1
|
Ganusova EE, Banerjee I, Seats T, Alexandre G. Indole-3-acetic acid (IAA) protects Azospirillum brasilense from indole-induced stress. Appl Environ Microbiol 2025:e0238424. [PMID: 40130845 DOI: 10.1128/aem.02384-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Azospirillum brasilense is plant-growth promoting rhizobacteria that produces the phytohormone indole-3-acetic acid (IAA) to induce changes in plant root architecture. The major pathway for IAA biosynthesis in A. brasilense converts tryptophan into indole-3-pyruvic acid (I3P) and then, through the rate-limiting enzyme, indole-3-pyruvate decarboxylase (IpdC), into IAA. Here, we characterize the potential role for IAA biosynthesis in the physiology of these bacteria by characterizing the expression pattern of the ipdC promoter, analyzing an A. brasilense ipdC mutant using multiple physiological assays and characterizing the effect of I3P, which likely accumulates in the absence of ipdC and affects bacterial physiology. We found that the ipdC mutant derivative has a reduced growth rate and an altered physiology, including reduced translation activity as well as a more depolarized membrane potential compared to the parent strain. Similar effects could be recapitulated in the parent strain by exposing these cells to increasing concentrations of I3P, as well as other indole intermediates of IAA biosynthesis. Our results also indicate a protective role for IAA against the harmful effects of indole derivatives, with exogenous IAA restoring the membrane potential of cells exposed to indole derivatives for prolonged periods. These protective effects appeared to restore cell physiology, including in the wheat rhizosphere. Together, our data suggest that the IAA biosynthesis pathway plays a major role in A. brasilense physiology by maintaining membrane potential homeostasis and regulating translation, likely to mitigate the potential membrane-damaging effects of indoles that accumulate during growth under stressful conditions.IMPORTANCEIAA is widely synthesized in bacteria, particularly in soil and rhizosphere bacteria, where it functions as a phytohormone to modulate plant root architecture. IAA as a secondary metabolite has been shown to serve as a signaling molecule in several bacterial species, but the role of IAA biosynthesis in the physiology of the producing bacterium remains seldom explored. Results obtained here suggest that IAA serves to protect A. brasilense from the toxic effect of indoles, including metabolite biosynthetic precursors of IAA, on membrane potential homeostasis. Given the widespread production of IAA in soil bacteria, this protective effect of IAA may be conserved in diverse soil bacteria.
Collapse
Affiliation(s)
- Elena E Ganusova
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee, USA
| | - Ishita Banerjee
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee, USA
| | - Trey Seats
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee, USA
| | - Gladys Alexandre
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
2
|
Mihaita A, Robinson A, Costello E, Marino M, Mrozek Z, Long L, Fogarty A, Egan M, Bhatt S. The RNA chaperone protein ProQ is a pleiotropic regulator in enteropathogenic Escherichia coli. Microb Pathog 2025; 199:107153. [PMID: 39586336 DOI: 10.1016/j.micpath.2024.107153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a gastrointestinal pathogen that affects individuals of all age groups, with infections ranging from subclinical colonization to acute or persistent diarrhea. The bacterium's ability to cause diarrhea depends on the locus of enterocyte effacement (LEE) pathogenicity island. Although regulation of the LEE has been systematically characterized, until the last decade, studies mainly focused on its transcriptional control. Posttranscriptional regulation of the LEE continues to be an underappreciated and understudied area of gene regulation. In the past few years, multiple reports have shed light on the roles of RNA-binding proteins, such as Hfq and CsrA, that modulate virulence in EPEC. This study was undertaken to explore the role of another RNA chaperone protein, ProQ, in the pathophysiology of EPEC. Our results suggest that deletion of proQ globally derepresses gene expression from the LEE in lysogeny broth (LB) suggesting that ProQ is a negative regulator of the LEE. Further interrogation revealed that ProQ exerts its effect by downregulating the expression of PerC - a prominent transcriptional activator of the LEE-encoded master regulator ler, which, in turn leads to the observed repression from the other LEE operons. Furthermore, ProQ appears to moonlight as it affects other physiological processes including type IV pili biogenesis, flagellar-dependent motility, biofilm formation, tryptophan metabolism, and antibiotic resistance. Our study provides the very first evidence to implicate ProQ as a pleiotropic regulator in EPEC.
Collapse
Affiliation(s)
- Alexa Mihaita
- Department of Biology, Saint Joseph's University, Philadelphia, PA, 19131, USA; 160 Biomedical Research Building (BRB) II/III, University of Pennsylvania Perelman School of Medicine, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Abigail Robinson
- Department of Biology, Saint Joseph's University, Philadelphia, PA, 19131, USA
| | - Emily Costello
- Department of Biology, Saint Joseph's University, Philadelphia, PA, 19131, USA; CAB, Clinical Academic Building, Rutgers Robert Wood Johnson Medical School, 125 Paterson St., New Brunswick, NJ, 08901, USA
| | - Mary Marino
- Department of Biology, Saint Joseph's University, Philadelphia, PA, 19131, USA; 245 N. 15th Street, New College Building, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Zoe Mrozek
- Department of Biology, Saint Joseph's University, Philadelphia, PA, 19131, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Lianna Long
- Department of Biology, Saint Joseph's University, Philadelphia, PA, 19131, USA
| | - Aidan Fogarty
- Department of Biology, Saint Joseph's University, Philadelphia, PA, 19131, USA
| | - Marisa Egan
- Department of Biology, Saint Joseph's University, Philadelphia, PA, 19131, USA; Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA, 19081, USA
| | - Shantanu Bhatt
- Department of Biology, Saint Joseph's University, Philadelphia, PA, 19131, USA.
| |
Collapse
|
3
|
Biggs BW, Price MN, Lai D, Escobedo J, Fortanel Y, Huang YY, Kim K, Trotter VV, Kuehl JV, Lui LM, Chakraborty R, Deutschbauer AM, Arkin AP. High-throughput protein characterization by complementation using DNA barcoded fragment libraries. Mol Syst Biol 2024; 20:1207-1229. [PMID: 39375541 PMCID: PMC11535334 DOI: 10.1038/s44320-024-00068-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
Our ability to predict, control, or design biological function is fundamentally limited by poorly annotated gene function. This can be particularly challenging in non-model systems. Accordingly, there is motivation for new high-throughput methods for accurate functional annotation. Here, we used complementation of auxotrophs and DNA barcode sequencing (Coaux-Seq) to enable high-throughput characterization of protein function. Fragment libraries from eleven genetically diverse bacteria were tested in twenty different auxotrophic strains of Escherichia coli to identify genes that complement missing biochemical activity. We recovered 41% of expected hits, with effectiveness ranging per source genome, and observed success even with distant E. coli relatives like Bacillus subtilis and Bacteroides thetaiotaomicron. Coaux-Seq provided the first experimental validation for 53 proteins, of which 11 are less than 40% identical to an experimentally characterized protein. Among the unexpected function identified was a sulfate uptake transporter, an O-succinylhomoserine sulfhydrylase for methionine synthesis, and an aminotransferase. We also identified instances of cross-feeding wherein protein overexpression and nearby non-auxotrophic strains enabled growth. Altogether, Coaux-Seq's utility is demonstrated, with future applications in ecology, health, and engineering.
Collapse
Affiliation(s)
- Bradley W Biggs
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Morgan N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Dexter Lai
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Jasmine Escobedo
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Yuridia Fortanel
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Yolanda Y Huang
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kyoungmin Kim
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Valentine V Trotter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer V Kuehl
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lauren M Lui
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Romy Chakraborty
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
4
|
Yu L, Huang L, Wang Z, Xiong Y, Li G, Chen Z. Pressure-resistant and portable array gas membrane device for rapid Escherichia coli detection in infant milk powder via smartphone colorimetry with all-in-one preparation strategy. SENSORS AND ACTUATORS B: CHEMICAL 2024; 412:135791. [DOI: 10.1016/j.snb.2024.135791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
5
|
Pham C, Stogios PJ, Savchenko A, Mahadevan R. Design and Characterization of a Generalist Biosensor for Indole Derivatives. ACS Synth Biol 2024; 13:2246-2252. [PMID: 38875315 DOI: 10.1021/acssynbio.3c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Transcription factor (TF)-based biosensors are useful synthetic biology tools for applications in a variety of areas of biotechnology. A major challenge of biosensor circuits is the limited repertoire of identified and well-characterized TFs for applications of interest, in addition to the challenge of optimizing selected biosensors. In this work, we implement the IclR family repressor TF TtgV from Pseudomonas putida DOT-T1E as an indole-derivative biosensor in Escherichia coli. We optimize the genetic circuit utilizing different components, providing insights into biosensor design and expanding on previous studies investigating this TF. We discover novel physiologically relevant ligands of TtgV, such as skatole. The broad specificity of TtgV makes it a useful target for directed evolution and protein engineering toward desired specificity. TtgV, as an indole-derivative biosensor, is a promising genetic component for the detection of compounds with biological activities relevant to health and the gut microbiome.
Collapse
Affiliation(s)
- Chester Pham
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
- The Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| |
Collapse
|
6
|
Gladysheva-Azgari M, Sharko F, Evteeva M, Kuvyrchenkova A, Boulygina E, Tsygankova S, Slobodova N, Pustovoit K, Melkina O, Nedoluzhko A, Korzhenkov A, Kudryavtseva A, Utkina A, Manukhov I, Rastorguev S, Zavilgelsky G. ArdA genes from pKM101 and from B. bifidum chromosome have a different range of regulated genes. Heliyon 2023; 9:e22986. [PMID: 38144267 PMCID: PMC10746416 DOI: 10.1016/j.heliyon.2023.e22986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/18/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
The ardA genes are present in a wide variety of conjugative plasmids and play an important role in overcoming the restriction barrier. To date, there is no information on the chromosomal ardA genes. It is still unclear whether they keep their antirestriction activity and why bacterial chromosomes contain these genes. In the present study, we confirmed the antirestriction function of the ardA gene from the Bifidobacterium bifidum chromosome. Transcriptome analysis in Escherichia coli showed that the range of regulated genes varies significantly for ardA from conjugative plasmid pKM101 and from the B. bifidum chromosome. Moreover, if the targets for both ardA genes match, they often show an opposite effect on regulated gene expression. The results obtained indicate two seemingly mutually exclusive conclusions. On the one hand, the pleiotropic effect of ardA genes was shown not only on restriction-modification system, but also on expression of a number of other genes. On the other hand, the range of affected genes varies significally for ardA genes from different sources, which indicates the specificity of ardA to inhibited targets. Author Summary. Conjugative plasmids, bacteriophages, as well as transposons, are capable to transfer various genes, including antibiotic resistance genes, among bacterial cells. However, many of those genes pose a threat to the bacterial cells, therefore bacterial cells have special restriction systems that limit such transfer. Antirestriction genes have previously been described as a part of conjugative plasmids, and bacteriophages and transposons. Those plasmids are able to overcome bacterial cell protection in the presence of antirestriction genes, which inhibit bacterial restriction systems. This work unveils the antirestriction mechanisms, which play an important role in the bacterial life cycle. Here, we clearly show that antirestriction genes, which are able to inhibit cell protection, exist not only in plasmids but also in the bacterial chromosomes themselves. Moreover, antirestrictases have not only an inhibitory function but also participate in the regulation of other bacterial genes. The regulatory function of plasmid antirestriction genes also helps them to overcome the bacterial cell protection against gene transfer, whereas the regulatory function of genomic antirestrictases has no such effect.
Collapse
Affiliation(s)
| | - F.S. Sharko
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - M.A. Evteeva
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | | | - E.S. Boulygina
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - S.V. Tsygankova
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - N.V. Slobodova
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - K.S. Pustovoit
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center “Kurchatov Institute”, Moscow, Russia, 115454
| | - O.E. Melkina
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center “Kurchatov Institute”, Moscow, Russia, 115454
| | - A.V. Nedoluzhko
- European University at Saint Petersburg, 191187, Saint-Petersburg, Russia
| | - A.A. Korzhenkov
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - A.A. Kudryavtseva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - A.A. Utkina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - I.V. Manukhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
- Faculty of Physics, HSE University, 109028, Moscow, Russia
- Laboratory for Microbiology, BIOTECH University, 125080, Moscow, Russia
| | - S.M. Rastorguev
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
- Pirogov Russian National Research Medical University, Ostrovityanova Str. 1, Moscow, 117997, Russia
| | - G.B. Zavilgelsky
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center “Kurchatov Institute”, Moscow, Russia, 115454
| |
Collapse
|
7
|
Dupont CA, Bourigault Y, Osmond T, Nier M, Barbey C, Latour X, Konto-Ghiorghi Y, Verdon J, Merieau A. Pseudomonas fluorescens MFE01 uses 1-undecene as aerial communication molecule. Front Microbiol 2023; 14:1264801. [PMID: 37908545 PMCID: PMC10614000 DOI: 10.3389/fmicb.2023.1264801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
Bacterial communication is a fundamental process used to synchronize gene expression and collective behavior among the bacterial population. The most studied bacterial communication system is quorum sensing, a cell density system, in which the concentration of inductors increases to a threshold level allowing detection by specific receptors. As a result, bacteria can change their behavior in a coordinated way. While in Pseudomonas quorum sensing based on the synthesis of N-acyl homoserine lactone molecules is well studied, volatile organic compounds, although considered to be communication signals in the rhizosphere, are understudied. The Pseudomonas fluorescens MFE01 strain has a very active type six secretion system that can kill some competitive bacteria. Furthermore, MFE01 emits numerous volatile organic compounds, including 1-undecene, which contributes to the aerial inhibition of Legionella pneumophila growth. Finally, MFE01 appears to be deprived of N-acyl homoserine lactone synthase. The main objective of this study was to explore the role of 1-undecene in the communication of MFE01. We constructed a mutant affected in undA gene encoding the enzyme responsible for 1-undecene synthesis to provide further insight into the role of 1-undecene in MFE01. First, we studied the impacts of this mutation both on volatile organic compounds emission, using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry and on L. pneumophila long-range inhibition. Then, we analyzed influence of 1-undecene on MFE01 coordinated phenotypes, including type six secretion system activity and biofilm formation. Next, to test the ability of MFE01 to synthesize N-acyl homoserine lactones in our conditions, we investigated in silico the presence of corresponding genes across the MFE01 genome and we exposed its biofilms to an N-acyl homoserine lactone-degrading enzyme. Finally, we examined the effects of 1-undecene emission on MFE01 biofilm maturation and aerial communication using an original experimental set-up. This study demonstrated that the ΔundA mutant is impaired in biofilm maturation. An exposure of the ΔundA mutant to the volatile compounds emitted by MFE01 during the biofilm development restored the biofilm maturation process. These findings indicate that P. fluorescens MFE01 uses 1-undecene emission for aerial communication, reporting for the first time this volatile organic compound as bacterial intraspecific communication signal.
Collapse
Affiliation(s)
- Charly A. Dupont
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Yvann Bourigault
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Théo Osmond
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Maëva Nier
- Laboratoire Ecologie and Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Corinne Barbey
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Xavier Latour
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Yoan Konto-Ghiorghi
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Julien Verdon
- Laboratoire Ecologie and Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Annabelle Merieau
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| |
Collapse
|
8
|
Montgomery TL, Eckstrom K, Lile KH, Caldwell S, Heney ER, Lahue KG, D'Alessandro A, Wargo MJ, Krementsov DN. Lactobacillus reuteri tryptophan metabolism promotes host susceptibility to CNS autoimmunity. MICROBIOME 2022; 10:198. [PMID: 36419205 PMCID: PMC9685921 DOI: 10.1186/s40168-022-01408-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/01/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND Dysregulation of gut microbiota-associated tryptophan metabolism has been observed in patients with multiple sclerosis. However, defining direct mechanistic links between this apparent metabolic rewiring and individual constituents of the gut microbiota remains challenging. We and others have previously shown that colonization with the gut commensal and putative probiotic species, Lactobacillus reuteri, unexpectedly enhances host susceptibility to experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. To identify underlying mechanisms, we characterized the genome of commensal L. reuteri isolates, coupled with in vitro and in vivo metabolomic profiling, modulation of dietary substrates, and gut microbiota manipulation. RESULTS The enzymes necessary to metabolize dietary tryptophan into immunomodulatory indole derivatives were enriched in the L. reuteri genomes, including araT, fldH, and amiE. Moreover, metabolite profiling of L. reuteri monocultures and serum of L. reuteri-colonized mice revealed a depletion of kynurenines and production of a wide array of known and novel tryptophan-derived aryl hydrocarbon receptor (AhR) agonists and antagonists, including indole acetate, indole-3-glyoxylic acid, tryptamine, p-cresol, and diverse imidazole derivatives. Functionally, dietary tryptophan was required for L. reuteri-dependent EAE exacerbation, while depletion of dietary tryptophan suppressed disease activity and inflammatory T cell responses in the CNS. Mechanistically, L. reuteri tryptophan-derived metabolites activated the AhR and enhanced T cell production of IL-17. CONCLUSIONS Our data suggests that tryptophan metabolism by gut commensals, such as the putative probiotic species L. reuteri, can unexpectedly enhance autoimmunity, inducing broad shifts in the metabolome and immunological repertoire. Video Abstract.
Collapse
Affiliation(s)
- Theresa L Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Korin Eckstrom
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05401, USA
| | - Katarina H Lile
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Sydney Caldwell
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Eamonn R Heney
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Karolyn G Lahue
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, 80045, USA
| | - Matthew J Wargo
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05401, USA
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA.
| |
Collapse
|
9
|
Garg A, Mejia E, Nam W, Vikesland P, Zhou W. Biomimetic Transparent Nanoplasmonic Meshes by Reverse-Nanoimprinting for Bio-Interfaced Spatiotemporal Multimodal SERS Bioanalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204517. [PMID: 36161480 DOI: 10.1002/smll.202204517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 06/16/2023]
Abstract
Multicellular systems, such as microbial biofilms and cancerous tumors, feature complex biological activities coordinated by cellular interactions mediated via different signaling and regulatory pathways, which are intrinsically heterogeneous, dynamic, and adaptive. However, due to their invasiveness or their inability to interface with native cellular networks, standard bioanalysis methods do not allow in situ spatiotemporal biochemical monitoring of multicellular systems to capture holistic spatiotemporal pictures of systems-level biology. Here, a high-throughput reverse nanoimprint lithography approach is reported to create biomimetic transparent nanoplasmonic microporous mesh (BTNMM) devices with ultrathin flexible microporous structures for spatiotemporal multimodal surface-enhanced Raman spectroscopy (SERS) measurements at the bio-interface. It is demonstrated that BTNMMs, supporting uniform and ultrasensitive SERS hotspots, can simultaneously enable spatiotemporal multimodal SERS measurements for targeted pH sensing and non-targeted molecular detection to resolve the diffusion dynamics for pH, adenine, and Rhodamine 6G molecules in agarose gel. Moreover, it is demonstrated that BTNMMs can act as multifunctional bio-interfaced SERS sensors to conduct in situ spatiotemporal pH mapping and molecular profiling of Escherichia coli biofilms. It is envisioned that the ultrasensitive multimodal SERS capability, transport permeability, and biomechanical compatibility of the BTNMMs can open exciting avenues for bio-interfaced multifunctional sensing applications both in vitro and in vivo.
Collapse
Affiliation(s)
- Aditya Garg
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Elieser Mejia
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wonil Nam
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wei Zhou
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
10
|
Sousa M, Mulaosmanovic E, Erdei AL, Bengtsson M, Witzgall P, Alsanius BW. Volatilomes reveal specific signatures for contamination of leafy vegetables with Escherichia coli O157:H7. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Song S, Wood TK. Manipulating indole symbiont signalling. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:691-696. [PMID: 35667868 DOI: 10.1111/1758-2229.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Sooyeon Song
- Department of Animal Science, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
- Agricultural Convergence Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
12
|
Odularu AT, Afolayan AJ, Sadimenko AP, Ajibade PA, Mbese JZ. Multidrug-Resistant Biofilm, Quorum Sensing, Quorum Quenching, and Antibacterial Activities of Indole Derivatives as Potential Eradication Approaches. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9048245. [PMID: 36060142 PMCID: PMC9433265 DOI: 10.1155/2022/9048245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 06/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Challenges encountered in relapse of illness caused by resistance of microorganisms to antimicrobial agents (drugs) are due to factors of severe stress initiated by random use of antibiotics and insufficient beneficial approaches. These challenges have resulted to multiple drug resistance (MDR) and, subsequently, biofilm formation. A type of intercellular communication signal called quorum sensing (QS) has been studied to cause the spread of resistance, thereby enabling a formation of stable community for microorganisms. The QS could be inhibited using QS inhibitors (QSIs) called quorum-quenching (QQ). The QQ is an antibiofilm agent. Indole derivatives from plant sources can serve as quorum-quenching eradication approach for biofilm, as well as a promising nontoxic antibiofilm agent. In other words, phytochemicals in plants help to control and prevent biofilm formation. It could be recommended that combination strategies of these indoles' derivatives with antibiotics would yield enhanced results.
Collapse
Affiliation(s)
- Ayodele T. Odularu
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
- School of Further and Continuing Education, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Anthony J. Afolayan
- Centre of Phytomedicine, Department of Botany, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, Private Bag X1314, South Africa
| | - Alexander P. Sadimenko
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Scottsville 3209, South Africa
| | - Johannes Z. Mbese
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
13
|
Abstract
Enteric pathogens such as enterohemorrhagic E. coli (EHEC) and its surrogate murine model Citrobacter rodentium sense indole levels within the gut to navigate its biogeography and modulate virulence gene expression. Indole is a microbiota-derived signal that is more abundant in the intestinal lumen, with its concentration decreasing at the epithelial lining where it is absorbed. E. coli, but not C. rodentium, produces endogenous indole because it harbors the tnaA gene. Microbiota-derived exogenous indole is sensed by the CpxAR two-component system, where CpxA is a membrane-bound histidine-sensor-kinase (HK) and CpxR is a response regulator (RR). Indole inhibits CpxAR function leading to decreased expression of the locus of enterocyte effacement (LEE) pathogenicity island, which is essential for these pathogens to form lesions on enterocytes. In our transcriptome studies comparing wild-type (WT) EHEC and ΔtnaA ± indole, one of the most upregulated genes by indole is ygeV, which is a predicted orphan RR. Because of the role YgeV plays in the indole signaling cascade, we renamed this gene indole sensing regulator (isrR). In the absence of endogenous indole, IsrR activates LEE gene expression. IsrR only responds to endogenous indole, with exogenous indole still blocking virulence gene expression independently from IsrR. Notably, a C. rodentiumisrR mutant is attenuated for murine infection, depicting delayed death, lower intestinal colonization, and LEE gene expression. IsrR aids in discriminating between microbiota-derived (exogenous) and endogenous self-produced indole in fine-tuning virulence gene expression by enteric pathogens in the intestine.
Collapse
|
14
|
Production of Indigo by Recombinant Escherichia coli with Expression of Monooxygenase, Tryptophanase, and Molecular Chaperone. Foods 2022; 11:foods11142117. [PMID: 35885360 PMCID: PMC9320885 DOI: 10.3390/foods11142117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Indigo is an important pigment widely used in industries of food, cosmetics, and textile. In this work, the styrene monooxygenase StyAB from Pseudomonas putida was co-expressed with the tryptophanase TnaA and the chaperone groES-groEL in Escherichia coli for indigo production. Over-expression of the gene styAB endowed the recombinant E. coli AB with the capacity of indigo biosynthesis from indole and tryptophan. Tryptophan fermentation in E. coli AB generated about five times more indigo than that from indole, and the maximum 530 mg/L of indigo was obtained from 1.2 mg/mL of tryptophan. The gene TnaA was then co-expressed with styAB, and the tryptophanase activity significantly increased in the recombinant E. coli ABT. However, TnaA expression led to a decrease in the activity of StyAB and indigo yield in E. coli ABT. Furthermore, the plasmid pGro7 harboring groES-groEL was introduced into E. coli AB, which obviously promoted the activity of StyAB and accelerated indigo biosynthesis in the recombinant E. coli ABP. In addition, the maximum yield of indigo was further increased to 550 mg/L from 1.2 mg/mL of tryptophan in E. coli ABP. The genetic manipulation strategy proposed in this work could provide new insights into construction of indigo biosynthesis cell factory for industrial production.
Collapse
|
15
|
Production of indole and hydrogen sulfide by the oxygen-tolerant mutant strain Clostridium sp. Aeroto-AUH-JLC108 contributes to form a hypoxic microenvironment. Arch Microbiol 2022; 204:486. [PMID: 35834134 DOI: 10.1007/s00203-022-03113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
Abstract
In this study, the oxygen-tolerant mutant strain Clostridium sp. Aeroto-AUH-JLC108 was found to produce indole when grown aerobically. The tnaA gene coding for tryptophanase responsible for the production of indole was cloned. The tnaA gene from Aeroto-AUH-JLC108 is 1677 bp and has one point mutation (C36G) compared to the original anaerobic strain AUH-JLC108. Phylogenetic analyses based on the amino acid sequence showed significant homology to that of TnaA from Flavonifractor. Furthermore, we found that the tnaA gene also exhibited cysteine desulfhydrase activity. The production of hydrogen sulfide (H2S) was accompanied by decrease in the amount of the dissolved oxygen in the culture medium. Similarly, the amount of indole produced by strain Aeroto-AUH-JLC108 obviously decreased the oxidation-reduction potential (ORP) in BHI liquid medium. The results demonstrated that production of indole and H2S helped to form a hypoxic microenvironment for strain Aeroto-AUH-JLC108 when grown aerobically.
Collapse
|
16
|
Jayan H, Pu H, Sun DW. Detection of Bioactive Metabolites in Escherichia Coli Cultures Using Surface-Enhanced Raman Spectroscopy. APPLIED SPECTROSCOPY 2022; 76:812-822. [PMID: 35255717 PMCID: PMC9277339 DOI: 10.1177/00037028221079661] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/17/2022] [Indexed: 05/26/2023]
Abstract
Detection of bioactive metabolites produced by bacteria is important for identifying biomarkers for infectious diseases. In this study, a surface-enhanced Raman spectroscopy (SERS)-based technique was developed for the detection of bioactive metabolite indole produced by Escherichia coli (E. coli) in biological media. The use of highly sensitive Au@Ag core-shell nanoparticles resulted in the detection of indole concentration as low as 0.0886 mM in standard solution. The supplementation of growth media with 5 mM of exogenous tryptophan resulted in the production of a maximum yield of indole of 3.139 mM by E. coli O157:H7 at 37 °C. The growth of bacterial cells was reduced from 47.73 × 108 to 1.033 × 106 CFU/mL when the cells were grown in 0 and 10 mM exogenous tryptophan, respectively. The amount of indole in the Luria-Bertani (LB) media had an inverse correlation with the growth of cells, which resulted in a three-log reduction in the colony-forming unit when the indole concentration in the media was 20 times higher than normal. This work demonstrates that SERS is an effective and highly sensitive method for rapid detection of bioactive metabolites in biological matrix.
Collapse
Affiliation(s)
- Heera Jayan
- School of Food Science and
Engineering, South China University of
Technology, Guangzhou, China
- Academy of Contemporary Food
Engineering, South China University of Technology,
Guangzhou Higher Education Mega Center, Guangzhou, China
- Engineering and Technological
Research Centre of Guangdong Province on Intelligent Sensing and Process Control
of Cold Chain Foods, & Guangdong Province Engineering Laboratory for
Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega
Centre, Guangzhou, China
| | - Hongbin Pu
- School of Food Science and
Engineering, South China University of
Technology, Guangzhou, China
- Academy of Contemporary Food
Engineering, South China University of Technology,
Guangzhou Higher Education Mega Center, Guangzhou, China
- Engineering and Technological
Research Centre of Guangdong Province on Intelligent Sensing and Process Control
of Cold Chain Foods, & Guangdong Province Engineering Laboratory for
Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega
Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and
Engineering, South China University of
Technology, Guangzhou, China
- Academy of Contemporary Food
Engineering, South China University of Technology,
Guangzhou Higher Education Mega Center, Guangzhou, China
- Engineering and Technological
Research Centre of Guangdong Province on Intelligent Sensing and Process Control
of Cold Chain Foods, & Guangdong Province Engineering Laboratory for
Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega
Centre, Guangzhou, China
- Food Refrigeration and Computerized
Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National
University of Ireland, Dublin, Ireland
| |
Collapse
|
17
|
Abstract
Indole signaling in bacteria plays an important role in antibiotic resistance, persistence, and tolerance. Here, we used the nonlinear optical technique, second-harmonic light scattering (SHS), to examine the influence of exogenous indole on the bacterial uptake of the antimicrobial quaternary ammonium cation (qac), malachite green. The transport rates of the antimicrobial qac across the individual membranes of Escherichia coli and Pseudomonas aeruginosa, as well as liposomes composed of the polar lipid extract of E. coli, were directly measured using time-resolved SHS. Whereas exogenous indole was shown to induce a 2-fold increase in the transport rate of the qac across the cytoplasmic membranes of the wild-type bacteria, it had no influence on a knockout strain of E. coli lacking the tryptophan-specific transport protein (Δmtr). Likewise, indole did not affect the transport rate of the qac diffusing across the liposome membrane. Our findings suggest that indole increases the bacterial uptake of antimicrobials through an interaction with the Mtr permease.
Collapse
Affiliation(s)
- Tong Wu
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Michael J. Wilhelm
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Yujie Li
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Jianqiang Ma
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Hai-Lung Dai
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
18
|
Wu S, Feng J, Liu C, Wu H, Qiu Z, Ge J, Sun S, Hong X, Li Y, Wang X, Yang A, Guo F, Qiao J. Machine learning aided construction of the quorum sensing communication network for human gut microbiota. Nat Commun 2022; 13:3079. [PMID: 35654892 PMCID: PMC9163137 DOI: 10.1038/s41467-022-30741-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/17/2022] [Indexed: 01/02/2023] Open
Abstract
Quorum sensing (QS) is a cell-cell communication mechanism that connects members in various microbial systems. Conventionally, a small number of QS entries are collected for specific microbes, which is far from being able to fully depict communication-based complex microbial interactions in human gut microbiota. In this study, we propose a systematic workflow including three modules and the use of machine learning-based classifiers to collect, expand, and mine the QS-related entries. Furthermore, we develop the Quorum Sensing of Human Gut Microbes (QSHGM) database ( http://www.qshgm.lbci.net/ ) including 28,567 redundancy removal entries, to bridge the gap between QS repositories and human gut microbiota. With the help of QSHGM, various communication-based microbial interactions can be searched and a QS communication network (QSCN) is further constructed and analysed for 818 human gut microbes. This work contributes to the establishment of the QSCN which may form one of the key knowledge maps of the human gut microbiota, supporting future applications such as new manipulations to synthetic microbiota and potential therapies to gut diseases.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Jie Feng
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
| | - Chunjiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Hao Wu
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China
| | - Zekai Qiu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jianjun Ge
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shuyang Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xia Hong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yukun Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaona Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, 312300, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
| |
Collapse
|
19
|
Khaova EA, Kashevarova NM, Tkachenko AG. Ribosome Hibernation: Molecular Strategy of Bacterial Survival (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822030061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Li Y, Feng T, Wang Y. The role of bacterial signaling networks in antibiotics response and resistance regulation. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:163-178. [PMID: 37073223 PMCID: PMC10077285 DOI: 10.1007/s42995-022-00126-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/07/2022] [Indexed: 05/03/2023]
Abstract
Excessive use of antibiotics poses a threat to public health and the environment. In ecosystems, such as the marine environment, antibiotic contamination has led to an increase in bacterial resistance. Therefore, the study of bacterial response to antibiotics and the regulation of resistance formation have become an important research field. Traditionally, the processes related to antibiotic responses and resistance regulation have mainly included the activation of efflux pumps, mutation of antibiotic targets, production of biofilms, and production of inactivated or passivation enzymes. In recent years, studies have shown that bacterial signaling networks can affect antibiotic responses and resistance regulation. Signaling systems mostly alter resistance by regulating biofilms, efflux pumps, and mobile genetic elements. Here we provide an overview of how bacterial intraspecific and interspecific signaling networks affect the response to environmental antibiotics. In doing so, this review provides theoretical support for inhibiting bacterial antibiotic resistance and alleviating health and ecological problems caused by antibiotic contamination.
Collapse
Affiliation(s)
- Yuying Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Tao Feng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| |
Collapse
|
21
|
Perera IA, Abinandan S, Subashchandrabose SR, Venkateswarlu K, Cole N, Naidu R, Megharaj M. Extracellular Polymeric Substances Drive Symbiotic Interactions in Bacterial‒Microalgal Consortia. MICROBIAL ECOLOGY 2022; 83:596-607. [PMID: 34132846 DOI: 10.1007/s00248-021-01772-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
The importance of several factors that drive the symbiotic interactions between bacteria and microalgae in consortia has been well realised. However, the implication of extracellular polymeric substances (EPS) released by the partners remains unclear. Therefore, the present study focused on the influence of EPS in developing consortia of a bacterium, Variovorax paradoxus IS1, with a microalga, Tetradesmus obliquus IS2 or Coelastrella sp. IS3, all isolated from poultry slaughterhouse wastewater. The bacterium increased the specific growth rates of microalgal species significantly in the consortia by enhancing the uptake of nitrate (88‒99%) and phosphate (92‒95%) besides accumulating higher amounts of carbohydrates and proteins. The EPS obtained from exudates, collected from the bacterial or microalgal cultures, contained numerous phytohormones, vitamins, polysaccharides and amino acids that are likely involved in interspecies interactions. The addition of EPS obtained from V. paradoxus IS1 to the culture medium doubled the growth of both the microalgal strains. The EPS collected from T. obliquus IS2 significantly increased the growth of V. paradoxus IS1, but there was no apparent change in bacterial growth when it was cultured in the presence of EPS from Coelastrella sp. IS3. These observations indicate that the interaction between V. paradoxus IS1 and T. obliquus IS2 was mutualism, while commensalism was the interaction between the bacterial strain and Coelastrella sp. IS3. Our present findings thus, for the first time, unveil the EPS-induced symbiotic interactions among the partners involved in bacterial‒microalgal consortia.
Collapse
Affiliation(s)
- Isiri Adhiwarie Perera
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Sudharsanam Abinandan
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Nicole Cole
- Analytical and Biomolecular Research Facility (ABRF), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
22
|
Lu Y, Zeng L, Li M, Yan B, Gao D, Zhou B, Lu W, He Q. Use of GC-IMS for detection of volatile organic compounds to identify mixed bacterial culture medium. AMB Express 2022; 12:31. [PMID: 35244795 PMCID: PMC8897540 DOI: 10.1186/s13568-022-01367-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
In order to explore the possibility to identify common wound infection bacteria in mixed culture with gas chromatograph-ion migration spectroscopy (GC-IMS), the headspace gas of single and mixed cultures of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa were detected and analyzed by GC-IMS system. The bacteria were cultured in thioglycolate medium tubes then transferred to the sampling bottles (indirect method), or directly cultured in the sampling bottles (direct method) to allow accumulation of volatile compounds and facilitate automation. The specific microorganism volatile organic compounds (mVOCs) of the three bacteria were obtained. Some of them have been known to certain substance, for example, ethanol, isoamyl acetate, Phenylacetaldehyde, 2-heptanone etc., while others have not. Principal component analysis (PCA) showed that a higher separability can be achieved with direct method than indirect method. This work indicated that it is possible to identify compound bacteria by detecting specific mVOCs with GC-IMS, and the specific mVOCs should be medium-dependent.
Collapse
|
23
|
Shmukler YB, Nikishin DA. Non-Neuronal Transmitter Systems in Bacteria, Non-Nervous Eukaryotes, and Invertebrate Embryos. Biomolecules 2022; 12:271. [PMID: 35204771 PMCID: PMC8961645 DOI: 10.3390/biom12020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
In 1921, Otto Loewi published his report that ushered in the era of chemical transmission of biological signals. January 2021 marked the 90th anniversary of the birth of Professor Gennady A. Buznikov, who was the first to study the functions of transmitters in embryogenesis. A year earlier it was 60 years since his first publication in this field. These data are a venerable occasion for a review of current knowledge on the mechanisms related to classical transmitters such as 5-hydroxytryptamine, acetylcholine, catecholamines, etc., in animals lacking neural elements and prenervous invertebrate embryos.
Collapse
Affiliation(s)
- Yuri B. Shmukler
- Lab of the Problems of Regeneration, N. K. Koltzov Institute of Developmental Biology RAS, Moscow 119334, Russia;
| | | |
Collapse
|
24
|
Naureen Z, Gilani SA, Benny BK, Sadia H, Hafeez FY, Khanum A. Metabolomic Profiling of Plant Growth-Promoting Rhizobacteria for Biological Control of Phytopathogens. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Osborne MG, Geiger CJ, Corzett CH, Kram KE, Finkel SE. Removal of Toxic Volatile Compounds in Batch Culture Prolongs Stationary Phase and Delays Death of Escherichia coli. Appl Environ Microbiol 2021; 87:e0186021. [PMID: 34613759 PMCID: PMC8612265 DOI: 10.1128/aem.01860-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/28/2022] Open
Abstract
The mechanisms controlling entry into and exit from the death phase in the bacterial life cycle remain unclear. Although bacterial growth studies in batch cultures traditionally focus on the first three phases during incubation, two additional phases, the death phase and the long-term stationary phase, are less understood. Although there are a number of stressors that arise during long-term batch culture, including nutrient depletion and the accumulation of metabolic toxins such as reactive oxidative species, their roles in cell death are not well-defined. By manipulating the environmental conditions of Escherichia coli incubated in long-term batch culture through chemical and mechanical means, we investigated the role of volatile metabolic toxins in modulating the onset of the death phase. Here, we demonstrate that with the introduction of substrates with high binding affinities for volatile compounds, toxic by-products of normal cell metabolism, into the headspace of batch cultures, cells display a prolonged stationary phase and delayed entry into the death phase. The addition of these substrates allows cultures to maintain a high cell density for hours to days longer than cultures incubated under standard growth conditions. A similar effect is observed when the gaseous headspace in culture flasks is continuously replaced with sterile air, mechanically preventing the accumulation of metabolic by-products in batch cultures. We establish that toxic compound(s) are produced during the exponential phase, demonstrate that buildup of toxic by-products influence entry into the death phase, and present a novel tool for improving high-density growth in batch culture that may be used in future research or industrial or biotechnology applications. IMPORTANCE Bacteria, such as Escherichia coli, are routinely used in the production of biomaterials because of their efficient and sustainable capacity for synthesis of bioproducts. Industrial applications of microbial synthesis typically utilize cells in the stationary phase, when cultures have the greatest density of viable cells. By manipulating culture conditions to delay the transition from the stationary phase to the death phase, we can prolong the stationary phase on a scale of hours to days, thereby maintaining the maximum density of cells that would otherwise quickly decline. Characterization of the mechanisms that control entry into the death phase for the model organism E. coli not only deepens our understanding of the bacterial life cycle but also presents an opportunity to enhance current protocols for batch culture growth and explore similar effects in a variety of widely used bacterial strains.
Collapse
Affiliation(s)
- Melisa G. Osborne
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Christopher J. Geiger
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Christopher H. Corzett
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Karin E. Kram
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Steven E. Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
26
|
Lamprokostopoulou A, Römling U. Yin and Yang of Biofilm Formation and Cyclic di-GMP Signaling of the Gastrointestinal Pathogen Salmonella enterica Serovar Typhimurium. J Innate Immun 2021; 14:275-292. [PMID: 34775379 PMCID: PMC9275015 DOI: 10.1159/000519573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Within the last 60 years, microbiological research has challenged many dogmas such as bacteria being unicellular microorganisms directed by nutrient sources; these investigations produced new dogmas such as cyclic diguanylate monophosphate (cyclic di-GMP) second messenger signaling as a ubiquitous regulator of the fundamental sessility/motility lifestyle switch on the single-cell level. Successive investigations have not yet challenged this view; however, the complexity of cyclic di-GMP as an intracellular bacterial signal, and, less explored, as an extracellular signaling molecule in combination with the conformational flexibility of the molecule, provides endless opportunities for cross-kingdom interactions. Cyclic di-GMP-directed microbial biofilms commonly stimulate the immune system on a lower level, whereas host-sensed cyclic di-GMP broadly stimulates the innate and adaptive immune responses. Furthermore, while the intracellular second messenger cyclic di-GMP signaling promotes bacterial biofilm formation and chronic infections, oppositely, Salmonella Typhimurium cellulose biofilm inside immune cells is not endorsed. These observations only touch on the complexity of the interaction of biofilm microbial cells with its host. In this review, we describe the Yin and Yang interactive concepts of biofilm formation and cyclic di-GMP signaling using S. Typhimurium as an example.
Collapse
Affiliation(s)
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Wang Y, Zhou S, Liu Q, Jeong SH, Zhu L, Yu X, Zheng X, Wei G, Kim SW, Wang C. Metabolic Engineering of Escherichia coli for Production of α-Santalene, a Precursor of Sandalwood Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13135-13142. [PMID: 34709805 DOI: 10.1021/acs.jafc.1c05486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
α-Santalene belongs to a class of natural compounds with many physiological functions and medical applications. Advances in metabolic engineering enable non-native hosts (e.g., Escherichia coli) to produce α-santalene, the precursor of sandalwood oil. However, imbalances in enzymatic activity often result in a metabolic burden on hosts and repress the synthetic capacity of the desired product. In this work, we manipulated ribosome binding sites (RBSs) to optimize an α-santalene synthetic operon in E. coli, and the best engineered E. coli NA-IS3D strain could produce α-santalene at a titer of 412 mg·L-1. Concerning the observation of the inverse correlation between indole synthesis and α-santalene production, this study speculated that indole-associated amino acid metabolism would be competitive to the synthesis of α-santalene rather than indole toxicity itself. The deletion of tnaA could lead to a 1.5-fold increase in α-santalene production to a titer of 599 mg·L-1 in E. coli tnaA- NA-IS3D. Our results suggested that the optimization of RBS sets of the synthetic module and attenuation of the competitive pathway are promising approaches for improving the production of terpenoids including α-santalene.
Collapse
Affiliation(s)
- Yan Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215006, People's Republic of China
| | - Shenting Zhou
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215006, People's Republic of China
| | - Qian Liu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215006, People's Republic of China
| | - Seong-Hee Jeong
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Liyan Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215006, People's Republic of China
| | - Xiangming Yu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215006, People's Republic of China
| | - Xiaojian Zheng
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215006, People's Republic of China
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215006, People's Republic of China
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215006, People's Republic of China
| |
Collapse
|
28
|
Lang M, Krin E, Korlowski C, Sismeiro O, Varet H, Coppée JY, Mazel D, Baharoglu Z. Sleeping ribosomes: Bacterial signaling triggers RaiA mediated persistence to aminoglycosides. iScience 2021; 24:103128. [PMID: 34611612 PMCID: PMC8476650 DOI: 10.1016/j.isci.2021.103128] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Indole is a molecule proposed to be involved in bacterial signaling. We find that indole secretion is induced by sublethal tobramycin concentrations and increases persistence to aminoglycosides in V. cholerae. Indole transcriptomics showed increased expression of raiA, a ribosome associated factor. Deletion of raiA abolishes the appearance of indole dependent persisters to aminoglycosides, although its overexpression leads to 100-fold increase of persisters, and a reduction in lag phase, evocative of increased active 70S ribosome content, confirmed by sucrose gradient analysis. We propose that, under stress conditions, RaiA-bound inactive 70S ribosomes are stored as “sleeping ribosomes”, and are rapidly reactivated upon stress relief. Our results point to an active process of persister formation through ribosome protection during translational stress (e.g., aminoglycoside treatment) and reactivation upon antibiotic removal. Translation is a universal process, and these results could help elucidate a mechanism of persistence formation in a controlled, thus inducible way. Indole is produced under sub-MIC tobramycin stress in V. cholerae and upregulates raiA RaiA is involved in indole-dependent formation of aminoglycoside specific persisters RaiA overexpression allows faster growth restart and increases 70S ribosome content RaiA-bound inactive 70S ribosomes form intact and reactivable sleeping ribosome pools
Collapse
Affiliation(s)
- Manon Lang
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Evelyne Krin
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Chloé Korlowski
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Odile Sismeiro
- Biomics Technological Platform, Center for Technological Resources and Research, Institut Pasteur, 75015 Paris, France
| | - Hugo Varet
- Biomics Technological Platform, Center for Technological Resources and Research, Institut Pasteur, 75015 Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, 75015 Paris, France
| | - Jean-Yves Coppée
- Biomics Technological Platform, Center for Technological Resources and Research, Institut Pasteur, 75015 Paris, France
| | - Didier Mazel
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Corresponding author
| | - Zeynep Baharoglu
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Corresponding author
| |
Collapse
|
29
|
Hoshiko Y, Nishiyama Y, Moriya T, Kadokami K, López-Jácome LE, Hirano R, García-Contreras R, Maeda T. Quinolone Signals Related to Pseudomonas Quinolone Signal-Quorum Sensing Inhibits the Predatory Activity of Bdellovibrio bacteriovorus. Front Microbiol 2021; 12:722579. [PMID: 34566925 PMCID: PMC8461301 DOI: 10.3389/fmicb.2021.722579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Bdellovibrio bacteriovorus is one of the predatory bacteria; therefore, it can act as a novel “living antibiotic,” unlike the current antibiotics. Here the predation of Escherichia coli by B. bacteriovorus was inhibited in the presence of Pseudomonas aeruginosa. This study investigated whether P. aeruginosa-induced predation inhibition is associated with bacterial quorum sensing (QS). Each las, rhl, or pqs QS mutant in P. aeruginosa was used to check the predatory activity of E. coli cells using B. bacteriovorus. As a result, the predatory activity of B. bacteriovorus increased in a mutant pqs QS system, whereas wild-type PA14 inhibited the predatory activity. Moreover, the addition of 4-hydroxy-2-heptylquinoline (HHQ) or the analog triggered the low predatory activity of B. bacteriovorus and killed B. bacteriovorus cells. Therefore, a defensive action of P. aeruginosa against B. bacteriovorus is activated by the pqs QS system, which produces some quinolone compounds such as HHQ.
Collapse
Affiliation(s)
- Yuki Hoshiko
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Yoshito Nishiyama
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Tae Moriya
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, The University of Kitakyushu, Kitakyushu, Japan
| | - Luis Esaú López-Jácome
- Department of Microbiology and Parasitology, Faculty of Medicine, UNAM, Mexico City, Mexico.,Laboratory of Infectology, National Institute of Rehabilitation Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Ryutaro Hirano
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | | | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| |
Collapse
|
30
|
Baggio G, Groves RA, Chignola R, Piacenza E, Presentato A, Lewis IA, Lampis S, Vallini G, Turner RJ. Untargeted Metabolomics Investigation on Selenite Reduction to Elemental Selenium by Bacillus mycoides SeITE01. Front Microbiol 2021; 12:711000. [PMID: 34603239 PMCID: PMC8481872 DOI: 10.3389/fmicb.2021.711000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Bacillus mycoides SeITE01 is an environmental isolate that transforms the oxyanion selenite (SeO 3 2 - ) into the less bioavailable elemental selenium (Se0) forming biogenic selenium nanoparticles (Bio-SeNPs). In the present study, the reduction of sodium selenite (Na2SeO3) by SeITE01 strain and the effect ofSeO 3 2 - exposure on the bacterial cells was examined through untargeted metabolomics. A time-course approach was used to monitor both cell pellet and cell free spent medium (referred as intracellular and extracellular, respectively) metabolites in SeITE01 cells treated or not withSeO 3 2 - . The results show substantial biochemical changes in SeITE01 cells when exposed toSeO 3 2 - . The initial uptake ofSeO 3 2 - by SeITE01 cells (3h after inoculation) shows both an increase in intracellular levels of 4-hydroxybenzoate and indole-3-acetic acid, and an extracellular accumulation of guanosine, which are metabolites involved in general stress response adapting strategies. Proactive and defensive mechanisms againstSeO 3 2 - are observed between the end of lag (12h) and beginning of exponential (18h) phases. Glutathione and N-acetyl-L-cysteine are thiol compounds that would be mainly involved in Painter-type reaction for the reduction and detoxification ofSeO 3 2 - to Se0. In these growth stages, thiol metabolites perform a dual role, both acting against the toxic and harmful presence of the oxyanion and as substrate or reducing sources to scavenge ROS production. Moreover, detection of the amino acids L-threonine and ornithine suggests changes in membrane lipids. Starting from stationary phase (24 and 48h), metabolites related to the formation and release of SeNPs in the extracellular environment begin to be observed. 5-hydroxyindole acetate, D-[+]-glucosamine, 4-methyl-2-oxo pentanoic acid, and ethanolamine phosphate may represent signaling strategies following SeNPs release from the cytoplasmic compartment, with consequent damage to SeITE01 cell membranes. This is also accompanied by intracellular accumulation of trans-4-hydroxyproline and L-proline, which likely represent osmoprotectant activity. The identification of these metabolites suggests the activation of signaling strategies that would protect the bacterial cells fromSeO 3 2 - toxicity while it is converting into SeNPs.
Collapse
Affiliation(s)
- Greta Baggio
- Department of Biotechnology, University of Verona, Verona, Italy
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ryan A. Groves
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elena Piacenza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Ian A. Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
31
|
Sieber S, Mathew A, Jenul C, Kohler T, Bär M, Carrión VJ, Cazorla FM, Stalder U, Hsieh YC, Bigler L, Eberl L, Gademann K. Mitigation of Pseudomonas syringae virulence by signal inactivation. SCIENCE ADVANCES 2021; 7:eabg2293. [PMID: 34516871 PMCID: PMC8442906 DOI: 10.1126/sciadv.abg2293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pseudomonas syringae is an important plant pathogen of many valuable crops worldwide, with more than 60 identified pathovars. The phytotoxins produced by these organisms were related to the severity of the damage caused to the plant. An emerging strategy to treat bacterial infections relies on interference with their signaling systems. In this study, we investigated P. syringae pv. syringae, which produces the virulence factor mangotoxin that causes bacterial apical necrosis on mango leaves. A previously unknown signaling molecule named leudiazen was identified, determined to be unstable and volatile, and responsible for mangotoxin production. A strategy using potassium permanganate, compatible with organic farming, was developed to degrade leudiazen and thus to attenuate the pathogenicity of P. syringae pv. syringae.
Collapse
Affiliation(s)
- Simon Sieber
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Anugraha Mathew
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Christian Jenul
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Tobias Kohler
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Max Bär
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Víctor J. Carrión
- Institute of Biology, Leiden University, 2333 BE Leiden, Netherlands
| | - Francisco M. Cazorla
- IHSM-UMA-CSIC, Department of Microbiology, University of Málaga, 29071 Málaga, Spain
| | - Urs Stalder
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Ya-Chu Hsieh
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
- Corresponding author. (K.G.); (L.E.)
| | - Karl Gademann
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
- Corresponding author. (K.G.); (L.E.)
| |
Collapse
|
32
|
Vasseur-Coronado M, Vlassi A, du Boulois HD, Schuhmacher R, Parich A, Pertot I, Puopolo G. Ecological Role of Volatile Organic Compounds Emitted by Pantoea agglomerans as Interspecies and Interkingdom Signals. Microorganisms 2021; 9:microorganisms9061186. [PMID: 34072820 PMCID: PMC8229667 DOI: 10.3390/microorganisms9061186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/29/2021] [Indexed: 12/28/2022] Open
Abstract
Volatile organic compounds (VOCs) play an essential role in microbe–microbe and plant–microbe interactions. We investigated the interaction between two plant growth-promoting rhizobacteria, and their interaction with tomato plants. VOCs produced by Pantoea agglomerans MVC 21 modulates the release of siderophores, the solubilisation of phosphate and potassium by Pseudomonas (Ps.) putida MVC 17. Moreover, VOCs produced by P. agglomerans MVC 21 increased lateral root density (LRD), root and shoot dry weight of tomato seedlings. Among the VOCs released by P. agglomerans MVC 21, only dimethyl disulfide (DMDS) showed effects similar to P. agglomerans MVC 21 VOCs. Because of the effects on plants and bacterial cells, we investigated how P. agglomerans MVC 21 VOCs might influence bacteria–plant interaction. Noteworthy, VOCs produced by P. agglomerans MVC 21 boosted the ability of Ps. putida MVC 17 to increase LRD and root dry weight of tomato seedlings. These results could be explained by the positive effect of DMDS and P. agglomerans MVC 21 VOCs on acid 3-indoleacetic production in Ps. putida MVC 17. Overall, our results clearly indicated that P. agglomerans MVC 21 is able to establish a beneficial interaction with Ps. putida MVC 17 and tomato plants through the emission of DMDS.
Collapse
Affiliation(s)
- Maria Vasseur-Coronado
- Research and Innovation Centre, Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (M.V.-C.); (I.P.)
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
- De Ceuster Meststoffen NV (DCM), Bannerlaan 79, 2280 Grobbendonk, Belgium;
- Scientia Terrae Research Institute, Fortsesteenweg 30A, 2860 Sint-Katelijne-Waver, Belgium
| | - Anthi Vlassi
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz Straße 20, 3430 Tulln, Austria; (A.V.); (R.S.); (A.P.)
| | | | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz Straße 20, 3430 Tulln, Austria; (A.V.); (R.S.); (A.P.)
| | - Alexandra Parich
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz Straße 20, 3430 Tulln, Austria; (A.V.); (R.S.); (A.P.)
| | - Ilaria Pertot
- Research and Innovation Centre, Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (M.V.-C.); (I.P.)
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Gerardo Puopolo
- Research and Innovation Centre, Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (M.V.-C.); (I.P.)
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all’Adige, Italy
- Correspondence:
| |
Collapse
|
33
|
Wu S, Xu C, Liu J, Liu C, Qiao J. Vertical and horizontal quorum-sensing-based multicellular communications. Trends Microbiol 2021; 29:1130-1142. [PMID: 34020859 DOI: 10.1016/j.tim.2021.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Quorum sensing (QS) plays an important role in both natural and synthetic microbial systems. The complexity of QS entails multilayer controls, biomolecular crosstalk, and population-based interactions. In this review, we divide complex QS-based interactions into vertical and horizontal interactions. With respect to the former, we discuss QS-based interactions among phages, bacteria, and hosts in natural microbial systems, which are based on various QS signals and hormones. With regard to the latter, we highlight manipulations of QS-based interactions for multicomponent synthetic microbial consortia. We further present the recent and emerging applications of manipulating these interactions (collectively referred to as 'QS communication networks') in natural and synthetic microbiota. Finally, we identify key challenges in engineering diverse QS communication networks for various future applications.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Chengyang Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
| | - Jiaheng Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
| | - Chunjiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
| |
Collapse
|
34
|
Xiong R, Liu Y, Pu J, Liu J, Zheng D, Zeng J, Chen C, Lu Y, Huang B. Indole Inhibits IncP-1 Conjugation System Mainly Through Promoting korA and korB Expression. Front Microbiol 2021; 12:628133. [PMID: 33815310 PMCID: PMC8017341 DOI: 10.3389/fmicb.2021.628133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/12/2021] [Indexed: 11/26/2022] Open
Abstract
Indole works as an interspecies signal molecule to regulate multiple physiological activities, like antibiotic resistance, acid resistance, and virulence. However, the effect of indole on conjugation is unknown. Here, with Escherichia coli SM10λπ as a donor strain that carries a chromosomally integrated conjugative RP4 plasmid, we explored the effect of indole on conjugation of a mobilizable pUCP24T plasmid imparting gentamycin resistance. The results showed that exogenous indole treatment inhibited conjugative transfer of pUCP24T from SM10λπ to recipient strains, Pseudomonas aeruginosa PAO1 and E. coli EC600. Furthermore, raising endogenous indole production through overexpression of TnaA, a tryptophanase, in SM10λπ significantly inhibited both SM10λπ-PAO1 and SM10λπ-EC600 conjugation, whereas deficiency of tnaA reversed the phenotype. Subsequent mechanistic studies revealed that exogenous indole significantly inhibited the expression of mating pair formation gene (trbB) and the DNA transfer and replication gene (trfA), mainly due to the promotion of regulatory genes (korA and korB), and the result was confirmed in tnaA knockout and overexpression strains. Additionally, we found that both extracellular indole production and tnaA expression of SM10λπ were downregulated by ciprofloxacin (CIP). Intriguingly, one-eighth minimum inhibitory concentration of CIP treatment clearly facilitated both SM10λπ-PAO1 and SM10λπ-EC600 conjugation, and indole inhibited CIP-induced conjugation frequency. These data suggest that indole may play a negative role in the process of CIP-induced conjugation. This is the first study to reveal the biological function of indole-inhibiting conjugation and its role in CIP-induced conjugation, which may be developed into a new way of controlling the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuyang Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jieying Pu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jianping Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Dexiang Zheng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jianming Zeng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Cha Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yang Lu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Bin Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
35
|
Bleichert P, Bütof L, Rückert C, Herzberg M, Francisco R, Morais PV, Grass G, Kalinowski J, Nies DH. Mutant Strains of Escherichia coli and Methicillin-Resistant Staphylococcus aureus Obtained by Laboratory Selection To Survive on Metallic Copper Surfaces. Appl Environ Microbiol 2020; 87:e01788-20. [PMID: 33067196 PMCID: PMC7755237 DOI: 10.1128/aem.01788-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/09/2020] [Indexed: 01/27/2023] Open
Abstract
Artificial laboratory evolution was used to produce mutant strains of Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) able to survive on antimicrobial metallic copper surfaces. These mutants were 12- and 60-fold less susceptible to the copper-mediated contact killing process than their respective parent strains. Growth levels of the mutant and its parent in complex growth medium were similar. Tolerance to copper ions of the mutants was unchanged. The mutant phenotype remained stable over about 250 generations under nonstress conditions. The mutants and their respective parental strains accumulated copper released from the metallic surfaces to similar extents. Nevertheless, only the parental strains succumbed to copper stress when challenged on metallic copper surfaces, suffering complete destruction of the cell structure. Whole-genome sequencing and global transcriptome analysis were used to decipher the genetic alterations in the mutant strains; however, these results did not explain the copper-tolerance phenotypes on the systemic level. Instead, the mutants shared features with those of stressed bacterial subpopulations entering the early or "shallow" persister state. In contrast to the canonical persister state, however, the ability to survive on solid copper surfaces was adopted by the majority of the mutant strain population. This indicated that application of solid copper surfaces in hospitals and elsewhere has to be accompanied by strict cleaning regimens to keep the copper surfaces active and prevent evolution of tolerant mutant strains.IMPORTANCE Microbes are rapidly killed on solid copper surfaces by contact killing. Copper surfaces thus have an important role to play in preventing the spread of nosocomial infections. Bacteria adapt to challenging natural and clinical environments through evolutionary processes, for instance, by acquisition of beneficial spontaneous mutations. We wish to address the question of whether mutants can be selected that have evolved to survive contact killing on solid copper surfaces. We isolated such mutants from Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) by artificial laboratory evolution. The ability to survive on solid copper surfaces was a stable phenotype of the mutant population and not restricted to a small subpopulation. As a consequence, standard operation procedures with strict hygienic measures are extremely important to prevent the emergence and spread of copper-surface-tolerant persister-like bacterial strains if copper surfaces are to be sustainably used to limit the spread of pathogenic bacteria, e.g., to curb nosocomial infections.
Collapse
Affiliation(s)
| | - Lucy Bütof
- Martin-Luther University Halle-Wittenberg, Institute of Molecular Microbiology, Halle (Saale), Germany
| | | | - Martin Herzberg
- Martin-Luther University Halle-Wittenberg, Institute of Molecular Microbiology, Halle (Saale), Germany
| | - Romeu Francisco
- CEMMPRE-Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Paula V Morais
- CEMMPRE-Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Gregor Grass
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Jörn Kalinowski
- Bielefeld University, Center for Biotechnology, Bielefeld, Germany
| | - Dietrich H Nies
- Martin-Luther University Halle-Wittenberg, Institute of Molecular Microbiology, Halle (Saale), Germany
| |
Collapse
|
36
|
Monia Kabandana GK, Jones CG, Sharifi SK, Chen C. 3D-Printed Microfluidic Devices for Enhanced Online Sampling and Direct Optical Measurements. ACS Sens 2020; 5:2044-2051. [PMID: 32363857 DOI: 10.1021/acssensors.0c00507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
3D printing has emerged as a robust technique to fabricate reliable and reproducible microfluidic devices. However, a limitation of 3D-printed devices has been the low transparency even when printed in a "clear" material. There are currently no reports regarding direct optical measurements through a 3D-printed device. Here, we present for the first time that the printing orientation can affect the transparency of a 3D-printed object. With the optimal orientation, we printed a microfluidic detector that was sufficiently transparent (transmittance ≈ 80%) for optical quantitation. This finding is significant because it shows the feasibility to directly 3D-print optical components for analytical applications. In addition, we created a novel microfluidic dialysis device via 3D printing, which enabled higher flow rates (for sampling with high temporal resolution) and increased extraction efficiency than commercially available ones. By coupling the microfluidic detector and dialysis probe, we successfully measured the release kinetics of indole from biofilms in a continuous, automated, and near real-time fashion. Indole is an intercellular signaling molecule in biofilms, which may regulate antibiotic resistance. The release kinetics of this molecule had not been quantitated likely because of the lack of a suitable analytical tool. Our results fill this knowledge gap.
Collapse
Affiliation(s)
- Giraso Keza Monia Kabandana
- The Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Curtis G Jones
- The Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Sahra Khan Sharifi
- The Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Chengpeng Chen
- The Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
37
|
Inhibition of indole production increases the activity of quinolone antibiotics against E. coli persisters. Sci Rep 2020; 10:11742. [PMID: 32678197 PMCID: PMC7366635 DOI: 10.1038/s41598-020-68693-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
Persisters are a sub-population of genetically sensitive bacteria that survive antibiotic treatment by entering a dormant state. The emergence of persisters from dormancy after antibiotic withdrawal leads to recurrent infection. Indole is an aromatic molecule with diverse signalling roles, including a role in persister formation. Here we demonstrate that indole stimulates the formation of Escherichia coli persisters against quinolone antibiotics which target the GyrA subunit of DNA gyrase. However, indole has no effect on the formation of E. coli persisters against an aminocoumarin, novobiocin, which targets the GyrB subunit of DNA gyrase. Two modes of indole signalling have been described: persistent and pulse. The latter refers to the brief but intense elevation of intracellular indole during stationary phase entry. We show that the stimulation of quinolone persisters is due to indole pulse, rather than persistent, signalling. In silico docking of indole on DNA gyrase predicts that indole docks perfectly to the ATP binding site of the GyrB subunit. We propose that the inhibition of indole production offers a potential route to enhance the activity of quinolones against E. coli persisters.
Collapse
|
38
|
Song S, Wood TK. Combatting Persister Cells With Substituted Indoles. Front Microbiol 2020; 11:1565. [PMID: 32733426 PMCID: PMC7358577 DOI: 10.3389/fmicb.2020.01565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Given that a subpopulation of most bacterial cells becomes dormant due to stress, and that the resting cells of pathogens can revive and reconstitute infections, it is imperative to find methods to treat dormant cells to eradicate infections. The dormant bacteria that are not spores or cysts are known as persister cells. Remarkably, in contrast to the original report that incorrectly indicated indole increases persistence, a large number of indole-related compounds have been found in the last few years that kill persister cells. Hence, in this review, along with a summary of recent results related to persister cell formation and resuscitation, we focus on the ability of indole and substituted indoles to combat the persister cells of both pathogens and non-pathogens.
Collapse
Affiliation(s)
- Sooyeon Song
- Department of Animal Science, Jeonbuk National University, Jeonju, South Korea
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
39
|
Local and Universal Action: The Paradoxes of Indole Signalling in Bacteria. Trends Microbiol 2020; 28:566-577. [PMID: 32544443 DOI: 10.1016/j.tim.2020.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/05/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Indole is a signalling molecule produced by many bacterial species and involved in intraspecies, interspecies, and interkingdom signalling. Despite the increasing volume of research published in this area, many aspects of indole signalling remain enigmatic. There is disagreement over the mechanism of indole import and export and no clearly defined target through which its effects are exerted. Progress is hindered further by the confused and sometimes contradictory body of indole research literature. We explore the reasons behind this lack of consistency and speculate whether the discovery of a new, pulse mode of indole signalling, together with a move away from the idea of a conventional protein target, might help to overcome these problems and enable the field to move forward.
Collapse
|
40
|
Kumar A, Russell RM, Pifer R, Menezes-Garcia Z, Cuesta S, Narayanan S, MacMillan JB, Sperandio V. The Serotonin Neurotransmitter Modulates Virulence of Enteric Pathogens. Cell Host Microbe 2020; 28:41-53.e8. [PMID: 32521224 DOI: 10.1016/j.chom.2020.05.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/30/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
The gut-brain axis is crucial to microbial-host interactions. The neurotransmitter serotonin is primarily synthesized in the gastrointestinal (GI) tract, where it is secreted into the lumen and subsequently removed by the serotonin transporter, SERT. Here, we show that serotonin decreases virulence gene expression by enterohemorrhagic E. coli (EHEC) and Citrobacter rodentium, a murine model for EHEC. The membrane-bound histidine sensor kinase, CpxA, is a bacterial serotonin receptor. Serotonin induces dephosphorylation of CpxA, which inactivates the transcriptional factor CpxR controlling expression of virulence genes, notably those within the locus of enterocyte effacement (LEE). Increasing intestinal serotonin by genetically or pharmacologically inhibiting SERT decreases LEE expression and reduces C. rodentium loads. Conversely, inhibiting serotonin synthesis increases pathogenesis and decreases host survival. As other enteric bacteria contain CpxA, this signal exploitation may be engaged by other pathogens. Additionally, repurposing serotonin agonists to inhibit CpxA may represent a potential therapeutic intervention for enteric bacteria.
Collapse
Affiliation(s)
- Aman Kumar
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Regan M Russell
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reed Pifer
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zelia Menezes-Garcia
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Santiago Cuesta
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sanjeev Narayanan
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - John B MacMillan
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vanessa Sperandio
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
41
|
Hirakawa H, Uchida M, Kurabayashi K, Nishijima F, Takita A, Tomita H. In vitro activity of AST-120 that suppresses indole signaling in Escherichia coli, which attenuates drug tolerance and virulence. PLoS One 2020; 15:e0232461. [PMID: 32348373 PMCID: PMC7190153 DOI: 10.1371/journal.pone.0232461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/15/2020] [Indexed: 01/02/2023] Open
Abstract
AST-120 (Kremezin) is used to treat progressive chronic kidney disease (CKD) by adsorbing uremic toxin precursors produced by gut microbiota, such as indole and phenols. In this study, we propose that AST-120 reduces indole level, consequently suppresses indole effects on induction of drug tolerance and virulence in Escherichia coli including enterohaemorrhagic strains. In experiments, AST-120 adsorbed both indole and tryptophan, a precursor of indole production, and led to decreased expression of acrD and mdtEF which encode drug efflux pumps, and elevated glpT, which encodes a transporter for fosfomycin uptake and increases susceptibility to aztreonam, rhodamine 6G, and fosfomycin. AST-120 also decreased the production of EspB, which contributes to pathogenicity of enterohaemorrhagic E. coli (EHEC). Aztreonam, ciprofloxacin, minocycline, trimethoprim, and sulfamethoxazole were also adsorbed by AST-120. However, fosfomycin, in addition to rifampicin, colistin and amikacin were not adsorbed, thus AST-120 can be used together with these drugs for therapy to treat infections. These results suggest another benefit of AST-120, i.e., that it assists antibacterial chemotherapy.
Collapse
Affiliation(s)
- Hidetada Hirakawa
- Department of Bacteriology, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
- * E-mail:
| | - Motoyuki Uchida
- Pharmaceuticals and Agrochemicals Division, Kureha Corporation, Shinjuku-ku, Tokyo, Japan
| | - Kumiko Kurabayashi
- Department of Bacteriology, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Fuyuhiko Nishijima
- Pharmaceuticals and Agrochemicals Division, Kureha Corporation, Shinjuku-ku, Tokyo, Japan
| | - Ayako Takita
- Department of Bacteriology, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
- Laboratory of Bacterial Drug Resistance, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
42
|
Boon N, Kaur M, Aziz A, Bradnick M, Shibayama K, Eguchi Y, Lund PA. The Signaling Molecule Indole Inhibits Induction of the AR2 Acid Resistance System in Escherichia coli. Front Microbiol 2020; 11:474. [PMID: 32351457 PMCID: PMC7174508 DOI: 10.3389/fmicb.2020.00474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
Induction of the AR2 acid response system of Escherichia coli occurs at a moderately low pH (pH 5.5) and leads to high levels of resistance to pH levels below 2.5 in the presence of glutamate. Induction is mediated in part by the EvgAS two component system. Here, we show that the bacterial signaling molecule indole inhibits the induction of key promoters in the AR2 system and blocks the development of glutamate-dependent acid resistance. The addition of tryptophan, the precursor for indole biosynthesis, had the same effects, and this block was relieved in a tnaA mutant, which is unable to synthesize indole. Expression of a constitutively active EvgS protein was able to relieve the inhibition caused by indole, consistent with EvgS being inhibited directly or indirectly by indole. Indole had no effect on autophosphorylation of the isolated cytoplasmic domain of EvgS. This is consistent with a model where indole directly or indirectly affects the ability of EvgS to detect its inducing signal or to transduce this information across the cytoplasmic membrane. The inhibitory activity of indole on the AR2 system is not related to its ability to act as an ionophore, and, conversely, the ionophore CCCP had no effect on acid-induced AR2 promoter activity, showing that the proton motive force is unlikely to be a signal for induction of the AR2 system.
Collapse
Affiliation(s)
- Nathaniel Boon
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Manpreet Kaur
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Amina Aziz
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Morissa Bradnick
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Kenta Shibayama
- Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Yoko Eguchi
- Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Peter A Lund
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
43
|
Wu S, Liu J, Liu C, Yang A, Qiao J. Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cell Mol Life Sci 2020; 77:1319-1343. [PMID: 31612240 PMCID: PMC11104945 DOI: 10.1007/s00018-019-03326-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/13/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Quorum sensing (QS), a microbial cell-to-cell communication process, dynamically regulates a variety of metabolism and physiological activities. In this review, we provide an update on QS applications based on autoinducer molecules including acyl-homoserine lactones (AHLs), auto-inducing peptides (AIPs), autoinducer 2 (AI-2) and indole in population-level control of bacteria, and highlight the potential in developing novel clinical therapies. We summarize the development in the combination of various genetic circuits such as genetic oscillators, toggle switches and logic gates with AHL-based QS devices in Gram-negative bacteria. An overview is then offered to the state-of-the-art of much less researched applications of AIP-based QS devices with Gram-positive bacteria, followed by a review of the applications of AI-2 and indole based QS for interspecies communication among microbial communities. Building on these general-purpose QS applications, we highlight the disruptions and manipulations of QS devices as potential clinical therapies for diseases caused by biofilm formation, antibiotic resistance and the phage invasion. The last part of reviewed literature is dedicated to mathematical modelling for QS applications. Finally, the key challenges and future perspectives of QS applications in monoclonal synthetic biology and synthetic ecology are discussed.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jiaheng Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
| | - Chunjiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
| |
Collapse
|
44
|
Reply to Wood and Lee, “Precedence for the Role of Indole with Pathogens”. mBio 2019; 10:mBio.01787-19. [PMID: 31363037 PMCID: PMC6667627 DOI: 10.1128/mbio.01787-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Abstract
Microbial establishment within the gastrointestinal (GI) tract requires surveillance of the gut biogeography. The gut microbiota coordinates behaviors by sensing host- or microbiota-derived signals. Here we show for the first time that microbiota-derived indole is highly prevalent in the lumen compared to the intestinal tissue. This difference in indole concentration plays a key role in modulating virulence gene expression of the enteric pathogens enterohemorrhagic Escherichia coli (EHEC) and Citrobacter rodentium Indole decreases expression of genes within the locus of enterocyte effacement (LEE) pathogenicity island, which is essential for these pathogens to form attaching and effacing (AE) lesions on enterocytes. We synthetically altered the concentration of indole in the GI tracts of mice by employing mice treated with antibiotics to deplete the microbiota and reconstituted with indole-producing commensal Bacteroides thetaiotaomicron (B. theta) or a B. theta ΔtnaA mutant (does not produce indole) or by engineering an indole-producing C. rodentium strain. This allowed us to assess the role of self-produced versus microbiota-produced indole, and the results show that decreased indole concentrations promote bacterial pathogenesis, while increased levels of indole decrease bacterial virulence gene expression. Moreover, we identified the bacterial membrane-bound histidine sensor kinase (HK) CpxA as an indole sensor. Enteric pathogens sense a gradient of indole concentrations in the gut to probe different niches and successfully establish an infection.IMPORTANCE Pathogens sense and respond to several small molecules within the GI tract to modulate expression of their virulence repertoire. Indole is a signaling molecule produced by the gut microbiota. Here we show that indole concentrations are higher in the lumen, where the microbiota is present, than in the intestinal tissue. The enteric pathogens EHEC and C. rodentium sense indole to downregulate expression of their virulence genes, as a read-out of the luminal compartment. We also identified the bacterial membrane-bound HK CpxA as an indole sensor. This regulation ensures that EHEC and C. rodentium express their virulence genes only at the epithelial lining, which is the niche they colonize.
Collapse
|
46
|
Zarkan A, Caño-Muñiz S, Zhu J, Al Nahas K, Cama J, Keyser UF, Summers DK. Indole Pulse Signalling Regulates the Cytoplasmic pH of E. coli in a Memory-Like Manner. Sci Rep 2019; 9:3868. [PMID: 30846797 PMCID: PMC6405993 DOI: 10.1038/s41598-019-40560-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/08/2019] [Indexed: 01/06/2023] Open
Abstract
Bacterial cells are critically dependent upon pH regulation. Here we demonstrate that indole plays a critical role in the regulation of the cytoplasmic pH of Escherichia coli. Indole is an aromatic molecule with diverse signalling roles. Two modes of indole signalling have been described: persistent and pulse signalling. The latter is illustrated by the brief but intense elevation of intracellular indole during stationary phase entry. We show that under conditions permitting indole production, cells maintain their cytoplasmic pH at 7.2. In contrast, under conditions where no indole is produced, the cytoplasmic pH is near 7.8. We demonstrate that pH regulation results from pulse, rather than persistent, indole signalling. Furthermore, we illustrate that the relevant property of indole in this context is its ability to conduct protons across the cytoplasmic membrane. Additionally, we show that the effect of the indole pulse that occurs normally during stationary phase entry in rich medium remains as a "memory" to maintain the cytoplasmic pH until entry into the next stationary phase. The indole-mediated reduction in cytoplasmic pH may explain why indole provides E. coli with a degree of protection against stresses, including some bactericidal antibiotics.
Collapse
Affiliation(s)
- Ashraf Zarkan
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Santiago Caño-Muñiz
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Jinbo Zhu
- The Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Kareem Al Nahas
- The Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Jehangir Cama
- The Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Ulrich F Keyser
- The Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - David K Summers
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| |
Collapse
|
47
|
Geetha D, Al-Ostoot FH, Mohammed YHE, Sridhar M, Khanum SA, Lokanath N. Synthesis, Elucidation, Hirshfeld surface analysis, and DFT calculations of 4-chloro-N-[2-(2-1H-indol-3-yl-acetylamino)-phenyl]-benzamide. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Mahdhi A, Leban N, Chakroun I, Bayar S, Mahdouani K, Majdoub H, Kouidhi B. Use of extracellular polysaccharides, secreted by Lactobacillus plantarum and Bacillus spp., as reducing indole production agents to control biofilm formation and efflux pumps inhibitor in Escherichia coli. Microb Pathog 2018; 125:448-453. [DOI: 10.1016/j.micpath.2018.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022]
|
49
|
Use of exogenous volatile organic compounds to detect Salmonella in milk. Anal Chim Acta 2018; 1028:121-130. [DOI: 10.1016/j.aca.2018.03.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 01/10/2023]
|
50
|
Yan G, Liu S, Schlink AC, Flematti GR, Brodie BS, Bohman B, Greeff JC, Vercoe PE, Hu J, Martin GB. Behavior and Electrophysiological Response of Gravid and Non-Gravid Lucilia cuprina (Diptera: Calliphoridae) to Carrion-Associated Compounds. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:1958-1965. [PMID: 30085240 DOI: 10.1093/jee/toy115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 06/08/2023]
Abstract
The Australian blow fly, Lucilia cuprina Wiedmann (Diptera: Calliphoridae), is a major cause of myiasis (flystrike) in Merino sheep in Australia and New Zealand and, as a primary colonizer of fresh carrion, also an important species in forensic investigations. Olfaction is considered the most important cue for insects to rapidly locate carrion over long distances, so the first carrion visitors are predicted to be very sensitive to carrion-related volatile compounds. We studied the responses of the Australian blow fly, Lucilia cuprina, to the carrion-associated compounds dimethyl trisulfide (DMTS), butyric acid, 1-octen-3-ol and indole. We also tested 2-mercaptoethanol, a compound commonly used in fly traps in Australia. We investigated whether responses of the flies are affected by their ovarian status by comparing responses of gravid and non-gravid L. cuprina in electroantennography (EAG) and two-choice laboratory bioassays. All four compounds evoked an EAG response, while only DMTS evoked responses in gas chromatography-mass spectrometry electroantennographic detection (GCMS-EAD) analyses and two-choice bioassays. Gravid flies detected lower doses of the test compounds than non-gravid flies. Our results indicate that DMTS is an important semiochemical for L. cuprina to locate carrion resources, and has potential for use in fly traps for flystrike control. Our observations also suggest that the greater sensitivity of gravid L. cuprina allows them to find fresh carrion quickly to maximize reproductive success by avoiding unsuitable degraded carrion.
Collapse
Affiliation(s)
- Guanjie Yan
- UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- Northwest Agriculture and Forestry University, College of Animal Science and Technology, Yangling, China
| | - Shimin Liu
- UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- Department of Primary Industry and Regional Development, Livestock Industries, Agriculture and Food, South Perth, WA, Australia
| | - Anthony C Schlink
- Department of Primary Industry and Regional Development, Livestock Industries, Agriculture and Food, South Perth, WA, Australia
| | - Gavin R Flematti
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - Bekka S Brodie
- Department of Biological Sciences, Ohio University, Athens, OH
| | - Bjorn Bohman
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - Johan C Greeff
- Department of Primary Industry and Regional Development, Livestock Industries, Agriculture and Food, South Perth, WA, Australia
| | - Philip E Vercoe
- UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
| | - Jianhong Hu
- Northwest Agriculture and Forestry University, College of Animal Science and Technology, Yangling, China
| | - Graeme B Martin
- UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|