1
|
Adetunji AI, Olaniran AO. Production strategies and biotechnological relevance of microbial lipases: a review. Braz J Microbiol 2021; 52:1257-1269. [PMID: 33904151 PMCID: PMC8324693 DOI: 10.1007/s42770-021-00503-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/16/2021] [Indexed: 01/14/2023] Open
Abstract
Lipases are enzymes that catalyze the breakdown of lipids into long-chain fatty acids and glycerol in oil-water interface. In addition, they catalyze broad spectrum of bioconversion reactions including esterification, inter-esterification, among others in non-aqueous and micro-aqueous milieu. Lipases are universally produced from plants, animals, and microorganisms. However, lipases from microbial origin are mostly preferred owing to their lower production costs, ease of genetic manipulation etc. The secretion of these biocatalysts by microorganisms is influenced by nutritional and physicochemical parameters. Optimization of the bioprocess parameters enhanced lipase production. In addition, microbial lipases have gained intensified attention for a wide range of applications in food, detergent, and cosmetics industries as well as in environmental bioremediation. This review provides insights into strategies for production of microbial lipases for potential biotechnological applications.
Collapse
Affiliation(s)
- Adegoke Isiaka Adetunji
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville campus), Private Bag X54001, Durban, 4000, Republic of South Africa.
| | - Ademola Olufolahan Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville campus), Private Bag X54001, Durban, 4000, Republic of South Africa
| |
Collapse
|
2
|
Isolation, Expression and Characterization of the Thermophilic Recombinant Esterase from Geobacillus thermodenitrificans PS01. Appl Biochem Biotechnol 2020; 191:112-124. [DOI: 10.1007/s12010-020-03225-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
|
3
|
Shi L, Han B, Liu L, Lv X, Ma Z, Li C, Xu L, Li Y, Zhao F, Yang Y, Sun D. Determination of Genetic Effects of LIPK and LIPJ Genes on Milk Fatty Acids in Dairy Cattle. Genes (Basel) 2019; 10:genes10020086. [PMID: 30696079 PMCID: PMC6409763 DOI: 10.3390/genes10020086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 12/30/2022] Open
Abstract
In our previous genome-wide association study (GWAS) on milk fatty acids (FAs) in Chinese Holstein, we discovered 83 genome-wide significant single nucleotide polymorphisms (SNPs) associated with milk FAs. Two of them were close to lipase family member K (LIPK) and lipase family member J (LIPJ), respectively. Hence, this study is a follow-up to verify whether the LIPK and LIPJ have significant genetic effects on milk FAs in dairy cattle. By re-sequencing the entire exons, and 3 kb of 5′ and 3′ flanking regions, two and seven SNPs were identified in LIPK and LIPJ, respectively, including a novel SNP, ss158213049726. With the Haploview 4.1 software, we found that five of the SNPs in LIPJ formed a haplotype block (D′ = 0.96 ~ 1.00). Single-locus association analyses revealed that each SNP in LIPK and LIPJ was significantly associated with at least one milk FA (p = < 1.00 × 10−4 ~ 4.88 × 10−2), and the haplotype-based association analyses showed significant genetic effects on nine milk FAs (p = < 1.00 × 10−4 ~ 3.98 × 10−2). Out of these SNPs, the missense mutation in LIPK gene, rs42774527, could change the protein secondary structure and function predicted by SOPMA, SIFT, and PROVEAN softwares. With the Genomatix software, we predicted that two SNPs, rs110322221 in LIPK and rs211373799 in LIPJ, altered the transcription factors binding sites (TFBSs), indicating their potential regulation on promoter activity of the genes. Furthermore, we found that both LIPK and LIPJ had relatively high expressions in the mammary gland. In conclusion, our research is the first to demonstrate that LIPK and LIPJ genes have significant associations with milk FAs, and the identified SNPs might be served as genetic markers to optimize breeding programs for milk FAs in dairy cattle. This research deserves in-depth verification.
Collapse
Affiliation(s)
- Lijun Shi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Bo Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Lin Liu
- Beijing Dairy Cattle Center, Qinghe'nanzhen Deshengmenwai Street, Chaoyang District, Beijing 100192, China.
| | - Xiaoqing Lv
- Beijing Dairy Cattle Center, Qinghe'nanzhen Deshengmenwai Street, Chaoyang District, Beijing 100192, China.
| | - Zhu Ma
- Beijing Dairy Cattle Center, Qinghe'nanzhen Deshengmenwai Street, Chaoyang District, Beijing 100192, China.
| | - Cong Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Lingna Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Yanhua Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.
- Beijing Dairy Cattle Center, Qinghe'nanzhen Deshengmenwai Street, Chaoyang District, Beijing 100192, China.
| | - Feng Zhao
- Beijing Dairy Cattle Center, Qinghe'nanzhen Deshengmenwai Street, Chaoyang District, Beijing 100192, China.
| | - Yuze Yang
- Beijing General Station of Animal Husbandry, N0.96 Huizhongsi, Yayun Village, Chaoyang District, Beijing, 100101, China.
| | - Dongxiao Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Khosla K, Rathour R, Maurya R, Maheshwari N, Gnansounou E, Larroche C, Thakur IS. Biodiesel production from lipid of carbon dioxide sequestrating bacterium and lipase of psychrotolerant Pseudomonas sp. ISTPL3 immobilized on biochar. BIORESOURCE TECHNOLOGY 2017; 245:743-750. [PMID: 28918245 DOI: 10.1016/j.biortech.2017.08.194] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
An extracellular lipase was purified and characterized from psychrotolerant bacterium Pseudomonas sp. ISTPL3 isolated from Pangong lake. Lipase was purified by sequential methods of ammonium sulphate precipitation, dialysis, DEAE-cellulose ion exchange chromatography and Sephadex G-100 gel filtration chromatography, resulting in a purification fold of 6.53 and yield of 5.45%. The molecular weight was approximately 31kDa. The purified lipase was used for transesterification of lipids produced by oleaginous chemolithotrophic bacterium Serratia sp. ISTD04 for production of biodiesel. Upon biochemical characterization, lipase was found to be alkalophilc, thermostable, active in organic polar solvents and sensitive to detergents. Further, lipase was immobilized on activated biochar to assess its transesterification efficiency during biodiesel production. Immobilized lipase gave the highest yield of fatty acid methyl esters (FAMEs) (92.23%)>unimmobilized lipase>NaOH. The immobilized lipase was assessed for its reusability and retained 75.11% of its activity after 3 cycles of biodiesel production.
Collapse
Affiliation(s)
- Khushboo Khosla
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rashmi Rathour
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Raj Maurya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Edgard Gnansounou
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | | | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Lee DH, Kim JB, Kim M, Roh E, Jung K, Choi M, Oh C, Choi J, Yun J, Heu S. Microbiota on spoiled vegetables and their characterization. J Food Prot 2013; 76:1350-8. [PMID: 23905790 DOI: 10.4315/0362-028x.jfp-12-439] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spoilage causes vegetables to deteriorate and develop unpleasant characteristics. Approximately 30 % of fresh vegetables are lost to spoilage, mainly due to colonization by bacteria. In the present study, a total of 44 bacterial isolates were obtained from a number of spoiled vegetables. The isolates were identified and classified into 20 different species of 14 genera based on fatty acid composition, biochemical tests, and 16S rDNA sequence analyses. Pseudomonas spp. were the species most frequently isolated from the spoiled vegetables. To evaluate the spoilage ability of each species, a variety of fresh vegetables were treated with each isolate and their degree of maceration was observed. In addition, the production of plant cell wall-degrading enzymes (PCWDEs), such as cellulase, xylanase, pectate lyase, and polygalacturonase, was compared among isolates to investigate their potential associations with spoilage. Strains that produce more PCWDEs cause spoilage on more diverse plants, and pectinase may be the most important enzyme among PCWDEs for vegetable spoilage. Most gram-negative spoilage bacteria produced acylated homoserine lactone, a quorum-sensing signal molecule, suggesting that it may be possible to use this compound effectively to prevent or slow down the spoilage of vegetables contaminated with diverse bacteria.
Collapse
Affiliation(s)
- Dong Hwan Lee
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bassegoda A, Cesarini S, Diaz P. Lipase improvement: goals and strategies. Comput Struct Biotechnol J 2012; 2:e201209005. [PMID: 24688646 PMCID: PMC3962121 DOI: 10.5936/csbj.201209005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/20/2012] [Accepted: 09/23/2012] [Indexed: 12/22/2022] Open
Affiliation(s)
- Arnau Bassegoda
- Department of Microbiology, University of Barcelona. Av. Diagonal 643, 08028-Barcelona. Spain
| | - Silvia Cesarini
- Department of Microbiology, University of Barcelona. Av. Diagonal 643, 08028-Barcelona. Spain
| | - Pilar Diaz
- Department of Microbiology, University of Barcelona. Av. Diagonal 643, 08028-Barcelona. Spain
| |
Collapse
|
7
|
Shangguan JJ, Fan LQ, Ju X, Zhu QQ, Wang FJ, Zhao J, Xu JH. Expression and Characterization of a Novel Enantioselective Lipase from Aspergillus fumigatus. Appl Biochem Biotechnol 2012; 168:1820-33. [DOI: 10.1007/s12010-012-9899-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/04/2012] [Indexed: 11/30/2022]
|
8
|
Characterization of an extracellular lipase and its chaperone from Ralstonia eutropha H16. Appl Microbiol Biotechnol 2012; 97:2443-54. [DOI: 10.1007/s00253-012-4115-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 11/25/2022]
|
9
|
Expression and Characterization of a Novel Lipase from Aspergillus fumigatus with High Specific Activity. Appl Biochem Biotechnol 2011; 165:949-62. [DOI: 10.1007/s12010-011-9311-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 06/19/2011] [Indexed: 10/18/2022]
|
10
|
Sangeetha R, Arulpandi I, Geetha A. Bacterial Lipases as Potential Industrial Biocatalysts: An Overview. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/jm.2011.1.24] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Schmidt M, Larsen DM, Stougaard P. A lipase with broad temperature range from an alkaliphilic gamma-proteobacterium isolated in Greenland. ENVIRONMENTAL TECHNOLOGY 2010; 31:1091-1100. [PMID: 20718291 DOI: 10.1080/09593331003770289] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A gamma-proteobacterium related to the genera Alteromonadales and Pseudomonadales, isolated from a cold and alkaline environment in Greenland, has been shown to produce a lipase active between 5 degrees C and 80 degrees C, with optimal activity at 55 degrees C and pH 8. PCR-based screening of genomic DNA from the isolated bacterium, followed by genome walking, resulted in two complete open reading frames, which were predicted to encode a lipase and its helper protein, a lipase foldase. The amino acid sequence derived for the lipase showed resemblance to lipases from Pseudomonas, Rhodoferax, Aeromonas and Vibrio. The two genes were cloned into different expression systems in E. coli with or without a putative secretion sequence, but despite the fact that both recombinant lipase and lipase foldase were observed on SDS-PAGE, no recombinant lipase activity was detected. Attempts to refold the recombinant lipase in vitro using a purified lipase foldase remained unsuccessful.
Collapse
Affiliation(s)
- Mariane Schmidt
- Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | |
Collapse
|
12
|
YU HW, HAN J, LI N, QIE XS, JIA YM. Fermentation Performance and Characterization of Cold-Adapted Lipase Produced with Pseudomonas Lip35. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1671-2927(08)60300-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Wang X, Yu X, Xu Y. Homologous expression, purification and characterization of a novel high-alkaline and thermal stable lipase from Burkholderia cepacia ATCC 25416. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Hasan F, Shah AA, Hameed A. Methods for detection and characterization of lipases: A comprehensive review. Biotechnol Adv 2009; 27:782-798. [PMID: 19539743 DOI: 10.1016/j.biotechadv.2009.06.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 06/03/2009] [Accepted: 06/05/2009] [Indexed: 11/16/2022]
Abstract
Microbial lipases are very prominent biocatalysts because of their ability to catalyze a wide variety of reactions in aqueous and non-aqueous media. The chemo-, regio- and enantio-specific behaviour of these enzymes has caused tremendous interest among scientists and industrialists. Lipases from a large number of bacterial, fungal and a few plant and animal sources have been purified to homogeneity. This article presents a critical review of different strategies which have been employed for the detection, purification and characterization of microbial lipases.
Collapse
Affiliation(s)
- Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Abdul Hameed
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
15
|
In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells. Infect Immun 2008; 76:1423-33. [PMID: 18212077 DOI: 10.1128/iai.01373-07] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
P. aeruginosa forms biofilms in the lungs of individuals with cystic fibrosis (CF); however, there have been no effective model systems for studying biofilm formation in the CF lung. We have developed a tissue culture system for growth of P. aeruginosa biofilms on CF-derived human airway cells that promotes the formation of highly antibiotic-resistant microcolonies, which produce an extracellular polysaccharide matrix and require the known abiotic biofilm formation genes flgK and pilB. Treatment of P. aeruginosa biofilms with tobramycin reduced the virulence of the biofilms both by reducing bacterial numbers and by altering virulence gene expression. We performed microarray analysis of these biofilms on epithelial cells after treatment with tobramycin, and we compared these results with gene expression of (i) tobramycin-treated planktonic P. aeruginosa and (ii) tobramycin-treated P. aeruginosa biofilms on an abiotic surface. Despite the conservation in functions required to form a biofilm, our results show that the responses to tobramycin treatment of biofilms grown on biotic versus abiotic surfaces are different, as exemplified by downregulation of genes involved in Pseudomonas quinolone signal biosynthesis specifically in epithelial cell-grown biofilms versus plastic-grown biofilms. We also identified the gene PA0913, which is upregulated by tobramycin specifically in biofilms grown on CF airway cells and codes for a probable magnesium transporter, MgtE. Mutation of the PA0913 gene increased the bacterial virulence of biofilms on the epithelial cells, consistent with a role for the gene in the suppression of bacterial virulence. Taken together, our data show that analysis of biofilms on airway cells provides new insights into the interaction of these microbial communities with the host.
Collapse
|
16
|
Abstract
Some proteins are so much resistant to proteolysis and unfolding that they violate folding rules shared by the vast majority of proteins. These unusual proteins manage to fold into an active native conformation that is thermodynamically at best marginally, but often even less stable than the unfolded state. A huge energetic barrier traps these proteins kinetically in the folded state. The drawback of this situation is the need for a specialized chaperone that adds steric information to the proteins to cross this barrier on the folding pathway. Until now, our knowledge of these intriguing chaperones was restricted to the prodomains of secreted proteases, which function intramolecularly. Recent research has added more examples, which now include the membrane-anchored lipase-specific foldase and the pilus subunit specific chaperone, both acting intermolecularly. The case of the pilin chaperone is somewhat deviant in that steric information is definitely provided, but the pilus subunit adopts a thermodynamically favourable stable conformation.
Collapse
Affiliation(s)
- Kris Pauwels
- Department of Molecular and Cellular Interactions, VIB and Department of Ultrastructure, Free University Brussels, Brussels, Belgium
| | | | | | | |
Collapse
|
17
|
Quyen DT, Giang Le TT, Nguyen TT, Oh TK, Lee JK. High-level heterologous expression and properties of a novel lipase from Ralstonia sp. M1. Protein Expr Purif 2005; 39:97-106. [PMID: 15596365 DOI: 10.1016/j.pep.2004.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 09/30/2004] [Indexed: 10/26/2022]
Abstract
The mature lipase LipA and its 56aa-truncated chaperone DeltaLipBhis (with 6xhis-tag) from Ralstonia sp. M1 were over-expressed in Escherichia coli BL21 under the control of T7 promoter with a high level of 70 and 12mg protein per gram of wet cells, respectively. The simply purified lipase LipA was effectively refolded by Ni-NTA purified chaperone DeltaLipBhis in molar ratio 1:1 at 4 degrees C for 24 hours in H2O. The in vitro refolded lipase LipA had an optimal activity in the temperature range of 50-55 degrees C and was stable up to 45 degrees C with more than 84% activity retention. The maximal activity was observed at pH 10.75 for hydrolysis of olive oil and found to be stable over alkaline pH range 8.0-10.5 with more than 52% activity retention. The enzyme was found to be highly resistant to many organic solvents especially induced by ethanolamine (remaining activity 137-334%), but inhibited by 1-butanol and acetonitrile (40-86%). Metal ions Cu2+, Sn2+, Mn2+, Mg2+, and Ca2+ stimulated the lipase slightly with increase in activity by up to 22%, whereas Zn2+ significantly inhibited the enzyme with the residual activity of 30-65% and Fe3+ to a lesser degree (activity retention of 77-86%). Tween 80, Tween 60, and Tween 40 induced the activation of the lipase LipA (222-330%) and 0.2-1% (w/v) of Triton X-100, X-45, and SDS increased the lipase activity by up to 52%. However, 5% (w/v) of Triton X-100, X-45, and SDS inhibited strongly the activity by 31-89%. The inhibitors including DEPC, EDTA, PMSF, and 2-mercaptoethanol (0.1-10mM) inhibited moderately the lipase with remaining activity of 57-105%. The lipase LipA hydrolyzed a wide range of triglycerides, but preferentially short length acyl chains (C4 and C6). In contrast to the triglycerides, medium length acyl chains (C8 and C14) of p-nitrophenyl (p-NP) esters were preferential substrates of this lipase. The enzyme preferentially catalyzed the hydrolysis of cottonseed oil (317%), cornoil (227%), palm oil (222%), and wheatgerm oil (210%) in comparison to olive oil (100%).
Collapse
Affiliation(s)
- Dinh Thi Quyen
- Institute of Biotechnology, Vietnamese Academy of Science and Technology 18 Hoang Quoc Viet Road, Distr. Caugiay, 10600 Hanoi, Viet Nam
| | | | | | | | | |
Collapse
|
18
|
Quyen DT, Nguyen TT, Le TTG, Kim HK, Oh TK, Lee JK. A novel lipase/chaperone pair from Ralstonia sp. M1: analysis of the folding interaction and evidence for gene loss in R. solanacearum. Mol Genet Genomics 2004; 272:538-49. [PMID: 15668771 DOI: 10.1007/s00438-004-1084-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2004] [Accepted: 10/14/2004] [Indexed: 11/30/2022]
Abstract
A microbial strain (referred to as M1) that produces an extracellular lipase was isolated from a soil sample in Vietnam, and identified as a Ralstonia species by partial sequencing of its 16S rDNA. A genomic library was constructed from Pst I fragments, and a colony showing lipase activity was selected for further analysis. Sequencing of the 4.7-kb insert in this clone (named M1-72) revealed one incomplete and three complete ORFs, predicted to encode a partial hypothetical glutaminyl tRNA synthetase (304 aa), a hypothetical transmembrane protein (500 aa), a lipase (328 aa) and a lipase chaperone (352 aa), respectively. Alignment of the insert sequence with the corresponding region of the genome of R. solanacearum GMI1000 (GenBank Accession No. AL646081) confirmed the presence in the latter of the genes for the hypothetical transmembrane protein and glutaminyl tRNA synthetase, which exhibited 89-91% identity to their counterparts in M1. However, R. solanacearum GMI1000 lacks the complete lipase-encoding gene and the major part of the chaperone-encoding gene, creating a so-called "black hole". The deduced amino acid sequences of the products of the lipase gene lipA and chaperone gene lipB from strain M1 shared 49.3-60.3% and 23.9-32.7% identity, respectively, with those of the Burkholderia lipase/chaperone subfamily I.2. lipB is located downstream of lipA, and separated from it by only 9 bp, and each gene has a putative ribosome binding site. The mature lipase LipA, a His-tagged derivative (LipAhis), the tagged full-length chaperone LipBhis and a truncated form (DeltaLipBhis) lacking the 56 N-terminal residues were expressed in Escherichia coli BL21. LipA, LipAhis and DeltaLipBhis could be expressed at high levels (70, 15 and 12 mg/g wet cells, respectively) and were easily purified. However, LipBhis was expressed at a much lower level which precluded purification. The specific activity of purified LipAhis, expressed on its own, was very low (<52 U/mg). However, after co-incubation with the purified DeltaLipBhis in vitro, the specific activity of the enzyme was markedly enhanced, indicating that the chaperone facilitated correct folding of the enzyme. A lipase:chaperone ratio of 1:10 was found to be optimal, yielding an enzyme preparation with a specific activity of 650 U/mg.
Collapse
Affiliation(s)
- D T Quyen
- Institute of Biotechnology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Caugiay District, 10600 Hanoi, Vietnam
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Lipases represent the most important class of enzymes used in biotechnology. Many bacteria produce and secrete lipases but the enzymes originating from Pseudomonas and Burkholderia species seem to be particularly useful for a wide variety of different biocatalytic applications. These enzymes are usually encoded in an operon together with a second gene which codes for a lipase-specific foldase, Lif, which is necessary to obtain enzymatically active lipase. A detailed analysis based on amino acid homology has suggested the classification of Lif proteins into four different families and also revealed the presence of a conserved motif, Rx1x2FDY(F/C)L(S/T)A. Recent experimental evidence suggests that Lifs are so-called steric chaperones, which exert their physiological function by lowering energetic barriers during the folding of their cognate lipases, thereby providing essential steric information needed to fold lipases into their enzymatically active conformation.
Collapse
Affiliation(s)
- Frank Rosenau
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52428 Jülich, Germany
| | | | | |
Collapse
|
20
|
Abstract
Lipases constitute the most important group of biocatalysts for biotechnological applications. The high-level production of microbial lipases requires not only the efficient overexpression of the corresponding genes but also a detailed understanding of the molecular mechanisms governing their folding and secretion. The optimisation of industrially relevant lipase properties can be achieved by directed evolution. Furthermore, novel biotechnological applications have been successfully established using lipases for the synthesis of biopolymers and biodiesel, the production of enantiopure pharmaceuticals, agrochemicals, and flavour compounds.
Collapse
Affiliation(s)
- Karl-Erich Jaeger
- Institute for Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | | |
Collapse
|