1
|
Andreas MP, Giessen TW. The biosynthesis of the odorant 2-methylisoborneol is compartmentalized inside a protein shell. Nat Commun 2024; 15:9715. [PMID: 39521781 PMCID: PMC11550324 DOI: 10.1038/s41467-024-54175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Terpenoids are the largest class of natural products, found across all domains of life. One of the most abundant bacterial terpenoids is the volatile odorant 2-methylisoborneol (2-MIB), partially responsible for the earthy smell of soil and musty taste of contaminated water. Many bacterial 2-MIB biosynthetic gene clusters were thought to encode a conserved transcription factor, named EshA in the model soil bacterium Streptomyces griseus. Here, we revise the function of EshA, now referred to as Sg Enc, and show that it is a Family 2B encapsulin shell protein. Using cryo-electron microscopy, we find that Sg Enc forms an icosahedral protein shell and encapsulates 2-methylisoborneol synthase (2-MIBS) as a cargo protein. Sg Enc contains a cyclic adenosine monophosphate (cAMP) binding domain (CBD)-fold insertion and a unique metal-binding domain, both displayed on the shell exterior. We show that Sg Enc CBDs do not bind cAMP. We find that 2-MIBS cargo loading is mediated by an N-terminal disordered cargo-loading domain and that 2-MIBS activity and Sg Enc shell structure are not modulated by cAMP. Our work redefines the function of EshA and establishes Family 2B encapsulins as cargo-loaded protein nanocompartments involved in secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Babar TK, Glare TR, Hampton JG, Hurst MRH, Narciso J. Biochemical characterisation and production kinetics of high molecular-weight (HMW) putative antibacterial proteins of insect pathogenic Brevibacillus laterosporus isolates. BMC Microbiol 2024; 24:259. [PMID: 38997685 PMCID: PMC11245835 DOI: 10.1186/s12866-024-03340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/16/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Bacterial genomes often encode structures similar to phage capsids (encapsulins) and phage tails which can be induced spontaneously or using genotoxic compounds such as mitomycin C. These high molecular-weight (HMW) putative antibacterial proteins (ABPs) are used against the competitive strains under natural environment. Previously, it was unknown whether these HMW putative ABPs originating from the insect pathogenic Gram-positive, spore-forming bacterium Brevibacillus laterosporus (Bl) isolates (1821L, 1951) are spontaneously induced during the growth and pose a detrimental effect on their own survival. Furthermore, no prior work has been undertaken to determine their biochemical characteristics. RESULTS Using a soft agar overlay method with polyethylene glycol precipitation, a narrow spectrum of bioactivity was found from the precipitated lysate of Bl 1951. Electron micrographs of mitomycin C- induced filtrates showed structures similar to phage capsids and contractile tails. Bioactivity assays of cell free supernatants (CFS) extracted during the growth of Bl 1821L and Bl 1951 suggested spontaneous induction of these HMW putative ABPs with an autocidal activity. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of spontaneously induced putative ABPs showed appearance of ~ 30 kDa and ~ 48 kDa bands of varying intensity across all the time intervals during the bacterial growth except in the initial hours. Statistically, spontaneously induced HMW putative ABPs of Bl 1951 exhibited a significant decrease in the number of viable cells of its producer strain after 18 h of growth in liquid. In addition, a significant change in pH and prominent bioactivity of the CFS of this particular time period was noted. Biochemically, the filtered supernatant derived from either Bl 1821L or Bl 1951 maintained bioactivity over a wide range of pH and temperature. CONCLUSION This study reports the spontaneous induction of HMW putative ABPs (bacteriocins) of Bl 1821L and Bl 1951 isolates during the course of growth with potential autocidal activity which is critically important during production as a potential biopesticide. A narrow spectrum of putative antibacterial activity of Bl 1951 precipitate was found. The stability of HMW putative ABPs of Bl 1821L and Bl 1951 over a wide range of pH and temperature can be useful in expanding the potential of this useful bacterium beyond the insecticidal value.
Collapse
Affiliation(s)
- Tauseef K Babar
- Bioprotection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand.
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60000, Pakistan.
| | - Travis R Glare
- Bioprotection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| | - John G Hampton
- Bioprotection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| | - Mark R H Hurst
- Resilient agriculture, AgResearch, Lincoln Research Centre, Christchurch, New Zealand
| | - Josefina Narciso
- Bioprotection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| |
Collapse
|
3
|
Andreas MP, Giessen TW. The biosynthesis of the odorant 2-methylisoborneol is compartmentalized inside a protein shell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590730. [PMID: 38712110 PMCID: PMC11071394 DOI: 10.1101/2024.04.23.590730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Terpenoids are the largest class of natural products, found across all domains of life. One of the most abundant bacterial terpenoids is the volatile odorant 2-methylisoborneol (2-MIB), partially responsible for the earthy smell of soil and musty taste of contaminated water. Many bacterial 2-MIB biosynthetic gene clusters were thought to encode a conserved transcription factor, named EshA in the model soil bacterium Streptomyces griseus. Here, we revise the function of EshA, now referred to as Sg Enc, and show that it is a Family 2B encapsulin shell protein. Using cryo-electron microscopy, we find that Sg Enc forms an icosahedral protein shell and encapsulates 2-methylisoborneol synthase (2-MIBS) as a cargo protein. Sg Enc contains a cyclic adenosine monophosphate (cAMP) binding domain (CBD)-fold insertion and a unique metal-binding domain, both displayed on the shell exterior. We show that Sg Enc CBDs do not bind cAMP. We find that 2-MIBS cargo loading is mediated by an N-terminal disordered cargo-loading domain and that 2-MIBS activity and Sg Enc shell structure are not modulated by cAMP. Our work redefines the function of EshA and establishes Family 2B encapsulins as cargo-loaded protein nanocompartments involved in secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Michael P. Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tobias W. Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Babar TK, Glare TR, Hampton JG, Hurst MRH, Narciso J, Sheen CR, Koch B. Linocin M18 protein from the insect pathogenic bacterium Brevibacillus laterosporus isolates. Appl Microbiol Biotechnol 2023; 107:4337-4353. [PMID: 37204448 PMCID: PMC10313851 DOI: 10.1007/s00253-023-12563-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/20/2023]
Abstract
Brevibacillus laterosporus (Bl) is a Gram-positive and spore-forming bacterium. Insect pathogenic strains have been characterised in New Zealand, and two isolates, Bl 1821L and Bl 1951, are under development for use in biopesticides. However, growth in culture is sometimes disrupted, affecting mass production. Based on previous work, it was hypothesised that Tectiviridae phages might be implicated. While investigating the cause of the disrupted growth, electron micrographs of crude lysates showed structural components of putative phages including capsid and tail-like structures. Sucrose density gradient purification yielded a putative self-killing protein of ~30 kDa. N-terminal sequencing of the ~30 kDa protein identified matches to a predicted 25 kDa hypothetical and a 31.4 kDa putative encapsulating protein homologs, with the genes encoding each protein adjacent in the genomes. BLASTp analysis of the homologs of 31.4 kDa amino acid sequences shared 98.6% amino acid identity to the Linocin M18 bacteriocin family protein of Brevibacterium sp. JNUCC-42. Bioinformatic tools including AMPA and CellPPD defined that the bactericidal potential originated from a putative encapsulating protein. Antagonistic activity of the ~30 kDa encapsulating protein of Bl 1821L and Bl 1951during growth in broth exhibited bacterial autolytic activity. LIVE/DEAD staining of Bl 1821L cells after treatment with the ~30 kDa encapsulating protein of Bl 1821L substantiated the findings by showing 58.8% cells with the compromised cell membranes as compared to 37.5% cells in the control. Furthermore, antibacterial activity of the identified proteins of Bl 1821L was validated through gene expression in a Gram-positive bacterium Bacillus subtilis WB800N. KEY POINTS: • Gene encoding the 31.4 kDa antibacterial Linocin M18 protein was identified • It defined the autocidal activity of Linocin M18 (encapsulating) protein • Identified the possible killing mechanism of the encapsulins.
Collapse
Affiliation(s)
- Tauseef K Babar
- Bio-Protection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand.
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60000, Pakistan.
| | - Travis R Glare
- Bio-Protection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| | - John G Hampton
- Bio-Protection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| | - Mark R H Hurst
- Resilient Agriculture, AgResearch, Lincoln Research Centre, Christchurch, New Zealand
| | - Josefina Narciso
- Bio-Protection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| | - Campbell R Sheen
- Protein Science and Engineering, Callaghan Innovation, Christchurch, New Zealand
| | - Barbara Koch
- Protein Science and Engineering, Callaghan Innovation, Christchurch, New Zealand
| |
Collapse
|
5
|
Chmelyuk NS, Oda VV, Gabashvili AN, Abakumov MA. Encapsulins: Structure, Properties, and Biotechnological Applications. BIOCHEMISTRY (MOSCOW) 2023; 88:35-49. [PMID: 37068871 PMCID: PMC9937530 DOI: 10.1134/s0006297923010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In 1994 a new class of prokaryotic compartments was discovered, collectively called "encapsulins" or "nanocompartments". Encapsulin shell protomer proteins self-assemble to form icosahedral structures of various diameters (24-42 nm). Inside of nanocompartments shells, one or several cargo proteins, diverse in their functions, can be encapsulated. In addition, non-native cargo proteins can be loaded into nanocompartments, and shell surfaces can be modified via various compounds, which makes it possible to create targeted drug delivery systems, labels for optical and MRI imaging, and to use encapsulins as bioreactors. This review describes a number of strategies of encapsulins application in various fields of science, including biomedicine and nanobiotechnologies.
Collapse
Affiliation(s)
- Nelly S Chmelyuk
- National University of Science and Technology "MISIS", Moscow, 119049, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117977, Russia
| | - Vera V Oda
- National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Anna N Gabashvili
- National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Maxim A Abakumov
- National University of Science and Technology "MISIS", Moscow, 119049, Russia.
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117977, Russia
| |
Collapse
|
6
|
Abstract
Subcellular compartmentalization is a defining feature of all cells. In prokaryotes, compartmentalization is generally achieved via protein-based strategies. The two main classes of microbial protein compartments are bacterial microcompartments and encapsulin nanocompartments. Encapsulins self-assemble into proteinaceous shells with diameters between 24 and 42 nm and are defined by the viral HK97-fold of their shell protein. Encapsulins have the ability to encapsulate dedicated cargo proteins, including ferritin-like proteins, peroxidases, and desulfurases. Encapsulation is mediated by targeting sequences present in all cargo proteins. Encapsulins are found in many bacterial and archaeal phyla and have been suggested to play roles in iron storage, stress resistance, sulfur metabolism, and natural product biosynthesis. Phylogenetic analyses indicate that they share a common ancestor with viral capsid proteins. Many pathogens encode encapsulins, and recent evidence suggests that they may contribute toward pathogenicity. The existing information on encapsulin structure, biochemistry, biological function, and biomedical relevance is reviewed here.
Collapse
Affiliation(s)
- Tobias W. Giessen
- Departments of Biomedical Engineering and Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Rodríguez JM, Allende-Ballestero C, Cornelissen JJLM, Castón JR. Nanotechnological Applications Based on Bacterial Encapsulins. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1467. [PMID: 34206092 PMCID: PMC8229669 DOI: 10.3390/nano11061467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Encapsulins are proteinaceous nanocontainers, constructed by a single species of shell protein that self-assemble into 20-40 nm icosahedral particles. Encapsulins are structurally similar to the capsids of viruses of the HK97-like lineage, to which they are evolutionarily related. Nearly all these nanocontainers encase a single oligomeric protein that defines the physiological role of the complex, although a few encapsulate several activities within a single particle. Encapsulins are abundant in bacteria and archaea, in which they participate in regulation of oxidative stress, detoxification, and homeostasis of key chemical elements. These nanocontainers are physically robust, contain numerous pores that permit metabolite flux through the shell, and are very tolerant of genetic manipulation. There are natural mechanisms for efficient functionalization of the outer and inner shell surfaces, and for the in vivo and in vitro internalization of heterologous proteins. These characteristics render encapsulin an excellent platform for the development of biotechnological applications. Here we provide an overview of current knowledge of encapsulin systems, summarize the remarkable toolbox developed by researchers in this field, and discuss recent advances in the biomedical and bioengineering applications of encapsulins.
Collapse
Affiliation(s)
- Javier M. Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (J.M.R.); (C.A.-B.)
| | - Carolina Allende-Ballestero
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (J.M.R.); (C.A.-B.)
| | - Jeroen J. L. M. Cornelissen
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands;
| | - José R. Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (J.M.R.); (C.A.-B.)
- Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
8
|
Jones JA, Giessen TW. Advances in encapsulin nanocompartment biology and engineering. Biotechnol Bioeng 2020; 118:491-505. [PMID: 32918485 DOI: 10.1002/bit.27564] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 09/09/2020] [Indexed: 12/23/2022]
Abstract
Compartmentalization is an essential feature of all cells. It allows cells to segregate and coordinate physiological functions in a controlled and ordered manner. Different mechanisms of compartmentalization exist, with the most relevant to prokaryotes being encapsulation via self-assembling protein-based compartments. One widespread example of such is that of encapsulins-cage-like protein nanocompartments able to compartmentalize specific reactions, pathways, and processes in bacteria and archaea. While still relatively nascent bioengineering tools, encapsulins exhibit many promising characteristics, including a number of defined compartment sizes ranging from 24 to 42 nm, straightforward expression, the ability to self-assemble via the Hong Kong 97-like fold, marked physical robustness, and internal and external handles primed for rational genetic and molecular manipulation. Moreover, encapsulins allow for facile and specific encapsulation of native or heterologous cargo proteins via naturally or rationally fused targeting peptide sequences. Taken together, the attributes of encapsulins promise substantial customizability and broad usability. This review discusses recent advances in employing engineered encapsulins across various fields, from their use as bionanoreactors to targeted delivery systems and beyond. A special focus will be provided on the rational engineering of encapsulin systems and their potential promise as biomolecular research tools.
Collapse
Affiliation(s)
- Jesse A Jones
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Tobias W Giessen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Gabashvili AN, Chmelyuk NS, Efremova MV, Malinovskaya JA, Semkina AS, Abakumov MA. Encapsulins-Bacterial Protein Nanocompartments: Structure, Properties, and Application. Biomolecules 2020; 10:biom10060966. [PMID: 32604934 PMCID: PMC7355545 DOI: 10.3390/biom10060966] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, a new class of prokaryotic compartments, collectively called encapsulins or protein nanocompartments, has been discovered. The shell proteins of these structures self-organize to form icosahedral compartments with a diameter of 25-42 nm, while one or more cargo proteins with various functions can be encapsulated in the nanocompartment. Non-native cargo proteins can be loaded into nanocompartments and the surface of the shells can be further functionalized, which allows for developing targeted drug delivery systems or using encapsulins as contrast agents for magnetic resonance imaging. Since the genes encoding encapsulins can be integrated into the cell genome, encapsulins are attractive for investigation in various scientific fields, including biomedicine and nanotechnology.
Collapse
Affiliation(s)
- Anna N. Gabashvili
- Laboratory “Biomedical Nanomaterials”, National University of Science and Technology “MISiS”, Leninskiy Prospect, 4, 119049 Moscow, Russia; (A.N.G.); (N.S.C.)
- Department of Medical Nanobiotechnoilogy, Pirogov Russian National Research Medical University, Ostrovityanova st, 1, 117997 Moscow, Russia;
| | - Nelly S. Chmelyuk
- Laboratory “Biomedical Nanomaterials”, National University of Science and Technology “MISiS”, Leninskiy Prospect, 4, 119049 Moscow, Russia; (A.N.G.); (N.S.C.)
| | - Maria V. Efremova
- Department of Nuclear Medicine, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- Institute of Biological and Medical Imaging and Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | - Alevtina S. Semkina
- Department of Medical Nanobiotechnoilogy, Pirogov Russian National Research Medical University, Ostrovityanova st, 1, 117997 Moscow, Russia;
| | - Maxim A. Abakumov
- Laboratory “Biomedical Nanomaterials”, National University of Science and Technology “MISiS”, Leninskiy Prospect, 4, 119049 Moscow, Russia; (A.N.G.); (N.S.C.)
- Department of Medical Nanobiotechnoilogy, Pirogov Russian National Research Medical University, Ostrovityanova st, 1, 117997 Moscow, Russia;
- Correspondence: ; Tel.: +7-903-586-4777
| |
Collapse
|
10
|
Ordóñez-Robles M, Rodríguez-García A, Martín JF. Genome-wide transcriptome response of Streptomyces tsukubaensis to N-acetylglucosamine: effect on tacrolimus biosynthesis. Microbiol Res 2018; 217:14-22. [DOI: 10.1016/j.micres.2018.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/04/2018] [Accepted: 08/29/2018] [Indexed: 11/29/2022]
|
11
|
Planckaert S, Jourdan S, Francis IM, Deflandre B, Rigali S, Devreese B. Proteomic Response to Thaxtomin Phytotoxin Elicitor Cellobiose and to Deletion of Cellulose Utilization Regulator CebR in Streptomyces scabies. J Proteome Res 2018; 17:3837-3852. [DOI: 10.1021/acs.jproteome.8b00528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sören Planckaert
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Samuel Jourdan
- InBioS − Center for Protein Engineering, University of Liège, Institut de Chimie, B-4000 Liège, Belgium
| | - Isolde M. Francis
- Department of Biology, California State University Bakersfield, Bakersfield, California 93311-1022, United States
| | - Benoit Deflandre
- InBioS − Center for Protein Engineering, University of Liège, Institut de Chimie, B-4000 Liège, Belgium
| | - Sébastien Rigali
- InBioS − Center for Protein Engineering, University of Liège, Institut de Chimie, B-4000 Liège, Belgium
| | - Bart Devreese
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
12
|
Ordóñez-Robles M, Santos-Beneit F, Martín JF. Unraveling Nutritional Regulation of Tacrolimus Biosynthesis in Streptomyces tsukubaensis through omic Approaches. Antibiotics (Basel) 2018; 7:antibiotics7020039. [PMID: 29724001 PMCID: PMC6022917 DOI: 10.3390/antibiotics7020039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022] Open
Abstract
Streptomyces tsukubaensis stands out among actinomycetes by its ability to produce the immunosuppressant tacrolimus. Discovered about 30 years ago, this macrolide is widely used as immunosuppressant in current clinics. Other potential applications for the treatment of cancer and as neuroprotective agent have been proposed in the last years. In this review we introduce the discovery of S. tsukubaensis and tacrolimus, its biosynthetic pathway and gene cluster (fkb) regulation. We have focused this work on the omic studies performed in this species in order to understand tacrolimus production. Transcriptomics, proteomics and metabolomics have improved our knowledge about the fkb transcriptional regulation and have given important clues about nutritional regulation of tacrolimus production that can be applied to improve production yields. Finally, we address some points of S. tsukubaensis biology that deserve more attention.
Collapse
Affiliation(s)
- María Ordóñez-Robles
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León 24071, Spain.
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, León 24006, Spain.
| | - Fernando Santos-Beneit
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, León 24006, Spain.
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo 33006, Spain.
| | - Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León 24071, Spain.
| |
Collapse
|
13
|
Ordóñez-Robles M, Santos-Beneit F, Albillos SM, Liras P, Martín JF, Rodríguez-García A. Streptomyces tsukubaensis as a new model for carbon repression: transcriptomic response to tacrolimus repressing carbon sources. Appl Microbiol Biotechnol 2017; 101:8181-8195. [PMID: 28983826 DOI: 10.1007/s00253-017-8545-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 11/26/2022]
Abstract
In this work, we identified glucose and glycerol as tacrolimus repressing carbon sources in the important species Streptomyces tsukubaensis. A genome-wide analysis of the transcriptomic response to glucose and glycerol additions was performed using microarray technology. The transcriptional time series obtained allowed us to compare the transcriptomic profiling of S. tsukubaensis growing under tacrolimus producing and non-producing conditions. The analysis revealed important and different metabolic changes after the additions and a lack of transcriptional activation of the fkb cluster. In addition, we detected important differences in the transcriptional response to glucose between S. tsukubaensis and the model species Streptomyces coelicolor. A number of genes encoding key players of morphological and biochemical differentiation were strongly and permanently downregulated by the carbon sources. Finally, we identified several genes showing transcriptional profiles highly correlated to that of the tacrolimus biosynthetic pathway regulator FkbN that might be potential candidates for the improvement of tacrolimus production.
Collapse
Affiliation(s)
- María Ordóñez-Robles
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
| | - Fernando Santos-Beneit
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Silvia M Albillos
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
- Departamento de Biotecnología y Ciencia de los Alimentos, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Paloma Liras
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
| | - Juan F Martín
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
| | - Antonio Rodríguez-García
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain.
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain.
| |
Collapse
|
14
|
Nichols RJ, Cassidy-Amstutz C, Chaijarasphong T, Savage DF. Encapsulins: molecular biology of the shell. Crit Rev Biochem Mol Biol 2017. [DOI: 10.1080/10409238.2017.1337709] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Robert J. Nichols
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA, USA
| | | | | | - David F. Savage
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA, USA
- Department of Chemistry, UC Berkeley, Berkeley, CA, USA
| |
Collapse
|
15
|
van Dissel D, Claessen D, van Wezel GP. Morphogenesis of Streptomyces in submerged cultures. ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:1-45. [PMID: 25131399 DOI: 10.1016/b978-0-12-800259-9.00001-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Members of the genus Streptomyces are mycelial bacteria that undergo a complex multicellular life cycle and propagate via sporulation. Streptomycetes are important industrial microorganisms, as they produce a plethora of medically relevant natural products, including the majority of clinically important antibiotics, as well as a wide range of enzymes with industrial application. While development of Streptomyces in surface-grown cultures is well studied, relatively little is known of the parameters that determine morphogenesis in submerged cultures. Here, growth is characterized by the formation of mycelial networks and pellets. From the perspective of industrial fermentations, such mycelial growth is unattractive, as it is associated with slow growth, heterogeneous cultures, and high viscosity. Here, we review the current insights into the genetic and environmental factors that determine mycelial growth and morphology in liquid-grown cultures. The genetic factors include cell-matrix proteins and extracellular polymers, morphoproteins with specific roles in liquid-culture morphogenesis, with the SsgA-like proteins as well-studied examples, and programmed cell death. Environmental factors refer in particular to those dictated by process engineering, such as growth media and reactor set-up. These insights are then integrated to provide perspectives as to how this knowledge can be applied to improve streptomycetes for industrial applications.
Collapse
Affiliation(s)
- Dino van Dissel
- Molecular Biotechnology, Institute Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute Biology Leiden, Leiden University, Leiden, The Netherlands.
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
16
|
Nindita Y, Nishikawa T, Arakawa K, Wang G, Ochi K, Qin Z, Kinashi H. Chromosomal circularization of the model Streptomyces species, Streptomyces coelicolor A3(2). FEMS Microbiol Lett 2013; 347:149-55. [PMID: 23915258 DOI: 10.1111/1574-6968.12228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/10/2013] [Accepted: 07/30/2013] [Indexed: 12/14/2022] Open
Abstract
Streptomyces linear chromosomes frequently cause deletions at both ends spontaneously or by various mutagenic treatments, leading to chromosomal circularization and arm replacement. However, chromosomal circularization has not been confirmed at a sequence level in the model species, Streptomyces coelicolor A3(2). In this work, we have cloned and sequenced a fusion junction of a circularized chromosome in an S. coelicolor A3(2) mutant and found a 6-bp overlap between the left and right deletion ends. This result shows that chromosomal circularization occurred by nonhomologous recombination of the deletion ends in this species, too. At the end of the study, we discuss on stability and evolution of Streptomyces chromosomes.
Collapse
Affiliation(s)
- Yosi Nindita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Ulrych A, Goldová J, Petříček M, Benada O, Kofroňová O, Rampírová P, Petříčková K, Branny P. The pleiotropic effect of WD-40 domain containing proteins on cellular differentiation and production of secondary metabolites in Streptomyces coelicolor. MOLECULAR BIOSYSTEMS 2013; 9:1453-69. [PMID: 23529369 DOI: 10.1039/c3mb25542e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The genome of Streptomyces coelicolor encodes six potential WD-40 genes. Two of them, the wdpB (SCO5953) and the wdpC (SCO4422) genes, were studied to determine their function. Deletion of the wdpB gene resulted in a considerable decrease of aerial hyphae formation, leading to a conditionally bald phenotype, and reduced undecylprodigiosin production. In addition, the aerial hyphae of the ΔwdpB mutant strain were unusually branched and showed the signs of irregular septation and precocious lysis. Disruption of wdpC resulted in the reduction of undecylprodigiosin and delayed actinorhodin production. The ΔwdpC mutant strain showed precocious lysis of hyphae and delayed sporulation without typical curling of aerial hyphae in the early sporulation stage. The whole-genome transcriptome analysis revealed that deletion of wdpB affects the expression of genes involved in aerial hyphae differentiation, sporulation and secondary metabolites production. Deletion of wdpC caused downregulation of several gene clusters encoding secondary metabolites. Both the wdp genes seem to possess transcriptional autoregulatory function. Overexpression and genetic complementation studies confirmed the observed phenotype of both mutants. The results obtained suggest that both genes studied have a pleiotropic effect on physiological and morphological differentiation.
Collapse
Affiliation(s)
- Aleš Ulrych
- Institute of Microbiology of the ASCR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Yin P, Li YY, Zhou J, Wang YH, Zhang SL, Ye BC, Ge WF, Xia YL. Direct proteomic mapping of Streptomyces avermitilis wild and industrial strain and insights into avermectin production. J Proteomics 2013. [DOI: 10.1016/j.jprot.2012.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
McKenzie NL, Nodwell JR. Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. J Bacteriol 2007; 189:5284-92. [PMID: 17513473 PMCID: PMC1951880 DOI: 10.1128/jb.00305-07] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The AbsA two-component signal transduction system, comprised of the sensor kinase AbsA1 and the response regulator AbsA2, acts as a negative regulator of antibiotic production in Streptomyces coelicolor, for which the phosphorylated form of AbsA2 (AbsA2 approximately P) is the agent of repression. In this study, we used chromatin immunoprecipitation to show that AbsA2 binds the promoter regions of actII-ORF4, cdaR, and redZ, which encode pathway-specific activators for actinorhodin, calcium-dependent antibiotic, and undecylprodigiosin, respectively. We confirm that these interactions also occur in vitro and that the binding of AbsA2 to each gene is enhanced by phosphorylation. Induced expression of actII-ORF4 and redZ in the hyperrepressive absA1 mutant (C542) brought about pathway-specific restoration of actinorhodin and undecylprodigiosin production, respectively. Our results suggest that AbsA2 approximately P interacts with as many as four sites in the region that includes the actII-ORF4 promoter. These data suggest that AbsA2 approximately P inhibits antibiotic production by directly interfering with the expression of pathway-specific regulators of antibiotic biosynthetic gene clusters.
Collapse
Affiliation(s)
- Nancy L McKenzie
- Department of Biochemistry & Biomedical Sciences, McMaster University, Health Sciences Centre, 1200 Main St. W., Hamilton, Ontario, Canada
| | | |
Collapse
|
20
|
Saito N, Xu J, Hosaka T, Okamoto S, Aoki H, Bibb MJ, Ochi K. EshA accentuates ppGpp accumulation and is conditionally required for antibiotic production in Streptomyces coelicolor A3(2). J Bacteriol 2006; 188:4952-61. [PMID: 16788203 PMCID: PMC1483009 DOI: 10.1128/jb.00343-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disruption of eshA, which encodes a 52-kDa protein that is produced late during the growth of Streptomyces coelicolor A3(2), resulted in elimination of actinorhodin production. In contrast, disruption of eshB, a close homologue of eshA, had no effect on antibiotic production. The eshA disruptant accumulated lower levels of ppGpp than the wild-type strain accumulated. The loss of actinorhodin production in the eshA disruptant was restored by expression of a truncated relA gene, which increased the ppGpp level to the level in the wild-type strain, indicating that the reduced ppGpp accumulation in the eshA mutant was solely responsible for the loss of antibiotic production. Antibiotic production was also restored in the eshA mutant by introducing mutations into rpoB (encoding the RNA polymerase beta subunit) that bypassed the requirement for ppGpp, which is consistent with a role for EshA in modulating ppGpp levels. EshA contains a cyclic nucleotide-binding domain that is essential for its role in triggering actinorhodin production. EshA may provide new insights and opportunities to unravel the molecular signaling events that occur during physiological differentiation in streptomycetes.
Collapse
Affiliation(s)
- Natsumi Saito
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Ochi K, Okamoto S, Tozawa Y, Inaoka T, Hosaka T, Xu J, Kurosawa K. Ribosome Engineering and Secondary Metabolite Production. ADVANCES IN APPLIED MICROBIOLOGY 2004; 56:155-84. [PMID: 15566979 DOI: 10.1016/s0065-2164(04)56005-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kozo Ochi
- National Food Research Institute Ibaraki 305-8642, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Saito N, Matsubara K, Watanabe M, Kato F, Ochi K. Genetic and biochemical characterization of EshA, a protein that forms large multimers and affects developmental processes in Streptomyces griseus. J Biol Chem 2003; 278:5902-11. [PMID: 12488450 DOI: 10.1074/jbc.m208564200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 52-kDa protein, EshA, whose expression is controlled developmentally, is produced during the late growth phase of Streptomyces spp. We found that disruption of the eshA gene, which encodes the EshA protein, abolishes the aerial mycelium formation and streptomycin production in Streptomyces griseus when grown on an agar plate. The eshA disruptant KO-390 demonstrated a reduced amount of expression of the transcriptional activator strR, thus accounting for the failure to produce streptomycin. KO-390 was found to accumulate deoxynucleoside triphosphates at high levels, including dGTP, at late growth phase. The accumulation of dGTP was a cause for the impaired ability of KO-390 to produce aerial mycelium, because the ability to form aerial mycelium was completely repaired by addition of decoyinine, an inhibitor of GMP synthetase. The accumulation of dNTP in KO-390 coincided with a reduced rate of DNA synthesis. The developmental time frame of these phenomena in KO-390 matched a burst of EshA expression in the wild-type strain. In contrast to S. griseus, the eshA disruption did not affect the ability for Streptomyces coelicolor to form aerial mycelium and did not result in the aberrant accumulation of dNTP accompanied by arrest of DNA synthesis, implying qualitative differences in addition to quantitative differences between the two EshA proteins. We propose that the S. griseus EshA protein somehow positively affects (or regulates) the replication of DNA in wild-type cells at late growth phase but leads to aberrant phenotypes in mutant cells due to the disturbed DNA replication. The EshA protein was found to exist as a multimer ( approximately 20-mers) creating a cubic-like structure with a diameter of 27 nm and located predominantly in cytoplasm.
Collapse
Affiliation(s)
- Natsumi Saito
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | |
Collapse
|