1
|
Aktürk Dizman Y. Codon usage bias analysis of the gene encoding NAD +-dependent DNA ligase protein of Invertebrate iridescent virus 6. Arch Microbiol 2023; 205:352. [PMID: 37812231 DOI: 10.1007/s00203-023-03688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
The genome of Invertebrate iridescent virus 6 (IIV6) contains a sequence that shows similarity to eubacterial NAD+-dependent DNA ligases. The 615-amino acid open reading frame (ORF 205R) consists of several domains, including an N-terminal domain Ia, followed by an adenylation domain, an OB-fold domain, a helix-hairpin-helix (HhH) domain, and a BRCT domain. Notably, the zinc finger domain, typically present in NAD+-dependent DNA ligases, is absent in ORF 205R. Since the protein encoded by ORF 205R (IIV6 DNA ligase gene) is involved in critical functions such as DNA replication, modification, and repair, it is crucial to comprehend the codon usage associated with this gene. In this paper, the codon usage bias (CUB) in DNA ligase gene of IIV6 and 11 reference iridoviruses was analyzed by comparing the nucleotide contents, relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI), relative abundance of dinucleotides and other indices. Both the base content and the RCSU analysis indicated that the A- and T-ending codons were mostly favored in the DNA ligase gene of IIV6. The ENC value of 35.64 implied a high CUB in the IIV6 DNA ligase gene. The ENC plot, neutrality plot, parity rule 2 plot, correspondence analysis revealed that mutation pressure and natural selection had an impact on the CUB of the IIVs DNA ligase genes. Additionally, the analysis of codon adaptation index demonstrated that the IIV6 DNA ligase gene is strongly adapted to its host. These findings will improve our comprehension of the CUB of IIV6 DNA ligase and reference genes, which may provide the required information for a fundamental evolutionary analysis of these genes.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey.
| |
Collapse
|
2
|
Turgimbayeva A, Zein U, Zharkov DO, Ramankulov Y, Saparbaev M, Abeldenov S. Cloning and characterization of the major AP endonuclease from Staphylococcus aureus. DNA Repair (Amst) 2022; 119:103390. [DOI: 10.1016/j.dnarep.2022.103390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/19/2022] [Accepted: 08/20/2022] [Indexed: 11/03/2022]
|
3
|
Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAD +-dependent polynucleotide ligases. Proc Natl Acad Sci U S A 2017; 114:2592-2597. [PMID: 28223499 DOI: 10.1073/pnas.1619220114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Polynucleotide ligases comprise a ubiquitous superfamily of nucleic acid repair enzymes that join 3'-OH and 5'-PO4 DNA or RNA ends. Ligases react with ATP or NAD+ and a divalent cation cofactor to form a covalent enzyme-(lysine-Nζ)-adenylate intermediate. Here, we report crystal structures of the founding members of the ATP-dependent RNA ligase family (T4 RNA ligase 1; Rnl1) and the NAD+-dependent DNA ligase family (Escherichia coli LigA), captured as their respective Michaelis complexes, which illuminate distinctive catalytic mechanisms of the lysine adenylylation reaction. The 2.2-Å Rnl1•ATP•(Mg2+)2 structure highlights a two-metal mechanism, whereby: a ligase-bound "catalytic" Mg2+(H2O)5 coordination complex lowers the pKa of the lysine nucleophile and stabilizes the transition state of the ATP α phosphate; a second octahedral Mg2+ coordination complex bridges the β and γ phosphates; and protein elements unique to Rnl1 engage the γ phosphate and associated metal complex and orient the pyrophosphate leaving group for in-line catalysis. By contrast, the 1.55-Å LigA•NAD+•Mg2+ structure reveals a one-metal mechanism in which a ligase-bound Mg2+(H2O)5 complex lowers the lysine pKa and engages the NAD+ α phosphate, but the β phosphate and the nicotinamide nucleoside of the nicotinamide mononucleotide (NMN) leaving group are oriented solely via atomic interactions with protein elements that are unique to the LigA clade. The two-metal versus one-metal dichotomy demarcates a branchpoint in ligase evolution and favors LigA as an antibacterial drug target.
Collapse
|
4
|
Homology modeling of NAD+-dependent DNA ligase of the Wolbachia endosymbiont of Brugia malayi and its drug target potential using dispiro-cycloalkanones. Antimicrob Agents Chemother 2015; 59:3736-47. [PMID: 25845868 DOI: 10.1128/aac.03449-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/15/2015] [Indexed: 11/20/2022] Open
Abstract
Lymphatic filarial nematodes maintain a mutualistic relationship with the endosymbiont Wolbachia. Depletion of Wolbachia produces profound defects in nematode development, fertility, and viability and thus has great promise as a novel approach for treating filarial diseases. NAD(+)-dependent DNA ligase is an essential enzyme of DNA replication, repair, and recombination. Therefore, in the present study, the antifilarial drug target potential of the NAD(+)-dependent DNA ligase of the Wolbachia symbiont of Brugia malayi (wBm-LigA) was investigated using dispiro-cycloalkanone compounds. Dispiro-cycloalkanone specifically inhibited the nick-closing and cohesive-end ligation activities of the enzyme without inhibiting human or T4 DNA ligase. The mode of inhibition was competitive with the NAD(+) cofactor. Docking studies also revealed the interaction of these compounds with the active site of the target enzyme. The adverse effects of these inhibitors were observed on adult and microfilarial stages of B. malayi in vitro, and the most active compounds were further monitored in vivo in jirds and mastomys rodent models. Compounds 1, 2, and 5 had severe adverse effects in vitro on the motility of both adult worms and microfilariae at low concentrations. Compound 2 was the best inhibitor, with the lowest 50% inhibitory concentration (IC50) (1.02 μM), followed by compound 5 (IC50, 2.3 μM) and compound 1 (IC50, 2.9 μM). These compounds also exhibited the same adverse effect on adult worms and microfilariae in vivo (P < 0.05). These compounds also tremendously reduced the wolbachial load, as evident by quantitative real-time PCR (P < 0.05). wBm-LigA thus shows great promise as an antifilarial drug target, and dispiro-cycloalkanone compounds show great promise as antifilarial lead candidates.
Collapse
|
5
|
Surivet JP, Lange R, Hubschwerlen C, Keck W, Specklin JL, Ritz D, Bur D, Locher H, Seiler P, Strasser DS, Prade L, Kohl C, Schmitt C, Chapoux G, Ilhan E, Ekambaram N, Athanasiou A, Knezevic A, Sabato D, Chambovey A, Gaertner M, Enderlin M, Boehme M, Sippel V, Wyss P. Structure-guided design, synthesis and biological evaluation of novel DNA ligase inhibitors with in vitro and in vivo anti-staphylococcal activity. Bioorg Med Chem Lett 2012; 22:6705-11. [PMID: 23006603 DOI: 10.1016/j.bmcl.2012.08.094] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/23/2012] [Accepted: 08/25/2012] [Indexed: 12/13/2022]
Abstract
A series of 2-amino-[1,8]-naphthyridine-3-carboxamides (ANCs) with potent inhibition of bacterial NAD(+)-dependent DNA ligases (LigAs) evolved from a 2,4-diaminopteridine derivative discovered by HTS. The design was guided by several highly resolved X-ray structures of our inhibitors in complex with either Streptococcus pneumoniae or Escherichia coli LigA. The structure-activity-relationship based on the ANC scaffold is discussed. The in-depth characterization of 2-amino-6-bromo-7-(trifluoromethyl)-[1,8]-naphthyridine-3-carboxamide, which displayed promising in vitro (MIC Staphylococcus aureus 1 mg/L) and in vivo anti-staphylococcal activity, is presented.
Collapse
|
6
|
Shrivastava N, Nag JK, Misra-Bhattacharya S. Molecular characterization of NAD+-dependent DNA ligase from Wolbachia endosymbiont of lymphatic filarial parasite Brugia malayi. PLoS One 2012; 7:e41113. [PMID: 22815933 PMCID: PMC3397958 DOI: 10.1371/journal.pone.0041113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/21/2012] [Indexed: 11/19/2022] Open
Abstract
The lymphatic filarial parasite, Brugia malayi contains Wolbachia endobacteria that are essential for development, viability and fertility of the parasite. Therefore, wolbachial proteins have been currently seen as the potential antifilarial drug targets. NAD(+)-dependent DNA ligase is characterized as a promising drug target in several organisms due to its crucial, indispensable role in DNA replication, recombination and DNA repair. We report here the cloning, expression and purification of NAD(+)-dependent DNA ligase of Wolbachia endosymbiont of B. malayi (wBm-LigA) for its molecular characterization. wBm-LigA has all the domains that are present in nearly all the eubacterial NAD(+)-dependent DNA ligases such as N-terminal adenylation domain, OB fold, helix-hairpin-helix (HhH) and BRCT domain except zinc-binding tetracysteine domain. The purified recombinant protein (683-amino acid) was found to be biochemically active and was present in its native form as revealed by the circular dichroism and fluorescence spectra. The purified recombinant enzyme was able to catalyze intramolecular strand joining on a nicked DNA as well as intermolecular joining of the cohesive ends of BstEII restricted lamda DNA in an in vitro assay. The enzyme was localized in the various life-stages of B. malayi parasites by immunoblotting and high enzyme expression was observed in Wolbachia within B. malayi microfilariae and female adult parasites along the hypodermal chords and in the gravid portion as evident by the confocal microscopy. Ours is the first report on this enzyme of Wolbachia and these findings would assist in validating the antifilarial drug target potential of wBm-LigA in future studies.
Collapse
Affiliation(s)
- Nidhi Shrivastava
- Division of Parasitology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Jeetendra Kumar Nag
- Division of Parasitology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
7
|
Mechanistic assessment of DNA ligase as an antibacterial target in Staphylococcus aureus. Antimicrob Agents Chemother 2012; 56:4095-102. [PMID: 22585221 DOI: 10.1128/aac.00215-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We report the use of a known pyridochromanone inhibitor with antibacterial activity to assess the validity of NAD(+)-dependent DNA ligase (LigA) as an antibacterial target in Staphylococcus aureus. Potent inhibition of purified LigA was demonstrated in a DNA ligation assay (inhibition constant [K(i)] = 4.0 nM) and in a DNA-independent enzyme adenylation assay using full-length LigA (50% inhibitory concentration [IC(50)] = 28 nM) or its isolated adenylation domain (IC(50) = 36 nM). Antistaphylococcal activity was confirmed against methicillin-susceptible and -resistant S. aureus (MSSA and MRSA) strains (MIC = 1.0 μg/ml). Analysis of spontaneous resistance potential revealed a high frequency of emergence (4 × 10(-7)) of high-level resistant mutants (MIC > 64) with associated ligA lesions. There were no observable effects on growth rate in these mutants. Of 22 sequenced clones, 3 encoded point substitutions within the catalytic adenylation domain and 19 in the downstream oligonucleotide-binding (OB) fold and helix-hairpin-helix (HhH) domains. In vitro characterization of the enzymatic properties of four selected mutants revealed distinct signatures underlying their resistance to inhibition. The infrequent adenylation domain mutations altered the kinetics of adenylation and probably elicited resistance directly. In contrast, the highly represented OB fold domain mutations demonstrated a generalized resistance mechanism in which covalent LigA activation proceeds normally and yet the parameters of downstream ligation steps are altered. A resulting decrease in substrate K(m) and a consequent increase in substrate occupancy render LigA resistant to competitive inhibition. We conclude that the observed tolerance of staphylococcal cells to such hypomorphic mutations probably invalidates LigA as a viable target for antistaphylococcal chemotherapy.
Collapse
|
8
|
Lahiri SD, Gu RF, Gao N, Karantzeni I, Walkup GK, Mills SD. Structure guided understanding of NAD+ recognition in bacterial DNA ligases. ACS Chem Biol 2012; 7:571-80. [PMID: 22230472 DOI: 10.1021/cb200392g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
NAD(+)-dependent DNA ligases (LigA) are essential bacterial enzymes that catalyze phosphodiester bond formation during DNA replication and repair processes. Phosphodiester bond formation proceeds through a 3-step reaction mechanism. In the first step, the LigA adenylation domain interacts with NAD(+) to form a covalent enzyme-AMP complex. Although it is well established that the specificity for binding of NAD(+) resides within the adenylation domain, the precise recognition elements for the initial binding event remain unclear. We report here the structure of the adenylation domain from Haemophilus influenzae LigA. This structure is a first snapshot of a LigA-AMP intermediate with NAD(+) bound to domain 1a in its open conformation. The binding affinities of NAD(+) for adenylated and nonadenylated forms of the H. influenzae LigA adenylation domain were similar. The combined crystallographic and NAD(+)-binding data suggest that the initial recognition of NAD(+) is via the NMN binding region in domain 1a of LigA.
Collapse
Affiliation(s)
- Sushmita D. Lahiri
- Department of Bioscience, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Rong-Fang Gu
- Department of Bioscience, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Ning Gao
- Department of Bioscience, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Irene Karantzeni
- Department of Bioscience, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Grant K. Walkup
- Department of Bioscience, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Scott D. Mills
- Department of Bioscience, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| |
Collapse
|
9
|
Tripathi RP, Pandey J, Kukshal V, Ajay A, Mishra M, Dube D, Chopra D, Dwivedi R, Chaturvedi V, Ramachandran R. Synthesis, in silico screening and bioevaluation of dispiro-cycloalkanones as antitubercular and mycobacterial NAD+-dependent DNA ligase inhibitors. MEDCHEMCOMM 2011. [DOI: 10.1039/c0md00246a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Novel bacterial NAD+-dependent DNA ligase inhibitors with broad-spectrum activity and antibacterial efficacy in vivo. Antimicrob Agents Chemother 2010; 55:1088-96. [PMID: 21189350 DOI: 10.1128/aac.01181-10] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA ligases are indispensable enzymes playing a critical role in DNA replication, recombination, and repair in all living organisms. Bacterial NAD+-dependent DNA ligase (LigA) was evaluated for its potential as a broad-spectrum antibacterial target. A novel class of substituted adenosine analogs was discovered by target-based high-throughput screening (HTS), and these compounds were optimized to render them more effective and selective inhibitors of LigA. The adenosine analogs inhibited the LigA activities of Escherichia coli, Haemophilus influenzae, Mycoplasma pneumoniae, Streptococcus pneumoniae, and Staphylococcus aureus, with inhibitory activities in the nanomolar range. They were selective for bacterial NAD+-dependent DNA ligases, showing no inhibitory activity against ATP-dependent human DNA ligase 1 or bacteriophage T4 ligase. Enzyme kinetic measurements demonstrated that the compounds bind competitively with NAD+. X-ray crystallography demonstrated that the adenosine analogs bind in the AMP-binding pocket of the LigA adenylation domain. Antibacterial activity was observed against pathogenic Gram-positive and atypical bacteria, such as S. aureus, S. pneumoniae, Streptococcus pyogenes, and M. pneumoniae, as well as against Gram-negative pathogens, such as H. influenzae and Moraxella catarrhalis. The mode of action was verified using recombinant strains with altered LigA expression, an Okazaki fragment accumulation assay, and the isolation of resistant strains with ligA mutations. In vivo efficacy was demonstrated in a murine S. aureus thigh infection model and a murine S. pneumoniae lung infection model. Treatment with the adenosine analogs reduced the bacterial burden (expressed in CFU) in the corresponding infected organ tissue as much as 1,000-fold, thus validating LigA as a target for antibacterial therapy.
Collapse
|
11
|
Akhoon BA, Gupta SK, Dhaliwal G, Srivastava M, Gupta SK. Virtual screening of specific chemical compounds by exploring E.coli NAD+-dependent DNA ligase as a target for antibacterial drug discovery. J Mol Model 2010; 17:265-73. [PMID: 20443037 DOI: 10.1007/s00894-010-0713-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 03/18/2010] [Indexed: 11/26/2022]
Abstract
Unique substrate specificity compared with ATP-dependent human DNA ligases recommends E.coli NAD(+)-ligases as potential targets. A plausible strategy is to identify the structural components of bacterial DNA ligase that interact with NAD(+) and then to isolate small molecules that recognize these components and thereby block the binding of NAD(+) to the ligase. This work describes a molecular modeling approach to detect the 3D structure of NAD(+)-dependent DNA ligase in E. coli whose partial structure was determined by wet lab experiments and rest structure was left as such on the road for repairment. We applied protein-drug docking approach to detect the binding affinity of this enzyme with Quinacrine and some of its virtual derivatives. In silico docking results predict that the virtual derivative of Quinacrine (C21H26ClN3O2) has greater binding affinity than Quinacrine. Drug likeness value of 0.833 was observed for this derivative without showing any toxicity risk.
Collapse
Affiliation(s)
- Bashir Akhlaq Akhoon
- Department of Bioinformatics, Dolphin Post Graduate College of Life Sciences, Punjabi University, Patiala, Punjab, India.
| | | | | | | | | |
Collapse
|
12
|
Swift RV, Amaro RE. Discovery and design of DNA and RNA ligase inhibitors in infectious microorganisms. Expert Opin Drug Discov 2009; 4:1281-1294. [PMID: 20354588 DOI: 10.1517/17460440903373617] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND: Members of the nucleotidyltransferase superfamily known as DNA and RNA ligases carry out the enzymatic process of polynucleotide ligation. These guardians of genomic integrity share a three-step ligation mechanism, as well as common core structural elements. Both DNA and RNA ligases have experienced a surge of recent interest as chemotherapeutic targets for the treatment of a range of diseases, including bacterial infection, cancer, and the diseases caused by the protozoan parasites known as trypanosomes. OBJECTIVE: In this review, we will focus on efforts targeting pathogenic microorganisms; specifically, bacterial NAD(+)-dependent DNA ligases, which are promising broad-spectrum antibiotic targets, and ATP-dependent RNA editing ligases from Trypanosoma brucei, the species responsible for the devastating neurodegenerative disease, African sleeping sickness. CONCLUSION: High quality crystal structures of both NAD(+)-dependent DNA ligase and the Trypanosoma brucei RNA editing ligase have facilitated the development of a number of promising leads. For both targets, further progress will require surmounting permeability issues and improving selectivity and affinity.
Collapse
Affiliation(s)
- Robert V Swift
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
13
|
Han S, Chang JS, Griffor M. Structure of the adenylation domain of NAD(+)-dependent DNA ligase from Staphylococcus aureus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1078-82. [PMID: 19923722 DOI: 10.1107/s1744309109036872] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/11/2009] [Indexed: 01/20/2023]
Abstract
DNA ligase catalyzes phosphodiester-bond formation between immediately adjacent 5'-phosphate and 3'-hydroxyl groups in double-stranded DNA and plays a central role in many cellular and biochemical processes, including DNA replication, repair and recombination. Bacterial NAD(+)-dependent DNA ligases have been extensively characterized as potential antibacterial targets because of their essentiality and their structural distinction from human ATP-dependent DNA ligases. The high-resolution structure of the adenylation domain of Staphylococcus aureus NAD(+)-dependent DNA ligase establishes the conserved domain architecture with other bacterial adenylation domains. Two apo crystal structures revealed that the active site possesses the preformed NAD(+)-binding pocket and the 'C2 tunnel' lined with hydrophobic residues: Leu80, Phe224, Leu287, Phe295 and Trp302. The C2 tunnel is unique to bacterial DNA ligases and the Leu80 side chain at the mouth of the tunnel points inside the tunnel and forms a narrow funnel in the S. aureus DNA ligase structure. Taken together with other DNA ligase structures, the S. aureus DNA ligase structure provides a basis for a more integrated understanding of substrate recognition and catalysis and will be also be of help in the development of small-molecule inhibitors.
Collapse
Affiliation(s)
- Seungil Han
- Pfizer Inc., Groton, Connecticut 06340, USA.
| | | | | |
Collapse
|
14
|
Wang LK, Zhu H, Shuman S. Structure-guided Mutational Analysis of the Nucleotidyltransferase Domain of Escherichia coli DNA Ligase (LigA). J Biol Chem 2009; 284:8486-94. [PMID: 19150981 PMCID: PMC2659207 DOI: 10.1074/jbc.m808476200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/18/2008] [Indexed: 01/24/2023] Open
Abstract
NAD(+)-dependent DNA ligases (LigA) are ubiquitous in bacteria, where they are essential for growth and present attractive targets for antimicrobial drug discovery. LigA has a distinctive modular structure in which a nucleotidyltransferase catalytic domain is flanked by an upstream NMN-binding module and by downstream OB-fold, zinc finger, helix-hairpin-helix, and BRCT domains. Here we conducted a structure-function analysis of the nucleotidyltransferase domain of Escherichia coli LigA, guided by the crystal structure of the LigA-DNA-adenylate intermediate. We tested the effects of 29 alanine and conservative mutations at 15 amino acids on ligase activity in vitro and in vivo. We thereby identified essential functional groups that coordinate the reactive phosphates (Arg(136)), contact the AMP adenine (Lys(290)), engage the phosphodiester backbone flanking the nick (Arg(218), Arg(308), Arg(97) plus Arg(101)), or stabilize the active domain fold (Arg(171)). Finer analysis of the mutational effects revealed step-specific functions for Arg(136), which is essential for the reaction of LigA with NAD(+) to form the covalent ligase-AMP intermediate (step 1) and for the transfer of AMP to the nick 5'-PO(4) to form the DNA-adenylate intermediate (step 2) but is dispensable for phosphodiester formation at a preadenylylated nick (step 3).
Collapse
Affiliation(s)
- Li Kai Wang
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | | | | |
Collapse
|
15
|
In vitro and in vivo validation of ligA and tarI as essential targets in Staphylococcus aureus. Antimicrob Agents Chemother 2008; 52:4470-4. [PMID: 18809938 DOI: 10.1128/aac.00548-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A conditional expression system has been developed using the isopropyl-beta-d-thiogalactopyranoside (IPTG)-inducible Pspac promoter to validate essential genes of Staphylococcus aureus in vivo. The system has been applied to prove the essentiality of ligA and to evaluate the function of tarI, which was found to be essential in vitro but not in vivo.
Collapse
|
16
|
Meier TI, Yan D, Peery RB, McAllister KA, Zook C, Peng SB, Zhao G. Identification and characterization of an inhibitor specific to bacterial NAD+-dependent DNA ligases. FEBS J 2008; 275:5258-71. [DOI: 10.1111/j.1742-4658.2008.06652.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Wang LK, Nair PA, Shuman S. Structure-guided mutational analysis of the OB, HhH, and BRCT domains of Escherichia coli DNA ligase. J Biol Chem 2008; 283:23343-52. [PMID: 18515356 PMCID: PMC2516987 DOI: 10.1074/jbc.m802945200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/26/2008] [Indexed: 12/14/2022] Open
Abstract
NAD(+)-dependent DNA ligases (LigAs) are ubiquitous in bacteria and essential for growth. LigA enzymes have a modular structure in which a central catalytic core composed of nucleotidyltransferase and oligonucleotide-binding (OB) domains is linked via a tetracysteine zinc finger to distal helix-hairpin-helix (HhH) and BRCT (BRCA1-like C-terminal) domains. The OB and HhH domains contribute prominently to the protein clamp formed by LigA around nicked duplex DNA. Here we conducted a structure-function analysis of the OB and HhH domains of Escherichia coli LigA by alanine scanning and conservative substitutions, entailing 43 mutations at 22 amino acids. We thereby identified essential functional groups in the OB domain that engage the DNA phosphodiester backbone flanking the nick (Arg(333)); penetrate the minor grove and distort the nick (Val(383) and Ile(384)); or stabilize the OB fold (Arg(379)). The essential constituents of the HhH domain include: four glycines (Gly(455), Gly(489), Gly(521), Gly(553)), which bind the phosphate backbone across the minor groove at the outer margins of the LigA-DNA interface; Arg(487), which penetrates the minor groove at the outer margin on the 3 (R)-OH side of the nick; and Arg(446), which promotes protein clamp formation via contacts to the nucleotidyltransferase domain. We find that the BRCT domain is required in its entirety for effective nick sealing and AMP-dependent supercoil relaxation.
Collapse
Affiliation(s)
- Li Kai Wang
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
18
|
Abstract
Multiple resistant staphylococci that cause significant morbidity and mortality are the leading cause of nosocomial infections. Meanwhile, methicillin-resistant Staphylococcus aureus (MRSA) also spreads in the community, where highly virulent strains infect children and young adults who have no predisposing risk factors. Although some treatment options remain, the search for new antibacterial targets and lead compounds is urgently required to ensure that staphylococcal infections can be effectively treated in the future. Promising targets for new antibacterials are gene products that are involved in essential cell functions. In addition to antibacterials, active and passive immunization strategies are being developed that target surface components of staphylococci such as cell wall-linked adhesins, teichoic acids and capsule or immunodominant antigens.
Collapse
Affiliation(s)
- Knut Ohlsen
- University of Würzburg, Institute for Molecular Infection Biology, Röntgenring 11, 97070 Würzburg, Germany
| | - Udo Lorenz
- University of Würzburg, Centre for Operative Medicine, Department of Surgery I, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| |
Collapse
|
19
|
Nandakumar J, Nair PA, Shuman S. Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate. Mol Cell 2007; 26:257-71. [PMID: 17466627 DOI: 10.1016/j.molcel.2007.02.026] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 02/14/2007] [Accepted: 02/21/2007] [Indexed: 12/12/2022]
Abstract
NAD(+)-dependent DNA ligases (LigA) are ubiquitous in bacteria and essential for growth. Their distinctive substrate specificity and domain organization vis-a-vis human ATP-dependent ligases make them outstanding targets for anti-infective drug discovery. We report here the 2.3 A crystal structure of Escherichia coli LigA bound to an adenylylated nick, which captures LigA in a state poised for strand closure and reveals the basis for nick recognition. LigA envelopes the DNA within a protein clamp. Large protein domain movements and remodeling of the active site orchestrate progression through the three chemical steps of the ligation reaction. The structure inspires a strategy for inhibitor design.
Collapse
|
20
|
Korycka-Machala M, Rychta E, Brzostek A, Sayer HR, Rumijowska-Galewicz A, Bowater RP, Dziadek J. Evaluation of NAD(+) -dependent DNA ligase of mycobacteria as a potential target for antibiotics. Antimicrob Agents Chemother 2007; 51:2888-97. [PMID: 17548501 PMCID: PMC1932498 DOI: 10.1128/aac.00254-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacteria contain genes for several DNA ligases, including ligA, which encodes a NAD(+)-dependent enzyme that has been postulated to be a target for novel antibacterial compounds. Using a homologous recombination system, direct evidence is presented that wild-type ligA cannot be deleted from the chromosome of Mycobacterium smegmatis. Deletions of native ligA in M. smegmatis could be obtained only after the integration of an extra copy of M. smegmatis or Mycobacterium tuberculosis ligA into the attB site of the chromosome, with expression controlled by chemically inducible promoters. The four ATP-dependent DNA ligases encoded by the M. smegmatis chromosome were unable to replace the function of LigA. Interestingly, the LigA protein from M. smegmatis could be substituted with the NAD(+)-dependent DNA ligase of Escherichia coli or the ATP-dependent ligase of bacteriophage T4. The conditional mutant strains allowed the analysis of the effect of LigA depletion on the growth of M. smegmatis. The protein level of the conditional mutants was estimated by Western blot analysis using antibodies raised against LigA of M. tuberculosis. This revealed that a strong overproduction or depletion of LigA did not affect the growth or survival of mycobacteria under standard laboratory conditions. In conclusion, although NAD(+)-dependent DNA ligase is essential for mycobacterial viability, only low levels of protein are required for growth. These findings suggest that very efficient inhibition of enzyme activity would be required if NAD(+)-dependent DNA ligase is to be useful as an antibiotic target in mycobacteria. The strains developed here will provide useful tools for the evaluation of the efficacy of any appropriate compounds in mycobacteria.
Collapse
|
21
|
Abstract
Agrobacterium tumefaciens encodes a single NAD+-dependent DNA ligase and six putative ATP-dependent ligases. Two of the ligases are homologs of LigD, a bacterial enzyme that catalyzes end-healing and end-sealing steps during nonhomologous end joining (NHEJ). Agrobacterium LigD1 and AtuLigD2 are composed of a central ligase domain fused to a C-terminal polymerase-like (POL) domain and an N-terminal 3′-phosphoesterase (PE) module. Both LigD proteins seal DNA nicks, albeit inefficiently. The LigD2 POL domain adds ribonucleotides or deoxyribonucleotides to a DNA primer-template, with rNTPs being the preferred substrates. The LigD1 POL domain has no detectable polymerase activity. The PE domains catalyze metal-dependent phosphodiesterase and phosphomonoesterase reactions at a primer-template with a 3′-terminal diribonucleotide to yield a primer-template with a monoribonucleotide 3′-OH end. The PE domains also have a 3′-phosphatase activity on an all-DNA primer-template that yields a 3′-OH DNA end. Agrobacterium ligases C2 and C3 are composed of a minimal ligase core domain, analogous to Mycobacterium LigC (another NHEJ ligase), and they display feeble nick-sealing activity. Ligation at DNA double-strand breaks in vitro by LigD2, LigC2 and LigC3 is stimulated by bacterial Ku, consistent with their proposed function in NHEJ.
Collapse
Affiliation(s)
| | - Stewart Shuman
- *To whom correspondence should be addressed. 212 639 7145212 717 3623
| |
Collapse
|
22
|
Miesel L, Kravec C, Xin AT, McMonagle P, Ma S, Pichardo J, Feld B, Barrabee E, Palermo R. A high-throughput assay for the adenylation reaction of bacterial DNA ligase. Anal Biochem 2007; 366:9-17. [PMID: 17493575 DOI: 10.1016/j.ab.2007.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/21/2007] [Accepted: 03/26/2007] [Indexed: 11/23/2022]
Abstract
DNA ligase catalyzes the closure of single-strand nicks in double-stranded DNA that arise during replication and recombination. Inhibition of bacterial ligase is expected to cause chromosome degradation and cell death, making it an attractive target for new antibacterials. The prototypical bacterial ligase couples the hydrolysis of NAD(+) to phosphodiester bond formation between an adjacent 3'OH and 5'-terminal phosphate of nicked duplex DNA. The first step is the reversible formation of a ligase-adenylate from the reaction between apoenzyme and NAD(+). Inhibitors that compete with NAD(+) are expected to be bacterial specific because eukaryotic DNA ligases use ATP and differ in the sequence composition of their adenylation domain. We report here a high-throughput assay that measures the adenylation reaction specifically by monitoring ligase-AMP formation via scintillation proximity technologies. Escherichia coli DNA ligase was biotinylated in vivo; after reaction with radiolabeled NAD(+), ligase-[(3)H]AMP could be captured onto the streptavidin-coated surface of the solid scintillant. The method was ideal for high-throughput screening because it required minimal manipulations and generated a robust signal with minimal scatter. Certain adenosine analogs were found to inhibit the adenylation assay and had similar potency of inhibition in a DNA ligation assay.
Collapse
Affiliation(s)
- Lynn Miesel
- Schering-Plough Research Institute, Kneilworth, NJ 07033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Biochemical characterisation of LigN, an NAD+-dependent DNA ligase from the halophilic euryarchaeon Haloferax volcanii that displays maximal in vitro activity at high salt concentrations. BMC Mol Biol 2006; 7:44. [PMID: 17132163 PMCID: PMC1684257 DOI: 10.1186/1471-2199-7-44] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 11/28/2006] [Indexed: 11/10/2022] Open
Abstract
Background DNA ligases are required for DNA strand joining in all forms of cellular life. NAD+-dependent DNA ligases are found primarily in eubacteria but also in some eukaryotic viruses, bacteriophage and archaea. Among the archaeal NAD+-dependent DNA ligases is the LigN enzyme of the halophilic euryarchaeon Haloferax volcanii, the gene for which was apparently acquired by Hfx.volcanii through lateral gene transfer (LGT) from a halophilic eubacterium. Genetic studies show that the LGT-acquired LigN enzyme shares an essential function with the native Hfx.volcanii ATP-dependent DNA ligase protein LigA. Results To characterise the enzymatic properties of the LigN protein, wild-type and three mutant forms of the LigN protein were separately expressed in recombinant form in E.coli and purified to apparent homogeneity by immobilised metal ion affinity chromatography (IMAC). Non-isotopic DNA ligase activity assays using λ DNA restriction fragments with 12 bp cos cohesive ends were used to show that LigN activity was dependent on addition of divalent cations and salt. No activity was detected in the absence of KCl, whereas maximum activity could be detected at 3.2 M KCl, close to the intracellular KCl concentration of Hfx.volcanii cells. Conclusion LigN is unique amongst characterised DNA ligase enzymes in displaying maximal DNA strand joining activity at high (> 3 M) salt levels. As such the LigN enzyme has potential both as a novel tool for biotechnology and as a model enzyme for studying the adaptation of proteins to high intracellular salt levels.
Collapse
|
24
|
Benarroch D, Shuman S. Characterization of mimivirus NAD+-dependent DNA ligase. Virology 2006; 353:133-43. [PMID: 16844179 DOI: 10.1016/j.virol.2006.04.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 04/06/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
Mimivirus, a parasite of Acanthamoeba polyphaga, is the largest DNA virus known; it encodes a cornucopia of proteins with imputed functions in DNA replication, modification, and repair. Here we produced, purified, and characterized mimivirus DNA ligase (MimiLIG), an NAD+-dependent nick joining enzyme homologous to bacterial LigA and entomopoxvirus DNA ligase. MimiLIG is a 636-aa polypeptide composed of an N-terminal NAD+ specificity module (domain Ia), linked to nucleotidyltransferase, OB-fold, helix-hairpin-helix, and BRCT domains, but it lacks the tetracysteine Zn-binding module found in all bacterial LigA enzymes. MimiLIG requires conserved domain Ia residues Tyr36, Asp46, Tyr49, and Asp50 for its initial reaction with NAD+ to form the ligase-AMP intermediate, but not for the third step of phosphodiester formation at a preadenylylated nick. MimiLIG differs from bacterial LigA enzymes in that its activity is strongly dependent on the C-terminal BRCT domain, deletion of which reduced its specific activity in nick joining by 75-fold without affecting the ligase adenylylation step. The DeltaBRCT mutant of MimiLIG was impaired in sealing at a preadenylylated nick. We propose that eukaryal DNA viruses acquired the NAD+-dependent ligases by horizontal transfer from a bacterium and that MimiLIG predates entomopoxvirus ligase, which lacks both the tetracysteine and BRCT domains. We speculate that the dissemination of NAD+-dependent ligase from bacterium to eukaryotic virus might have occurred within an amoebal host.
Collapse
Affiliation(s)
- Delphine Benarroch
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | |
Collapse
|
25
|
Srivastava SK, Dube D, Tewari N, Dwivedi N, Tripathi RP, Ramachandran R. Mycobacterium tuberculosis NAD+-dependent DNA ligase is selectively inhibited by glycosylamines compared with human DNA ligase I. Nucleic Acids Res 2005; 33:7090-101. [PMID: 16361267 PMCID: PMC1316110 DOI: 10.1093/nar/gki1006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
DNA ligases are important enzymes which catalyze the joining of nicks between adjacent bases of double-stranded DNA. NAD+-dependent DNA ligases (LigA) are essential in bacteria and are absent in humans. They have therefore been identified as novel, validated and attractive drug targets. Using virtual screening against an in-house database of compounds and our recently determined crystal structure of the NAD+ binding domain of the Mycobacterium tuberculosis LigA, we have identified N1, N(n)-bis-(5-deoxy-alpha-D-xylofuranosylated) diamines as a novel class of inhibitors for this enzyme. Assays involving M.tuberculosis LigA, T4 ligase and human DNA ligase I show that these compounds specifically inhibit LigA from M.tuberculosis. In vitro kinetic and inhibition assays demonstrate that the compounds compete with NAD+ for binding and inhibit enzyme activity with IC50 values in the microM range. Docking studies rationalize the observed specificities and show that among several glycofuranosylated diamines, bis xylofuranosylated diamines with aminoalkyl and 1, 3-phenylene carbamoyl spacers mimic the binding modes of NAD+ with the enzyme. Assays involving LigA-deficient bacterial strains show that in vivo inhibition of ligase by the compounds causes the observed antibacterial activities. They also demonstrate that the compounds exhibit in vivo specificity for LigA over ATP-dependent ligase. This class of inhibitors holds out the promise of rational development of new anti-tubercular agents.
Collapse
Affiliation(s)
| | | | | | | | - Rama Pati Tripathi
- Medicinal and Process Chemistry Division, Central Drug Research InstitutePO Box 173, Chattar Manzil, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Ravishankar Ramachandran
- To whom correspondence should be addressed. Tel: +91 522 2612411, ext. 4442; Fax: +91 522 2623405;
| |
Collapse
|
26
|
Wilkinson A, Smith A, Bullard D, Lavesa-Curto M, Sayer H, Bonner A, Hemmings A, Bowater R. Analysis of ligation and DNA binding by Escherichia coli DNA ligase (LigA). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:113-22. [PMID: 15848142 DOI: 10.1016/j.bbapap.2005.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 03/03/2005] [Accepted: 03/03/2005] [Indexed: 01/05/2023]
Abstract
NAD(+)-dependent DNA ligases are essential enzymes in bacteria, with the most widely studied of this class of enzymes being LigA from Escherichia coli. NAD(+)-dependent DNA ligases comprise several discrete structural domains, including a BRCT domain at the C-terminus that is highly-conserved in this group of proteins. The over-expression and purification of various fragments of E. coli LigA allowed the investigation of the different domains in DNA-binding and ligation by this enzyme. Compared to the full-length protein, the deletion of the BRCT domain from LigA reduced in vitro ligation activity by 3-fold and also reduced DNA binding. Using an E. coli strain harbouring a temperature-sensitive mutation of ligA, the over-expression of protein with its BRCT domain deleted enabled growth at the non-permissive temperature. In gel-mobility shift experiments, the isolated BRCT domain bound DNA in a stable manner and to a wider range of DNA molecules compared to full LigA. Thus, the BRCT domain of E. coli LigA can bind DNA, but it is not essential for DNA nick-joining activity in vitro or in vivo.
Collapse
Affiliation(s)
- Adam Wilkinson
- Phico Therapeutics Ltd, Babraham Hall, Babraham, Cambridge, CB2 4AT, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Srivastava SK, Tripathi RP, Ramachandran R. NAD+-dependent DNA Ligase (Rv3014c) from Mycobacterium tuberculosis. Crystal structure of the adenylation domain and identification of novel inhibitors. J Biol Chem 2005; 280:30273-81. [PMID: 15901723 DOI: 10.1074/jbc.m503780200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA ligases utilize either ATP or NAD+ as cofactors to catalyze the formation of phosphodiester bonds in nicked DNA. Those utilizing NAD+ are attractive drug targets because of the unique cofactor requirement for ligase activity. We report here the crystal structure of the adenylation domain of the Mycobacterium tuberculosis NAD+-dependent ligase with bound AMP. The adenosine nucleoside moiety of AMP adopts a syn-conformation. The structure also captures a new spatial disposition between the two subdomains of the adenylation domain. Based on the crystal structure and an in-house compound library, we have identified a novel class of inhibitors for the enzyme using in silico docking calculations. The glycosyl ureide-based inhibitors were able to distinguish between NAD+- and ATP-dependent ligases as evidenced by in vitro assays using T4 ligase and human DNA ligase I. Moreover, assays involving an Escherichia coli strain harboring a temperature-sensitive ligase mutant and a ligase-deficient Salmonella typhimurium strain suggested that the bactericidal activity of the inhibitors is due to inhibition of the essential ligase enzyme. The results can be used as the basis for rational design of novel antibacterial agents.
Collapse
Affiliation(s)
- Sandeep Kumar Srivastava
- Division Molecular and Structural Biology, Central Drug Research Institute, Chattar Manzil, Mahatma Gandhi Marg, Lucknow-226001, India
| | | | | |
Collapse
|
28
|
Gul S, Brown R, May E, Mazzulla M, Smyth MG, Berry C, Morby A, Powell DJ. Staphylococcus aureus DNA ligase: characterization of its kinetics of catalysis and development of a high-throughput screening compatible chemiluminescent hybridization protection assay. Biochem J 2005; 383:551-9. [PMID: 15283677 PMCID: PMC1133749 DOI: 10.1042/bj20040054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNA ligases are key enzymes involved in the repair and replication of DNA. Prokaryotic DNA ligases uniquely use NAD+ as the adenylate donor during catalysis, whereas eukaryotic enzymes use ATP. This difference in substrate specificity makes the bacterial enzymes potential targets for therapeutic intervention. We have developed a homogeneous chemiluminescence-based hybridization protection assay for Staphylococcus aureus DNA ligase that uses novel acridinium ester technology and demonstrate that it is an alternative to the commonly used radiometric assays for ligases. The assay has been used to determine a number of kinetic constants for S. aureus DNA ligase catalysis. These included the K(m) values for NAD+ (2.75+/-0.1 microM) and the acridinium-ester-labelled DNA substrate (2.5+/-0.2 nM). A study of the pH-dependencies of kcat, K(m) and kcat/K(m) has revealed values of kinetically influential ionizations within the enzyme-substrate complexes (kcat) and free enzyme (kcat/K(m)). In each case, the curves were shown to be composed of one kinetically influential ionization, for k(cat), pK(a)=6.6+/-0.1 and kcat/K(m), pK(a)=7.1+/-0.1. Inhibition characteristics of the enzyme against two Escherichia coli DNA ligase inhibitors have also been determined with IC50 values for these being 3.30+/-0.86 microM for doxorubicin and 1.40+/-0.07 microM for chloroquine diphosphate. The assay has also been successfully miniaturized to a sufficiently low volume to allow it to be utilized in a high-throughput screen (384-well format; 20 microl reaction volume), enabling the assay to be used in screening campaigns against libraries of compounds to discover leads for further drug development.
Collapse
Affiliation(s)
- Sheraz Gul
- Assay Development and Compound Profiling, GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park (North), Third Avenue, Harlow, Essex CM19 4AW, UK.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhu H, Shuman S. Structure-guided mutational analysis of the nucleotidyltransferase domain of Escherichia coli NAD+-dependent DNA ligase (LigA). J Biol Chem 2005; 280:12137-44. [PMID: 15671015 DOI: 10.1074/jbc.m413685200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
NAD+-dependent DNA ligase (LigA) is essential for bacterial growth and a potential target for antimicrobial drug discovery. Here we queried the role of 14 conserved amino acids of Escherichia coli LigA by alanine scanning and thereby identified five new residues within the nucleotidyltransferase domain as being essential for LigA function in vitro and in vivo. Structure activity relationships were determined by conservative mutagenesis for the Glu-173, Arg-200, Arg-208, and Arg-277 side chains, as well as four other essential side chains that had been identified previously (Lys-115, Asp-117, Asp-285, and Lys-314). In addition, we identified Lys-290 as important for LigA activity. Reference to the structure of Enterococcus faecalis LigA allowed us to discriminate three classes of essential/important side chains that: (i) contact NAD+ directly (Lys-115, Glu-173, Lys-290, and Lys-314); (ii) comprise the interface between the NMN-binding domain (domain Ia) and the nucleotidyltransferase domain or comprise part of a nick-binding site on the surface of the nucleotidyltransferase domain (Arg-200 and Arg-208); or (iii) stabilize the active site fold of the nucleotidyltransferase domain (Arg-277). Analysis of mutational effects on the isolated ligase adenylylation and phosphodiester formation reactions revealed different functions for essential side chains at different steps of the DNA ligase pathway, consistent with the proposal that the active site is serially remodeled as the reaction proceeds.
Collapse
Affiliation(s)
- Hui Zhu
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
30
|
Gajiwala KS, Pinko C. Structural rearrangement accompanying NAD+ synthesis within a bacterial DNA ligase crystal. Structure 2005; 12:1449-59. [PMID: 15296738 DOI: 10.1016/j.str.2004.05.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 05/14/2004] [Accepted: 05/17/2004] [Indexed: 10/26/2022]
Abstract
DNA ligase is an enzyme important for DNA repair and replication. Eukaryotic genomes encode ligases requiring ATP as the cofactor; bacterial genomes encode NAD(+)-dependent ligase. This difference in substrate specificities and the essentiality of NAD(+)-dependent ligase for bacterial survival make NAD(+)-dependent ligase a good target for designing highly specific anti-infectives. Any such structure-guided effort would require the knowledge of the precise mechanism of NAD+ recognition by the enzyme. We report the principles of NAD+ recognition by presenting the synthesis of NAD+ from nicotinamide mononucleotide (NMN) and AMP, catalyzed by Enterococcus faecalis ligase within the crystal lattice. Unprecedented conformational change, required to reorient the two subdomains of the protein for the condensation to occur and to recognize NAD+, is captured in two structures obtained using the same protein crystal. Structural data and sequence analysis presented here confirms and extends prior functional studies of the ligase adenylation reaction.
Collapse
Affiliation(s)
- Ketan S Gajiwala
- Quorex Pharmaceuticals, 1890 Rutherford Road, Suite 200, Carlsbad, California 92008, USA.
| | | |
Collapse
|
31
|
Feng H, Parker JM, Lu J, Cao W. Effects of deletion and site-directed mutations on ligation steps of NAD+-dependent DNA ligase: a biochemical analysis of BRCA1 C-terminal domain. Biochemistry 2004; 43:12648-59. [PMID: 15449954 DOI: 10.1021/bi049451c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA strand joining entails three consecutive steps: enzyme adenylation to form AMP-ligase, substrate adenylation to form AMP-DNA, and nick closure. In this study, we investigate the effects on ligation steps by deletion and site-directed mutagenesis of the BRCA1 C-terminal (BRCT) domain using NAD(+)-dependent DNA ligase from Thermus species AK16D. Deletion of the BRCT domain resulted in substantial loss of ligation activity, but the mutant was still able to form an AMP-ligase intermediate, suggesting that the defects caused by deletion of the entire BRCT domain occur primarily at steps after enzyme adenylation. The lack of AMP-DNA accumulation by the domain deletion mutant as compared to the wild-type ligase indicates that the BRCT domain plays a role in the substrate adenylation step. Gel mobility shift analysis suggests that the BRCT domain and helix-hairpin-helix subdomain play a role in DNA binding. Similar to the BRCT domain deletion mutant, the G617I mutant showed a low ligation activity and lack of accumulation of AMP-DNA intermediate. However, the G617I mutant was only weakly adenylated, suggesting that a point mutation in the BRCT domain could also affect the enzyme adenylation step. The significant reduction of ligation activity by G634I appears to be attributable to a defect at the substrate adenylation step. The greater ligation of mismatched substrates by G638I is accountable by accelerated conversion of the AMP-DNA intermediate to a ligation product at the final nick closure step. The mutational effects of the BRCT domain on ligation steps in relation to protein-DNA and potential protein-protein interactions are discussed.
Collapse
Affiliation(s)
- Hong Feng
- Department of Genetics, Biochemistry & Life Science Studies, South Carolina Experiment Station, Clemson University, Room 219, Biosystems Research Complex, 51 New Cherry Street, Clemson, South Carolina 29634, USA
| | | | | | | |
Collapse
|
32
|
Ho CK, Wang LK, Lima CD, Shuman S. Structure and mechanism of RNA ligase. Structure 2004; 12:327-39. [PMID: 14962393 DOI: 10.1016/j.str.2004.01.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 12/04/2003] [Accepted: 12/10/2003] [Indexed: 11/24/2022]
Abstract
T4 RNA ligase 2 (Rnl2) exemplifies an RNA ligase family that includes the RNA editing ligases (RELs) of Trypanosoma and Leishmania. The Rnl2/REL enzymes are defined by essential signature residues and a unique C-terminal domain, which we show is essential for sealing of 3'-OH and 5'-PO4 RNA ends by Rnl2, but not for ligase adenylation or phosphodiester bond formation at a preadenylated AppRNA end. The N-terminal segment Rnl2(1-249) of the 334 aa Rnl2 protein comprises an autonomous adenylyltransferase/AppRNA ligase domain. We report the 1.9 A crystal structure of the ligase domain with AMP bound at the active site, which reveals a shared fold, catalytic mechanism, and evolutionary history for RNA ligases, DNA ligases, and mRNA capping enzymes.
Collapse
Affiliation(s)
- C Kiong Ho
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | |
Collapse
|
33
|
Jeon HJ, Shin HJ, Choi JJ, Hoe HS, Kim HK, Suh SW, Kwon ST. Mutational analyses of the thermostable NAD+-dependent DNA ligase fromThermus filiformis. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09685.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
34
|
Magnet S, Blanchard JS. Mechanistic and kinetic study of the ATP-dependent DNA ligase of Neisseria meningitidis. Biochemistry 2004; 43:710-7. [PMID: 14730975 DOI: 10.1021/bi0355387] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gene from Neisseria meningitidis serogroup A, encoding a putative, secreted ATP-dependent DNA ligase was cloned and overexpressed, and the soluble protein was purified. Mass spectrometry indicated that the homogeneous protein was adenylated as isolated, and sedimentation velocity experiments suggested that the enzyme exists as a monomer in solution. The 31.5 kDa protein can catalyze the ATP-dependent ligation of a singly nicked DNA duplex but not blunt-end joining. The first step of the overall reaction, the ATP-dependent formation of an adenylated ligase, was studied by measuring the formation of the covalent intermediate and isotope exchange between [alpha-32P] ATP and PPi. Mg2+ was absolutely required for this reaction and was the best divalent cation to promote catalysis. Electrophoretic gel mobility shift assays revealed that the enzyme bound both unnicked and singly nicked double stranded DNA with equivalent affinity (Kd approximately 50 nM) but cannot bind single stranded DNA. Preadenylated DNA was synthesized by transferring the AMP group from the enzyme to the 5'-phosphate of a 3'-dideoxy nicked DNA. The rate of phosphodiester bond formation at the preadenylated nick was also Mg(2+)-dependent. Kinetic data showed that the overall rate of ligation, which occurred at 0.008 s(-1), is the result of three chemical steps with similar rate constants (approximately 0.025 s(-1)). The Km values for ATP and DNA substrates, in the overall ligation reaction, were 0.4 microM and 30 nM, respectively.
Collapse
Affiliation(s)
- Sophie Magnet
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | |
Collapse
|
35
|
Nandakumar J, Ho CK, Lima CD, Shuman S. RNA substrate specificity and structure-guided mutational analysis of bacteriophage T4 RNA ligase 2. J Biol Chem 2004; 279:31337-47. [PMID: 15084599 DOI: 10.1074/jbc.m402394200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Here we report that bacteriophage T4 RNA ligase 2 (Rnl2) is an efficient catalyst of RNA ligation at a 3'-OH/5'-PO(4) nick in a double-stranded RNA or an RNA.DNA hybrid. The critical role of the template strand in approximating the reactive 3'-OH and 5'-PO(4) termini is underscored by the drastic reductions in the RNA-sealing activity of Rnl2 when the duplex substrates contain gaps or flaps instead of nicks. RNA nick joining requires ATP and a divalent cation cofactor (either Mg or Mn). Neither dATP, GTP, CTP, nor UTP can substitute for ATP. We identify by alanine scanning seven functionally important amino acids (Tyr-5, Arg-33, Lys-54, Gln-106, Asp-135, Arg-155, and Ser-170) within the N-terminal nucleotidyl-transferase domain of Rnl2 and impute specific roles for these residues based on the crystal structure of the AMP-bound enzyme. Mutational analysis of 14 conserved residues in the C-terminal domain of Rnl2 identifies 3 amino acids (Arg-266, Asp-292, and Glu-296) as essential for ligase activity. Our findings consolidate the evolutionary connections between bacteriophage Rnl2 and the RNA-editing ligases of kinetoplastid protozoa.
Collapse
Affiliation(s)
- Jayakrishnan Nandakumar
- Molecular Biology and Structural Biology Programs, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | | | |
Collapse
|
36
|
Gong C, Martins A, Bongiorno P, Glickman M, Shuman S. Biochemical and genetic analysis of the four DNA ligases of mycobacteria. J Biol Chem 2004; 279:20594-606. [PMID: 14985346 DOI: 10.1074/jbc.m401841200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis encodes an NAD(+)-dependent DNA ligase (LigA) plus three distinct ATP-dependent ligase homologs (LigB, LigC, and LigD). Here we purify and characterize the multiple DNA ligase enzymes of mycobacteria and probe genetically whether the ATP-dependent ligases are required for growth of M. tuberculosis. We find significant differences in the reactivity of mycobacterial ligases with a nicked DNA substrate, whereby LigA and LigB display vigorous nick sealing activity in the presence of NAD(+) and ATP, respectively, whereas LigC and LigD, which have ATP-specific adenylyltransferase activity, display weak nick joining activity and generate high levels of the DNA-adenylate intermediate. All four of the mycobacterial ligases are monomeric enzymes. LigA has a low K(m) for NAD(+) (1 microm) and is sensitive to a recently described pyridochromanone inhibitor of NAD(+)-dependent ligases. LigA is able to sustain growth of Saccharomyces cerevisiae in lieu of the essential yeast ligase Cdc9, but LigB, LigC, and LigD are not. LigB is distinguished by its relatively high K(m) for ATP (0.34 mm) and its dependence on a distinctive N-terminal domain for nick joining. None of the three ATP-dependent ligases are essential for mycobacterial growth. M. tuberculosis ligDDelta cells are defective in nonhomologous DNA end joining.
Collapse
Affiliation(s)
- Chunling Gong
- Molecular Biology and Immunology Programs, Sloan-Kettering Institute, and Infectious Disease Division, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
37
|
Benson EL, Tomich PK, Wolfe ML, Choi GH, Hagadorn JC, Mutchler VT, Garlick RL. A high-throughput resonance energy transfer assay for Staphylococcus aureus DNA ligase. Anal Biochem 2004; 324:298-300. [PMID: 14690695 DOI: 10.1016/j.ab.2003.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ericka L Benson
- Infectious Diseases Biology, Pharmacia Corp., 301 Henrietta St., Kalamazoo, MI 49007, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Brötz-Oesterhelt H, Knezevic I, Bartel S, Lampe T, Warnecke-Eberz U, Ziegelbauer K, Häbich D, Labischinski H. Specific and potent inhibition of NAD+-dependent DNA ligase by pyridochromanones. J Biol Chem 2003; 278:39435-42. [PMID: 12867414 DOI: 10.1074/jbc.m306479200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyridochromanones were identified by high throughput screening as potent inhibitors of NAD+-dependent DNA ligase from Escherichia coli. Further characterization revealed that eubacterial DNA ligases from Gram-negative and Gram-positive sources were inhibited at nanomolar concentrations. In contrast, purified human DNA ligase I was not affected (IC50 > 75 microm), demonstrating remarkable specificity for the prokaryotic target. The binding mode is competitive with the eubacteria-specific cofactor NAD+, and no intercalation into DNA was detected. Accordingly, the compounds were bactericidal for the prominent human pathogen Staphylococcus aureus in the low microg/ml range, whereas eukaryotic cells were not affected up to 60 microg/ml. The hypothesis that inhibition of DNA ligase is the antibacterial principle was proven in studies with a temperature-sensitive ligase-deficient E. coli strain. This mutant was highly susceptible for pyridochromanones at elevated temperatures but was rescued by heterologous expression of human DNA ligase I. A physiological consequence of ligase inhibition in bacteria was massive DNA degradation, as visualized by fluorescence microscopy of labeled DNA. In summary, the pyridochromanones demonstrate that diverse eubacterial DNA ligases can be addressed by a single inhibitor without affecting eukaryotic ligases or other DNA-binding enzymes, which proves the value of DNA ligase as a novel target in antibacterial therapy.
Collapse
Affiliation(s)
- Heike Brötz-Oesterhelt
- Department of Anti-infectives, Bayer AG, Bayer Health Care, Pharma Research, Aprather Weg 18a, D-42096 Wuppertal, Germany. heike.broetz-oesterhelt.hb@bayer-ag
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen XC, Hentz NG, Hubbard F, Meier TI, Sittampalam S, Zhao G. Development of a fluorescence resonance energy transfer assay for measuring the activity of Streptococcus pneumoniae DNA ligase, an enzyme essential for DNA replication, repair, and recombination. Anal Biochem 2002; 309:232-40. [PMID: 12413456 DOI: 10.1016/s0003-2697(02)00302-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
DNA ligase is an enzyme essential for DNA replication, repair, and recombination in all organisms. Bacterial DNA ligases catalyze a NAD(+)-dependent DNA ligation reaction, i.e., the formation of a phosphodiester bond between adjacent 3'-OH and 5'-phosphate termini of dsDNA. Due to their essential nature, unique cofactor requirement, and widespread existence in nature, bacterial DNA ligases appear to be valuable targets for identifying novel antibacterial agents. To explore bacterial DNA ligases as antibacterial targets and further characterize them, we developed a simple, robust, homogeneous time-resolved fluorescence resonance energy transfer assay (TR-FRET) for measuring Streptococcus pneumoniae DNA ligase activity. This assay involves the use of one dsDNA molecule labeled with biotin and another dsDNA molecule labeled with Cy5, an acceptor fluorophore. During ligation reactions, the donor fluorophore europium (Eu(3+)) labeled with streptavidin was added to the assay mixtures, which bound to the biotin label on the ligated products. This in turn resulted in the FRET from Eu(3+) to Cy5 due to their close proximity. The formation of ligation products was measured by monitoring the emission at 665nm. This assay was validated by the experiments showing that the DNA ligase activity required NAD(+) and MgCl(2), and was inhibited by NMN and AMP, products of the ligase reaction. Using this assay, we determined the K(m) values of the enzyme for dsDNA substrates and NAD(+), and the IC(50) values of NMN and AMP, examined the effects of MgCl(2) and PEG(8000) on the enzyme activity, optimized the concentrations of Eu(3+) in the assay, and validated its utilities for high-throughput screening and biochemical characterizations of this class of enzymes.
Collapse
Affiliation(s)
- Xinyi Cynthia Chen
- Lilly Research Laboratories, Infectious Diseases Research-Drop Code 0428, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN 46285-0438, USA
| | | | | | | | | | | |
Collapse
|
40
|
Sriskanda V, Shuman S. Conserved residues in domain Ia are required for the reaction of Escherichia coli DNA ligase with NAD+. J Biol Chem 2002; 277:9695-700. [PMID: 11781321 DOI: 10.1074/jbc.m111164200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NAD(+)-dependent DNA ligases are present in all bacteria and are essential for growth. Their unique substrate specificity compared with ATP-dependent human DNA ligases recommends the NAD(+) ligases as targets for the development of new broad-spectrum antibiotics. A plausible strategy for drug discovery is to identify the structural components of bacterial DNA ligase that interact with NAD(+) and then to isolate small molecules that recognize these components and thereby block the binding of NAD(+) to the ligase. The limitation to this strategy is that the structural determinants of NAD(+) specificity are not known. Here we show that reactivity of Escherichia coli DNA ligase (LigA) with NAD(+) requires N-terminal domain Ia, which is unique to, and conserved among, NAD(+) ligases but absent from ATP-dependent ligases. Deletion of domain Ia abolished the sealing of 3'-OH/5'-PO(4) nicks and the reaction with NAD(+) to form ligase-adenylate but had no effect on phosphodiester formation at a preadenylated nick. Alanine substitutions at conserved residues within domain Ia either reduced (His-23, Tyr-35) or abolished (Tyr-22, Asp-32, Asp-36) sealing of a 5'-PO(4) nick and adenylyl transfer from NAD(+) without affecting ligation of pre-formed DNA-adenylate. We suggest that these five side chains comprise a binding site for the nicotinamide mononucleotide moiety of NAD(+). Structure-activity relationships were clarified by conservative substitutions.
Collapse
Affiliation(s)
- Verl Sriskanda
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
41
|
Nakatani M, Ezaki S, Atomi H, Imanaka T. Substrate recognition and fidelity of strand joining by an archaeal DNA ligase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:650-6. [PMID: 11856324 DOI: 10.1046/j.0014-2956.2001.02695.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously identified a DNA ligase (LigTk) from a hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. The enzyme is the only characterized ATP-dependent DNA ligase from a hyperthermophile, and allows the analysis of enzymatic DNA ligation reactions at temperatures above the melting point of the substrates. Here we have focused on the interactions of LigTk with various DNA substrates, and its specificities toward metal cations. LigTk could utilize Mg2+, Mn2+, Sr2+ and Ca2+ as a metal cation, but not Co2+, Zn2+, Ni2+, or Cu2+. The enzyme displayed typical Michaelis-Menten steady-state kinetics with an apparent Km of 1.4 microm for nicked DNA. The kcat value of the enzyme was 0.11*s-1. Using various 3' hydroxyl group donors (L-DNA) and 5' phosphate group donors (R-DNA), we could detect ligation products as short as 16 nucleotides, the products of 7 + 9 nucleotide or 8 + 8 nucleotide combinations at 40 degrees C. An elevation in temperature led to a decrease in reaction efficiency when short oligonucleotides were used, suggesting that the formation of a nicked, double-stranded DNA substrate preceded enzyme-substrate recognition. LigTk was not inhibited by the addition of excess duplex DNA, implying that the enzyme did not bind strongly to the double-stranded ligation product after nick-sealing. In terms of reaction fidelity, LigTk was found to ligate various substrates with mismatched base-pairing at the 5' end of the nick, but did not show activity towards the 3' mismatched substrates. LigTk could not seal substrates with a 1-nucleotide or 2-nucleotide gap. Small amounts of ligation products were detected with DNA substrates containing a single nucleotide insertion, relatively more with the 5' insertions. The results revealed the importance of proper base-pairing at the 3' hydroxyl side of the nick for the ligation reaction by LigTk.
Collapse
Affiliation(s)
- Masaru Nakatani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Japan
| | | | | | | |
Collapse
|
42
|
Abstract
Escherichia coli DNA ligase (LigA) is the prototype of the NAD(+)-dependent class of DNA ligases found in all bacteria. Here we report the characterization of E.coli LigB, a second NAD(+)-dependent DNA ligase identified by virtue of its sequence similarity to LigA. LigB differs from LigA in that it lacks the BRCA1 C-terminus domain (BRCT) and two of the four Zn-binding cysteines that are present in LigA and all other bacterial NAD(+) ligases. We found that recombinant LigB catalyzed strand joining on a singly-nicked DNA in the presence of a divalent cation and NAD(+), and that LigB reacted with NAD(+) to form a covalent ligase-adenylate intermediate. Alanine substitution for the motif I lysine ((126)KxDG) abolished nick joining and ligase-adenylate formation by LigB, thus confirming that the ligase and adenylyltransferase activities are intrinsic to the LigB protein.
Collapse
Affiliation(s)
- V Sriskanda
- Molecular Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
43
|
Abstract
We report the production, purification, and characterization of an NAD(+)-dependent DNA ligase encoded by the Amsacta moorei entomopoxvirus (AmEPV), the first example of an NAD(+) ligase from a source other than eubacteria. AmEPV ligase lacks the zinc-binding tetracysteine domain and the BRCT domain that are present in all eubacterial NAD(+) ligases. Nonetheless, the monomeric 532-amino acid AmEPV ligase catalyzed strand joining on a singly nicked DNA in the presence of a divalent cation and NAD(+). Neither ATP, dATP, nor any other nucleoside triphosphate could substitute for NAD(+). Structure probing by limited proteolysis showed that AmEPV ligase is punctuated by a surface-accessible loop between the nucleotidyltransferase domain, which is common to all ligases, and the N-terminal domain Ia, which is unique to the NAD(+) ligases. Deletion of domain Ia of AmEPV ligase abolished the sealing of 3'-OH/5'-PO(4) nicks and the reaction with NAD(+) to form ligase-adenylate, but had no effect on phosphodiester formation at a pre-adenylated nick. Alanine substitutions at residues within domain Ia either reduced (Tyr(39), Tyr(40), Asp(48), and Asp(52)) or abolished (Tyr(51)) sealing of a 5'-PO(4) nick and adenylyl transfer from NAD(+) without affecting ligation of DNA-adenylate. We conclude that: (i) NAD(+)-dependent ligases exist in the eukaryotic domain of the phylogenetic tree; and (ii) ligase structural domain Ia is a determinant of cofactor specificity and is likely to interact directly with the nicotinamide mononucleotide moiety of NAD(+).
Collapse
Affiliation(s)
- V Sriskanda
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|