1
|
Gallego-Parrilla JJ, Severi E, Chandra G, Palmer T. Identification of novel tail-anchored membrane proteins integrated by the bacterial twin-arginine translocase. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001431. [PMID: 38363712 PMCID: PMC10924467 DOI: 10.1099/mic.0.001431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The twin-arginine protein transport (Tat) system exports folded proteins across the cytoplasmic membranes of prokaryotes and the energy transducing-membranes of plant thylakoids and mitochondria. Proteins are targeted to the Tat machinery by N-terminal signal peptides with a conserved twin-arginine motif, and some substrates are exported as heterodimers where the signal peptide is present on one of the partner proteins. A subset of Tat substrates is found in the membrane. Tat-dependent membrane proteins usually have large globular domains and a single transmembrane helix present at the N- or C-terminus. Five Tat substrates that have C-terminal transmembrane helices have previously been characterized in the model bacterium Escherichia coli. Each of these is an iron-sulfur cluster-containing protein involved in electron transfer from hydrogen or formate. Here we have undertaken a bioinformatic search to identify further tail-anchored Tat substrates encoded in bacterial genomes. Our analysis has revealed additional tail-anchored iron-sulfur proteins associated in modules with either a b-type cytochrome or a quinol oxidase. We also identified further candidate tail-anchored Tat substrates, particularly among members of the actinobacterial phylum, that are not predicted to contain cofactors. Using reporter assays, we show experimentally that six of these have both N-terminal Tat signal peptides and C-terminal transmembrane helices. The newly identified proteins include a carboxypeptidase and a predicted protease, and four sortase substrates for which membrane integration is a prerequisite for covalent attachment to the cell wall.
Collapse
Affiliation(s)
- José Jesús Gallego-Parrilla
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emmanuele Severi
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Govind Chandra
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
2
|
Hickman SJ, Miller HL, Bukys A, Kapanidis AN, Berks BC. Aberrant Topologies of Bacterial Membrane Proteins Revealed by High Sensitivity Fluorescence Labelling. J Mol Biol 2024; 436:168368. [PMID: 37977298 PMCID: PMC11867995 DOI: 10.1016/j.jmb.2023.168368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The cytoplasmic membrane compartmentalises the bacterial cell into cytoplasm and periplasm. Proteins located in this membrane have a defined topology that is established during their biogenesis. However, the accuracy of this fundamental biosynthetic process is unknown. We developed compartment-specific fluorescence labelling methods with up to single-molecule sensitivity. Application of these methods to the single and multi-spanning membrane proteins of the Tat protein transport system revealed rare topogenesis errors. This methodology also detected low level soluble protein mislocalization from the cytoplasm to the periplasm. This study shows that it is possible to uncover rare errors in protein localization by leveraging the high sensitivity of fluorescence methods.
Collapse
Affiliation(s)
- Samuel J Hickman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | - Helen L Miller
- Biological Physics Research Group, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
| | - Alfredas Bukys
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, Sherrington Road, Oxford OX1 3QU, United Kingdom.
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
3
|
Cheung BH, Alisoltani A, Kochan TJ, Lebrun-Corbin M, Nozick SH, Axline CMR, Bachta KER, Ozer EA, Hauser AR. Genome-wide screens reveal shared and strain-specific genes that facilitate enteric colonization by Klebsiella pneumoniae. mBio 2023; 14:e0212823. [PMID: 37877703 PMCID: PMC10746194 DOI: 10.1128/mbio.02128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Klebsiella pneumoniae is a common cause of difficult-to-treat infections due to its propensity to express resistance to many antibiotics. For example, carbapenem-resistant K. pneumoniae has been named an urgent threat by the United States Centers for Disease Control and Prevention. Gastrointestinal colonization in patients with K. pneumoniae has been linked to subsequent infection, making it a key process to control in the prevention of multidrug-resistant infections. However, the bacterial factors which contribute to K. pneumoniae colonization are not well understood. Additionally, individual strains exhibit large amounts of genetic diversity, begging the question of whether some colonization factors are strain dependent. This study identifies the enteric colonization factors of three classical strains using transposon mutant screens to define a core colonization program for K. pneumoniae as well as detecting strain-to-strain differences in colonization strategies.
Collapse
Affiliation(s)
- Bettina H. Cheung
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Arghavan Alisoltani
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Travis J. Kochan
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Marine Lebrun-Corbin
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sophia H. Nozick
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Christopher M. R. Axline
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kelly E. R. Bachta
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Egon A. Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alan R. Hauser
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
4
|
Zhou W, Hao B, Bricker TM, Theg SM. A real-time analysis of protein transport via the twin arginine translocation pathway in response to different components of the protonmotive force. J Biol Chem 2023; 299:105286. [PMID: 37742925 PMCID: PMC10641609 DOI: 10.1016/j.jbc.2023.105286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
The twin arginine translocation (Tat) pathway transports folded protein across the cytoplasmic membrane in bacteria, archaea, and across the thylakoid membrane in plants as well as the inner membrane in some mitochondria. In plant chloroplasts, the Tat pathway utilizes the protonmotive force (PMF) to drive protein translocation. However, in bacteria, it has been shown that Tat transport depends only on the transmembrane electrical potential (Δψ) component of PMF in vitro. To investigate the comprehensive PMF requirement in Escherichia coli, we have developed the first real-time assay to monitor Tat transport utilizing the NanoLuc Binary Technology in E. coli spheroplasts. This luminescence assay allows for continuous monitoring of Tat transport with high-resolution, making it possible to observe subtle changes in transport in response to different treatments. By applying the NanoLuc assay, we report that, under acidic conditions (pH = 6.3), ΔpH, in addition to Δψ, contributes energetically to Tat transport in vivo in E. coli spheroplasts. These results provide novel insight into the mechanism of energy utilization by the Tat pathway.
Collapse
Affiliation(s)
- Wenjie Zhou
- Department of Plant Biology, University of California, Davis, California, USA
| | - Binhan Hao
- Department of Plant Biology, University of California, Davis, California, USA
| | - Terry M Bricker
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Steven M Theg
- Department of Plant Biology, University of California, Davis, California, USA.
| |
Collapse
|
5
|
Cheung BH, Alisoltani A, Kochan TJ, Lebrun-Corbin M, Nozick SH, Axline CMR, Bachta KER, Ozer EA, Hauser AR. Genome-wide screens reveal shared and strain-specific genes that facilitate enteric colonization by Klebsiella pneumoniae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555643. [PMID: 37693543 PMCID: PMC10491162 DOI: 10.1101/2023.08.30.555643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Gastrointestinal (GI) colonization by Klebsiella pneumoniae is a risk factor for subsequent infection as well as transmission to other patients. Additionally, colonization is achieved by many strain types that exhibit high diversity in genetic content. Thus, we aimed to study strain-specific requirements for K. pneumoniae GI colonization by applying transposon insertion sequencing to three classical clinical strains: a carbapenem-resistant strain, an extended-spectrum beta-lactamase producing strain, and a non-epidemic antibiotic-susceptible strain. The transposon insertion libraries were screened in a murine model of GI colonization. At three days post-inoculation, 27 genes were required by all three strains for colonization. Isogenic deletion mutants for three genes/operons (acrA, carAB, tatABCD) confirmed colonization defects in each of the three strains. Additionally, deletion of acrA reduced bile tolerance in vitro, while complementation restored both bile tolerance in vitro and colonization ability in vivo. Transposon insertion sequencing suggested that some genes were more important for colonization of one strain than the others. For example, deletion of the sucrose porin-encoding gene scrY resulted in a colonization defect in the carbapenemase-producing strain but not in the extended-spectrum beta-lactamase producer or the antibiotic-susceptible strain. These findings demonstrate that classical K. pneumoniae strains use both shared and strain-specific strategies to colonize the mouse GI tract. IMPORTANCE Klebsiella pneumoniae is a common cause of difficult-to-treat infections due to its propensity to express resistance to many antibiotics. For example, carbapenem-resistant K. pneumoniae (CR-Kp) has been named an urgent threat by the United States Centers for Disease Control and Prevention. Gastrointestinal colonization of patients with K. pneumoniae has been linked to subsequent infection, making it a key process to control in prevention of multidrug-resistant infections. However, the bacterial factors which contribute to K. pneumoniae colonization are not well understood. Additionally, individual strains exhibit large amounts of genetic diversity, begging the question of whether some colonization factors are strain-dependent. This study identifies the enteric colonization factors of 3 classical strains using transposon mutant screens to define a core colonization program for K. pneumoniae as well as detecting strain-to-strain differences in colonization strategies.
Collapse
Affiliation(s)
- Bettina H Cheung
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Arghavan Alisoltani
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Travis J Kochan
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Marine Lebrun-Corbin
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Sophia H Nozick
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher MR Axline
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Kelly ER Bachta
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Egon A Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alan R Hauser
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
6
|
Yi X, Chen Y, Cai H, Wang J, Zhang Y, Zhu Z, Lin M, Qin Y, Jiang X, Xu X. The temperature-dependent expression of type II secretion system controls extracellular product secretion and virulence in mesophilic Aeromonas salmonida SRW-OG1. Front Cell Infect Microbiol 2022; 12:945000. [PMID: 35979091 PMCID: PMC9376225 DOI: 10.3389/fcimb.2022.945000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Aeromonas salmonicida is a typical cold water bacterial pathogen that causes furunculosis in many freshwater and marine fish species worldwide. In our previous study, the pathogenic A. salmonicida (SRW-OG1) was isolated from a warm water fish, Epinephelus coioides was genomics and transcriptomics analyzed. Type II secretion system was found in the genome of A. salmonicida SRW-OG1, while the expressions of tatA, tatB, and tatC were significantly affected by temperature stress. Also, sequence alignment analysis, homology analysis and protein secondary structure function analysis showed that tatA, tatB, and tatC were highly conservative, indicating their biological significance. In this study, by constructing the mutants of tatA, tatB, and tatC, we investigated the mechanisms underlying temperature-dependent virulence regulation in mesophilic A. salmonida SRW-OG1. According to our results, tatA, tatB, and tatC mutants presented a distinct reduction in adhesion, hemolysis, biofilm formation and motility. Compared to wild-type strain, inhibition of the expression of tatA, tatB, and tatC resulted in a decrease in biofilm formation by about 23.66%, 19.63% and 40.13%, and a decrease in adhesion ability by approximately 77.69%, 80.41% and 62.14% compared with that of the wild-type strain. Furthermore, tatA, tatB, and tatC mutants also showed evidently reduced extracellular enzymatic activities, including amylase, protease, lipase, hemolysis and lecithinase. The genes affecting amylase, protease, lipase, hemolysis, and lecithinase of A. salmonicida SRW-OG1 were identified as cyoE, ahhh1, lipA, lipB, pulA, HED66_RS01350, HED66_RS19960, aspA, fabD, and gpsA, which were notably affected by temperature stress and mutant of tatA, tatB, and tatC. All above, tatA, tatB and tatC regulate the virulence of A. salmonicida SRW-OG1 by affecting biofilm formation, adhesion, and enzymatic activity of extracellular products, and are simultaneously engaged in temperature-dependent pathogenicity.
Collapse
Affiliation(s)
- Xin Yi
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, China
| | - Yunong Chen
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, China
| | - Hongyan Cai
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, China
| | - Jiajia Wang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, China
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics, School of Electronic Science and Engineering, Xiamen University, Xiamen, China
- *Correspondence: Xiaojin Xu, ; Youyu Zhang,
| | - ZhiQin Zhu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, China
| | - Mao Lin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, China
| | - XingLong Jiang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, China
- *Correspondence: Xiaojin Xu, ; Youyu Zhang,
| |
Collapse
|
7
|
Shukal S, Lim XH, Zhang C, Chen X. Metabolic engineering of Escherichia coli BL21 strain using simplified CRISPR-Cas9 and asymmetric homology arms recombineering. Microb Cell Fact 2022; 21:19. [PMID: 35123478 PMCID: PMC8817497 DOI: 10.1186/s12934-022-01746-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/21/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The recent CRISPR-Cas coupled with λ recombinase mediated genome recombineering has become a common laboratory practice to modify bacterial genomes. It requires supplying a template DNA with homology arms for precise genome editing. However, generation of homology arms is a time-consuming, costly and inefficient process that is often overlooked. RESULTS In this study, we first optimized a CRISPR-Cas genome engineering protocol in the Escherichia coli (E. coli) BL21 strain and successfully deleted 10 kb of DNA from the genome in one round of editing. To further simplify the protocol, asymmetric homology arms were produced by PCR in a single step with two primers and then purified using a desalting column. Unlike conventional homology arms that are prepared through overlapping PCR, cloning into a plasmid or annealing synthetic DNA fragments, our method significantly both shortened the time taken and reduced the cost of homology arm preparation. To test the robustness of the optimized workflow, we successfully deleted 26 / 27 genes across the BL21 genome. Noteworthy, gRNA design is important for the CRISPR-Cas system and a general heuristic gRNA design has been proposed in this study. To apply our established protocol, we targeted 16 genes and iteratively deleted 7 genes from BL21 genome. The resulting strain increased lycopene yield by ~ threefold. CONCLUSIONS Our work has optimized the homology arms design for gene deletion in BL21. The protocol efficiently edited BL21 to improve lycopene production. The same workflow is applicable to any E. coli strain in which genome engineering would be useful to further increase metabolite production.
Collapse
Affiliation(s)
- Sudha Shukal
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Proteos level 4, Singapore, 138673, Singapore
| | - Xiao Hui Lim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Proteos level 4, Singapore, 138673, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Proteos level 4, Singapore, 138673, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Proteos level 4, Singapore, 138673, Singapore.
| |
Collapse
|
8
|
Phan MD, Bottomley AL, Peters KM, Harry EJ, Schembri MA. Uncovering novel susceptibility targets to enhance the efficacy of third-generation cephalosporins against ESBL-producing uropathogenic Escherichia coli. J Antimicrob Chemother 2021; 75:1415-1423. [PMID: 32073605 DOI: 10.1093/jac/dkaa023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) are a major cause of urinary tract infection (UTI), one of the most common infectious diseases in humans. UPEC are increasingly associated with resistance to multiple antibiotics. This includes resistance to third-generation cephalosporins, a common class of antibiotics frequently used to treat UTI. METHODS We employed a high-throughput genome-wide screen using saturated transposon mutagenesis and transposon directed insertion-site sequencing (TraDIS) together with phenotypic resistance assessment to identify key genes required for survival of the MDR UPEC ST131 strain EC958 in the presence of the third-generation cephalosporin cefotaxime. RESULTS We showed that blaCMY-23 is the major ESBL gene in EC958 responsible for mediating resistance to cefotaxime. Our screen also revealed that mutation of genes involved in cell division and the twin-arginine translocation pathway sensitized EC958 to cefotaxime. The role of these cell-division and protein-secretion genes in cefotaxime resistance was confirmed through the construction of mutants and phenotypic testing. Mutation of these genes also sensitized EC958 to other cephalosporins. CONCLUSIONS This work provides an exemplar for the application of TraDIS to define molecular mechanisms of resistance to antibiotics. The identification of mutants that sensitize UPEC to cefotaxime, despite the presence of a cephalosporinase, provides a framework for the development of new approaches to treat infections caused by MDR pathogens.
Collapse
Affiliation(s)
- Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Amy L Bottomley
- The ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth J Harry
- The ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Yan X, Hu S, Yang Y, Xu D, Liu W, Li G, Cai W, Bu Z. Proteomics Investigation of the Time Course Responses of RAW264.7 Macrophages to Infections With the Wild-Type and Twin-Arginine Translocation Mutant Strains of Brucella melitensis. Front Cell Infect Microbiol 2021; 11:679571. [PMID: 34195100 PMCID: PMC8238042 DOI: 10.3389/fcimb.2021.679571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Brucella, a notorious intracellular pathogen, causes chronic infections in many mammals, including humans. The twin-arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane; protein substrates translocated by Brucella include ABC transporters, oxidoreductases, and cell envelope biosynthesis proteins. Previously, we showed that a Tat mutant of Brucella melitensis M28 exhibits reduced survival within murine macrophages. In this study, we compared the host responses elicited by wild-type M28 and its Tat-mutant strains ex vivo. We utilized label-free quantitative proteomics to assess proteomic changes in RAW264.7 macrophages after infection with M28 and its Tat mutants. A total of 6085 macrophage proteins were identified with high confidence, and 79, 50, and 99 proteins were differentially produced upon infection with the Tat mutant at 4, 24, and 48 hpi, respectively, relative to the wild-type infection. Gene ontology and KEGG enrichment analysis indicated that immune response-related proteins were enriched among the upregulated proteins. Compared to the wild-type M28 infection, the most upregulated proteins upon Tat-mutant infection included the cytosolic nucleic acid signaling pathway-related proteins IFIH1, DHX58, IFI202, IFI204, and ISG15 and the NF-κB signaling pathway-related proteins PTGS2, CD40, and TRAF1, suggesting that the host increases the production of these proteins in response to Tat mutant infection. Upregulation of some proteins was further verified by a parallel reaction monitoring (PRM) assay. ELISA and qRT-PCR assays indicated that Tat mutant infection significantly induced proinflammatory cytokine (TNF-α and IL-6) and nitric oxide (NO) production. Finally, we showed that the Tat mutant displays higher sensitivity to nitrosative stress than the wild type and that treatment with the NO synthase inhibitor L-NMMA significantly increases the intracellular survival of the Tat mutant, indicating that NO production contributes to restricting Tat mutant survival within macrophages. Collectively, this work improves our understanding of host immune responses to Tat mutants and provides insights into the mechanisms underlying the attenuated virulence of Tat mutants.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Sen Hu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan Yang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Da Xu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenxing Liu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ganwu Li
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Wentong Cai
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| | - Zhigao Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| |
Collapse
|
10
|
M Brauer A, R Rogers A, R Ellermeier J. Twin-arginine translocation (Tat) mutants in Salmonella enterica serovar Typhimurium have increased susceptibility to cell wall targeting antibiotics. FEMS MICROBES 2021; 2:xtab004. [PMID: 34250488 PMCID: PMC8262268 DOI: 10.1093/femsmc/xtab004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/01/2021] [Indexed: 11/15/2022] Open
Abstract
The twin-arginine translocation (Tat) system is a protein secretion system that is conserved in bacteria, archaea and plants. In Gram-negative bacteria, it is required for the export of folded proteins from the cytoplasm to the periplasm. There are 30 experimentally verified Tat substrates in Salmonella, including hydrogenase subunits, enzymes required for anaerobic respiration and enzymes involved in peptidoglycan remodeling during cell division. Multiple studies have demonstrated the susceptibility of tat mutants to antimicrobial compounds such as SDS and bile; however, in this work, we use growth curves and viable plate counts to demonstrate that cell wall targeting antibiotics (penicillins, carbapenems, cephalosporins and fosfomycin) have increased killing against a Δtat strain. Further, we demonstrate that this increased killing is primarily due to defects in translocation of critical Tat substrates: MepK, AmiA, AmiC and SufI. Finally, we show that a ΔhyaAB ΔhybABC ΔhydBC strain has an altered ΔΨ that impacts proper secretion of critical Tat substrates in aerobic growth conditions.
Collapse
Affiliation(s)
- Adrienne M Brauer
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO 63701, USA
| | - Alexandra R Rogers
- Department of Microbiology and Immunology, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA
| | - Jeremy R Ellermeier
- Department of Microbiology and Immunology, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA
| |
Collapse
|
11
|
Zahir T, Wilmaerts D, Franke S, Weytjens B, Camacho R, Marchal K, Hofkens J, Fauvart M, Michiels J. Image-Based Dynamic Phenotyping Reveals Genetic Determinants of Filamentation-Mediated β-Lactam Tolerance. Front Microbiol 2020; 11:374. [PMID: 32231648 PMCID: PMC7082316 DOI: 10.3389/fmicb.2020.00374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 12/02/2022] Open
Abstract
Antibiotic tolerance characterized by slow killing of bacteria in response to a drug can lead to treatment failure and promote the emergence of resistance. β-lactam antibiotics inhibit cell wall growth in bacteria and many of them cause filamentation followed by cell lysis. Hence delayed cell lysis can lead to β-lactam tolerance. Systematic discovery of genetic factors that affect β-lactam killing kinetics has not been performed before due to challenges in high-throughput, dynamic analysis of viability of filamented cells during bactericidal action. We implemented a high-throughput time-resolved microscopy approach in a gene deletion library of Escherichia coli to monitor the response of mutants to the β-lactam cephalexin. Changes in frequency of lysed and intact cells due to the antibiotic action uncovered several strains with atypical lysis kinetics. Filamentation confers tolerance because antibiotic removal before lysis leads to recovery through numerous concurrent divisions of filamented cells. Filamentation-mediated tolerance was not associated with resistance, and therefore this phenotype is not discernible through most antibiotic susceptibility methods. We find that deletion of Tol-Pal proteins TolQ, TolR, or Pal but not TolA, TolB, or CpoB leads to rapid killing by β-lactams. We also show that the timing of cell wall degradation determines the lysis and killing kinetics after β-lactam treatment. Altogether, this study uncovers numerous genetic determinants of hitherto unappreciated filamentation-mediated β-lactam tolerance and support the growing call for considering antibiotic tolerance in clinical evaluation of pathogens. More generally, the microscopy screening methodology described here can easily be adapted to study lysis in large numbers of strains.
Collapse
Affiliation(s)
- Taiyeb Zahir
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center of Microbiology, Leuven, Belgium
| | - Dorien Wilmaerts
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center of Microbiology, Leuven, Belgium
| | - Sabine Franke
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bram Weytjens
- Department of Information Technology, IDLab Group, Ghent University, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Rafael Camacho
- Department of Chemistry, KU Leuven - University of Leuven, Leuven, Belgium
| | - Kathleen Marchal
- Department of Information Technology, IDLab Group, Ghent University, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Johan Hofkens
- Department of Chemistry, KU Leuven - University of Leuven, Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center of Microbiology, Leuven, Belgium.,Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center of Microbiology, Leuven, Belgium
| |
Collapse
|
12
|
Twin-Arginine Translocation System Is Involved in Citrobacter rodentium Fitness in the Intestinal Tract. Infect Immun 2020; 88:IAI.00892-19. [PMID: 31818958 DOI: 10.1128/iai.00892-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/16/2023] Open
Abstract
The twin-arginine translocation (Tat) system is involved in not only a wide array of cellular processes but also pathogenesis in many bacterial pathogens; thus, this system is expected to become a novel therapeutic target to treat infections. To the best of our knowledge, involvement of the Tat system has not been reported in the gut infection caused by Citrobacter rodentium Here, we studied the role of Tat in C. rodentium gut infection, which resembles human infection with enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC). A C. rodentium Tat loss-of-function mutant displayed prolonged gut colonization, which was explained by reduced inflammatory responses and, particularly, neutrophil infiltration. Further, the Tat mutant had colonization defects upon coinfection with the wild-type strain of C. rodentium The Tat mutant also became hypersensitive to bile acids, and an increase in fecal bile acids fostered C. rodentium clearance from the gut lumen. Finally, we show that the chain form of C. rodentium cells, induced by a Tat-dependent cell division defect, exhibits impaired resistance to bile acids. Our findings indicate that the Tat system is involved in gut colonization by C. rodentium, which is associated with neutrophil infiltration and resistance to bile acids. Interventions that target the Tat system, as well as luminal bile acids, might thus be promising therapeutic strategies to treat human EHEC and EPEC infections.
Collapse
|
13
|
A robust fractionation method for protein subcellular localization studies in Escherichia coli. Biotechniques 2020; 66:171-178. [PMID: 30987443 DOI: 10.2144/btn-2018-0135] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fractionation in Gram-negative bacteria is used to identify the subcellular localization of proteins, in particular the localization of exported recombinant proteins. The process of cell fractionation can be fraught with cross-contamination issues and often lacks supporting data for fraction purity. Here, we compare three periplasm extraction and two cell disruption techniques in different combinations to investigate which process gives uncontaminated compartments from Escherichia coli. From these data, a robust method named PureFrac was compiled that gives pure periplasmic fractions and a superior recovery of soluble cytoplasmic proteins. The process extracts periplasm using cold osmotic shock with magnesium, prior to sonication and ultracentrifugation to separate the cytoplasm from insoluble material. This method handles cells cultivated in various conditions and allows preparation of active proteins in their respective compartments.
Collapse
|
14
|
Yu M, Zhao Y. Cell permeability, β-lactamase activity, and transport contribute to high level of resistance to ampicillin in Lysobacter enzymogenes. Appl Microbiol Biotechnol 2019; 104:1149-1161. [PMID: 31822985 DOI: 10.1007/s00253-019-10266-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 11/26/2022]
Abstract
Discovery of multidrug resistance (MDR) in environmental microorganisms provides unique resources for uncovering antibiotic resistomes, which could be vital to predict future emergence of MDR pathogens. Our previous studies indicated that Lysobacter sp. conferred intrinsic resistance to multiple antibiotics at high levels, especially ampicillin, the first broad-spectrum β-lactam antibiotics against both Gram-positive and Gram-negative bacteria. However, the underlying molecular mechanisms for resistance to ampicillin in Lysobacter enzymogenes strain C3 (LeC3) remain unknown. In this study, screening a Tn5 transposon mutant library of LeC3 recovered 12 mutants with decreased ampicillin resistance, and three mutants (i.e., tatC, lebla, and lpp) were selected for further characterization. Our results revealed that genes encoding β-lactamase (lebla) and twin-arginine translocation (tatC) system for β-lactamase transport played a pivotal role in conferring ampicillin resistance in L. enzymogenes. It was also demonstrated that the lpp gene was not only involved in resistance against β-lactams but also conferred resistance to multiple antibiotics in L. enzymogenes. Permeability assay results indicated that decreased MDR in the lpp mutant was in part due to its higher cellular permeability. Furthermore, our results showed that the difference of LeC3 and L. antibioticus strain LaATCC29479 in ampicillin susceptibility was partly due to their differences in cellular permeability, but not due to β-lactamase activities.
Collapse
Affiliation(s)
- Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
15
|
Warr AR, Hubbard TP, Munera D, Blondel CJ, Abel zur Wiesch P, Abel S, Wang X, Davis BM, Waldor MK. Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization. PLoS Pathog 2019; 15:e1007652. [PMID: 31404118 PMCID: PMC6705877 DOI: 10.1371/journal.ppat.1007652] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/22/2019] [Accepted: 08/01/2019] [Indexed: 12/28/2022] Open
Abstract
Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is an important food-borne pathogen that colonizes the colon. Transposon-insertion sequencing (TIS) was used to identify genes required for EHEC and E. coli K-12 growth in vitro and for EHEC growth in vivo in the infant rabbit colon. Surprisingly, many conserved loci contribute to EHEC's but not to K-12's growth in vitro. There was a restrictive bottleneck for EHEC colonization of the rabbit colon, which complicated identification of EHEC genes facilitating growth in vivo. Both a refined version of an existing analytic framework as well as PCA-based analysis were used to compensate for the effects of the infection bottleneck. These analyses confirmed that the EHEC LEE-encoded type III secretion apparatus is required for growth in vivo and revealed that only a few effectors are critical for in vivo fitness. Over 200 mutants not previously associated with EHEC survival/growth in vivo also appeared attenuated in vivo, and a subset of these putative in vivo fitness factors were validated. Some were found to contribute to efficient type-three secretion while others, including tatABC, oxyR, envC, acrAB, and cvpA, promote EHEC resistance to host-derived stresses. cvpA is also required for intestinal growth of several other enteric pathogens, and proved to be required for EHEC, Vibrio cholerae and Vibrio parahaemolyticus resistance to the bile salt deoxycholate, highlighting the important role of this previously uncharacterized protein in pathogen survival. Collectively, our findings provide a comprehensive framework for understanding EHEC growth in the intestine.
Collapse
Affiliation(s)
- Alyson R. Warr
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Troy P. Hubbard
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diana Munera
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carlos J. Blondel
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pia Abel zur Wiesch
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sören Abel
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaoxue Wang
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brigid M. Davis
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- HHMI, Boston, Massachusetts, United States of America
| |
Collapse
|
16
|
Abstract
The twin-arginine protein translocation (Tat) system has been characterized in bacteria, archaea and the chloroplast thylakoidal membrane. This system is distinct from other protein transport systems with respect to two key features. Firstly, it accepts cargo proteins with an N-terminal signal peptide that carries the canonical twin-arginine motif, which is essential for transport. Second, the Tat system only accepts and translocates fully folded cargo proteins across the respective membrane. Here, we review the core essential features of folded protein transport via the bacterial Tat system, using the three-component TatABC system of Escherichia coli and the two-component TatAC systems of Bacillus subtilis as the main examples. In particular, we address features of twin-arginine signal peptides, the essential Tat components and how they assemble into different complexes, mechanistic features and energetics of Tat-dependent protein translocation, cytoplasmic chaperoning of Tat cargo proteins, and the remarkable proofreading capabilities of the Tat system. In doing so, we present the current state of our understanding of Tat-dependent protein translocation across biological membranes, which may serve as a lead for future investigations.
Collapse
Affiliation(s)
- Kelly M. Frain
- The School of Biosciences, University of Kent, Canterbury, CT2 7NZ UK
| | - Colin Robinson
- The School of Biosciences, University of Kent, Canterbury, CT2 7NZ UK
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen (UMCG), Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
17
|
Zahir T, Camacho R, Vitale R, Ruckebusch C, Hofkens J, Fauvart M, Michiels J. High-throughput time-resolved morphology screening in bacteria reveals phenotypic responses to antibiotics. Commun Biol 2019; 2:269. [PMID: 31341968 PMCID: PMC6650389 DOI: 10.1038/s42003-019-0480-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/21/2019] [Indexed: 11/09/2022] Open
Abstract
Image-based high-throughput screening strategies for quantifying morphological phenotypes have proven widely successful. Here we describe a combined experimental and multivariate image analysis approach for systematic large-scale phenotyping of morphological dynamics in bacteria. Using off-the-shelf components and software, we established a workflow for high-throughput time-resolved microscopy. We then screened the single-gene deletion collection of Escherichia coli for antibiotic-induced morphological changes. Using single-cell quantitative descriptors and supervised classification methods, we measured how different cell morphologies developed over time for all strains in response to the β-lactam antibiotic cefsulodin. 191 strains exhibit significant variations under antibiotic treatment. Phenotypic clustering provided insights into processes that alter the antibiotic response. Mutants with stable bulges show delayed lysis, contributing to antibiotic tolerance. Lipopolysaccharides play a crucial role in bulge stability. This study demonstrates how multiparametric phenotyping by high-throughput time-resolved imaging and computer-aided cell classification can be used for comprehensively studying dynamic morphological transitions in bacteria.
Collapse
Affiliation(s)
- Taiyeb Zahir
- Centre of Microbial and Plant Genetics, KU Leuven—University of Leuven, Leuven, 3001 Belgium
- VIB-KU Leuven Center of Microbiology, Leuven, 3001 Belgium
| | - Rafael Camacho
- Department of Chemistry, KU Leuven—University of Leuven, Leuven, 3001 Belgium
| | - Raffaele Vitale
- Department of Chemistry, KU Leuven—University of Leuven, Leuven, 3001 Belgium
- LASIR CNRS, Université de Lille, Lille, F-59000 France
| | | | - Johan Hofkens
- Department of Chemistry, KU Leuven—University of Leuven, Leuven, 3001 Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven—University of Leuven, Leuven, 3001 Belgium
- VIB-KU Leuven Center of Microbiology, Leuven, 3001 Belgium
- imec, Leuven, 3001 Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven—University of Leuven, Leuven, 3001 Belgium
- VIB-KU Leuven Center of Microbiology, Leuven, 3001 Belgium
| |
Collapse
|
18
|
Abstract
The Tat pathway for protein translocation across bacterial membranes stands out for its selective handling of fully folded cargo proteins. In this review, we provide a comprehensive summary of our current understanding of the different known Tat components, their assembly into different complexes, and their specific roles in the protein translocation process. In particular, this overview focuses on the Gram-negative bacterium Escherichia coli and the Gram-positive bacterium Bacillus subtilis. Using these organisms as examples, we discuss structural features of Tat complexes alongside mechanistic models that allow for the Tat pathway's unique protein proofreading and transport capabilities. Finally, we highlight recent advances in exploiting the Tat pathway for biotechnological benefit, the production of high-value pharmaceutical proteins.
Collapse
Affiliation(s)
- Kelly M Frain
- The School of Biosciences, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - Colin Robinson
- The School of Biosciences, University of Kent, Canterbury CT2 7NZ, United Kingdom
| |
Collapse
|
19
|
Hohl M, Remm S, Eskandarian HA, Dal Molin M, Arnold FM, Hürlimann LM, Krügel A, Fantner GE, Sander P, Seeger MA. Increased drug permeability of a stiffened mycobacterial outer membrane in cells lacking MFS transporter Rv1410 and lipoprotein LprG. Mol Microbiol 2019; 111:1263-1282. [PMID: 30742339 PMCID: PMC6519032 DOI: 10.1111/mmi.14220] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2019] [Indexed: 12/18/2022]
Abstract
The major facilitator superfamily transporter Rv1410 and the lipoprotein LprG (Rv1411) are encoded by a conserved two-gene operon and contribute to virulence in Mycobacterium tuberculosis. Rv1410 was originally postulated to function as a drug efflux pump, but recent studies suggested that Rv1410 and LprG work in concert to insert triacylglycerides and lipoarabinomannans into the outer membrane. Here, we conducted microscopic analyses of Mycobacterium smegmatis lacking the operon and observed a cell separation defect, while surface rigidity measured by atomic force microscopy was found to be increased. Whereas Rv1410 expressed in Lactococcus lactis did not confer drug resistance, deletion of the operon in Mycobacterium abscessus and M. smegmatis resulted in increased susceptibility toward vancomycin, novobiocin and rifampicin. A homology model of Rv1410 revealed a periplasmic loop as well as a highly conserved aspartate, which were found to be essential for the operon's function. Interestingly, influx of the fluorescent dyes BCECF-AM and calcein-AM in de-energized M. smegmatis cells was faster in the deletion mutant. Our results unambiguously show that elevated drug susceptibility in the deletion mutant is caused by increased drug influx through a defective mycobacterial cell envelope and not by drug efflux mediated by Rv1410.
Collapse
Affiliation(s)
- Michael Hohl
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Sille Remm
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Haig A Eskandarian
- Global Health Institute, École polytechnique fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Michael Dal Molin
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Fabian M Arnold
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Lea M Hürlimann
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Andri Krügel
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Georg E Fantner
- Interfaculty Institute for Bioengineering, École polytechnique fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland.,National Center for Mycobacteria, Zurich, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
20
|
Far-reaching cellular consequences of tat deletion in Escherichia coli revealed by comprehensive proteome analyses. Microbiol Res 2019; 218:97-107. [DOI: 10.1016/j.micres.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/21/2018] [Accepted: 10/27/2018] [Indexed: 11/22/2022]
|
21
|
Smith SM, Walker KL, Jones AS, Smith CJ, Robinson C. Characterization of a novel method for the production of single-span membrane proteins in Escherichia coli. Biotechnol Bioeng 2018; 116:722-733. [PMID: 30536699 PMCID: PMC6492203 DOI: 10.1002/bit.26895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/26/2018] [Accepted: 12/06/2018] [Indexed: 12/03/2022]
Abstract
The large‐scale production and isolation of recombinant protein is a central element of the biotechnology industry and many of the products have proved extremely beneficial for therapeutic medicine. Escherichia coli is the microorganism of choice for the expression of heterologous proteins for therapeutic application, and a range of high‐value proteins have been targeted to the periplasm using the well characterized Sec protein export pathway. More recently, the ability of the second mainstream protein export system, the twin‐arginine translocase, to transport fully‐folded proteins into the periplasm of not only E. coli, but also other Gram‐negative bacteria, has captured the interest of the biotechnology industry. In this study, we have used a novel approach to block the export of a heterologous Tat substrate in the later stages of the export process, and thereby generate a single‐span membrane protein with the soluble domain positioned on the periplasmic side of the inner membrane. Biochemical and immuno‐electron microscopy approaches were used to investigate the export of human growth hormone by the twin‐arginine translocase, and the generation of a single‐span membrane‐embedded variant. This is the first time that a bonafide biotechnologically relevant protein has been exported by this machinery and visualized directly in this manner. The data presented here demonstrate a novel method for the production of single‐span membrane proteins in E. coli.
Collapse
Affiliation(s)
- Sarah M Smith
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Kelly L Walker
- School of Biosciences, University of Kent, Canterbury, UK
| | | | - Corinne J Smith
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Colin Robinson
- School of Biosciences, University of Kent, Canterbury, UK
| |
Collapse
|
22
|
Basile LA, Zalguizuri A, Briones G, Lepek VC. Two Rieske Fe/S Proteins and TAT System in Mesorhizobium loti MAFF303099: Differential Regulation and Roles on Nodulation. FRONTIERS IN PLANT SCIENCE 2018; 9:1686. [PMID: 30515183 PMCID: PMC6256036 DOI: 10.3389/fpls.2018.01686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Mesorhizobium loti MAFF303099 is a rhizobial strain that nodulates Lotus spp. A M. loti MAFF303099 mutant strain affected in the tatC gene was generated. This strain presented an altered protein secretion level to the culture supernatant and also a higher sensitivity to SDS. Its nodulation phenotype on Lotus showed the induction of small and colorless nodules, and in a larger number than those induced by the wild-type strain. In addition, these nodules presented defects in the degree of occupation by rhizobia. Two Rieske Fe/S proteins, encoded by the mll2707 and mlr0970 genes, were predicted as potential Tat substrates in M. loti MAFF303099. The transcriptional expression of mll2707 and mlr0970 genes was analyzed under different oxygen growth conditions. The mll2707 gene was expressed constitutively, while the expression of the mlr0970 gene was only detected under anaerobic and microaerophilic in vitro conditions. Both genes were down-regulated in the tatC mutant strain. mll2707 and mlr0970 mRNAs from the wild-type strain were detected in nodules. Using a translational reporter peptide fusion, we found that the Mll2707 protein was only detectable in the wild-type strain. On the other hand, although Mlr0970 protein was detected in wild-type and tatC mutant strains, its association with the membrane was favored in the wild-type strain. The tatC and the mll2707 mutant strains were affected in the cytochrome c oxidase activity. These results confirm that Mll2707 is required for cytochrome c-dependent respiration and that Tat functionality is required for the correct activity of Mll2707. The mll2707 mutant strain showed a nodulation phenotype similar to the tatC mutant strain, although it presented only a slight difference in comparison with wild-type strain in terms of nodule occupation. No defective phenotype was observed in the nodulation with the mlr0970 mutant strain. These results indicate that, of the two Rieske Fe/S proteins coded by M. loti MAFF303099, only Mll2707 expression is required for the induction of effective nodules, and that the functionality of the Tat system is necessary not only for the correct function of this protein, but also for some other protein required in an earlier stage of the nodulation process.
Collapse
|
23
|
Tat-exported peptidoglycan amidase-dependent cell division contributes to Salmonella Typhimurium fitness in the inflamed gut. PLoS Pathog 2018; 14:e1007391. [PMID: 30379938 PMCID: PMC6231687 DOI: 10.1371/journal.ppat.1007391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/12/2018] [Accepted: 10/07/2018] [Indexed: 12/11/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Tm) is a cause of food poisoning accompanied with gut inflammation. Although mucosal inflammation is generally thought to be protective against bacterial infection, S. Tm exploits the inflammation to compete with commensal microbiota, thereby growing up to high densities in the gut lumen and colonizing the gut continuously at high levels. However, the molecular mechanisms underlying the beneficial effect of gut inflammation on S. Tm competitive growth are poorly understood. Notably, the twin-arginine translocation (Tat) system, which enables the transport of folded proteins outside bacterial cytoplasm, is well conserved among many bacterial pathogens, with Tat substrates including virulence factors and virulence-associated proteins. Here, we show that Tat and Tat-exported peptidoglycan amidase, AmiA- and AmiC-dependent cell division contributes to S. Tm competitive fitness advantage in the inflamed gut. S. Tm tatC or amiA amiC mutants feature a gut colonization defect, wherein they display a chain form of cells. The chains are attributable to a cell division defect of these mutants and occur in inflamed but not in normal gut. We demonstrate that attenuated resistance to bile acids confers the colonization defect on the S. Tm amiA amiC mutant. In particular, S. Tm cell chains are highly sensitive to bile acids as compared to single or paired cells. Furthermore, we show that growth media containing high concentrations of NaCl and sublethal concentrations of antimicrobial peptides induce the S. Tm amiA amiC mutant chain form, suggesting that gut luminal conditions such as high osmolarity and the presence of antimicrobial peptides impose AmiA- and AmiC-dependent cell division on S. Tm. Together, our data indicate that Tat and the Tat-exported amidases, AmiA and AmiC, are required for S. Tm luminal fitness in the inflamed gut, suggesting that these proteins might comprise effective targets for novel antibacterial agents against infectious diarrhea. For proteins residing outside the bacterial cytoplasm, transport is an essential step for adequate function. The twin-arginine translocation (Tat) system enables the transport of folded proteins across the cytoplasmic membrane in prokaryotes. It has recently become clear that this system plays a pivotal role in the detrimental effects of many bacterial pathogens, suggesting Tat as a novel therapeutic target against their infection. In particular, the bacterial enteropathogen Salmonella Typhimurium causes foodborne diarrhea by colonizing the gut interior space. Here, we describe that the S. Typhimurium Tat system contributes to intestinal infection by facilitating colonization of the gut by this pathogen. We also identify that two Tat-exported enzymes, peptidoglycan amidase AmiA and AmiC, are responsible for the Tat-dependent colonization. S. Typhimurium strains having nonfunctional Tat systems or lacking these enzymes undergo filamentous growth in the gut interior owing to defective cell division. Notably, this chain form of S. Typhimurium cells is highly sensitive to bile acids, rendering it less competitive with native bacteria in the gut. The data presented here suggest that the Tat system and associated amidases may comprise promising therapeutic targets for Salmonella diarrhea, and that controlling bacterial shape might be new strategy for regulating intestinal enteropathogen infection.
Collapse
|
24
|
Anderson MT, Mitchell LA, Zhao L, Mobley HLT. Citrobacter freundii fitness during bloodstream infection. Sci Rep 2018; 8:11792. [PMID: 30087402 PMCID: PMC6081441 DOI: 10.1038/s41598-018-30196-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Sepsis resulting from microbial colonization of the bloodstream is a serious health concern associated with high mortality rates. The objective of this study was to define the physiologic requirements of Citrobacter freundii in the bloodstream as a model for bacteremia caused by opportunistic Gram-negative pathogens. A genetic screen in a murine host identified 177 genes that contributed significantly to fitness, the majority of which were broadly classified as having metabolic or cellular maintenance functions. Among the pathways examined, the Tat protein secretion system conferred the single largest fitness contribution during competition infections and a putative Tat-secreted protein, SufI, was also identified as a fitness factor. Additional work was focused on identifying relevant metabolic pathways for bacteria in the bloodstream environment. Mutations that eliminated the use of glucose or mannitol as carbon sources in vitro resulted in loss of fitness in the murine model and similar results were obtained upon disruption of the cysteine biosynthetic pathway. Finally, the conservation of identified fitness factors was compared within a cohort of Citrobacter bloodstream isolates and between Citrobacter and Serratia marcescens, the results of which suggest the presence of conserved strategies for bacterial survival and replication in the bloodstream environment.
Collapse
Affiliation(s)
- Mark T Anderson
- University of Michigan Medical School, Department of Microbiology and Immunology, Ann Arbor, MI, USA
| | - Lindsay A Mitchell
- University of Michigan Medical School, Department of Microbiology and Immunology, Ann Arbor, MI, USA
| | - Lili Zhao
- University of Michigan School of Public Health, Biostatistics Department, Ann Arbor, MI, USA
| | - Harry L T Mobley
- University of Michigan Medical School, Department of Microbiology and Immunology, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Campos M, Govers SK, Irnov I, Dobihal GS, Cornet F, Jacobs-Wagner C. Genomewide phenotypic analysis of growth, cell morphogenesis, and cell cycle events in Escherichia coli. Mol Syst Biol 2018; 14:e7573. [PMID: 29941428 PMCID: PMC6018989 DOI: 10.15252/msb.20177573] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cell size, cell growth, and cell cycle events are necessarily intertwined to achieve robust bacterial replication. Yet, a comprehensive and integrated view of these fundamental processes is lacking. Here, we describe an image‐based quantitative screen of the single‐gene knockout collection of Escherichia coli and identify many new genes involved in cell morphogenesis, population growth, nucleoid (bulk chromosome) dynamics, and cell division. Functional analyses, together with high‐dimensional classification, unveil new associations of morphological and cell cycle phenotypes with specific functions and pathways. Additionally, correlation analysis across ~4,000 genetic perturbations shows that growth rate is surprisingly not predictive of cell size. Growth rate was also uncorrelated with the relative timings of nucleoid separation and cell constriction. Rather, our analysis identifies scaling relationships between cell size and nucleoid size and between nucleoid size and the relative timings of nucleoid separation and cell division. These connections suggest that the nucleoid links cell morphogenesis to the cell cycle.
Collapse
Affiliation(s)
- Manuel Campos
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.,Laboratoire de Microbiologie et Génétique Moléculaires (LMGM; UMR5100), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, Toulouse, France
| | - Sander K Govers
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Irnov Irnov
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Genevieve S Dobihal
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM; UMR5100), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, Toulouse, France
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT, USA .,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.,Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
26
|
Alcock F, Damen MP, Levring J, Berks BC. In vivo experiments do not support the charge zipper model for Tat translocase assembly. eLife 2017; 6:30127. [PMID: 28857741 PMCID: PMC5601993 DOI: 10.7554/elife.30127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/30/2017] [Indexed: 12/29/2022] Open
Abstract
The twin-arginine translocase (Tat) transports folded proteins across the bacterial cytoplasmic membrane and the plant thylakoid membrane. The Tat translocation site is formed by substrate-triggered oligomerization of the protein TatA. Walther and co-workers have proposed a structural model for the TatA oligomer in which TatA monomers self-assemble using electrostatic 'charge zippers' (Cell (2013) 132: 15945). This model was supported by in vitro analysis of the oligomeric state of TatA variants containing charge-inverting substitutions. Here we have used live cell assays of TatA assembly and function in Escherichia coli to re-assess the roles of the charged residues of TatA. Our results do not support the charge zipper model. Instead, we observe that substitutions of charged residues located in the TatA amphipathic helix lock TatA in an assembled state, suggesting that these charged residues play a critical role in the protein translocation step that follows TatA assembly.
Collapse
Affiliation(s)
- Felicity Alcock
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Merel Pm Damen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jesper Levring
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Evaluating a New High-throughput Twin-Arginine Translocase Assay in Bacteria for Therapeutic Applications. Curr Microbiol 2017; 74:1332-1336. [DOI: 10.1007/s00284-017-1321-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
|
28
|
Byrne-Nash R, Lucero DM, Osbaugh NA, Melander RJ, Melander C, Feldheim DL. Probing the Mechanism of LAL-32, a Gold Nanoparticle-Based Antibiotic Discovered through Small Molecule Variable Ligand Display. Bioconjug Chem 2017. [PMID: 28636368 DOI: 10.1021/acs.bioconjchem.7b00199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unrelenting rise of antimicrobial-resistant bacteria has necessitated the search for novel antibiotic solutions. Herein we describe further mechanistic studies on a 2.0-nm-diameter gold nanoparticle-based antibiotic (designated LAL-32). This antibiotic exhibits bactericidal activity against the Gram-negative bacterium Escherichia coli at 1.0 μM, a concentration significantly lower than several clinically available antibiotics (such as ampicillin and gentamicin), and acute treatment with LAL-32 does not give rise to spontaneous resistant mutants. LAL-32 treatment inhibits cellular division, daughter cell separation, and twin-arginine translocation (Tat) pathway dependent shuttling of proteins to the periplasm. Furthermore, we have found that the cedA gene imparts increased resistance to LAL-32, and shown that an E. coli cedA transposon mutant exhibits increased susceptibility to LAL-32. Taken together, these studies further implicate cell division pathways as the target for this nanoparticle-based antibiotic and demonstrate that there may be inherently higher barriers for resistance evolution against nanoscale antibiotics in comparison to their small molecule counterparts.
Collapse
Affiliation(s)
- Rose Byrne-Nash
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Danielle M Lucero
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Niki A Osbaugh
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Roberta J Melander
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Christian Melander
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Daniel L Feldheim
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
29
|
The Tat Substrate SufI Is Critical for the Ability of Yersinia pseudotuberculosis To Cause Systemic Infection. Infect Immun 2017; 85:IAI.00867-16. [PMID: 28115509 DOI: 10.1128/iai.00867-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/17/2017] [Indexed: 11/20/2022] Open
Abstract
The twin arginine translocation (Tat) system targets folded proteins across the inner membrane and is crucial for virulence in many important human-pathogenic bacteria. Tat has been shown to be required for the virulence of Yersinia pseudotuberculosis, and we recently showed that the system is critical for different virulence-related stress responses as well as for iron uptake. In this study, we wanted to address the role of the Tat substrates in in vivo virulence. Therefore, 22 genes encoding potential Tat substrates were mutated, and each mutant was evaluated in a competitive oral infection of mice. Interestingly, a ΔsufI mutant was essentially as attenuated for virulence as the Tat-deficient strain. We also verified that SufI was Tat dependent for membrane/periplasmic localization in Y. pseudotuberculosisIn vivo bioluminescent imaging of orally infected mice revealed that both the ΔsufI and ΔtatC mutants were able to colonize the cecum and Peyer's patches (PPs) and could spread to the mesenteric lymph nodes (MLNs). Importantly, at this point, neither the ΔtatC mutant nor the ΔsufI mutant was able to spread systemically, and they were gradually cleared. Immunostaining of MLNs revealed that both the ΔtatC and ΔsufI mutants were unable to spread from the initial infection foci and appeared to be contained by neutrophils, while wild-type bacteria readily spread to establish multiple foci from day 3 postinfection. Our results show that SufI alone is required for the establishment of systemic infection and is the major cause of the attenuation of the ΔtatC mutant.
Collapse
|
30
|
Abstract
Perturbation of cellular processes is a prevailing approach to understanding biology. To better understand the complicated biology that defines bacterial shape, a sensitive, high-content platform was developed to detect multiple morphological defect phenotypes using microscopy. We examined morphological phenotypes across the Escherichia coli K-12 deletion (Keio) collection at the mid-exponential growth phase, revealing 111 deletions perturbing shape. Interestingly, 64% of these were uncharacterized mutants, illustrating the complex nature of shape maintenance and regulation in bacteria. To understand the roles these genes play in defining morphology, 53 mutants with knockouts resulting in abnormal cell shape were crossed with the Keio collection in high throughput, generating 1,373 synthetic lethal interactions across 1.7 million double deletion mutants. This analysis yielded a highly populated interaction network spanning and linking multiple phenotypes, with a preponderance of interactions involved in transport, oxidation-reduction, and metabolic processes. Genetic perturbations of cellular functions are a prevailing approach to understanding cell systems, which are increasingly being practiced in very high throughput. Here, we report a high-content microscopy platform tailored to bacteria, which probes the impact of genetic mutation on cell morphology. This has particular utility in revealing elusive and subtle morphological phenotypes associated with blocks in nonessential cellular functions. We report 111 nonessential mutations impacting E. coli morphology, with nearly half of those genes being poorly annotated or uncharacterized. Further, these genes appear to be tightly linked to transport or redox processes within the cell. The screening platform is simple and low cost and is broadly applicable to any bacterial genomic library or chemical collection. Indeed, this is a powerful tool in understanding the biology behind bacterial shape.
Collapse
|
31
|
Frain KM, Jones AS, Schoner R, Walker KL, Robinson C. The Bacillus subtilis TatAdCd system exhibits an extreme level of substrate selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:202-208. [PMID: 27984091 DOI: 10.1016/j.bbamcr.2016.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/06/2016] [Accepted: 10/27/2016] [Indexed: 11/27/2022]
Abstract
The Tat system preferentially transports correctly folded proteins across the bacterial membrane although little is known of the proofreading mechanism. Most research has focused on TatABC systems from Gram-negative bacteria, especially Escherichia coli, and much less is known of the TatAC-type systems from Gram-positive organisms. We have previously shown that the Bacillus subtilis TatAdCd system is functional in an E. coli tat null background and able to transport TorA-GFP and native TorA (TMAO reductase); here, we examined its ability to transport other proteins bearing a TorA signal sequence. We show that whereas E. coli TatABC transports a wide range of biotherapeutics including human growth hormone, interferon α2b, a VH domain protein and 2 different scFvs, TatAdCd transports the scFvs but completely rejects the other proteins. The system also rejects two native E. coli substrates, NrfC and FhuD. Moreover, we have shown that TatABC will transport a wide range of folded scFv variants with the surface altered to incorporate multiple salt bridges, charged residues (5 glutamate, lysine or arginine), or hydrophobic residues (up to 6 leucines). In contrast, TatAdCd completely rejects many of these variants including those with 5 or 6 added Leu residues. The combined data show that the TatABC and TatAdCd systems have very different substrate selectivities, with the TatAdCd system displaying an extreme level of selectivity when compared to the E. coli system. The data also provide a preliminary suggestion that TatAdCd may not tolerate substrates that contain surface domains with a level of hydrophobicity above a certain threshold.
Collapse
Affiliation(s)
- Kelly M Frain
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Alexander S Jones
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Ronald Schoner
- Biopharmaceutical Development, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Kelly L Walker
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Colin Robinson
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom.
| |
Collapse
|
32
|
Transcriptomic and Phenotypic Analysis Reveals New Functions for the Tat Pathway in Yersinia pseudotuberculosis. J Bacteriol 2016; 198:2876-86. [PMID: 27501981 DOI: 10.1128/jb.00352-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED The twin-arginine translocation (Tat) system mediates the secretion of folded proteins that are identified via an N-terminal signal peptide in bacteria, plants, and archaea. Tat systems are associated with virulence in many bacterial pathogens, and our previous studies revealed that Tat-deficient Yersinia pseudotuberculosis was severely attenuated for virulence. Aiming to identify Tat-dependent pathways and phenotypes of relevance for in vivo infection, we analyzed the global transcriptome of parental and ΔtatC mutant strains of Y. pseudotuberculosis during exponential and stationary growth at 26°C and 37°C. The most significant changes in the transcriptome of the ΔtatC mutant were seen at 26°C during stationary-phase growth, and these included the altered expression of genes related to virulence, stress responses, and metabolism. Subsequent phenotypic analysis based on these transcriptome changes revealed several novel Tat-dependent phenotypes, including decreased YadA expression, impaired growth under iron-limited and high-copper conditions, as well as acidic pH and SDS. Several functionally related Tat substrates were also verified to contribute to these phenotypes. Interestingly, the phenotypic defects observed in the Tat-deficient strain were generally more pronounced than those in mutants lacking the Tat substrate predicted to contribute to that specific function. Altogether, this provides new insight into the impact of Tat deficiency on in vivo fitness and survival/replication of Y. pseudotuberculosis during infection. IMPORTANCE In addition to its established role in mediating the secretion of housekeeping enzymes, the Tat system has been recognized as being involved in infection. In some clinically relevant bacteria, such as Pseudomonas spp., several key virulence determinants can readily be identified among the Tat substrates. In enteropathogens, such as Yersinia spp., there are no obvious virulence determinants among the Tat substrates. Tat mutants show no growth defect in vitro but are highly attenuated in in vivo This makes Tat an attractive target for the development of novel antimicrobials. Therefore, it is important to establish the causes of the attenuation. Here, we show that the attenuation is likely due to synergistic effects of different Tat-dependent phenotypes that each contributes to lowered in vivo fitness.
Collapse
|
33
|
Contribution of the Twin Arginine Translocation system to the exoproteome of Pseudomonas aeruginosa. Sci Rep 2016; 6:27675. [PMID: 27279369 PMCID: PMC4899797 DOI: 10.1038/srep27675] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/23/2016] [Indexed: 01/24/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa uses secretion systems to deliver exoproteins into the environment. These exoproteins contribute to bacterial survival, adaptation, and virulence. The Twin arginine translocation (Tat) export system enables the export of folded proteins into the periplasm, some of which can then be further secreted outside the cell. However, the full range of proteins that are conveyed by Tat is unknown, despite the importance of Tat for the adaptability and full virulence of P. aeruginosa. In this work, we explored the P. aeruginosa Tat-dependent exoproteome under phosphate starvation by two-dimensional gel analysis. We identified the major secreted proteins and new Tat-dependent exoproteins. These exoproteins were further analyzed by a combination of in silico analysis, regulation studies, and protein localization. Altogether we reveal that the absence of the Tat system significantly affects the composition of the exoproteome by impairing protein export and affecting gene expression. Notably we discovered three new Tat exoproteins and one novel type II secretion substrate. Our data also allowed the identification of two new start codons highlighting the importance of protein annotation for subcellular predictions. The new exoproteins that we identify may play a significant role in P. aeruginosa pathogenesis, host interaction and niche adaptation.
Collapse
|
34
|
Bageshwar UK, VerPlank L, Baker D, Dong W, Hamsanathan S, Whitaker N, Sacchettini JC, Musser SM. High Throughput Screen for Escherichia coli Twin Arginine Translocation (Tat) Inhibitors. PLoS One 2016; 11:e0149659. [PMID: 26901445 PMCID: PMC4764201 DOI: 10.1371/journal.pone.0149659] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/03/2016] [Indexed: 01/29/2023] Open
Abstract
The twin arginine translocation (Tat) pathway transports fully-folded and assembled proteins in bacteria, archaea and plant thylakoids. The Tat pathway contributes to the virulence of numerous bacterial pathogens that cause disease in humans, cattle and poultry. Thus, the Tat pathway has the potential to be a novel therapeutic target. Deciphering the Tat protein transport mechanism has been challenging since the active translocon only assembles transiently in the presence of substrate and a proton motive force. To identify inhibitors of Tat transport that could be used as biochemical tools and possibly as drug development leads, we developed a high throughput screen (HTS) to assay the effects of compounds in chemical libraries against protein export by the Escherichia coli Tat pathway. The primary screen is a live cell assay based on a fluorescent Tat substrate that becomes degraded in the cytoplasm when Tat transport is inhibited. Consequently, low fluorescence in the presence of a putative Tat inhibitor was scored as a hit. Two diverse chemical libraries were screened, yielding average Z'-factors of 0.74 and 0.44, and hit rates of ~0.5% and 0.04%, respectively. Hits were evaluated by a series of secondary screens. Electric field gradient (Δψ) measurements were particularly important since the bacterial Tat transport requires a Δψ. Seven low IC50 hits were eliminated by Δψ assays, suggesting ionophore activity. As Δψ collapse is generally toxic to animal cells and efficient membrane permeability is generally favored during the selection of library compounds, these results suggest that secondary screening of hits against electrochemical effects should be done early during hit validation. Though none of the short-listed compounds inhibited Tat transport directly, the screening and follow-up assays developed provide a roadmap to pursue Tat transport inhibitors.
Collapse
Affiliation(s)
- Umesh K. Bageshwar
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, United States of America
| | - Lynn VerPlank
- Broad Institute, Cambridge, MA, United States of America
| | - Dwight Baker
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States of America
| | - Wen Dong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States of America
| | - Shruthi Hamsanathan
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, United States of America
| | - Neal Whitaker
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, United States of America
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States of America
| | - Siegfried M. Musser
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, United States of America
- * E-mail:
| |
Collapse
|
35
|
Virk B, Jia J, Maynard CA, Raimundo A, Lefebvre J, Richards SA, Chetina N, Liang Y, Helliwell N, Cipinska M, Weinkove D. Folate Acts in E. coli to Accelerate C. elegans Aging Independently of Bacterial Biosynthesis. Cell Rep 2016; 14:1611-1620. [PMID: 26876180 PMCID: PMC4767678 DOI: 10.1016/j.celrep.2016.01.051] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/18/2015] [Accepted: 01/14/2016] [Indexed: 01/09/2023] Open
Abstract
Folates are cofactors for biosynthetic enzymes in all eukaryotic and prokaryotic cells. Animals cannot synthesize folate and must acquire it from their diet or microbiota. Previously, we showed that inhibiting E. coli folate synthesis increases C. elegans lifespan. Here, we show that restriction or supplementation of C. elegans folate does not influence lifespan. Thus, folate is required in E. coli to shorten worm lifespan. Bacterial proliferation in the intestine has been proposed as a mechanism for the life-shortening influence of E. coli. However, we found no correlation between C. elegans survival and bacterial growth in a screen of 1,000+ E. coli deletion mutants. Nine mutants increased worm lifespan robustly, suggesting specific gene regulation is required for the life-shortening activity of E. coli. Disrupting the biosynthetic folate cycle did not increase lifespan. Thus, folate acts through a growth-independent route in E. coli to accelerate animal aging. Limiting folate in E. coli, not in C. elegans, increases worm lifespan An E. coli screen for worm longevity identifies folate synthesis as a target Folate synthesis influences E. coli physiology independently of growth Bacterial folate synthesis may be a sustainable target for chronic disease
Collapse
Affiliation(s)
- Bhupinder Virk
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Jie Jia
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK; Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai 200092, China; Department of Clinical Nutrition, Xin Hua Hospital affiliated to SJTU School of Medicine, Shanghai 200092, China
| | - Claire A Maynard
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Adelaide Raimundo
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Jolien Lefebvre
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK; Department HIVB, VIVES, Wilgenstraat 32, 8800 Roeselare, Belgium
| | - Shane A Richards
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Natalia Chetina
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Yen Liang
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Noel Helliwell
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Marta Cipinska
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK; Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
| | - David Weinkove
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK; Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
36
|
Eimer E, Fröbel J, Blümmel AS, Müller M. TatE as a Regular Constituent of Bacterial Twin-arginine Protein Translocases. J Biol Chem 2015; 290:29281-9. [PMID: 26483541 DOI: 10.1074/jbc.m115.696005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 12/12/2022] Open
Abstract
Twin-arginine translocation (Tat) systems mediate the transmembrane translocation of completely folded proteins that possess a conserved twin-arginine (RR) motif in their signal sequences. Many Tat systems consist of three essential membrane components named TatA, TatB, and TatC. It is not understood why some bacteria, in addition, constitutively express a functional paralog of TatA called TatE. Here we show, in live Escherichia coli cells, that, upon expression of a Tat substrate protein, fluorescently labeled TatE-GFP relocates from a rather uniform distribution in the plasma membrane into a number of discrete clusters. Clustering strictly required an intact RR signal peptide and the presence of the TatABC subunits, suggesting that TatE-GFP associates with functional Tat translocases. In support of this notion, site-specific photo cross-linking revealed interactions of TatE with TatA, TatB, and TatC. The same approach also disclosed a pronounced tendency of TatE and TatA to hetero-oligomerize. Under in vitro conditions, we found that TatE replaces TatA inefficiently. Our collective results are consistent with TatE being a regular constituent of the Tat translocase in E. coli.
Collapse
Affiliation(s)
- Ekaterina Eimer
- From the Institute of Biochemistry and Molecular Biology, Faculty of Biology, and
| | - Julia Fröbel
- From the Institute of Biochemistry and Molecular Biology
| | - Anne-Sophie Blümmel
- From the Institute of Biochemistry and Molecular Biology, Faculty of Biology, and Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | | |
Collapse
|
37
|
Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria. Nat Commun 2015; 6:8072. [PMID: 26311203 PMCID: PMC4560801 DOI: 10.1038/ncomms9072] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 07/15/2015] [Indexed: 02/06/2023] Open
Abstract
Current methods for producing immunoglobulin G (IgG) antibodies in engineered cells often require refolding steps or secretion across one or more biological membranes. Here, we describe a robust expression platform for biosynthesis of full-length IgG antibodies in the Escherichia coli cytoplasm. Synthetic heavy and light chains, both lacking canonical export signals, are expressed in specially engineered E. coli strains that permit formation of stable disulfide bonds within the cytoplasm. IgGs with clinically relevant antigen- and effector-binding activities are readily produced in the E. coli cytoplasm by grafting antigen-specific variable heavy and light domains into a cytoplasmically stable framework and remodelling the fragment crystallizable domain with amino-acid substitutions that promote binding to Fcγ receptors. The resulting cytoplasmic IgGs—named ‘cyclonals'—effectively bypass the potentially rate-limiting steps of membrane translocation and glycosylation. Current methods for production of monoclonal antibodies often require refolding steps or secretion across biological membranes. Here, Robinson et al. describe engineered E. coli strains for efficient production of functional immunoglobulin G antibodies in the bacterial cytoplasm.
Collapse
|
38
|
Wan F, Mao Y, Dong Y, Ju L, Wu G, Gao H. Impaired cell envelope resulting from arcA mutation largely accounts for enhanced sensitivity to hydrogen peroxide in Shewanella oneidensis. Sci Rep 2015; 5:10228. [PMID: 25975178 PMCID: PMC4432559 DOI: 10.1038/srep10228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/07/2015] [Indexed: 01/06/2023] Open
Abstract
Oxidative stress is one of the major challenges that Shewanella encounter routinely because they thrive in redox-stratified environments prone to reactive oxygen species (ROS) formation, letting alone that ROS can be generated endogenously. As respiration is the predominant process for endogenous ROS, regulators mediating respiration have been demonstrated and/or implicated to play a role in oxidative stress response. In our efforts to unveil the involvement of global regulators for respiration in the oxidative stress response, we found that loss of the Arc system increases S. oneidensis sensitivity to H2O2 whereas neither Fnr nor Crp has a significant role. A comparison of transcriptomic profiles of the wild-type and its isogenic arcA mutant revealed that the OxyR regulon is independent of the Arc system. We then provided evidence that the enhanced H2O2 sensitivity of the arcA mutant is due to an increased H2O2 uptake rate, a result of a cell envelope defect. Although one of three proteases of the ArcA regulon when in excess is partially accountable for the envelope defect, the major contributors remain elusive. Overall, our data indicate that the Arc system influences the bacterial cell envelope biosynthesis, a physiological aspect that has not been associated with the regulator before.
Collapse
Affiliation(s)
- Fen Wan
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yinting Mao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yangyang Dong
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lili Ju
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Genfu Wu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
39
|
Bozue J, Cote CK, Chance T, Kugelman J, Kern SJ, Kijek TK, Jenkins A, Mou S, Moody K, Fritz D, Robinson CG, Bell T, Worsham P. A Yersinia pestis tat mutant is attenuated in bubonic and small-aerosol pneumonic challenge models of infection but not as attenuated by intranasal challenge. PLoS One 2014; 9:e104524. [PMID: 25101850 PMCID: PMC4125294 DOI: 10.1371/journal.pone.0104524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/11/2014] [Indexed: 01/01/2023] Open
Abstract
Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.
Collapse
Affiliation(s)
- Joel Bozue
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Christopher K. Cote
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Taylor Chance
- Pathology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Jeffrey Kugelman
- Center for Genome Sciences, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Steven J. Kern
- Office of Research Support, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Todd K. Kijek
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Amy Jenkins
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Sherry Mou
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Krishna Moody
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - David Fritz
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Camenzind G. Robinson
- Pathology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Todd Bell
- Pathology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Patricia Worsham
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| |
Collapse
|
40
|
Zhang Y, Hu Y, Li H, Jin C. Structural basis for TatA oligomerization: an NMR study of Escherichia coli TatA dimeric structure. PLoS One 2014; 9:e103157. [PMID: 25090434 PMCID: PMC4121141 DOI: 10.1371/journal.pone.0103157] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/27/2014] [Indexed: 01/24/2023] Open
Abstract
Many proteins are transported across lipid membranes by protein translocation systems in living cells. The twin-arginine transport (Tat) system identified in bacteria and plant chloroplasts is a unique system that transports proteins across membranes in their fully-folded states. Up to date, the detailed molecular mechanism of this process remains largely unclear. The Escherichia coli Tat system consists of three essential transmembrane proteins: TatA, TatB and TatC. Among them, TatB and TatC form a tight complex and function in substrate recognition. The major component TatA contains a single transmembrane helix followed by an amphipathic helix, and is suggested to form the translocation pore via self-oligomerization. Since the TatA oligomer has to accommodate substrate proteins of various sizes and shapes, the process of its assembly stands essential for understanding the translocation mechanism. A structure model of TatA oligomer was recently proposed based on NMR and EPR observations, revealing contacts between the transmembrane helices from adjacent subunits. Herein we report the construction and stabilization of a dimeric TatA, as well as the structure determination by solution NMR spectroscopy. In addition to more extensive inter-subunit contacts between the transmembrane helices, we were also able to observe interactions between neighbouring amphipathic helices. The side-by-side packing of the amphipathic helices extends the solvent-exposed hydrophilic surface of the protein, which might be favourable for interactions with substrate proteins. The dimeric TatA structure offers more detailed information of TatA oligomeric interface and provides new insights on Tat translocation mechanism.
Collapse
Affiliation(s)
- Yi Zhang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, China
- College of Life Sciences, Peking University, Beijing, China
| | - Yunfei Hu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, China
- College of Life Sciences, Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, China
- College of Life Sciences, Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| |
Collapse
|
41
|
Burtnick MN, Brett PJ, DeShazer D. Proteomic analysis of the Burkholderia pseudomallei type II secretome reveals hydrolytic enzymes, novel proteins, and the deubiquitinase TssM. Infect Immun 2014; 82:3214-26. [PMID: 24866793 PMCID: PMC4136222 DOI: 10.1128/iai.01739-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/10/2014] [Indexed: 12/25/2022] Open
Abstract
Burkholderia pseudomallei, the etiologic agent of melioidosis, is an opportunistic pathogen that harbors a wide array of secretion systems, including a type II secretion system (T2SS), three type III secretion systems (T3SS), and six type VI secretion systems (T6SS). The proteins exported by these systems provide B. pseudomallei with a growth advantage in vitro and in vivo, but relatively little is known about the full repertoire of exoproducts associated with each system. In this study, we constructed deletion mutations in gspD and gspE, T2SS genes encoding an outer membrane secretin and a cytoplasmic ATPase, respectively. The secretion profiles of B. pseudomallei MSHR668 and its T2SS mutants were noticeably different when analyzed by SDS-PAGE. We utilized liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify proteins present in the supernatants of B. pseudomallei MSHR668 and B. pseudomallei ΔgspD grown in rich and minimal media. The MSHR668 supernatants contained 48 proteins that were either absent or substantially reduced in the supernatants of ΔgspD strains. Many of these proteins were putative hydrolytic enzymes, including 12 proteases, two phospholipases, and a chitinase. Biochemical assays validated the LC-MS/MS results and demonstrated that the export of protease, phospholipase C, and chitinase activities is T2SS dependent. Previous studies had failed to identify the mechanism of secretion of TssM, a deubiquitinase that plays an integral role in regulating the innate immune response. Here we present evidence that TssM harbors an atypical signal sequence and that its secretion is mediated by the T2SS. This study provides the first in-depth characterization of the B. pseudomallei T2SS secretome.
Collapse
Affiliation(s)
- Mary N Burtnick
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, USA
| | - Paul J Brett
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, USA
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
42
|
Liu YW, Hitchcock A, Salmon RC, Kelly DJ. It takes two to tango: two TatA paralogues and two redox enzyme-specific chaperones are involved in the localization of twin-arginine translocase substrates in Campylobacter jejuni. MICROBIOLOGY-SGM 2014; 160:2053-2066. [PMID: 24961951 PMCID: PMC4148689 DOI: 10.1099/mic.0.080713-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The food-borne zoonotic pathogen Campylobacter jejuni has complex electron transport chains required for growth in the host, many of which contain cofactored periplasmic enzymes localized by the twin-arginine translocase (TAT). We report here the identification of two paralogues of the TatA translocase component in C. jejuni strain NCTC 11168, encoded by cj1176c (tatA1) and cj0786 (tatA2). Deletion mutants constructed in either or both of the tatA1 and tatA2 genes displayed distinct growth and enzyme activity phenotypes. For sulphite oxidase (SorAB), the multi-copper oxidase (CueO) and alkaline phosphatase (PhoX), complete dependency on TatA1 for correct periplasmic activity was observed. However, the activities of nitrate reductase (NapA), formate dehydrogenase (FdhA) and trimethylamine N-oxide reductase (TorA) were significantly reduced in the tatA2 mutant. In contrast, the specific rate of fumarate reduction catalysed by the flavoprotein subunit of the methyl menaquinone fumarate reductase (MfrA) was similar in periplasmic fractions of both the tatA1 and the tatA2 mutants and only the deletion of both genes abolished activity. Nevertheless, unprocessed MfrA accumulated in the periplasm of the tatA1 (but not tatA2) mutant, indicating aberrant signal peptide cleavage. Surprisingly, TatA2 lacks two conserved residues (Gln8 and Phe39) known to be essential in Escherichia coli TatA and we suggest it is unable to function correctly in the absence of TatA1. Finally, only two TAT chaperones (FdhM and NapD) are encoded in strain NCTC 11168, which mutant studies confirmed are highly specific for formate dehydrogenase and nitrate reductase assembly, respectively. Thus, other TAT substrates must use general chaperones in their biogenesis.
Collapse
Affiliation(s)
- Yang-Wei Liu
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Robert C Salmon
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
43
|
The twin arginine translocation system is essential for aerobic growth and full virulence of Burkholderia thailandensis. J Bacteriol 2013; 196:407-16. [PMID: 24214943 DOI: 10.1128/jb.01046-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twin arginine translocation (Tat) system in bacteria is responsible for transporting folded proteins across the cytoplasmic membrane, and in some bacteria, Tat-exported substrates have been linked to virulence. We report here that the Tat machinery is present in Burkholderia pseudomallei, B. mallei, and B. thailandensis, and we show that the system is essential for aerobic but not anaerobic growth. Switching off of the Tat system in B. thailandensis grown anaerobically resulted in filamentous bacteria, and bacteria showed increased sensitivity to some β-lactam antibiotics. In Galleria mellonella and zebrafish infection models, the Tat conditional mutant was attenuated. The aerobic growth-restricted phenotype indicates that Tat substrates may play a functional role in oxygen-dependent energy conservation. In other bacteria, aerobic growth restriction in Tat mutants has been attributed to the inability to translocate PetA, the Rieske iron-sulfur protein which forms part of the quinol-cytochrome c oxidoreductase complex. Here, we show that PetA is not responsible for aerobic growth restriction in B. thailandensis. However, we have identified an operon encoding 2 proteins of unknown function (BTH_I2176 and BTH_I2175) that play a role in aerobic growth restriction, and we present evidence that BTH_I2176 is Tat translocated.
Collapse
|
44
|
Black SL, Dawson A, Ward FB, Allen RJ. Genes required for growth at high hydrostatic pressure in Escherichia coli K-12 identified by genome-wide screening. PLoS One 2013; 8:e73995. [PMID: 24040140 PMCID: PMC3770679 DOI: 10.1371/journal.pone.0073995] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/01/2013] [Indexed: 11/28/2022] Open
Abstract
Despite the fact that much of the global microbial biosphere is believed to exist in high pressure environments, the effects of hydrostatic pressure on microbial physiology remain poorly understood. We use a genome-wide screening approach, combined with a novel high-throughput high-pressure cell culture method, to investigate the effects of hydrostatic pressure on microbial physiology in vivo. The Keio collection of single-gene deletion mutants in Escherichia coli K-12 was screened for growth at a range of pressures from 0.1 MPa to 60 MPa. This led to the identification of 6 genes, rodZ, holC, priA, dnaT, dedD and tatC, whose products were required for growth at 30 MPa and a further 3 genes, tolB, rffT and iscS, whose products were required for growth at 40 MPa. Our results support the view that the effects of pressure on cell physiology are pleiotropic, with DNA replication, cell division, the cytoskeleton and cell envelope physiology all being potential failure points for cell physiology during growth at elevated pressure.
Collapse
Affiliation(s)
- S. Lucas Black
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Angela Dawson
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - F. Bruce Ward
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Rosalind J. Allen
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Live cell imaging shows reversible assembly of the TatA component of the twin-arginine protein transport system. Proc Natl Acad Sci U S A 2013; 110:E3650-9. [PMID: 24003141 DOI: 10.1073/pnas.1306738110] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The twin-arginine translocation (Tat) machinery transports folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. It has been inferred that the Tat translocation site is assembled on demand by substrate-induced association of the protein TatA. We tested this model by imaging YFP-tagged TatA expressed at native levels in living Escherichia coli cells in the presence of low levels of the TatA paralogue TatE. Under these conditions the TatA-YFP fusion supports full physiological Tat transport activity. In agreement with the TatA association model, raising the number of transport-competent substrate proteins within the cell leads to an increase in the number of large TatA complexes present. Formation of these complexes requires both a functional TatBC substrate receptor and the transmembrane proton motive force (PMF). Removing the PMF causes TatA complexes to dissociate, except in strains with impaired Tat transport activity. Based on these observations we propose that TatA assembly reaches a critical point at which oligomerization can be reversed only by substrate transport. In contrast to TatA-YFP, the oligomeric states of TatB-YFP and TatC-YFP fusions are not affected by substrate or the PMF, although TatB-YFP oligomerization does require TatC.
Collapse
|
46
|
Rose P, Fröbel J, Graumann PL, Müller M. Substrate-dependent assembly of the Tat translocase as observed in live Escherichia coli cells. PLoS One 2013; 8:e69488. [PMID: 23936332 PMCID: PMC3732296 DOI: 10.1371/journal.pone.0069488] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/11/2013] [Indexed: 11/19/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway guides fully folded proteins across membranes of bacteria, archaea and plant chloroplasts. In Escherichia coli, Tat-specific transport is executed in a still largely unknown manner by three functionally diverse membrane proteins, termed TatA, TatB, and TatC. In order to follow the intracellular distribution of the TatABC proteins in live E. coli cells, we have individually expressed fluorophore-tagged versions of each Tat protein in addition to a set of chromosomally encoded TatABC proteins. In this way, a Tat translocase could form from the native TatABC proteins and be visualized via the association of a fluorescent Tat variant. A functionally active TatA-green fluorescent protein fusion was found to re-locate from a uniform distribution in the membrane into a few clusters preferentially located at the cell poles. Clustering was absolutely dependent on the co-expression of functional Tat substrates, the proton-motive force, and the cognate TatBC subunits. Likewise, polar cluster formation of a functional TatB-mCherry fusion required TatA and TatC and that of a functional TatC-mCherry fusion a functional Tat substrate. Furthermore we directly demonstrate the co-localization of TatA and TatB in the same fluorescent clusters. Our collective results are consistent with distinct Tat translocation sites dynamically forming in vivo in response to newly synthesized Tat substrates.
Collapse
Affiliation(s)
- Patrick Rose
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Julia Fröbel
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung, University of Freiburg, Freiburg, Germany
| | - Peter L. Graumann
- LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, Marburg, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung, University of Freiburg, Freiburg, Germany
| |
Collapse
|
47
|
Craig M, Sadik AY, Golubeva YA, Tidhar A, Slauch JM. Twin-arginine translocation system (tat) mutants of Salmonella are attenuated due to envelope defects, not respiratory defects. Mol Microbiol 2013; 89:887-902. [PMID: 23822642 DOI: 10.1111/mmi.12318] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2013] [Indexed: 11/28/2022]
Abstract
The twin-arginine translocation system (Tat) transports folded proteins across the cytoplasmic membrane and is critical to virulence in Salmonella and other pathogens. Experimental and bioinformatic data indicate that 30 proteins are exported via Tat in Salmonella Typhimurium. However, there are no data linking specific Tat substrates with virulence. We inactivated every Tat-exported protein and determined the virulence phenotype of mutant strains. Although a tat mutant is highly attenuated, no single Tat-exported substrate accounts for this virulence phenotype. Rather, the attenuation is due primarily to envelope defects caused by failure to translocate three Tat substrates, the N-acetylmuramoyl-l-alanine amidases, AmiA and AmiC, and the cell division protein, SufI. Strikingly, neither the amiA amiC nor the sufI mutations alone conferred any virulence defect. Although AmiC and SufI have previously been localized to the divisome, the synthetic phenotypes observed are the first to suggest functional overlap. Many Tat substrates are involved in anaerobic respiration, but we show that a mutant completely deficient in anaerobic respiration retains full virulence in both the oral and systemic phases of infection. Similarly, an obligately aerobic mutant is fully virulent. These results suggest that in the classic mouse model of infection, S. Typhimurium is replicating only in aerobic environments.
Collapse
Affiliation(s)
- Maureen Craig
- Department of Microbiology, University of Illinois, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
48
|
Albiniak AM, Matos CFRO, Branston SD, Freedman RB, Keshavarz-Moore E, Robinson C. High-level secretion of a recombinant protein to the culture medium with a Bacillus subtilis twin-arginine translocation system in Escherichia coli. FEBS J 2013; 280:3810-21. [PMID: 23745597 DOI: 10.1111/febs.12376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/10/2013] [Accepted: 05/15/2013] [Indexed: 11/29/2022]
Abstract
The twin-arginine translocation (Tat) system transports folded proteins across the plasma membrane in bacteria, and heterologous proteins can be exported by this pathway if a Tat-type signal peptide is present at the N-terminus. The system thus has potential for biopharmaceutical production in Escherichia coli, where export to the periplasm is often a favoured approach. Previous studies have shown that E. coli cells can export high levels of protein by the Tat pathway, and the protein product accummulates almost exclusively in the periplasm. In this study, we analysed E. coli cells that express the Bacillus subtilis TatAdCd system in place of the native TatABC system. We show that a heterologous model protein, comprising the TorA signal peptide linked to green fluorescent protein (TorA-GFP), is efficiently exported by the TatAdCd system. However, whereas the GFP is exported initially to the periplasm during batch fermentation, the mature protein is increasingly found in the extracellular culture medium. By the end of a 16-h fermentation, ~ 90% of exported GFP is present in the medium as active mature protein. The total protein profiles of the medium and periplasm are essentially identical, confirming that the outer membrane becomes leaky during the fermentation process. The cells are otherwise intact, and there is no large-scale release of cytoplasmic contents. Export levels are relatively high, with ~ 0.35 g GFP·L⁻¹ culture present in the medium. This system thus offers a means of producing recombinant protein in E. coli and harvesting directly from the medium, with potential advantages in terms of ease of purification and downstream processing.
Collapse
Affiliation(s)
- Anna M Albiniak
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | | | | | | | | |
Collapse
|
49
|
Moraxella catarrhalis uses a twin-arginine translocation system to secrete the β-lactamase BRO-2. BMC Microbiol 2013; 13:140. [PMID: 23782650 PMCID: PMC3695778 DOI: 10.1186/1471-2180-13-140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/10/2013] [Indexed: 12/13/2022] Open
Abstract
Background Moraxella catarrhalis is a human-specific gram-negative bacterium readily isolated from the respiratory tract of healthy individuals. The organism also causes significant health problems, including 15-20% of otitis media cases in children and ~10% of respiratory infections in adults with chronic obstructive pulmonary disease. The lack of an efficacious vaccine, the rapid emergence of antibiotic resistance in clinical isolates, and high carriage rates reported in children are cause for concern. Virtually all Moraxella catarrhalis isolates are resistant to β-lactam antibiotics, which are generally the first antibiotics prescribed to treat otitis media in children. The enzymes responsible for this resistance, BRO-1 and BRO-2, are lipoproteins and the mechanism by which they are secreted to the periplasm of M. catarrhalis cells has not been described. Results Comparative genomic analyses identified M. catarrhalis gene products resembling the TatA, TatB, and TatC proteins of the well-characterized Twin Arginine Translocation (TAT) secretory apparatus. Mutations in the M. catarrhalis tatA, tatB and tatC genes revealed that the proteins are necessary for optimal growth and resistance to β-lactams. Site-directed mutagenesis was used to replace highly-conserved twin arginine residues in the predicted signal sequence of M. catarrhalis strain O35E BRO-2, which abolished resistance to the β-lactam antibiotic carbanecillin. Conclusions Moraxella catarrhalis possesses a TAT secretory apparatus, which plays a key role in growth of the organism and is necessary for secretion of BRO-2 into the periplasm where the enzyme can protect the peptidoglycan cell wall from the antimicrobial activity of β-lactam antibiotics.
Collapse
|
50
|
Ramasamy S, Abrol R, Suloway CJ, Clemons WM. The glove-like structure of the conserved membrane protein TatC provides insight into signal sequence recognition in twin-arginine translocation. Structure 2013; 21:777-88. [PMID: 23583035 PMCID: PMC3653977 DOI: 10.1016/j.str.2013.03.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/14/2013] [Accepted: 03/07/2013] [Indexed: 11/23/2022]
Abstract
In bacteria, two signal-sequence-dependent secretion pathways translocate proteins across the cytoplasmic membrane. Although the mechanism of the ubiquitous general secretory pathway is becoming well understood, that of the twin-arginine translocation pathway, responsible for translocation of folded proteins across the bilayer, is more mysterious. TatC, the largest and most conserved of three integral membrane components, provides the initial binding site of the signal sequence prior to pore assembly. Here, we present two crystal structures of TatC from the thermophilic bacteria Aquifex aeolicus at 4.0 Å and 6.8 Å resolution. The membrane architecture of TatC includes a glove-shaped structure with a lipid-exposed pocket predicted by molecular dynamics to distort the membrane. Correlating the biochemical literature to these results suggests that the signal sequence binds in this pocket, leading to structural changes that facilitate higher order assemblies.
Collapse
Affiliation(s)
| | - Ravinder Abrol
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christian J.M. Suloway
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - William M. Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|