack the canonical cysteinyl ligands, suggesting an absence of the [4Fe-4S] cluster. A phylogenetic analysis groups these novel MutYs into two different clades. One clade is exclusive of the order Lactobacillales and another clade has a mixed composition of anaerobic and microaerophilic bacteria and species from the protozoan genus Entamoeba. Structural modeling and sequence analysis suggests that the loss of the [4Fe-4S] cluster is compensated by a convergent solution in which bulky amino acids substitute the [4Fe-4S] cluster. We functionally characterized MutYs from Lactobacillus brevis and Entamoeba histolytica as representative members from each clade and found that both enzymes are active adenine glycosylases. Furthermore, chimeric glycosylases, in which the [4Fe-4S] cluster of Escherichia coli MutY is replaced by the corresponding amino acids of LbY and EhY, are also active. Our data indicates that the [4Fe-4S] cluster plays a structural role in MutYs and evidences the existence of alternative functional solutions in nature.
Collapse
Affiliation(s)
- Carlos H Trasviña-Arenas
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Laura M Lopez-Castillo
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Eugenia Sanchez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| |
Collapse
|
10
|
Kawai A, Higuchi S, Tsunoda M, Nakamura KT, Yamagata Y, Miyamoto S. Crystal structure of family 4 uracil-DNA glycosylase from Sulfolobus tokodaii and a function of tyrosine 170 in DNA binding. FEBS Lett 2015; 589:2675-82. [PMID: 26318717 DOI: 10.1016/j.febslet.2015.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/23/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
Uracil-DNA glycosylases (UDGs) excise uracil from DNA by catalyzing the N-glycosidic bond hydrolysis. Here we report the first crystal structures of an archaeal UDG (stoUDG). Compared with other UDGs, stoUDG has a different structure of the leucine-intercalation loop, which is important for DNA binding. The stoUDG-DNA complex model indicated that Leu169, Tyr170, and Asn171 in the loop are involved in DNA intercalation. Mutational analysis showed that Tyr170 is critical for substrate DNA recognition. These results indicate that Tyr170 occupies the intercalation site formed after the structural change of the leucine-intercalation loop required for the catalysis.
Collapse
Affiliation(s)
- Akito Kawai
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Shigesada Higuchi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Masaru Tsunoda
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai-iino, Iwaki 970-8551, Japan
| | - Kazuo T Nakamura
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yuriko Yamagata
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shuichi Miyamoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
11
|
In Silico Analysis of the Endonuclease III Protein Family Identifies Key Residues and Processes During Evolution. J Mol Evol 2015; 81:54-67. [DOI: 10.1007/s00239-015-9689-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
|
12
|
Schormann N, Ricciardi R, Chattopadhyay D. Uracil-DNA glycosylases-structural and functional perspectives on an essential family of DNA repair enzymes. Protein Sci 2014; 23:1667-85. [PMID: 25252105 DOI: 10.1002/pro.2554] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 12/26/2022]
Abstract
Uracil-DNA glycosylases (UDGs) are evolutionarily conserved DNA repair enzymes that initiate the base excision repair pathway and remove uracil from DNA. The UDG superfamily is classified into six families based on their substrate specificity. This review focuses on the family I enzymes since these are the most extensively studied members of the superfamily. The structural basis for substrate specificity and base recognition as well as for DNA binding, nucleotide flipping and catalytic mechanism is discussed in detail. Other topics include the mechanism of lesion search and molecular mimicry through interaction with uracil-DNA glycosylase inhibitors. The latest studies and findings detailing structure and function in the UDG superfamily are presented.
Collapse
Affiliation(s)
- N Schormann
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | | | | |
Collapse
|
13
|
Base excision repair in Archaea: back to the future in DNA repair. DNA Repair (Amst) 2014; 21:148-57. [PMID: 25012975 DOI: 10.1016/j.dnarep.2014.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 05/24/2014] [Indexed: 11/22/2022]
Abstract
Together with Bacteria and Eukarya, Archaea represents one of the three domain of life. In contrast with the morphological difference existing between Archaea and Eukarya, these two domains are closely related. Phylogenetic analyses confirm this evolutionary relationship showing that most of the proteins involved in DNA transcription and replication are highly conserved. On the contrary, information is scanty about DNA repair pathways and their mechanisms. In the present review the most important proteins involved in base excision repair, namely glycosylases, AP lyases, AP endonucleases, polymerases, sliding clamps, flap endonucleases, and ligases, will be discussed and compared with bacterial and eukaryotic ones. Finally, possible applications and future perspectives derived from studies on Archaea and their repair pathways, will be taken into account.
Collapse
|
14
|
Kawai A, Higuchi S, Tsunoda M, Nakamura KT, Miyamoto S. Purification, crystallization and preliminary X-ray analysis of uracil-DNA glycosylase from Sulfolobus tokodaii strain 7. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1102-5. [PMID: 22949205 PMCID: PMC3433208 DOI: 10.1107/s1744309112030278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/03/2012] [Indexed: 11/10/2022]
Abstract
Uracil-DNA glycosylase (UDG) specifically removes uracil from DNA by catalyzing hydrolysis of the N-glycosidic bond, thereby initiating the base-excision repair pathway. Although a number of UDG structures have been determined, the structure of archaeal UDG remains unknown. In this study, a deletion mutant of UDG isolated from Sulfolobus tokodaii strain 7 (stoUDGΔ) and stoUDGΔ complexed with uracil were crystallized and analyzed by X-ray crystallography. The crystals were found to belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 52.2, b = 52.3, c = 74.7 Å and a = 52.1, b = 52.2, c = 74.1 Å for apo stoUDGΔ and stoUDGΔ complexed with uracil, respectively.
Collapse
Affiliation(s)
- Akito Kawai
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Shigesada Higuchi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Masaru Tsunoda
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai-iino, Iwaki 970-8551, Japan
| | - Kazuo T. Nakamura
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Shuichi Miyamoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| |
Collapse
|
15
|
Manvilla BA, Maiti A, Begley MC, Toth EA, Drohat AC. Crystal structure of human methyl-binding domain IV glycosylase bound to abasic DNA. J Mol Biol 2012; 420:164-75. [PMID: 22560993 PMCID: PMC3372577 DOI: 10.1016/j.jmb.2012.04.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 04/27/2012] [Indexed: 12/12/2022]
Abstract
The mammalian repair protein MBD4 (methyl-CpG-binding domain IV) excises thymine from mutagenic G·T mispairs generated by deamination of 5-methylcytosine (mC), and downstream base excision repair proteins restore a G·C pair. MBD4 is also implicated in active DNA demethylation by initiating base excision repair of G·T mispairs generated by a deaminase enzyme. The question of how mismatch glycosylases attain specificity for excising thymine from G·T, but not A·T, pairs remains largely unresolved. Here, we report a crystal structure of the glycosylase domain of human MBD4 (residues 427-580) bound to DNA containing an abasic nucleotide paired with guanine, providing a glimpse of the enzyme-product complex. The mismatched guanine remains intrahelical, nestled into a recognition pocket. MBD4 provides selective interactions with the mismatched guanine (N1H, N2H(2)) that are not compatible with adenine, which likely confer mismatch specificity. The structure reveals no interactions that would be expected to provide the MBD4 glycosylase domain with specificity for acting at CpG sites. Accordingly, we find modest 1.5- to 2.7-fold reductions in G·T activity upon altering the CpG context. In contrast, 37- to 580-fold effects were observed previously for thymine DNA glycosylase. These findings suggest that specificity of MBD4 for acting at CpG sites depends largely on its methyl-CpG-binding domain, which binds preferably to G·T mispairs in a methylated CpG site. MBD4 glycosylase cannot excise 5-formylcytosine (fC) or 5-carboxylcytosine (caC), intermediates in a Tet (ten eleven translocation)-initiated DNA demethylation pathway. Our structure suggests that MBD4 does not provide the electrostatic interactions needed to excise these oxidized forms of mC.
Collapse
Affiliation(s)
- Brittney A Manvilla
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
16
|
Liu XP, Liu JH. Characterization of family IV UDG from Aeropyrum pernix and its application in hot-start PCR by family B DNA polymerase. PLoS One 2011; 6:e27248. [PMID: 22087273 PMCID: PMC3210769 DOI: 10.1371/journal.pone.0027248] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/12/2011] [Indexed: 11/19/2022] Open
Abstract
Recombinant uracil-DNA glycosylase (UDG) from Aeropyrum pernix (A. pernix) was expressed in E. coli. The biochemical characteristics of A. pernix UDG (ApeUDG) were studied using oligonucleotides carrying a deoxyuracil (dU) base. The optimal temperature range and pH value for dU removal by ApeUDG were 55-65°C and pH 9.0, respectively. The removal of dU was inhibited by the divalent ions of Zn, Cu, Co, Ni, and Mn, as well as a high concentration of NaCl. The opposite base in the complementary strand affected the dU removal by ApeUDG as follows: U/C≈U/G>U/T≈U/AP≈U/->U/U≈U/I>U/A. The phosphorothioate around dU strongly inhibited dU removal by ApeUDG. Based on the above biochemical characteristics and the conservation of amino acid residues, ApeUDG was determined to belong to the IV UDG family. ApeUDG increased the yield of PCR by Pfu DNA polymerase via the removal of dU in amplified DNA. Using the dU-carrying oligonucleotide as an inhibitor and ApeUDG as an activator of Pfu DNA polymerase, the yield of undesired DNA fragments, such as primer-dimer, was significantly decreased, and the yield of the PCR target fragment was increased. This strategy, which aims to amplify the target gene with high specificity and yield, can be applied to all family B DNA polymerases.
Collapse
Affiliation(s)
- Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Hua Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Uracil-DNA glycosylase of Thermoplasma acidophilum directs long-patch base excision repair, which is promoted by deoxynucleoside triphosphates and ATP/ADP, into short-patch repair. J Bacteriol 2011; 193:4495-508. [PMID: 21665970 DOI: 10.1128/jb.00233-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hydrolytic deamination of cytosine to uracil in DNA is increased in organisms adapted to high temperatures. Hitherto, the uracil base excision repair (BER) pathway has only been described in two archaeons, the crenarchaeon Pyrobaculum aerophilum and the euryarchaeon Archaeoglobus fulgidus, which are hyperthermophiles and use single-nucleotide replacement. In the former the apurinic/apyrimidinic (AP) site intermediate is removed by the sequential action of a 5'-acting AP endonuclease and a 5'-deoxyribose phosphate lyase, whereas in the latter the AP site is primarily removed by a 3'-acting AP lyase, followed by a 3'-phosphodiesterase. We describe here uracil BER by a cell extract of the thermoacidophilic euryarchaeon Thermoplasma acidophilum, which prefers a similar short-patch repair mode as A. fulgidus. Importantly, T. acidophilumcell extract also efficiently executes ATP/ADP-stimulated long-patch BER in the presence of deoxynucleoside triphosphates, with a repair track of ∼15 nucleotides. Supplementation of recombinant uracil-DNA glycosylase (rTaUDG; ORF Ta0477) increased the formation of short-patch at the expense of long-patch repair intermediates, and additional supplementation of recombinant DNA ligase (rTalig; Ta1148) greatly enhanced repair product formation. TaUDG seems to recruit AP-incising and -excising functions to prepare for rapid single-nucleotide insertion and ligation, thus excluding slower and energy-costly long-patch BER.
Collapse
|
18
|
The hyperthermophilic euryarchaeon Archaeoglobus fulgidus repairs uracil by single-nucleotide replacement. J Bacteriol 2010; 192:5755-66. [PMID: 20453094 DOI: 10.1128/jb.00135-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hydrolytic deamination of cytosine to uracil in cellular DNA is a major source of C-to-T transition mutations if uracil is not repaired by the DNA base excision repair (BER) pathway. Since deamination increases rapidly with temperature, hyperthermophiles, in particular, are expected to succumb to such damage. There has been only one report of crenarchaeotic BER showing strong similarities to that in most eukaryotes and bacteria for hyperthermophilic Archaea. Here we report a different type of BER performed by extract prepared from cells of the euryarchaeon Archaeoglobus fulgidus. Although immunodepletion showed that the monofunctional family 4 type of uracil-DNA glycosylase (UDG) is the principal and probably only UDG in this organism, a β-elimination mechanism rather than a hydrolytic mechanism is employed for incision of the abasic site following uracil removal. The resulting 3' remnant is removed by efficient 3'-phosphodiesterase activity followed by single-nucleotide insertion and ligation. The finding that repair product formation is stimulated similarly by ATP and ADP in vitro raises the question of whether ADP is more important in vivo because of its higher heat stability.
Collapse
|
19
|
Liu XP, Li CP, Hou JL, Liu YF, Liang RB, Liu JH. Expression and characterization of thymine-DNA glycosylase from Aeropyrum pernix. Protein Expr Purif 2010; 70:1-6. [DOI: 10.1016/j.pep.2009.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 10/04/2009] [Accepted: 10/06/2009] [Indexed: 10/20/2022]
|
20
|
Busch CR, DiRuggiero J. MutS and MutL are dispensable for maintenance of the genomic mutation rate in the halophilic archaeon Halobacterium salinarum NRC-1. PLoS One 2010; 5:e9045. [PMID: 20140215 PMCID: PMC2816208 DOI: 10.1371/journal.pone.0009045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 01/05/2010] [Indexed: 11/18/2022] Open
Abstract
Background The genome of the halophilic archaeon Halobacterium salinarum NRC-1 encodes for homologs of MutS and MutL, which are key proteins of a DNA mismatch repair pathway conserved in Bacteria and Eukarya. Mismatch repair is essential for retaining the fidelity of genetic information and defects in this pathway result in the deleterious accumulation of mutations and in hereditary diseases in humans. Methodology/Principal Findings We calculated the spontaneous genomic mutation rate of H. salinarum NRC-1 using fluctuation tests targeting genes of the uracil monophosphate biosynthesis pathway. We found that H. salinarum NRC-1 has a low incidence of mutation suggesting the presence of active mechanisms to control spontaneous mutations during replication. The spectrum of mutational changes found in H. salinarum NRC-1, and in other archaea, appears to be unique to this domain of life and might be a consequence of their adaption to extreme environmental conditions. In-frame targeted gene deletions of H. salinarum NRC-1 mismatch repair genes and phenotypic characterization of the mutants demonstrated that the mutS and mutL genes are not required for maintenance of the observed mutation rate. Conclusions/Significance We established that H. salinarum NRC-1 mutS and mutL genes are redundant to an alternative system that limits spontaneous mutation in this organism. This finding leads to the puzzling question of what mechanism is responsible for maintenance of the low genomic mutation rates observed in the Archaea, which for the most part do not have MutS and MutL homologs.
Collapse
Affiliation(s)
- Courtney R. Busch
- Department of Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Jocelyne DiRuggiero
- Department of Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Dalhus B, Laerdahl JK, Backe PH, Bjørås M. DNA base repair--recognition and initiation of catalysis. FEMS Microbiol Rev 2009; 33:1044-78. [PMID: 19659577 DOI: 10.1111/j.1574-6976.2009.00188.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endogenous DNA damage induced by hydrolysis, reactive oxygen species and alkylation modifies DNA bases and the structure of the DNA duplex. Numerous mechanisms have evolved to protect cells from these deleterious effects. Base excision repair is the major pathway for removing base lesions. However, several mechanisms of direct base damage reversal, involving enzymes such as transferases, photolyases and oxidative demethylases, are specialized to remove certain types of photoproducts and alkylated bases. Mismatch excision repair corrects for misincorporation of bases by replicative DNA polymerases. The determination of the 3D structure and visualization of DNA repair proteins and their interactions with damaged DNA have considerably aided our understanding of the molecular basis for DNA base lesion repair and genome stability. Here, we review the structural biochemistry of base lesion recognition and initiation of one-step direct reversal (DR) of damage as well as the multistep pathways of base excision repair (BER), nucleotide incision repair (NIR) and mismatch repair (MMR).
Collapse
Affiliation(s)
- Bjørn Dalhus
- Centre for Molecular Biology and Neuroscience (CMBN), Rikshospitalet University Hospital, Oslo, Norway
| | | | | | | |
Collapse
|
22
|
Characterization of a dITPase from the hyperthermophilic archaeon Thermococcus onnurineus NA1 and its application in PCR amplification. Appl Microbiol Biotechnol 2008; 79:571-8. [PMID: 18438658 DOI: 10.1007/s00253-008-1467-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 03/19/2008] [Accepted: 03/23/2008] [Indexed: 10/22/2022]
Abstract
In this study, we found that deoxyinosine triphosphate (dITP) could inhibit polymerase chain reaction (PCR) amplification of various family B-type DNA polymerases, and 0.93% dITP was spontaneously generated from deoxyadenosine triphosphate during PCR amplification. Thus, it was hypothesized that the generated dITP might have negative effect on PCR amplification of family B-type DNA polymerases. To overcome the inhibitory effect of dITP during PCR amplification, a dITP pyrophosphatase (dITPase) from Thermococcus onnurineus NA1 was applied to PCR amplification. Genomic analysis of the hyperthermophilic archaeon T. onnurineus NA1 revealed the presence of a 555-bp open reading frame with 48% similarity to HAM1-like dITPase from Methanocaldococcus jannaschii DSM2661 (NP_247195). The dITPase-encoding gene was cloned and expressed in Escherichia coli. The purified protein hydrolyzed dITP, not deoxyuridine triphosphate. Addition of the purified protein to PCR reactions using DNA polymerases from T. onnurineus NA1 and Pyrococcus furiosus significantly increased product yield, overcoming the inhibitory effect of dITP. This study shows the first representation that removing dITP using a dITPase enhances the PCR amplification yield of family B-type DNA polymerase.
Collapse
|
23
|
Wardle J, Burgers PMJ, Cann IKO, Darley K, Heslop P, Johansson E, Lin LJ, McGlynn P, Sanvoisin J, Stith CM, Connolly BA. Uracil recognition by replicative DNA polymerases is limited to the archaea, not occurring with bacteria and eukarya. Nucleic Acids Res 2007; 36:705-11. [PMID: 18032433 PMCID: PMC2241895 DOI: 10.1093/nar/gkm1023] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Family B DNA polymerases from archaea such as Pyrococcus furiosus, which live at temperatures ∼100°C, specifically recognize uracil in DNA templates and stall replication in response to this base. Here it is demonstrated that interaction with uracil is not restricted to hyperthermophilic archaea and that the polymerase from mesophilic Methanosarcina acetivorans shows identical behaviour. The family B DNA polymerases replicate the genomes of archaea, one of the three fundamental domains of life. This publication further shows that the DNA replicating polymerases from the other two domains, bacteria (polymerase III) and eukaryotes (polymerases δ and ε for nuclear DNA and polymerase γ for mitochondrial) are also unable to recognize uracil. Uracil occurs in DNA as a result of deamination of cytosine, either in G:C base-pairs or, more rapidly, in single stranded regions produced, for example, during replication. The resulting G:U mis-pairs/single stranded uracils are promutagenic and, unless repaired, give rise to G:C to A:T transitions in 50% of the progeny. The confinement of uracil recognition to polymerases of the archaeal domain is discussed in terms of the DNA repair pathways necessary for the elimination of uracil.
Collapse
Affiliation(s)
- Josephine Wardle
- Institute for Cell and Molecular Biosciences (ICaMB), University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ruan L, Xu X. Sequence analysis and characterizations of two novel plasmids isolated from Thermus sp. 4C. Plasmid 2007; 58:84-7. [PMID: 17521723 DOI: 10.1016/j.plasmid.2007.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/30/2007] [Accepted: 04/02/2007] [Indexed: 11/22/2022]
Abstract
Two novel plasmids, named pS4C and pL4C, were isolated from the thermophilic bacterium Thermus sp. 4C. The pS4C with a length of 5015bp and 58.25% of G+C content, contains 9 putative open reading frames (ORFs). The larger plasmid, pL4C, consisting of 21,248bp, has a G+C content of 68.60% and 34 putative ORFs. Both plasmids encode their own replication protein. The ORF 22 of pL4C and the ORF 4 of pS4C encode proteins with high sequence similarities to integrase (97%) and transposase (97%), respectively, which are both involved in DNA rearrangement and exchange. Furthermore, sequence analysis of pL4C also showed that several plasmid-encoded genes may be involved in DNA modification and repair, such as DNA G:T-mismatch repair endonuclease and micrococcal nuclease-like protein. These proteins may be involved in raising the repair efficiency and other minor editing needs. Interestingly, the elimination of plasmids significantly lowered the growth temperature of Thermus sp. 4C. Few reports dealing with the DNA repair enzymes on the plasmid from Thermus strains were published so far.
Collapse
Affiliation(s)
- Lingwei Ruan
- School of Life Sciences, Xiamen University, Xiamen, PR China
| | | |
Collapse
|
25
|
Georg J, Schomacher L, Chong JPJ, Majerník AI, Raabe M, Urlaub H, Müller S, Ciirdaeva E, Kramer W, Fritz HJ. The Methanothermobacter thermautotrophicus ExoIII homologue Mth212 is a DNA uridine endonuclease. Nucleic Acids Res 2006; 34:5325-36. [PMID: 17012282 PMCID: PMC1636421 DOI: 10.1093/nar/gkl604] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genome of Methanothermobacter thermautotrophicus, as a hitherto unique case, is apparently devoid of genes coding for general uracil DNA glycosylases, the universal mediators of base excision repair following hydrolytic deamination of DNA cytosine residues. We have now identified protein Mth212, a member of the ExoIII family of nucleases, as a possible initiator of DNA uracil repair in this organism. This enzyme, in addition to bearing all the enzymological hallmarks of an ExoIII homologue, is a DNA uridine endonuclease (U-endo) that nicks double-stranded DNA at the 5'-side of a 2'-d-uridine residue, irrespective of the nature of the opposing nucleotide. This type of activity has not been described before; it is absent from the ExoIII homologues of Escherichia coli, Homo sapiens and Methanosarcina mazei, all of which are equipped with uracil DNA repair glycosylases. The U-endo activity of Mth212 is served by the same catalytic center as its AP-endo activity.
Collapse
Affiliation(s)
- Jens Georg
- Abteilung Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und GenetikGeorg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - Lars Schomacher
- Abteilung Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und GenetikGeorg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - James P. J. Chong
- Department of Biology (Area 5), University of YorkPO Box 373, York, YO10 5YW, UK
| | - Alan I. Majerník
- Department of Biology (Area 5), University of YorkPO Box 373, York, YO10 5YW, UK
| | - Monika Raabe
- Bioanalytical Mass Spectrometry Group, Max-Planck Institute for Biophysical ChemistryAm Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max-Planck Institute for Biophysical ChemistryAm Fassberg 11, 37077 Göttingen, Germany
| | - Sabine Müller
- Ruhr-Universität Bochum, Fakultät ChemieAG Bioorganische Chemie, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Elena Ciirdaeva
- Abteilung Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und GenetikGeorg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - Wilfried Kramer
- Abteilung Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und GenetikGeorg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - Hans-Joachim Fritz
- Abteilung Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und GenetikGeorg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
- To whom correspondence should be addressed. Tel: +49 551 39 3804; Fax: +49 551 39 3805;
| |
Collapse
|
26
|
Back JH, Park JH, Chung JH, Kim DSHL, Han YS. A distinct TthMutY bifunctional glycosylase that hydrolyzes not only adenine but also thymine opposite 8-oxoguanine in the hyperthermophilic bacterium, Thermus thermophilus. DNA Repair (Amst) 2006; 5:894-903. [PMID: 16781198 DOI: 10.1016/j.dnarep.2006.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 05/03/2006] [Accepted: 05/03/2006] [Indexed: 01/15/2023]
Abstract
Oxidative damage represents a major threat to genomic stability because the major product of DNA oxidation, 8-oxoguanine (GO), frequently mispairs with adenine during replication. We were interested in finding out how hyperthermophilic bacteria under goes the process of excising mispaired adenine from A/GO to deal with genomic oxidative damage. Herein we report the properties of an Escherichia coli MutY (EcMutY) homolog, TthMutY, derived from a hyperthermophile Thermus thermophilus. TthMutY preferentially excises on A/GO and G/GO mispairs and has additional activities on T/GO and A/G mismatches. TthMutY has significant sequence homology to the A/G and T/G mismatch recognition motifs, respectively, of MutY and Mig.MthI. A substitution from Tyr112 to Ser or Ala (Y112S and Y112A) in the putative thymine-binding site of TthMutY showed significant decrease in DNA glycosylase activity. A mutant form of TthMutY, R134K, could form a Schiff base with DNA and fully retained its DNA glycosylase activity against A/GO and A/G mispair. Interestingly, although TthMutY cannot form a trapped complex with substrate in the presence of NaBH(4), it expressed AP lyase activity, suggesting Tyr112 in TthMutY may be the key residue for AP lyase activity. These results suggest that TthMutY may be an example of a novel class of bifunctional A/GO mismatch DNA glycosylase that can also remove thymine from T/GO mispair.
Collapse
Affiliation(s)
- Jung Ho Back
- Department of Advanced Technology Fusion, BMIC, Konkuk University, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | | | | | | | | |
Collapse
|
27
|
Back JH, Chung JH, Park JH, Han YS. A versatile endonuclease IV from Thermus thermophilus has uracil-excising and 3'-5' exonuclease activity. Biochem Biophys Res Commun 2006; 346:889-95. [PMID: 16782061 DOI: 10.1016/j.bbrc.2006.05.187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
Apurinic/apyrimidinic (AP) sites arise in DNA through the spontaneous loss of bases or through the release of damaged bases from DNA by DNA glycosylases. AP sites in DNA can be catalyzed by AP endonucleases such as exonuclease III and endonuclease IV, generating a 3'-hydroxyl group and a 5'-terminal sugar phosphate. Here, we have identified and characterized a novel endonuclease IV from a hyperthermophilic bacterium Thermus thermophilus designated as TthNfo. TthNfo efficiently removed AP site from double-stranded oligonucleotide substrate. No significant difference was observed in the rate of reaction of four bases opposite AP site with TthNfo. In addition, TthNfo possesses a 3'-5' exonuclease activity similar to that of Escherichia coli exonuclease III. Surprisingly, we found that TthNfo also catalyzes the excision of uracil from DNA. In comparison with other endonuclease IV proteins, the removal of uracil residue was unique to TthNfo. Based on these observations and the absence of exonuclease III in T. thermophilus, we suggest that versatile enzyme activities of TthNfo play an important role in counteracting DNA base damage in vivo.
Collapse
Affiliation(s)
- Jung Ho Back
- Department of Advanced Technology Fusion, BMIC, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | |
Collapse
|
28
|
Berti PJ, McCann JAB. Toward a detailed understanding of base excision repair enzymes: transition state and mechanistic analyses of N-glycoside hydrolysis and N-glycoside transfer. Chem Rev 2006; 106:506-55. [PMID: 16464017 DOI: 10.1021/cr040461t] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Paul J Berti
- Department of Chemistry, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
29
|
Moe E, Leiros I, Smalås AO, McSweeney S. The Crystal Structure of Mismatch-specific Uracil-DNA Glycosylase (MUG) from Deinococcus radiodurans Reveals a Novel Catalytic Residue and Broad Substrate Specificity. J Biol Chem 2006; 281:569-77. [PMID: 16223719 DOI: 10.1074/jbc.m508032200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deinococcus radiodurans is extremely resistant to the effects of ionizing radiation. The source of the radiation resistance is not known, but an expansion of specific protein families related to stress response and damage control has been observed. DNA repair enzymes are among the expanded protein families in D. radiodurans, and genes encoding five different uracil-DNA glycosylases are identified in the genome. Here we report the three-dimensional structure of the mismatch-specific uracil-DNA glycosylase (MUG) from D. radiodurans (drMUG) to a resolution of 1.75 angstroms. Structural analyses suggest that drMUG possesses a novel catalytic residue, Asp-93. Activity measurements show that drMUG has a modified and broadened substrate specificity compared with Escherichia coli MUG. The importance of Asp-93 for activity was confirmed by structural analysis and abolished activity for the mutant drMUGD93A. Two other microorganisms, Bradyrhizobium japonicum and Rhodopseudomonas palustris, possess genes that encode MUGs with the highest sequence identity to drMUG among all of the bacterial MUGs examined. A phylogenetic analysis indicates that these three MUGs form a new MUG/thymidine-DNA glycosylase subfamily, here called the MUG2 family. We suggest that the novel catalytic residue (Asp-93) has evolved to provide drMUG with broad substrate specificity to increase the DNA repair repertoire of D. radiodurans.
Collapse
Affiliation(s)
- Elin Moe
- Norwegian Structural Biology Centre, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | |
Collapse
|
30
|
Bell GD, Grogan DW. Loss of genetic accuracy in mutants of the thermoacidophile Sulfolobus acidocaldarius. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:45-52. [PMID: 15803658 PMCID: PMC2685545 DOI: 10.1155/2002/516074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To investigate how hyperthermophilic archaea can propagate their genomes accurately, we isolated Sulfolobus acidocaldarius mutants exhibiting abnormally high rates of spontaneous mutation. Our isolation strategy involved enrichment for mutator lineages via alternating selections, followed by screening for the production of spontaneous, 5-fluoro-orotate-resistant mutants in micro-colonies. Several candidates were evaluated and found to have high frequencies of pyrE and pyrF mutation and reversion. Neither an increased efficiency of plating of mutants on selective medium, nor the creation of a genetically unstable pyrE allele, could be implicated as the cause of these high frequencies. The strains had elevated frequencies of other mutations, and exhibited certain phenotypic differences among themselves. A large increase in sensitivity to DNA-damaging agents was not observed, however. These properties generally resemble those of bacterial mutator mutants and suggest loss of functions specific to genetic accuracy.
Collapse
Affiliation(s)
- Greg D. Bell
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| | - Dennis W. Grogan
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
- Corresponding author ()
| |
Collapse
|
31
|
Lingaraju GM, Sartori AA, Kostrewa D, Prota AE, Jiricny J, Winkler FK. A DNA Glycosylase from Pyrobaculum aerophilum with an 8-Oxoguanine Binding Mode and a Noncanonical Helix-Hairpin-Helix Structure. Structure 2005; 13:87-98. [PMID: 15642264 DOI: 10.1016/j.str.2004.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 10/25/2004] [Accepted: 10/28/2004] [Indexed: 12/31/2022]
Abstract
Studies of DNA base excision repair (BER) pathways in the hyperthermophilic crenarchaeon Pyrobaculum aerophilum identified an 8-oxoguanine-DNA glycosylase, Pa-AGOG (archaeal GO glycosylase), with distinct functional characteristics. Here, we describe its crystal structure and that of its complex with 8-oxoguanosine at 1.0 and 1.7 A resolution, respectively. Characteristic structural features are identified that confirm Pa-AGOG to be the founding member of a functional class within the helix-hairpin-helix (HhH) superfamily of DNA repair enzymes. Its hairpin structure differs substantially from that of other proteins containing an HhH motif, and we predict that it interacts with the DNA backbone in a distinct manner. Furthermore, the mode of 8-oxoguanine recognition, which involves several hydrogen-bonding and pi-stacking interactions, is unlike that observed in human OGG1, the prototypic 8-oxoguanine HhH-type DNA glycosylase. Despite these differences, the predicted kinked conformation of bound DNA and the catalytic mechanism are likely to resemble those of human OGG1.
Collapse
|
32
|
Sartori AA, Lingaraju GM, Hunziker P, Winkler FK, Jiricny J. Pa-AGOG, the founding member of a new family of archaeal 8-oxoguanine DNA-glycosylases. Nucleic Acids Res 2004; 32:6531-9. [PMID: 15604455 PMCID: PMC545463 DOI: 10.1093/nar/gkh995] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oxidative damage represents a major threat to genomic stability, as the major product of DNA oxidation, 8-oxoguanine (GO), frequently mispairs with adenine during replication. In order to prevent these mutagenic events, organisms have evolved GO-DNA glycosylases that remove this oxidized base from DNA. We were interested to find out how GO is processed in the hyperthermophilic archaeon Pyrobaculum aerophilum, which lives at temperatures around 100 degrees C. To this end, we searched its genome for open reading frames (ORFs) bearing the principal hallmark of GO-DNA glycosylases: a helix-hairpin-helix motif and a glycine/proline-rich sequence followed by an absolutely conserved aspartate (HhH-GPD motif). Interestingly, although the P.aerophilum genome encodes three such ORFs, none of these encodes the potent GO-processing activity detected in P.aerophilum extracts. Fractionation of the extracts, followed by analysis of the active fractions by denaturing polyacrylamide gel electrophoresis, showed that the GO-processing enzyme has a molecular size of approximately 30 kDa. Mass spectrometric analysis of proteins in this size range identified several peptides originating from P.aerophilum ORF PAE2237. We now show that PAE2237 encodes AGOG (Archaeal GO-Glycosylase), the founding member of a new family of DNA glycosylases, which can remove GO from single- and double-stranded substrates with great efficiency.
Collapse
Affiliation(s)
- Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zürich, August Forel-Strasse 7, CH-8008 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Liu X, Liu J. Cloning, expression, and characterization of uracil-DNA glycosylase of Chlamydia pneumoniae in Escherichia coli. Protein Expr Purif 2004; 35:46-53. [PMID: 15039065 DOI: 10.1016/j.pep.2003.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 12/12/2003] [Indexed: 12/01/2022]
Abstract
A uracil-DNA glycosylase gene was cloned from Chlamydia pneumoniae AR39 and expressed in E. coli strains BL21 (DE3) and BL21 (DE3) pLysS. After purification by Ni-NTA His x Bind Resin and DEAE Sepharose Fast Flow column chromatography, recombinant CpUDG with a specific activity of 1,000,000 U/mg was obtained. The enzymatic activity of the purified CpUDG protein was further characterized using oligodeoxyribonucleotides carrying uracil bases as substrates. The base opposite to uracil in double strand DNAs affected uracil removal efficiencies in the order: U/- > U/T > U/C > U/G > U/A. Free uracil and abasic sites (AP site) could inhibit the reaction. The optimal temperature and pH for uracil removal by CpUDG were 37 degrees C and pH 8.0, respectively. Site-directed mutagenesis studies indicated that amino acids D77, H200, and A205 were important for the catalytic activity of CpUDG. Together, these data suggest that CpUDG is a member of the UDG family-I protein. This is the first report on cloning, expression, and characterization of Chlamydia uracil-DNA glycosylase.
Collapse
Affiliation(s)
- Xipeng Liu
- College of Life Sciences and Technology, Shanghai Jiaotong University, No. 1954 Hua-Shan Road, Shanghai 200030, China.
| | | |
Collapse
|
34
|
Shuttleworth G, Fogg MJ, Kurpiewski MR, Jen-Jacobson L, Connolly BA. Recognition of the pro-mutagenic base uracil by family B DNA polymerases from archaea. J Mol Biol 2004; 337:621-34. [PMID: 15019782 DOI: 10.1016/j.jmb.2004.01.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Revised: 01/05/2004] [Accepted: 01/05/2004] [Indexed: 11/27/2022]
Abstract
Archaeal family B DNA polymerases contain a specialised pocket that binds tightly to template-strand uracil, causing the stalling of DNA replication. The mechanism of this unique "template-strand proof-reading" has been studied using equilibrium binding measurements, DNA footprinting, van't Hoff analysis and calorimetry. Binding assays have shown that the polymerase preferentially binds to uracil in single as opposed to double-stranded DNA. Tightest binding is observed using primer-templates that contain uracil four bases in front of the primer-template junction, corresponding to the observed stalling position. Ethylation interference analysis of primer-templates shows that the two phosphates, immediately flanking the uracil (NpUpN), are important for binding; contacts are also made to phosphates in the primer-strand. Microcalorimetry and van't Hoff analysis have given a fuller understanding of the thermodynamic parameters involved in uracil recognition. All the results are consistent with a "read-ahead" mechanism, in which the replicating polymerase scans the template, ahead of the replication fork, for the presence of uracil and halts polymerisation on detecting this base. Post-stalling events, serving to eliminate uracil, await full elucidation.
Collapse
Affiliation(s)
- Gillian Shuttleworth
- School of Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
35
|
Grogan DW. Cytosine methylation by the SuaI restriction-modification system: implications for genetic fidelity in a hyperthermophilic archaeon. J Bacteriol 2003; 185:4657-61. [PMID: 12867480 PMCID: PMC165766 DOI: 10.1128/jb.185.15.4657-4661.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
5-methylcytosine in chromosomal DNA represents a potential source of frequent spontaneous mutation for hyperthermophiles. To determine the relevance of this threat for the archaeon Sulfolobus acidocaldarius, the mode of GGCC methylation by its restriction-modification system, SuaI, was investigated. Distinct isoschizomers of the SuaI endonuclease were used to probe the methylation state of GGCC in native S. acidocaldarius DNA. In addition, the methylation sensitivity of the SuaI endonuclease was determined with synthetic oligonucleotide substrates and modified natural DNAs. The results show that the SuaI system uses N(4) methylation to block cleavage of its recognition site, thereby avoiding the creation of G. T mismatches by spontaneous deamination at extremely high temperature.
Collapse
Affiliation(s)
- Dennis W Grogan
- New England Biolabs, Inc., Beverly, Massachusetts 01915, USA.
| |
Collapse
|
36
|
Sartori AA, Jiricny J. Enzymology of base excision repair in the hyperthermophilic archaeon Pyrobaculum aerophilum. J Biol Chem 2003; 278:24563-76. [PMID: 12730226 DOI: 10.1074/jbc.m302397200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA of all living organisms is constantly modified by exogenous and endogenous reagents. The mutagenic threat of modifications such as methylation, oxidation, and hydrolytic deamination of DNA bases is counteracted by base excision repair (BER). This process is initiated by the action of one of several DNA glycosylases, which removes the aberrant base and thus initiates a cascade of events that involves scission of the DNA backbone, removal of the baseless sugar-phosphate residue, filling in of the resulting single nucleotide gap, and ligation of the remaining nick. We were interested to find out how the BER process functions in hyperthermophiles, organisms growing at temperatures around 100 degrees C, where the rates of these spontaneous reactions are greatly accelerated. In our previous studies, we could show that the crenarchaeon Pyrobaculum aerophilum has at least three uracil-DNA glycosylases, Pa-UDGa, Pa-UDGb, and Pa-MIG, that can initiate the BER process by catalyzing the removal of uracil residues arising through the spontaneous deamination of cytosines. We now report that the genome of P. aerophilum encodes also the remaining functions necessary for BER and show that a system consisting of four P. aerophilum encoded enzymes, Pa-UDGb, AP endonuclease IV, DNA polymerase B2, and DNA ligase, can efficiently repair a G.U mispair in an oligonucleotide substrate to a G.C pair. Interestingly, the efficiency of the in vitro repair reaction was stimulated by Pa-PCNA1, the processivity clamp of DNA polymerases.
Collapse
Affiliation(s)
- Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zürich, August Forel-Strasse 7, Switzerland
| | | |
Collapse
|
37
|
Chung JH, Im EK, Park HY, Kwon JH, Lee S, Oh J, Hwang KC, Lee JH, Jang Y. A novel uracil-DNA glycosylase family related to the helix-hairpin-helix DNA glycosylase superfamily. Nucleic Acids Res 2003; 31:2045-55. [PMID: 12682355 PMCID: PMC153747 DOI: 10.1093/nar/gkg319] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytosine bases can be deaminated spontaneously to uracil, causing DNA damage. Uracil-DNA glycosylase (UDG), a ubiquitous uracil-excising enzyme found in bacteria and eukaryotes, is one of the enzymes that repair this kind of DNA damage. To date, no UDG-coding gene has been identified in Methanococcus jannaschii, although its entire genome was deciphered. Here, we have identified and characterized a novel UDG from M.jannaschii designated as MjUDG. It efficiently removed uracil from both single- and double-stranded DNA. MjUDG also catalyzes the excision of 8-oxoguanine from DNA. MjUDG has a helix-hairpin-helix motif and a [4Fe-4S]-binding cluster that is considered to be important for the DNA binding and catalytic activity. Although MjUDG shares these features with other structural families such as endonuclease III and mismatch-specific DNA glycosylase (MIG), unique conserved amino acids and substrate specificity distinguish MjUDG from other families. Also, a homologous member of MjUDG was identified in Aquifex aeolicus. We report that MjUDG belongs to a novel UDG family that has not been described to date.
Collapse
Affiliation(s)
- Ji Hyung Chung
- Yonsei Research Institute of Aging Science, Yonsei University College of Medicine, Yonsei University, Seoul, 120-752, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Begley TJ, Haas BJ, Morales JC, Kool ET, Cunningham RP. Kinetics and binding of the thymine-DNA mismatch glycosylase, Mig-Mth, with mismatch-containing DNA substrates. DNA Repair (Amst) 2003; 2:107-20. [PMID: 12509271 DOI: 10.1016/s1568-7864(02)00190-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined the removal of thymine residues from T-G mismatches in DNA by the thymine-DNA mismatch glycosylase from Methanobacterium thermoautrophicum (Mig-Mth), within the context of the base excision repair (BER) pathway, to investigate why this glycosylase has such low activity in vitro. Using single-turnover kinetics and steady-state kinetics, we calculated the catalytic and product dissociation rate constants for Mig-Mth, and determined that Mig-Mth is inhibited by product apyrimidinic (AP) sites in DNA. Electrophoretic mobility shift assays (EMSA) provide evidence that the specificity of product binding is dependent upon the base opposite the AP site. The binding of Mig-Mth to DNA containing the non-cleavable substrate analogue difluorotoluene (F) was also analyzed to determine the effect of the opposite base on Mig-Mth binding specificity for substrate-like duplex DNA. The results of these experiments support the idea that opposite strand interactions play roles in determining substrate specificity. Endonuclease IV, which cleaves AP sites in the next step of the BER pathway, was used to analyze the effect of product removal on the overall rate of thymine hydrolysis by Mig-Mth. Our results support the hypothesis that endonuclease IV increases the apparent activity of Mig-Mth significantly under steady-state conditions by preventing reassociation of enzyme to product.
Collapse
Affiliation(s)
- Thomas J Begley
- Department of Biological Sciences, SUNY at Albany, Albany, NY 12222, USA
| | | | | | | | | |
Collapse
|
39
|
Xia X, Wei T, Xie Z, Danchin A. Genomic changes in nucleotide and dinucleotide frequencies in Pasteurella multocida cultured under high temperature. Genetics 2002; 161:1385-94. [PMID: 12196387 PMCID: PMC1462222 DOI: 10.1093/genetics/161.4.1385] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We used 94 RAPD primers of different nucleotide composition to probe the genomic differences between a highly virulent P. multocida strain and an attenuated vaccine strain derived from the virulent strain after culturing the latter under increasing temperature for approximately 14,400 generations. The GC content of the vaccine strain is significantly (P < 0.05) lower than that of the virulent strain, contrary to the popular hypothesis of covariation between the GC content and temperature. The frequencies of AA, TA, and TT dinucleotides were higher, and those of AT, GC, and CG dinucleotides were lower, in the vaccine strain than in the virulent strain. A statistic called genomic RAPD entropy is formulated to measure the randomness of the genome, and the genome of the vaccine strain is more random than that of the virulent strain. These differences between the virulent and vaccine strains are interpreted in terms of mutation and selection under increased culturing temperature. A method for estimating substitution rates is developed in the appendix.
Collapse
Affiliation(s)
- Xuhua Xia
- Bioinformatics Laboratory, HKU-Pasteur Research Center, Hong Kong.
| | | | | | | |
Collapse
|
40
|
Birdsell JA. Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution. Mol Biol Evol 2002; 19:1181-97. [PMID: 12082137 DOI: 10.1093/oxfordjournals.molbev.a004176] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study presents compelling evidence that recombination significantly increases the silent GC content of a genome in a selectively neutral manner, resulting in a highly significant positive correlation between recombination and "GC3s" in the yeast Saccharomyces cerevisiae. Neither selection nor mutation can explain this relationship. A highly significant GC-biased mismatch repair system is documented for the first time in any member of the Kingdom Fungi. Much of the variation in the GC3s within yeast appears to result from GC-biased gene conversion. Evidence suggests that GC-biased mismatch repair exists in numerous organisms spanning six kingdoms. This transkingdom GC mismatch repair bias may have evolved in response to a ubiquitous AT mutational bias. A significant positive correlation between recombination and GC content is found in many of these same organisms, suggesting that the processes influencing the evolution of the yeast genome may be a general phenomenon. Nonrecombining regions of the genome and nonrecombining genomes would not be subject to this type of molecular drive. It is suggested that the low GC content characteristic of many nonrecombining genomes may be the result of three processes (1) a prevailing AT mutational bias, (2) random fixation of the most common types of mutation, and (3) the absence of the GC-biased gene conversion which, in recombining organisms, permits the reversal of the most common types of mutation. A model is proposed to explain the observation that introns, intergenic regions, and pseudogenes typically have lower GC content than the silent sites of corresponding open reading frames. This model is based on the observation that the greater the heterology between two sequences, the less likely it is that recombination will occur between them. According to this "Constraint" hypothesis, the formation and propagation of heteroduplex DNA is expected to occur, on average, more frequently within conserved coding and regulatory regions of the genome. In organisms possessing GC-biased mismatch repair, this would enhance the GC content of these regions through biased gene conversion. These findings have a number of important implications for the way we view genome evolution and suggest a new model for the evolution of sex.
Collapse
Affiliation(s)
- John A Birdsell
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85121, USA.
| |
Collapse
|
41
|
Sartori AA, Fitz-Gibbon S, Yang H, Miller JH, Jiricny J. A novel uracil-DNA glycosylase with broad substrate specificity and an unusual active site. EMBO J 2002; 21:3182-91. [PMID: 12065430 PMCID: PMC126064 DOI: 10.1093/emboj/cdf309] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Uracil-DNA glycosylases (UDGs) catalyse the removal of uracil by flipping it out of the double helix into their binding pockets, where the glycosidic bond is hydrolysed by a water molecule activated by a polar amino acid. Interestingly, the four known UDG families differ in their active site make-up. The activating residues in UNG and SMUG enzymes are aspartates, thermostable UDGs resemble UNG-type enzymes, but carry glutamate rather than aspartate residues in their active sites, and the less active MUG/TDG enzymes contain an active site asparagine. We now describe the first member of a fifth UDG family, Pa-UDGb from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum, the active site of which lacks the polar residue that was hitherto thought to be essential for catalysis. Moreover, Pa-UDGb is the first member of the UDG family that efficiently catalyses the removal of an aberrant purine, hypoxanthine, from DNA. We postulate that this enzyme has evolved to counteract the mutagenic threat of cytosine and adenine deamination, which becomes particularly acute in organisms living at elevated temperatures.
Collapse
Affiliation(s)
| | - Sorel Fitz-Gibbon
- Institute of Medical Radiobiology of the University of Zürich and the Paul Scherrer-Institute, August Forel-Strasse 7, CH-8008 Zürich, Switzerland and
Department of Microbiology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Hanjing Yang
- Institute of Medical Radiobiology of the University of Zürich and the Paul Scherrer-Institute, August Forel-Strasse 7, CH-8008 Zürich, Switzerland and
Department of Microbiology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Jeffrey H. Miller
- Institute of Medical Radiobiology of the University of Zürich and the Paul Scherrer-Institute, August Forel-Strasse 7, CH-8008 Zürich, Switzerland and
Department of Microbiology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Josef Jiricny
- Institute of Medical Radiobiology of the University of Zürich and the Paul Scherrer-Institute, August Forel-Strasse 7, CH-8008 Zürich, Switzerland and
Department of Microbiology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA Corresponding author e-mail:
| |
Collapse
|
42
|
Hinks JA, Evans MCW, De Miguel Y, Sartori AA, Jiricny J, Pearl LH. An iron-sulfur cluster in the family 4 uracil-DNA glycosylases. J Biol Chem 2002; 277:16936-40. [PMID: 11877410 DOI: 10.1074/jbc.m200668200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 25-kDa Family 4 uracil-DNA glycosylase (UDG) from Pyrobaculum aerophilum has been expressed and purified in large quantities for structural analysis. In the process we observed it to be colored and subsequently found that it contained iron. Here we demonstrate that P. aerophilum UDG has an iron-sulfur center with the EPR characteristics typical of a 4Fe4S high potential iron protein. Interestingly, it does not share any sequence similarity with the classic iron-sulfur proteins, although four cysteines (which are strongly conserved in the thermophilic members of Family 4 UDGs) may represent the metal coordinating residues. The conservation of these residues in other members of the family suggest that 4Fe4S clusters are a common feature. Although 4Fe4S clusters have been observed previously in Nth/MutY DNA repair enzymes, this is the first observation of such a feature in the UDG structural superfamily. Similar to the Nth/MutY enzymes, the Family 4 UDG centers probably play a structural rather than a catalytic role.
Collapse
Affiliation(s)
- John A Hinks
- Cancer Research UK DNA Repair Enzyme Group, Section of Structural Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
| | | | | | | | | | | |
Collapse
|
43
|
Seitz EM, Haseltine CA, Kowalczykowski SC. DNA recombination and repair in the archaea. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:101-69. [PMID: 11677683 DOI: 10.1016/s0065-2164(01)50005-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- E M Seitz
- Sections of Microbiology and of Molecular and Cellular Biology, Center for Genetics and Development, University of California, Davis, Davis, California 95616-8665, USA
| | | | | |
Collapse
|
44
|
Fitz-Gibbon ST, Ladner H, Kim UJ, Stetter KO, Simon MI, Miller JH. Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc Natl Acad Sci U S A 2002; 99:984-9. [PMID: 11792869 PMCID: PMC117417 DOI: 10.1073/pnas.241636498] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2001] [Indexed: 11/18/2022] Open
Abstract
We determined and annotated the complete 2.2-megabase genome sequence of Pyrobaculum aerophilum, a facultatively aerobic nitrate-reducing hyperthermophilic (T(opt) = 100 degrees C) crenarchaeon. Clues were found suggesting explanations of the organism's surprising intolerance to sulfur, which may aid in the development of methods for genetic studies of the organism. Many interesting features worthy of further genetic studies were revealed. Whole genome computational analysis confirmed experiments showing that P. aerophilum (and perhaps all crenarchaea) lack 5' untranslated regions in their mRNAs and thus appear not to use a ribosome-binding site (Shine-Dalgarno)-based mechanism for translation initiation at the 5' end of transcripts. Inspection of the lengths and distribution of mononucleotide repeat-tracts revealed some interesting features. For instance, it was seen that mononucleotide repeat-tracts of Gs (or Cs) are highly unstable, a pattern expected for an organism deficient in mismatch repair. This result, together with an independent study on mutation rates, suggests a "mutator" phenotype.
Collapse
Affiliation(s)
- Sorel T Fitz-Gibbon
- Department of Microbiology, Immunology, and Molecular Genetics, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1489, USA
| | | | | | | | | | | |
Collapse
|
45
|
Hogrefe HH, Hansen CJ, Scott BR, Nielson KB. Archaeal dUTPase enhances PCR amplifications with archaeal DNA polymerases by preventing dUTP incorporation. Proc Natl Acad Sci U S A 2002; 99:596-601. [PMID: 11782527 PMCID: PMC117351 DOI: 10.1073/pnas.012372799] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2001] [Indexed: 11/18/2022] Open
Abstract
We discovered a thermostable enzyme from the archaeon Pyrococcus furiosus (Pfu), which increases yields of PCR product amplified with Pfu DNA polymerase. A high molecular mass (>250 kDa) complex with PCR-enhancing activity was purified from Pfu extracts. The complex is a multimer of two discrete proteins, P45 and P50, with significant similarity to bacterial dCTP deaminase/dUTPase and DNA flavoprotein, respectively. When tested in PCR, only recombinant P45 exhibited enhancing activity. P45 was shown to function as a dUTPase, converting dUTP to dUMP and inorganic pyrophosphate. Pfu dUTPase improves the yield of products amplified with Pfu DNA polymerase by preventing dUTP incorporation and subsequent inhibition of the polymerase by dU-containing DNA. dUTP was found to accumulate during PCR through dCTP deamination and to limit the efficiency of PCRs carried out with archaeal DNA polymerases. In the absence of dUTP inhibition, the combination of cloned Pfu DNA polymerase and Pfu dUTPase (PfuTurbo DNA polymerase) can amplify longer targets in higher yield than Taq DNA polymerase. In vivo, archaeal dUTPases may play an essential role in preventing dUTP incorporation and inhibition of DNA synthesis by family B DNA polymerases.
Collapse
Affiliation(s)
- Holly H Hogrefe
- Stratagene, 11011 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
46
|
Mol CD, Arvai AS, Begley TJ, Cunningham RP, Tainer JA. Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases. J Mol Biol 2002; 315:373-84. [PMID: 11786018 DOI: 10.1006/jmbi.2001.5264] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The repair of T:G mismatches in DNA is key for maintaining bacterial restriction/modification systems and gene silencing in higher eukaryotes. T:G mismatch repair can be initiated by a specific mismatch glycosylase (MIG) that is homologous to the helix-hairpin-helix (HhH) DNA repair enzymes. Here, we present a 2.0 A resolution crystal structure and complementary mutagenesis results for this thermophilic HhH MIG enzyme. The results suggest that MIG distorts the target thymine nucleotide by twisting the thymine base approximately 90 degrees away from its normal anti position within DNA. We propose that functionally significant differences exist in DNA repair enzyme extrahelical nucleotide binding and catalysis that are characteristic of whether the target base is damaged or is a normal base within a mispair. These results explain why pure HhH DNA glycosylases and combined glycosylase/AP lyases cannot be interconverted by simply altering their functional group chemistry, and how broad-specificity DNA glycosylase enzymes may weaken the glycosylic linkage to allow a variety of damaged DNA bases to be excised.
Collapse
Affiliation(s)
- Clifford D Mol
- Department of Molecular Biology MB4, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
47
|
Fondufe-Mittendorf YN, Härer C, Kramer W, Fritz HJ. Two amino acid replacements change the substrate preference of DNA mismatch glycosylase Mig.MthI from T/G to A/G. Nucleic Acids Res 2002; 30:614-21. [PMID: 11788726 PMCID: PMC99839 DOI: 10.1093/nar/30.2.614] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mig.MthI from Methanobacterium thermoautotrophicum and MutY of Escherichia coli are both DNA mismatch glycosylases of the 'helix-hairpin-helix' (HhH) superfamily of DNA repair glycosylases; the former excises thymine from T/G, the latter adenine from A/G mismatches. The structure of MutY, in complex with its low molecular weight product, adenine, has previously been determined by X-ray crystallography. Surprisingly, the set of amino acid residues of MutY that are crucial for adenine recognition is largely conserved in Mig.MthI. Here we show that replacing two amino acid residues in the (modeled) thymine binding site of Mig.MthI (Leu187 to Gln and Ala50 to Val) changes substrate discrimination between T/G and A/G by a factor of 117 in favor of the latter (from 56-fold slower to 2.1-fold faster). The Ala to Val exchange also affects T/G versus U/G selectivity. The data allow a plausible model of thymine binding and of catalytic mechanism of Mig.MthI to be constructed, the key feature of which is a bidentate hydrogen bridge of a protonated glutamate end group (number 42) with thymine centers NH-3 and O-4, with proton transfer to the exocyclic oxygen atom neutralizing the negative charge that builds up in the pyrimidine ring system as the glycosidic bond is broken in a heterolytic fashion. The results also offer an explanation for why so many different substrate specificities are realized within the HhH superfamily of DNA repair glycosylases, and they widen the scope of these enzymes as practical tools.
Collapse
Affiliation(s)
- Yvonne N Fondufe-Mittendorf
- Abteilung Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
48
|
Knaevelsrud I, Ruoff P, Anensen H, Klungland A, Bjelland S, Birkeland NK. Excision of uracil from DNA by the hyperthermophilic Afung protein is dependent on the opposite base and stimulated by heat-induced transition to a more open structure. Mutat Res 2001; 487:173-90. [PMID: 11738943 DOI: 10.1016/s0921-8777(01)00115-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hydrolytic deamination of DNA-cytosines into uracils is a major source of spontaneously induced mutations, and at elevated temperatures the rate of cytosine deamination is increased. Uracil lesions are repaired by the base excision repair pathway, which is initiated by a specific uracil DNA glycosylase enzyme (UDG). The hyperthermophilic archaeon Archaeoglobus fulgidus contains a recently characterized novel type of UDG (Afung), and in this paper we describe the over-expression of the afung gene and characterization of the encoded protein. Fluorescence and activity measurements following incubation at different temperatures may suggest the following model describing structure-activity relationships: At temperatures from 20 to 50 degrees C Afung exists as a compact protein exhibiting low enzyme activity, whereas at temperatures above 50 degrees C, the Afung conformation opens up, which is associated with the acquisition of high enzyme activity. The enzyme exhibits opposite base-dependent excision of uracil in the following order: U>U:T>U:C>>U:G>>U:A. Afung is product-inhibited by uracil and shows a pronounced inhibition by p-hydroxymercuribenzoate, indicating a cysteine residue essential for enzyme function. The Afung protein was estimated to be present in A. fulgidus at a concentration of approximately 1000 molecules per cell. Kinetic parameters determined for Afung suggest a significantly lower level of enzymatic uracil release in A. fulgidus as compared to the mesophilic Escherichia coli.
Collapse
Affiliation(s)
- I Knaevelsrud
- School of Science and Technology, Stavanger University College, Ullandhaug, P.O. Box 2557, N-4091 Stavanger, Norway
| | | | | | | | | | | |
Collapse
|
49
|
Sartori AA, Schär P, Fitz-Gibbon S, Miller JH, Jiricny J. Biochemical characterization of uracil processing activities in the hyperthermophilic archaeon Pyrobaculum aerophilum. J Biol Chem 2001; 276:29979-86. [PMID: 11399761 DOI: 10.1074/jbc.m102985200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deamination of cytosine to uracil and 5-methylcytosine to thymine represents a major mutagenic threat particularly at high temperatures. In double-stranded DNA, these spontaneous hydrolytic reactions give rise to G.U and G.T mispairs, respectively, that must be restored to G.C pairs prior to the next round of DNA replication; if left unrepaired, 50% of progeny DNA would acquire G.C --> A.T transition mutations. The genome of the hyperthermophilic archaeon Pyrobaculum aerophilum has been recently shown to encode a protein, Pa-MIG, a member of the endonuclease III family, capable of processing both G.U and G.T mispairs. We now show that this latter activity is undetectable in crude extracts of P. aerophilum. However, uracil residues in G.U mispairs, in A.U pairs, and in single-stranded DNA were efficiently removed in these extracts. These activities were assigned to a approximately 22-kDa polypeptide named Pa-UDG (P. aerophilum uracil-DNA glycosylase). The recombinant Pa-UDG protein is highly thermostable and displays a considerable degree of homology to the recently described uracil-DNA glycosylases from Archaeoglobus fulgidus and Thermotoga maritima. Interestingly, neither Pa-MIG nor Pa-UDG was inhibited by UGI, a generic inhibitor of the UNG family of uracil glycosylases. Yet a small fraction of the total uracil processing activity present in crude extracts of P. aerophilum was inhibited by this peptide. This implies that the hyperthermophilic archaeon possesses at least a three-pronged defense against the mutagenic threat of hydrolytic deamination of cytosines in its genomic DNA.
Collapse
Affiliation(s)
- A A Sartori
- Institute of Medical Radiobiology, University of Zürich and the Paul Scherrer-Institute, August Forel-Strasse 7, CH-8008 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
50
|
Yang H, Clendenin WM, Wong D, Demple B, Slupska MM, Chiang JH, Miller JH. Enhanced activity of adenine-DNA glycosylase (Myh) by apurinic/apyrimidinic endonuclease (Ape1) in mammalian base excision repair of an A/GO mismatch. Nucleic Acids Res 2001; 29:743-52. [PMID: 11160897 PMCID: PMC30391 DOI: 10.1093/nar/29.3.743] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2000] [Revised: 12/01/2000] [Accepted: 12/01/2000] [Indexed: 11/14/2022] Open
Abstract
Adenine-DNA glycosylase MutY of Escherichia coli catalyzes the cleavage of adenine when mismatched with 7,8-dihydro-8-oxoguanine (GO), an oxidatively damaged base. The biological outcome is the prevention of C/G-->A/T transversions. The molecular mechanism of base excision repair (BER) of A/GO in mammals is not well understood. In this study we report stimulation of mammalian adenine-DNA glycosylase activity by apurinic/apyrimidinic (AP) endonuclease using murine homolog of MutY (Myh) and human AP endonuclease (Ape1), which shares 94% amino acid identity with its murine homolog Apex. After removal of adenine by the Myh glycosylase activity, intact AP DNA remains due to lack of an efficient Myh AP lyase activity. The study of wild-type Ape1 and its catalytic mutant H309N demonstrates that Ape1 catalytic activity is required for formation of cleaved AP DNA. It also appears that Ape1 stimulates Myh glycosylase activity by increasing formation of the Myh-DNA complex. This stimulation is independent of the catalytic activity of Ape1. Consequently, Ape1 preserves the Myh preference for A/GO over A/G and improves overall glycosylase efficiency. Our study suggests that protein-protein interactions may occur in vivo to achieve efficient BER of A/GO.
Collapse
Affiliation(s)
- H Yang
- Department of Microbiology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA and Department of Cancer Cell Biology, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|