1
|
Abera D, Mossie T. A review on pneumonic pasteurellosis in small ruminants. JOURNAL OF APPLIED ANIMAL RESEARCH 2023. [DOI: 10.1080/09712119.2022.2146123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dessie Abera
- Debre markos Agricultural Research Center, Debre markos, Ethiopia
| | - Tesfa Mossie
- Jimma Agricultural Research Center, Jimma, Ethiopia
| |
Collapse
|
2
|
Fox KA, MacGlover CAW, Blecha KA, Stenglein MD. Assessing shared respiratory pathogens between domestic (Ovis aries) and bighorn (Ovis canadensis) sheep; methods for multiplex PCR, amplicon sequencing, and bioinformatics to characterize respiratory flora. PLoS One 2023; 18:e0293062. [PMID: 37856492 PMCID: PMC10586700 DOI: 10.1371/journal.pone.0293062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
Respiratory disease is responsible for dramatic population declines in bighorn sheep (Ovis canadensis), and respiratory pathogen diagnostics contribute to the management of bighorn populations. To create a comprehensive and consistent approach to bighorn sheep respiratory diagnostics, we created a culture-independent assay to detect and strain type Mannheimia haemolytica, Bibersteinia trehalosi, Pasteurella multocida, and Mycoplasma ovipneumoniae. The assay also detects and characterizes the Pasteurellaceae leukotoxin A gene, and broadly assesses the bacterial composition of each sample based on 16S rRNA sequences. The assay is based on a three-step approach: 1) Multiplex PCR to amplify targets including eight loci for each bacterial species, the Pasteurellaceae lktA gene, and the 16S rRNA gene 2) Library preparation, barcoding, and short-read Illumina sequencing to determine the genetic sequences of each target, and 3) Bioinformatics in the form of automated software to analyze genetic sequences. The assay was designed to assess shared pathogens between domestic and bighorn sheep, but could be useful for many applications in bighorn sheep respiratory disease research and management.
Collapse
Affiliation(s)
- Karen A. Fox
- Wildlife Health Program, Colorado Parks and Wildlife, Fort Collins, Colorado, United States of America
| | | | - Kevin A. Blecha
- Terrestrial Branch, Colorado Parks and Wildlife, Gunnison, Colorado, United States of America
| | - Mark D. Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
3
|
Dassanayake RP, Clawson ML, Tatum FM, Briggs RE, Kaplan BS, Casas E. Differential identification of Mannheimia haemolytica genotypes 1 and 2 using colorimetric loop-mediated isothermal amplification. BMC Res Notes 2023; 16:4. [PMID: 36658613 PMCID: PMC9850709 DOI: 10.1186/s13104-023-06272-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Mannheimia haemolytica is the primary bacterial pathogen associated with bovine respiratory disease complex (BRDC). While M. haemolytica has been subdivided into 12 capsular serotypes (ST), ST1, ST2 and ST6 are commonly isolated from cattle. More recently, M. haemolytica strains isolated from North American cattle have been classified into genotypes 1 (ST2) and 2 (ST1 and ST6). Of the two genotypes, genotype 1 strains are frequently isolated from healthy animals whereas, genotype 2 strains are predominantly isolated from BRDC animals. However, isolation of both genotypes from pneumonic lung samples can complicate diagnosis. Therefore, the aim of this study was to develop a colorimetric loop-mediated isothermal amplification (LAMP) assay to differentiate M. haemolytica genotypes. RESULTS The genotype specificity of the LAMP was tested using purified genomic DNA from 22 M. haemolytica strains (10 genotype 1, 12 genotype 2) and strains from four related Pasteurellaceae species; Bibersteinia trehalosi, Mannheimia glucosida, Pasteurella multocida, and Histophilus somni. Genotype 1 (adhesin pseudogene B1) specific-LAMP reactions amplified DNA only from genotype 1 strains while genotype 2 (adhesin G) reactions amplified DNA only from genotype 2 strains. The overall detection sensitivity and specificity of the newly developed colorimetric LAMP assay for each genotype were 100%. The limits of detection of two LAMP assays were 1-100 target gene copies per reaction. LAMP primers designed in this study may help the differential identification of M. haemolytica genotypes 1 and 2.
Collapse
Affiliation(s)
- Rohana P. Dassanayake
- grid.508983.fUnited States Department of Agriculture, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Agricultural Research
Service, Ames, IA 50010 USA
| | - Michael L. Clawson
- grid.512847.dUnited States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Animal Health Genomic Research Unit, Clay Center, NE 68933 USA
| | - Fred M. Tatum
- grid.508983.fUnited States Department of Agriculture, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Agricultural Research
Service, Ames, IA 50010 USA
| | - Robert E. Briggs
- grid.508983.fUnited States Department of Agriculture, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Agricultural Research
Service, Ames, IA 50010 USA
| | - Bryan S. Kaplan
- grid.508983.fUnited States Department of Agriculture, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Agricultural Research
Service, Ames, IA 50010 USA
| | - Eduardo Casas
- grid.508983.fUnited States Department of Agriculture, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Agricultural Research
Service, Ames, IA 50010 USA
| |
Collapse
|
4
|
O'Boyle N, Berry CC, Davies RL. Differentiated ovine tracheal epithelial cells support the colonisation of pathogenic and non-pathogenic strains of Mannheimia haemolytica. Sci Rep 2020; 10:14971. [PMID: 32917945 PMCID: PMC7486916 DOI: 10.1038/s41598-020-71604-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2020] [Accepted: 08/07/2020] [Indexed: 11/15/2022] Open
Abstract
Mannheimia haemolytica is the primary bacterial species associated with respiratory disease of ruminants. A lack of cost-effective, reproducible models for the study of M. haemolytica pathogenesis has hampered efforts to better understand the molecular interactions governing disease progression. We employed a highly optimised ovine tracheal epithelial cell model to assess the colonisation of various pathogenic and non-pathogenic M. haemolytica isolates of bovine and ovine origin. Comparison of single representative pathogenic and non-pathogenic ovine isolates over ten time-points by enumeration of tissue-associated bacteria, histology, immunofluorescence microscopy and scanning electron microscopy revealed temporal differences in adhesion, proliferation, bacterial cell physiology and host cell responses. Comparison of eight isolates of bovine and ovine origin at three key time-points (2 h, 48 h and 72 h), revealed that colonisation was not strictly pathogen or serotype specific, with isolates of serotype A1, A2, A6 and A12 being capable of colonising the cell layer regardless of host species or disease status of the host. A trend towards increased proliferative capacity by pathogenic ovine isolates was observed. These results indicate that the host-specific nature of M. haemolytica infection may result at least partially from the colonisation-related processes of adhesion, invasion and proliferation at the epithelial interface.
Collapse
Affiliation(s)
- Nicky O'Boyle
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Catherine C Berry
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Robert L Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
5
|
Brown SE, Bycroft KA, Adam K, Collett MG. Acute fibrinous pleuropneumonia and septicaemia caused by Bibersteinia trehalosi in neonatal calves in New Zealand. N Z Vet J 2020; 69:51-57. [PMID: 32646323 DOI: 10.1080/00480169.2020.1792372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022]
Abstract
Case history: In July and August 2019, 15/40, ≤48-hour-old calves became acutely ill. The calves were all born on-farm, transferred to pens soon after birth, and fed with "gold" colostrum. The hygiene, biosecurity and ventilation in the pens were poor. Of the 15 calves, 11 died or were euthanised and four calves, ≤48-hour-old, that became acutely ill later in the outbreak were treated with cefquinome, a fourth-generation cephalosporin, and recovered. Clinical findings: The affected calves presented with acute recumbency, lethargy, tachypnoea, tachycardia, increased lung sounds, inability to stand or feed, and dehydration without pyrexia. Pathological findings: Gross findings in a calf that died naturally included fibrinous pleuropneumonia, marked oedematous expansion of the interlobular septa, especially in the ventral lung lobes, fibrinous polyserositis and fibrinous polyarthritis. A second calf that was euthanised had strikingly similar lung lesions. Histologically, the pulmonary interlobular septa of both calves were prominently expanded by oedema, dilated lymphatics and the infiltration of numerous neutrophils and macrophages interspersed with small Gram-negative rod bacteria. Likewise, the visceral pleura showed fibrinopurulent inflammation with numerous small Gram-negative rods. Microbiological findings: Microbial culture and matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry identified Bibersteinia trehalosi in the lung, stifle joint and peritoneal cavity of the first calf and lung of the second. Diagnosis: B. trehalosi acute fibrinous pleuropneumonia and septicaemia. Clinical relevance: This is the first report of the clinical findings and histological lesions of B. trehalosi pleuropneumonia and septicaemia in calves in New Zealand. The pathogen is isolated with increasing frequency from cases of bovine respiratory disease in dairy cows, feedlot cattle and calves in the United Kingdom and North America. The importance of microbial culture in cases such as this with unusual lung lesions in calves <48 hours of age, cannot be over emphasised. Cefquinome was administered to all remaining heifer calves and four calves that became ill later in the outbreak recovered after cefquinome treatment.
Collapse
Affiliation(s)
- S E Brown
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - K A Bycroft
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - K Adam
- IDEXX New Zealand Veterinary Pathology, Palmerston North, New Zealand
| | - M G Collett
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
6
|
|
7
|
Abstract
Mannheimia haemolytica is the major cause of severe pneumonia in bovine respiratory disease (BRD). Early M. haemolytica bacterins were either ineffective or even enhanced disease in vaccinated cattle, which led to studies of the bacterium's virulence factors and potential immunogens to determine ways to improve vaccines. Studies have focused on the capsule, lipopolysaccharide, various adhesins, extracellular enzymes, outer membrane proteins, and leukotoxin (LKT) resulting in a strong database for understanding immune responses to the bacterium and production of more efficacious vaccines. The importance of immunity to LKT and to surface antigens in stimulating immunity led to studies of individual native or recombinant antigens, bacterial extracts, live-attenuated or mutant organisms, culture supernatants, combined bacterin-toxoids, outer membrane vesicles, and bacterial ghosts. Efficacy of several of these potential vaccines can be shown following experimental M. haemolytica challenge; however, efficacy in field trials is harder to determine due to the complexity of factors and etiologic agents involved in naturally occurring BRD. Studies of potential vaccines have led current commercial vaccines, which are composed primarily of culture supernatant, bacterin-toxoid, or live mutant bacteria. Several of those can be augmented experimentally by addition of recombinant LKT or outer membrane proteins.
Collapse
|
8
|
Pathogenic Mannheimia haemolytica Invades Differentiated Bovine Airway Epithelial Cells. Infect Immun 2019; 87:IAI.00078-19. [PMID: 30962401 PMCID: PMC6529648 DOI: 10.1128/iai.00078-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The Gram-negative bacterium Mannheimia haemolytica is the primary bacterial species associated with bovine respiratory disease (BRD) and is responsible for significant economic losses to livestock industries worldwide. Healthy cattle are frequently colonized by commensal serotype A2 strains, but disease is usually caused by pathogenic strains of serotype A1. For reasons that are poorly understood, a transition occurs within the respiratory tract and a sudden explosive proliferation of serotype A1 bacteria leads to the onset of pneumonic disease. Very little is known about the interactions of M. haemolytica with airway epithelial cells of the respiratory mucosa which might explain the different abilities of serotype A1 and A2 strains to cause disease. In the present study, host-pathogen interactions in the bovine respiratory tract were mimicked using a novel differentiated bovine bronchial epithelial cell (BBEC) infection model. In this model, differentiated BBECs were inoculated with serotype A1 or A2 strains of M. haemolytica and the course of infection followed over a 5-day period by microscopic assessment and measurement of key proinflammatory mediators. We have demonstrated that serotype A1, but not A2, M. haemolytica invades differentiated BBECs by transcytosis and subsequently undergoes rapid intracellular replication before spreading to adjacent cells and causing extensive cellular damage. Our findings suggest that the explosive proliferation of serotype A1 M. haemolytica that occurs within the bovine respiratory tract prior to the onset of pneumonic disease is potentially due to bacterial invasion of, and rapid proliferation within, the mucosal epithelium. The discovery of this previously unrecognized mechanism of pathogenesis is important because it will allow the serotype A1-specific virulence determinants responsible for invasion to be identified and thereby provide opportunities for the development of new strategies for combatting BRD aimed at preventing early colonization and infection of the bovine respiratory tract.
Collapse
|
9
|
Ormsby MJ, Grahame E, Burchmore R, Davies RL. Comparative bioinformatic and proteomic approaches to evaluate the outer membrane proteome of the fish pathogen Yersinia ruckeri. J Proteomics 2019; 199:135-147. [PMID: 30831250 PMCID: PMC6447952 DOI: 10.1016/j.jprot.2019.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 01/14/2023]
Abstract
Yersinia ruckeri is the aetiological agent of enteric redmouth (ERM) disease and is responsible for significant economic losses in farmed salmonids. Enteric redmouth disease is associated primarily with rainbow trout (Oncorhynchus mykiss, Walbaum) but its incidence in Atlantic salmon (Salmo salar) is increasing. Outer membrane proteins (OMPs) of Gram-negative bacteria are located at the host-pathogen interface and play important roles in virulence. The outer membrane of Y. ruckeri is poorly characterised and little is known about its composition and the roles of individual OMPs in virulence. Here, we employed a bioinformatic pipeline to first predict the OMP composition of Y. ruckeri. Comparative proteomic approaches were subsequently used to identify those proteins expressed in vitro in eight representative isolates recovered from Atlantic salmon and rainbow trout. One hundred and forty-one OMPs were predicted from four Y. ruckeri genomes and 77 of these were identified in three or more genomes and were considered as "core" proteins. Gel-free and gel-based proteomic approaches together identified 65 OMPs in a single reference isolate and subsequent gel-free analysis identified 64 OMPs in the eight Atlantic salmon and rainbow trout isolates. Together, our gel-free and gel-based proteomic analyses identified 84 unique OMPs in Y. ruckeri. SIGNIFICANCE: Yersinia ruckeri is an important pathogen of Atlantic salmon and rainbow trout and is of major economic significance to the aquaculture industry worldwide. Disease outbreaks are becoming more problematic in Atlantic salmon and there is an urgent need to investigate in further detail the cell-surface (outer membrane) composition of strains infecting each of these host species. Currently, the outer membrane of Y. ruckeri is poorly characterised and very little is known about the OMP composition of strains infecting each of these salmonid species. This study represents the most comprehensive comparative outer membrane proteomic analysis of Y. ruckeri to date, encompassing isolates of different biotypes, serotypes, OMP-types and hosts of origin and provides insights into the potential roles of these diverse proteins in host-pathogen interactions. The study has identified key OMPs likely to be involved in disease pathogenesis and makes a significant contribution to furthering our understanding of the cell-surface composition of this important fish pathogen that will be relevant to the development of improved vaccines and therapeutics.
Collapse
Affiliation(s)
- Michael J Ormsby
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Edward Grahame
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Richard Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK; Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, TCRC, University of Glasgow, Glasgow G12 1QH, UK
| | - Robert L Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
10
|
Legesse A, Abayneh T, Mamo G, Gelaye E, Tesfaw L, Yami M, Belay A. Molecular characterization of Mannheimia haemolytica isolates associated with pneumonic cases of sheep in selected areas of Central Ethiopia. BMC Microbiol 2018; 18:205. [PMID: 30518323 PMCID: PMC6280500 DOI: 10.1186/s12866-018-1338-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2018] [Accepted: 11/14/2018] [Indexed: 11/24/2022] Open
Abstract
Background Mannheimia haemolytica has been recognized as the principal cause of pneumonic pasteurellosis in sheep and goats. It is one of the important diseases of small ruminants in Ethiopia. While annual vaccination using a monovalent vaccine (inactivated Pasteurella multocida biotype A) is common, respiratory diseases are still reported in various parts of Ethiopia. This suggests the need for further investigation into the species and strains responsible for the disease, which is vital information for development of a multivalent vaccine. The objective of the current study was to isolate M. heamolytica associated with pneumonic cases of sheep in selected areas of Central Ethiopia, determine its role and the strains/genotypes of the bacterium circulating in the study area. Results Bacteriological analysis of nasal swab samples collected from a total of 76 pneumonic cases of sheep showed that M. haemolytica was isolated from 26 of them while B.trehalosi from two cases. Further molecular analyses of the isolates using M. haemolytica species-specific and M.haemolytica serotype-1 antigen specific PCR assays revealed, 26 of the isolates were identified as M. haemolytica of which 21 of them were M. haemolytica serotype-1. Both M. haemolytica and B.trehalosi isolates were not detected in a PCR assay targeting capsular biosynthesis gene (capA) of P.multocida despite the non-specific products observed in M. haemolytica isolates. Phylogenetic analysis of M. haemolytica isolates included in this study in comparison with the reference strains with respect to PHSSA and Rpt2 genes revealed that the Ethiopian M. haemolytica isolates constituted three distinct genotypes consistent with site of origin. Conclusion The study indicated that M.haemolytica is commonly associated with cases of pneumonia in sheep in the study areas of central Ethiopia although the remaining other pathogens responsible for majority of the cases are yet to be determined. Molecular characterization revealed the existence of three genotypes of M. haemolytica circulating in the study areas consistent to the site of isolation. The findings suggest further extensive work to determine all pathogens associated with sheep pneumonia and the strain distribution of M. heamolytica to understand its molecular epidemiology at national level and design cost effective prevention and control methods.
Collapse
Affiliation(s)
- Abinet Legesse
- National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia
| | - Takele Abayneh
- National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia.
| | - Gezahegne Mamo
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia
| | - Esayas Gelaye
- National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia
| | - Liyuwork Tesfaw
- National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia
| | - Martha Yami
- National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia
| | - Alebachew Belay
- National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia
| |
Collapse
|
11
|
Gambetta GA, Matthews MA, Syvanen M. The Xylella fastidosa RTX operons: evidence for the evolution of protein mosaics through novel genetic exchanges. BMC Genomics 2018; 19:329. [PMID: 29728072 PMCID: PMC5935956 DOI: 10.1186/s12864-018-4731-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2017] [Accepted: 04/26/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Xylella fastidiosa (Xf) is a gram negative bacterium inhabiting the plant vascular system. In most species this bacterium lives as a benign symbiote, but in several agriculturally important plants (e.g. coffee, citrus, grapevine) Xf is pathogenic. Xf has four loci encoding homologues to hemolysin RTX proteins, virulence factors involved in a wide range of plant pathogen interactions. RESULTS We show that all four genes are expressed during pathogenesis in grapevine. The sequences from these four genes have a complex repetitive structure. At the C-termini, sequence diversity between strains is what would be expected from orthologous genes. However, within strains there is no N-terminal homology, indicating these loci encode RTXs of different functions and/or specificities. More striking is that many of the orthologous loci between strains share this extreme variation at the N-termini. Thus these RTX orthologues are most easily visualized as fusions between the orthologous C-termini and different N-termini. Further, the four genes are found in operons having a peculiar structure with an extensively duplicated module encoding a small protein with homology to the N-terminal region of the full length RTX. Surprisingly, some of these small peptides are most similar not to their corresponding full length RTX, but to the N-termini of RTXs from other Xf strains, and even other remotely related species. CONCLUSIONS These results demonstrate that these genes are expressed in planta during pathogenesis. Their structure suggests extensive evolutionary restructuring through horizontal gene transfers and heterologous recombination mechanisms. The sum of the evidence suggests these repetitive modules are a novel kind of mobile genetic element.
Collapse
Affiliation(s)
- Gregory A Gambetta
- Bordeaux Science Agro, Institut des Sciences de la Vigne et du Vin, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, F- 33140, Villenave d'Ornon, France.
| | - Mark A Matthews
- Department of Viticulture and Enology, University of California, Davis, CA, 95616-8645, USA
| | - Michael Syvanen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616-8645, USA
| |
Collapse
|
12
|
Killion HJ, Edwards W, Jennings-Gaines J, Wood M, Fox K, Sondgeroth K. Development and validation of a real-time PCR specific for the leukotoxin gene of Bibersteinia trehalosi. J Vet Diagn Invest 2018; 30:589-592. [PMID: 29601780 DOI: 10.1177/1040638717753497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
A real-time PCR assay for the leukotoxin gene of Bibersteinia trehalosi was developed and validated to better identify this pathogen, which is a cause of respiratory disease in bighorn sheep. The specificity of the PCR primers was evaluated with DNA from 59 known isolates of the Pasteurellaceae family. For validation, 162 field samples were compared using both the new assay and an indirect method using 2 sets of published protocols. The real-time PCR assay was found to be specific for the leukotoxin gene of B. trehalosi and provides a rapid and direct approach for detecting leukotoxin-producing forms of this organism from samples containing mixed species of leukotoxin-positive Pasteurellaceae.
Collapse
Affiliation(s)
- Halcyon J Killion
- Wildlife Health Laboratory (Killion, Edwards, Jennings-Gaines, Wood), Veterinary Services, Wyoming Game and Fish Department, Laramie, WY.,Department of Veterinary Sciences, University of Wyoming, Laramie, WY (Sondgeroth).,Wildlife Health Program, Colorado Division of Parks and Wildlife, Fort Collins, CO (Fox)
| | - William Edwards
- Wildlife Health Laboratory (Killion, Edwards, Jennings-Gaines, Wood), Veterinary Services, Wyoming Game and Fish Department, Laramie, WY.,Department of Veterinary Sciences, University of Wyoming, Laramie, WY (Sondgeroth).,Wildlife Health Program, Colorado Division of Parks and Wildlife, Fort Collins, CO (Fox)
| | - Jessica Jennings-Gaines
- Wildlife Health Laboratory (Killion, Edwards, Jennings-Gaines, Wood), Veterinary Services, Wyoming Game and Fish Department, Laramie, WY.,Department of Veterinary Sciences, University of Wyoming, Laramie, WY (Sondgeroth).,Wildlife Health Program, Colorado Division of Parks and Wildlife, Fort Collins, CO (Fox)
| | - Mary Wood
- Wildlife Health Laboratory (Killion, Edwards, Jennings-Gaines, Wood), Veterinary Services, Wyoming Game and Fish Department, Laramie, WY.,Department of Veterinary Sciences, University of Wyoming, Laramie, WY (Sondgeroth).,Wildlife Health Program, Colorado Division of Parks and Wildlife, Fort Collins, CO (Fox)
| | - Karen Fox
- Wildlife Health Laboratory (Killion, Edwards, Jennings-Gaines, Wood), Veterinary Services, Wyoming Game and Fish Department, Laramie, WY.,Department of Veterinary Sciences, University of Wyoming, Laramie, WY (Sondgeroth).,Wildlife Health Program, Colorado Division of Parks and Wildlife, Fort Collins, CO (Fox)
| | - Kerry Sondgeroth
- Wildlife Health Laboratory (Killion, Edwards, Jennings-Gaines, Wood), Veterinary Services, Wyoming Game and Fish Department, Laramie, WY.,Department of Veterinary Sciences, University of Wyoming, Laramie, WY (Sondgeroth).,Wildlife Health Program, Colorado Division of Parks and Wildlife, Fort Collins, CO (Fox)
| |
Collapse
|
13
|
How Respiratory Pathogens Contribute to Lamb Mortality in a Poorly Performing Bighorn Sheep ( Ovis canadensis ) Herd. J Wildl Dis 2016; 53:126-130. [PMID: 27690193 DOI: 10.7589/2016-05-097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
We evaluated bighorn sheep ( Ovis canadensis ) ewes and their lambs in captivity to examine the sources and roles of respiratory pathogens causing lamb mortality in a poorly performing herd. After seven consecutive years of observed December recruitments of <10%, 13 adult female bighorn sheep from the remnant Gribbles Park herd in Colorado, US were captured and transported to the Thorne-Williams Wildlife Research Center in Wyoming in March 2013. Ewes were sampled repeatedly over 16 mo. In April 2014, ewes were separated into individual pens prior to lambing. Upon death, lambs were necropsied and tested for respiratory pathogens. Six lambs developed clinical respiratory disease and one lamb was abandoned. Pathology from an additional six lambs born in 2013 was also evaluated. Mycoplasma ovipneumoniae , leukotoxigenic Mannheimia spp., leukotoxigenic Bibersteinia trehalosi , and Pasteurella multocida all contributed to lamb pneumonia. Histopathology suggested a continuum of disease, with lesions typical of pasteurellosis predominating in younger lambs and lesions typical of mycoplasmosis predominating in older lambs. Mixed pathology was observed in lambs dying between these timeframes. We suspected that all the ewes in our study were persistently infected and chronically shedding the bacteria that contributed to summer lamb mortality.
Collapse
|
14
|
Batra SA, Shanthalingam S, Donofrio G, Srikumaran S. A chimeric protein comprising the immunogenic domains of Mannheimia haemolytica leukotoxin and outer membrane protein PlpE induces antibodies against leukotoxin and PlpE. Vet Immunol Immunopathol 2016; 175:36-41. [PMID: 27269790 DOI: 10.1016/j.vetimm.2016.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2016] [Revised: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 11/25/2022]
Abstract
Mannheimia haemolytica is a very important pathogen of pneumonia in ruminants. Bighorn sheep (BHS, Ovis canadensis) are highly susceptible to M. haemolytica-caused pneumonia which has significantly contributed to the drastic decline of bighorn sheep population in North America. Pneumonia outbreaks in wild BHS can cause mortality as high as 90%. Leukotoxin is the critical virulence factor of M. haemolytica. In a 'proof of concept' study, an experimental vaccine containing leukotoxin and surface antigens of M. haemolytica developed by us induced 100% protection of BHS, but required multiple booster injections. Vaccination of wild BHS is difficult. But they can be vaccinated at the time of transplantation into a new habitat. Administration of booster doses, however, is impossible. Therefore, a vaccine that does not require booster doses is necessary to immunize BHS against M. haemolytica pneumonia. Herpesviruses are ideal vectors for development of such a vaccine because of their ability to undergo latency with subsequent reactivation. As the first step towards developing a herpesvirus-vectored vaccine, we constructed a chimeric protein comprising the leukotoxin-neutralizing epitopes and the immuno-dominant epitopes of the outer membrane protein PlpE. The chimeric protein was efficiently expressed in primary BHS lung cells. The immunogenicity of the chimeric protein was evaluated in mice before inoculating BHS. Mice immunized with the chimeric protein developed antibodies against M. haemolytica leukotoxin and PlpE. More importantly, the anti-leukotoxin antibodies effectively neutralized leukotoxin-induced cytotoxicity. Taken together, these results represent the successful completion of the first step towards developing a herpesvirus-vectored vaccine for controlling M. haemolytica pneumonia in BHS, and possibly other ruminants.
Collapse
Affiliation(s)
- Sai Arun Batra
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | - Sudarvili Shanthalingam
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Subramaniam Srikumaran
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| |
Collapse
|
15
|
Klima CL, Cook SR, Zaheer R, Laing C, Gannon VP, Xu Y, Rasmussen J, Potter A, Hendrick S, Alexander TW, McAllister TA. Comparative Genomic Analysis of Mannheimia haemolytica from Bovine Sources. PLoS One 2016; 11:e0149520. [PMID: 26926339 PMCID: PMC4771134 DOI: 10.1371/journal.pone.0149520] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2015] [Accepted: 02/02/2016] [Indexed: 11/18/2022] Open
Abstract
Bovine respiratory disease is a common health problem in beef production. The primary bacterial agent involved, Mannheimia haemolytica, is a target for antimicrobial therapy and at risk for associated antimicrobial resistance development. The role of M. haemolytica in pathogenesis is linked to serotype with serotypes 1 (S1) and 6 (S6) isolated from pneumonic lesions and serotype 2 (S2) found in the upper respiratory tract of healthy animals. Here, we sequenced the genomes of 11 strains of M. haemolytica, representing all three serotypes and performed comparative genomics analysis to identify genetic features that may contribute to pathogenesis. Possible virulence associated genes were identified within 14 distinct prophage, including a periplasmic chaperone, a lipoprotein, peptidoglycan glycosyltransferase and a stress response protein. Prophage content ranged from 2–8 per genome, but was higher in S1 and S6 strains. A type I-C CRISPR-Cas system was identified in each strain with spacer diversity and organization conserved among serotypes. The majority of spacers occur in S1 and S6 strains and originate from phage suggesting that serotypes 1 and 6 may be more resistant to phage predation. However, two spacers complementary to the host chromosome targeting a UDP-N-acetylglucosamine 2-epimerase and a glycosyl transferases group 1 gene are present in S1 and S6 strains only indicating these serotypes may employ CRISPR-Cas to regulate gene expression to avoid host immune responses or enhance adhesion during infection. Integrative conjugative elements are present in nine of the eleven genomes. Three of these harbor extensive multi-drug resistance cassettes encoding resistance against the majority of drugs used to combat infection in beef cattle, including macrolides and tetracyclines used in human medicine. The findings here identify key features that are likely contributing to serotype related pathogenesis and specific targets for vaccine design intended to reduce the dependency on antibiotics to treat respiratory infection in cattle.
Collapse
Affiliation(s)
- Cassidy L. Klima
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
- Department of Large Animal Clinial Science, Western Colledge of Verterinary Medicine, University of Saskatoon, Saskatoon, Canada
| | - Shaun R. Cook
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
| | - Chad Laing
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | - Vick P. Gannon
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | - Yong Xu
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jay Rasmussen
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
| | - Andrew Potter
- Vaccine and Infectious Disease Organization, Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steve Hendrick
- Department of Large Animal Clinial Science, Western Colledge of Verterinary Medicine, University of Saskatoon, Saskatoon, Canada
| | - Trevor W. Alexander
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
- * E-mail: (TAM); (TWA)
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
- * E-mail: (TAM); (TWA)
| |
Collapse
|
16
|
Lacasta D, Ferrer L, Ramos J, González J, Ortín A, Fthenakis G. Vaccination schedules in small ruminant farms. Vet Microbiol 2015. [DOI: 10.1016/j.vetmic.2015.07.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023]
|
17
|
Lau JSY, Omaleki L, Turni C, Barber SR, Browning GF, Francis MJ, Graham M, Korman TM. Human Wound Infection with Mannheimia glucosida following Lamb Bite. J Clin Microbiol 2015; 53:3374-6. [PMID: 26202121 PMCID: PMC4572521 DOI: 10.1128/jcm.01249-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2015] [Accepted: 07/10/2015] [Indexed: 11/20/2022] Open
Abstract
Mannheimia spp. are veterinary pathogens that can cause mastitis and pneumonia in domestic cattle and sheep. While Mannheimia glucosida can be found as normal flora in oral and respiratory mucosa in sheep, there have been no reported cases of human infection with this organism.
Collapse
Affiliation(s)
- Jillian S Y Lau
- Monash Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - Lida Omaleki
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland, Australia
| | - Stuart Richard Barber
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Glenn Francis Browning
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Maryza Graham
- Monash Infectious Diseases, Monash Health, Clayton, Victoria, Australia Department of Microbiology, Monash Health, Clayton, Victoria, Australia
| | - Tony M Korman
- Monash Infectious Diseases, Monash Health, Clayton, Victoria, Australia Department of Microbiology, Monash Health, Clayton, Victoria, Australia Department of Medicine, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Mahu M, Valgaeren B, Pardon B, Deprez P, Haesebrouck F, Boyen F. Non-haemolytic Mannheimia haemolytica as a cause of pleuropneumonia and septicemia in a calf. Vet Microbiol 2015; 180:157-60. [DOI: 10.1016/j.vetmic.2015.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2015] [Revised: 08/17/2015] [Accepted: 08/26/2015] [Indexed: 11/17/2022]
|
19
|
Bighorn sheep (Ovis canadensis) sinus tumors are associated with coinfections by potentially pathogenic bacteria in the upper respiratory tract. J Wildl Dis 2015; 51:19-27. [PMID: 25375938 DOI: 10.7589/2014-05-130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Bighorn sheep (Ovis canadensis) sinus tumors are hyperplastic to neoplastic, predominantly stromal masses of the paranasal sinuses that expand the sinus lining and obstruct the sinus cavities. Obstruction of the sinus cavities and disruption of normal sinus lining anatomy may interfere with clearance of bacterial pathogens from the upper respiratory tract. To examine this possibility, we explored whether the presence of sinus tumor features (tumor score) affected the likelihood of detecting potentially pathogenic bacteria from upper respiratory sinus lining tissues in bighorn sheep. We developed or used existing PCR assays for the detection of leukotoxigenic Pasteurellaceae and Mycoplasma ovipneumoniae in sinus lining tissues collected from 97 bighorn sheep in Colorado, US from 2009 to 2012. With the use of logistic regression analyses we found that tumor score was a good predictor of the probability of detecting potentially pathogenic bacteria in sinus lining tissues; we were more likely to detect potentially pathogenic bacteria from samples with high tumor scores. These findings add to our understanding of possible mechanisms for the maintenance and shedding of bacterial agents from the upper respiratory tracts of bighorn sheep.
Collapse
|
20
|
Zheng T, Gupta SK, McCarthy AR, Moffat J, Buddle BM. Cross-protection study of a Mannheimia haemolytica serotype 1 vaccine against acute pasteurellosis in lambs induced by a serotype 2 strain. Vet Microbiol 2015; 177:386-93. [DOI: 10.1016/j.vetmic.2015.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2015] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 11/30/2022]
|
21
|
Omaleki L, Browning GF, Barber SR, Allen JL, Srikumaran S, Markham PF. Sequence diversity, cytotoxicity and antigenic similarities of the leukotoxin of isolates of Mannheimia species from mastitis in domestic sheep. Vet Microbiol 2014; 174:172-9. [PMID: 25246232 DOI: 10.1016/j.vetmic.2014.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2013] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/27/2022]
Abstract
Species within the genus Mannheimia are among the most important causes of ovine mastitis. Isolates of these species can express leukotoxin A (LktA), a primary virulence factor of these bacteria. To examine the significance of variation in the LktA, the sequences of the lktA genes in a panel of isolates from cases of ovine mastitis were compared. The cross-neutralising capacities of rat antisera raised against LktA of one Mannheimia glucosida, one haemolytic Mannheimia ruminalis, and two Mannheimia haemolytica isolates were also examined to assess the effect that variation in the lktA gene can have on protective immunity against leukotoxins with differing sequences. The lktA nucleotide distance between the M. haemolytica isolates was greater than between the M. glucosida isolates, with the M. haemolytica isolates divisible into two groups based on their lktA sequences. Comparison of the topology of phylogenetic trees of 16S rDNA and lktA sequences revealed differences in the relationships between some isolates, suggesting horizontal gene transfer. Cross neutralisation data obtained with monospecific anti-LktA rat sera were used to derive antigenic similarity coefficients for LktA from the four Mannheimia species isolates. Similarity coefficients indicated that LktA of the two M. haemolytica isolates were least similar, while LktA from M. glucosida was most similar to those for one of the M. haemolytica isolates and the haemolytic M. ruminalis isolate. The results suggested that vaccination with the M. glucosida leukotoxin would generate the greatest cross-protection against ovine mastitis caused by Mannheimia species with these alleles.
Collapse
Affiliation(s)
- Lida Omaleki
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - Stuart R Barber
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Joanne L Allen
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Subramaniam Srikumaran
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | - Philip F Markham
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville 3010, VIC, Australia
| |
Collapse
|
22
|
Acute die-off of chamois (Rupicapra rupicapra) in the Eastern Austrian Alps due to bacterial bronchopneumonia with Pasteurellaceae. J Wildl Dis 2014; 50:616-20. [PMID: 24807183 DOI: 10.7589/2013-04-090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Monitoring circulating pathogens in wildlife populations is important in evaluating causes and sources of disease as well as understanding transmission between wild and domestic animals. In spring 2010, a sudden die-off in a chamois (Rupicapra rupicapra) population sharing habitat with livestock occurred in northeastern Austria. Nineteen animals were submitted for examination. Necropsy and pathohistologic and bacteriologic results yielded lesions associated with Pasteurellaceae species. Additional testing included enterobacterial repetitive intergenic consensus and random amplification of polymorphic DNA PCR analysis to evaluate the circulating strains. The isolated strains were most closely related to Mannheimia glucosida and Bibersteinia trehalosi. Reports of mass mortalities in chamois due to pneumonia have been reported previously in the northern Alpine area of Italy. To the authors' knowledge, this is the first report of acute mortality due to strains of Mannheimia and Bibersteinia in Austrian chamois.
Collapse
|
23
|
Hanthorn CJ, Dewell RD, Cooper VL, Frana TS, Plummer PJ, Wang C, Dewell GA. Randomized clinical trial to evaluate the pathogenicity of Bibersteinia trehalosi in respiratory disease among calves. BMC Vet Res 2014; 10:89. [PMID: 24745347 PMCID: PMC4036748 DOI: 10.1186/1746-6148-10-89] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2013] [Accepted: 04/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bibersteinia trehalosi causes respiratory disease in ruminants particularly in wild and domestic sheep. Recently, there has been an increased number of B. trehalosi isolates obtained from diagnostic samples from bovine respiratory disease cases. This study evaluated the role of B. trehalosi in bovine respiratory disease using an intra-tracheal inoculation model in calves. Thirty six cross bred 2-3 month old dairy calves were inoculated intra-tracheally with either leukotoxin negative B. trehalosi, leukotoxin positive B. trehalosi isolate, Mannheimia haemolytica, a combination of leukotoxin negative B. trehalosi and M. haemolytica or negative control. Calves were euthanized and necropsy performed on day 10 of study. RESULTS B. trehalosi inoculated calves did not have increased lung involvement compared to control calves. Additionally, B. trehalosi was only cultured once from the lungs of inoculated calves at necropsy. CONCLUSIONS Based on these findings B. trehalosi may not be a primary pathogen of respiratory disease in cattle. Culture of B. trehalosi from diagnostic submissions should not be immediately identified as a primary cause of respiratory disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grant A Dewell
- Department of Veterinary and Diagnostic Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 2237 Lloyd Vet Med, Ames, IA 50011, USA.
| |
Collapse
|
24
|
Tang F, Saier MH. Transport proteins promoting Escherichia coli pathogenesis. Microb Pathog 2014; 71-72:41-55. [PMID: 24747185 DOI: 10.1016/j.micpath.2014.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2013] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 12/26/2022]
Abstract
Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies.
Collapse
Affiliation(s)
- Fengyi Tang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA.
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
25
|
Klima CL, Alexander TW, Hendrick S, McAllister TA. Characterization of Mannheimia haemolytica isolated from feedlot cattle that were healthy or treated for bovine respiratory disease. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2014; 78:38-45. [PMID: 24396179 PMCID: PMC3878007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Academic Contribution Register] [Received: 10/09/2012] [Accepted: 12/10/2012] [Indexed: 06/03/2023]
Abstract
Mannheimia haemolytica is the principal bacterial pathogen associated with bovine respiratory disease (BRD). As an opportunistic pathogen, M. haemolytica is also frequently isolated from the respiratory tract of healthy cattle. This study examined the characteristics of M. haemolytica collected using deep nasal swabs from healthy cattle (n = 49) and cattle diagnosed with BRD (n = 41). Isolates were analyzed by pulsed-field gel electrophoresis (PFGE), serotyped, and tested for antimicrobial susceptibility. Polymerase chain reaction (PCR) was used to screen isolates for virulence [leukotoxin C (lktC), putative adhesin (ahs), outer-membrane lipoprotein (gs60), O-sialoglycoprotease (gcp), transferring-binding protein B (tbpB) and UDP-N-acetyl-D-glucosamine-2-epimerase (nmaA)] and antimicrobial resistance [tet(H), bla ROB-1, erm(X), erm(42), msr(E)-mph(E) and aphA-1] genes. Isolates were genetically diverse but in three instances, M. haemolytica with the same pulsotype, resistance phenotype, and genotype were collected from cattle with BRD. This occurred once between cattle located in two different feedlots, once between cattle in the same feedlot, but in different pens, and once among cattle from the same feedlot in the same pen. Isolates from healthy cattle were primarily serotype 2 (75.5%) while those from individuals with BRD were serotype 1 (70.7%) or 6 (19.5%). Resistance to at least one antibiotic occurred more frequently (P < 0.001) in M. haemolytica collected from cattle with BRD (37%) compared with those that were healthy (2%). Overall, tetracycline resistance (18%) was the most prevalent resistant phenotype. All tetracycline-resistant M. haemolytica encoded tet(H). Ampicillin resistance (6%) and neomycin resistance (15%) were detected and corresponded to the presence of the bla ROB-1 and aphA-1 genes, respectively. Tilmicosin resistance (6%) was also detected, but the resistance genes responsible were not identified. The virulence genes lktC, ahs, gs60, and gcp were present in all isolates examined, while tbpB and nmaA were only detected in serotype 1 and serotype 6 isolates indicating they may be potential targets for serotype-specific identification or vaccine development. These results provide the first reported evidence of transmission and spread of antimicrobial-resistant M. haemolytica that have contributed to bovine respiratory disease in western Canadian feedlots.
Collapse
Affiliation(s)
| | - Trevor W. Alexander
- Address all correspondence to Dr. Trevor W. Alexander; telephone: +1-403-317-2158; fax: +1-403-317-2182; e-mail:
| | | | | |
Collapse
|
26
|
PCR assay detects Mannheimia haemolytica in culture-negative pneumonic lung tissues of bighorn sheep (Ovis canadensis) from outbreaks in the western USA, 2009-2010. J Wildl Dis 2013; 50:1-10. [PMID: 24171569 DOI: 10.7589/2012-09-225] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Mannheimia haemolytica consistently causes severe bronchopneumonia and rapid death of bighorn sheep (Ovis canadensis) under experimental conditions. However, Bibersteinia trehalosi and Pasteurella multocida have been isolated from pneumonic bighorn lung tissues more frequently than M. haemolytica by culture-based methods. We hypothesized that assays more sensitive than culture would detect M. haemolytica in pneumonic lung tissues more accurately. Therefore, our first objective was to develop a PCR assay specific for M. haemolytica and use it to determine if this organism was present in the pneumonic lungs of bighorns during the 2009-2010 outbreaks in Montana, Nevada, and Washington, USA. Mannheimia haemolytica was detected by the species-specific PCR assay in 77% of archived pneumonic lung tissues that were negative by culture. Leukotoxin-negative M. haemolytica does not cause fatal pneumonia in bighorns. Therefore, our second objective was to determine if the leukotoxin gene was also present in the lung tissues as a means of determining the leukotoxicity of M. haemolytica that were present in the lungs. The leukotoxin-specific PCR assay detected leukotoxin gene in 91% of lung tissues that were negative for M. haemolytica by culture. Mycoplasma ovipneumoniae, an organism associated with bighorn pneumonia, was detected in 65% of pneumonic bighorn lung tissues by PCR or culture. A PCR assessment of distribution of these pathogens in the nasopharynx of healthy bighorns from populations that did not experience an all-age die-off in the past 20 yr revealed that M. ovipneumoniae was present in 31% of the animals whereas leukotoxin-positive M. haemolytica was present in only 4%. Taken together, these results indicate that culture-based methods are not reliable for detection of M. haemolytica and that leukotoxin-positive M. haemolytica was a predominant etiologic agent of the pneumonia outbreaks of 2009-2010.
Collapse
|
27
|
Hsu YH, Cook SR, Alexander TW, Klima CL, Niu YD, Selinger LB, McAllister TA. Investigation of Mannheimia haemolytica bacteriophages relative to host diversity. J Appl Microbiol 2013; 114:1592-603. [PMID: 23489937 DOI: 10.1111/jam.12185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2012] [Revised: 03/02/2013] [Accepted: 03/02/2013] [Indexed: 01/21/2023]
Abstract
AIMS This study aimed to characterize the impact of lytic and temperate bacteriophages on the genetic and phenotypic diversity of Mannheimia haemolytica from feedlot cattle. METHODS AND RESULTS Strictly lytic phages were not detected from bovine nasopharyngeal (n = 689) or water trough (n = 30) samples, but Myoviridae- or Siphoviridae-like phages were induced from 54 of 72 M. haemolytica strains by mitomycin C, occasionally from the same strain. Phages with similar restriction fragment length polymorphism profiles (RFLP ≥70% relatedness) shared common host serotypes 1 or 2 (P < 0·0001). Likewise, phages with similar RFLP tended to occur in genetically related host bacteria (70-79% similarity). Host range assays showed that seven phages from host serotypes 1, 2 and 6 lysed representative strains of serotypes 1, 2 or 8. The genome of vB_MhM_1152AP from serotype 6 was found to be collinear with P2-like phage φMhaA1-PHL101. CONCLUSIONS Prophages are a significant component of the genome of M. haemolytica and contribute significantly to host diversity. Further characterization of the role of prophage in virulence and persistence of M. haemolytica in cattle could provide insight into approaches to control this potential respiratory pathogen. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrated that prophages are widespread within the genome of M. haemolytica isolates and emphasized the challenge of isolating lytic phage as a therapeutic against this pathogen.
Collapse
Affiliation(s)
- Y-H Hsu
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Vougidou C, Sandalakis V, Psaroulaki A, Petridou E, Ekateriniadou L. Sequence diversity of the leukotoxin (lktA) gene in caprine and ovine strains of Mannheimia haemolytica. Vet Rec 2013; 172:424. [PMID: 23396525 DOI: 10.1136/vr.101014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
Mannheimia haemolytica is the aetiological agent of pneumonic pasteurellosis in small ruminants. The primary virulence factor of the bacterium is a leukotoxin (LktA), which induces apoptosis in susceptible cells via mitochondrial targeting. It has been previously shown that certain lktA alleles are associated either with cattle or sheep. The objective of the present study was to investigate lktA sequence variation among ovine and caprine M haemolytica strains isolated from pneumonic lungs, revealing any potential adaptation for the caprine host, for which there is no available data. Furthermore, we investigated amino acid variation in the N-terminal part of the sequences and its effect on targeting mitochondria. Data analysis showed that the prevalent caprine genotype differed at a single non-synonymous site from a previously described uncommon bovine allele, whereas the ovine sequences represented new, distinct alleles. N-terminal sequence differences did not affect the mitochondrial targeting ability of the isolates; interestingly enough in one case, mitochondrial matrix targeting was indicated rather than membrane association, suggesting an alternative LktA trafficking pattern.
Collapse
Affiliation(s)
- C Vougidou
- Institute of Infectious and Parasitic Diseases of Thessaloniki, Ministry of Rural Development and Food, Thessaloniki 54627, Greece
| | | | | | | | | |
Collapse
|
29
|
Orouji S, Hodgins DC, Lo RY, Shewen PE. Serum IgG response in calves to the putative pneumonic virulence factor Gs60 of Mannheimia haemolytica A1. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2012; 76:292-300. [PMID: 23543955 PMCID: PMC3460608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Academic Contribution Register] [Received: 07/14/2011] [Accepted: 11/15/2011] [Indexed: 06/02/2023]
Abstract
Bovine pneumonic pasteurellosis vaccines incorporate various antigens of Mannheimia haemolytica, including the acknowledged virulence factor leukotoxin (Lkt), and Gs60, a surface lipoprotein. To examine the role of antibodies to Gs60 in protection, an enzyme-linked immunosorbent assay (ELISA) was developed for retrospective analysis of serum samples from previous trials in which vaccines containing native or recombinant Gs60 were administered parenterally. The analysis revealed a positive correlation between the titer of antibodies to Gs60 and protection against experimental challenge in both vaccinates and naturally exposed controls. There was a strong correlation between production of IgG antibodies to Gs60 and Lkt neutralizing antibodies. Analysis of the relationship between the serum antibody titers and resistance to experimental challenge using linear statistical models revealed a significant association between prechallenge titers of serum antibodies to Lkt and protection. Further analysis suggested that antibodies against Gs60 were beneficial when Lkt neutralizing antibody titers were low.
Collapse
Affiliation(s)
| | | | | | - Patricia E. Shewen
- Address all correspondence to Dr. Patricia E. Shewen; telephone: (519) 824-4120, ext. 54649; fax: (519) 824-5930; e-mail:
| |
Collapse
|
30
|
Chen JS, Reddy V, Chen JH, Shlykov MA, Zheng WH, Cho J, Yen MR, Saier MH. Phylogenetic characterization of transport protein superfamilies: superiority of SuperfamilyTree programs over those based on multiple alignments. J Mol Microbiol Biotechnol 2012; 21:83-96. [PMID: 22286036 DOI: 10.1159/000334611] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022] Open
Abstract
Transport proteins function in the translocation of ions, solutes and macromolecules across cellular and organellar membranes. These integral membrane proteins fall into >600 families as tabulated in the Transporter Classification Database (www.tcdb.org). Recent studies, some of which are reported here, define distant phylogenetic relationships between families with the creation of superfamilies. Several of these are analyzed using a novel set of programs designed to allow reliable prediction of phylogenetic trees when sequence divergence is too great to allow the use of multiple alignments. These new programs, called SuperfamilyTree1 and 2 (SFT1 and 2), allow display of protein and family relationships, respectively, based on thousands of comparative BLAST scores rather than multiple alignments. Superfamilies analyzed include: (1) Aerolysins, (2) RTX Toxins, (3) Defensins, (4) Ion Transporters, (5) Bile/Arsenite/Riboflavin Transporters, (6) Cation:Proton Antiporters, and (7) the Glucose/Fructose/Lactose superfamily within the prokaryotic phosphoenol pyruvate-dependent Phosphotransferase System. In addition to defining the phylogenetic relationships of the proteins and families within these seven superfamilies, evidence is provided showing that the SFT programs outperform programs that are based on multiple alignments whenever sequence divergence of superfamily members is extensive. The SFT programs should be applicable to virtually any superfamily of proteins or nucleic acids.
Collapse
Affiliation(s)
- Jonathan S Chen
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hounsome JDA, Baillie S, Noofeli M, Riboldi-Tunnicliffe A, Burchmore RJS, Isaacs NW, Davies RL. Outer membrane protein A of bovine and ovine isolates of Mannheimia haemolytica is surface exposed and contains host species-specific epitopes. Infect Immun 2011; 79:4332-41. [PMID: 21896777 PMCID: PMC3257919 DOI: 10.1128/iai.05469-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2011] [Revised: 06/23/2011] [Accepted: 08/08/2011] [Indexed: 01/21/2023] Open
Abstract
Mannheimia haemolytica is the etiological agent of pneumonic pasteurellosis of cattle and sheep; two different OmpA subclasses, OmpA1 and OmpA2, are associated with bovine and ovine isolates, respectively. These proteins differ at the distal ends of four external loops, are involved in adherence, and are likely to play important roles in host adaptation. M. haemolytica is surrounded by a polysaccharide capsule, and the degree of OmpA surface exposure is unknown. To investigate surface exposure and immune specificity of OmpA among bovine and ovine M. haemolytica isolates, recombinant proteins representing the transmembrane domain of OmpA from a bovine serotype A1 isolate (rOmpA1) and an ovine serotype A2 isolate (rOmpA2) were overexpressed, purified, and used to generate anti-rOmpA1 and anti-rOmpA2 antibodies, respectively. Immunogold electron microscopy and immunofluorescence techniques demonstrated that OmpA1 and OmpA2 are surface exposed, and are not masked by the polysaccharide capsule, in a selection of M. haemolytica isolates of various serotypes and grown under different growth conditions. To explore epitope specificity, anti-rOmpA1 and anti-rOmpA2 antibodies were cross-absorbed with the heterologous isolate to remove cross-reacting antibodies. These cross-absorbed antibodies were highly specific and recognized only the OmpA protein of the homologous isolate in Western blot assays. A wider examination of the binding specificities of these antibodies for M. haemolytica isolates representing different OmpA subclasses revealed that cross-absorbed anti-rOmpA1 antibodies recognized OmpA1-type proteins but not OmpA2-type proteins; conversely, cross-absorbed anti-rOmpA2 antibodies recognized OmpA2-type proteins but not OmpA1-type proteins. Our results demonstrate that OmpA1 and OmpA2 are surface exposed and could potentially bind to different receptors in cattle and sheep.
Collapse
Affiliation(s)
- Jonathan D. A. Hounsome
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Susan Baillie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mojtaba Noofeli
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alan Riboldi-Tunnicliffe
- School of Chemistry, College of Science and Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Richard J. S. Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Neil W. Isaacs
- School of Chemistry, College of Science and Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Robert L. Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
32
|
Lee I, Davies RL. Evidence for a common gene pool and frequent recombinational exchange of the tbpBA operon in Mannheimia haemolytica, Mannheimia glucosida and Bibersteinia trehalosi. MICROBIOLOGY (READING, ENGLAND) 2011; 157:123-135. [PMID: 20884693 PMCID: PMC3387554 DOI: 10.1099/mic.0.041236-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
Abstract
The tbpBA operon was sequenced in 42 representative isolates of Mannheimia haemolytica (32), Mannheimia glucosida (6) and Bibersteinia trehalosi (4). A total of 27 tbpB and 20 tbpA alleles were identified whilst the tbpBA operon was represented by 28 unique alleles that could be assigned to seven classes. There were 1566 (34.8% variation) polymorphic nucleotide sites and 482 (32.1% variation) variable inferred amino acid positions among the 42 tbpBA sequences. The tbpBA operons of serotype A2 M. haemolytica isolates are, with one exception, substantially more diverse than those of the other M. haemolytica serotypes and most likely have a different ancestral origin. The tbpBA phylogeny has been severely disrupted by numerous small- and large-scale intragenic recombination events. In addition, assortative (entire gene) recombination events, involving either the entire tbpBA operon or the individual tbpB and tbpA genes, have played a major role in shaping tbpBA structure and it's distribution in the three species. Our findings indicate that a common gene pool exists for tbpBA in M. haemolytica, M. glucosida and B. trehalosi. In particular, B. trehalosi, M. glucosida and ovine M. haemolytica isolates share a large portion of the tbpA gene, and this probably reflects selection for a conserved TbpA protein that provides effective iron uptake in sheep. Bovine and ovine serotype A2 lineages have very different tbpBA alleles. Bovine-like tbpBA alleles have been partially, or completely, replaced by ovine-like tbpBA alleles in ovine serotype A2 isolates, suggesting that different transferrin receptors are required by serotype A2 isolates for optimum iron uptake in cattle and sheep. Conversely, the tbpBA alleles of bovine-pathogenic serotype A1 and A6 isolates are very similar to those of closely related ovine isolates, suggesting a recent and common evolutionary origin.
Collapse
Affiliation(s)
- Inkyoung Lee
- Institute of Infection, Immunology and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, 120 University Place, University of Glasgow, Glasgow G12 8TA, UK
| | - Robert L. Davies
- Institute of Infection, Immunology and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, 120 University Place, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
33
|
McKinlay JB, Laivenieks M, Schindler BD, McKinlay AA, Siddaramappa S, Challacombe JF, Lowry SR, Clum A, Lapidus AL, Burkhart KB, Harkins V, Vieille C. A genomic perspective on the potential of Actinobacillus succinogenes for industrial succinate production. BMC Genomics 2010; 11:680. [PMID: 21118570 PMCID: PMC3091790 DOI: 10.1186/1471-2164-11-680] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2010] [Accepted: 11/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Succinate is produced petrochemically from maleic anhydride to satisfy a small specialty chemical market. If succinate could be produced fermentatively at a price competitive with that of maleic anhydride, though, it could replace maleic anhydride as the precursor of many bulk chemicals, transforming a multi-billion dollar petrochemical market into one based on renewable resources. Actinobacillus succinogenes naturally converts sugars and CO2 into high concentrations of succinic acid as part of a mixed-acid fermentation. Efforts are ongoing to maximize carbon flux to succinate to achieve an industrial process. RESULTS Described here is the 2.3 Mb A. succinogenes genome sequence with emphasis on A. succinogenes's potential for genetic engineering, its metabolic attributes and capabilities, and its lack of pathogenicity. The genome sequence contains 1,690 DNA uptake signal sequence repeats and a nearly complete set of natural competence proteins, suggesting that A. succinogenes is capable of natural transformation. A. succinogenes lacks a complete tricarboxylic acid cycle as well as a glyoxylate pathway, and it appears to be able to transport and degrade about twenty different carbohydrates. The genomes of A. succinogenes and its closest known relative, Mannheimia succiniciproducens, were compared for the presence of known Pasteurellaceae virulence factors. Both species appear to lack the virulence traits of toxin production, sialic acid and choline incorporation into lipopolysaccharide, and utilization of hemoglobin and transferrin as iron sources. Perspectives are also given on the conservation of A. succinogenes genomic features in other sequenced Pasteurellaceae. CONCLUSIONS Both A. succinogenes and M. succiniciproducens genome sequences lack many of the virulence genes used by their pathogenic Pasteurellaceae relatives. The lack of pathogenicity of these two succinogens is an exciting prospect, because comparisons with pathogenic Pasteurellaceae could lead to a better understanding of Pasteurellaceae virulence. The fact that the A. succinogenes genome encodes uptake and degradation pathways for a variety of carbohydrates reflects the variety of carbohydrate substrates available in the rumen, A. succinogenes's natural habitat. It also suggests that many different carbon sources can be used as feedstock for succinate production by A. succinogenes.
Collapse
Affiliation(s)
- James B McKinlay
- Department of Microbiology and Molecular Genetics, 2215 Biomedical Biophysical Sciences building, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Mannheimia haemolytica is the principal bacterium isolated from respiratory disease in feedlot cattle and is a significant component of enzootic pneumonia in all neonatal calves. A commensal of the nasopharynx, M. haemolytica is an opportunist, gaining access to the lungs when host defenses are compromised by stress or infection with respiratory viruses or mycoplasma. Although several serotypes act as commensals, A1 and A6 are the most frequent isolates from pneumonic lungs. Potential virulence factors include adhesin, capsular polysaccharide, fimbriae, iron-regulated outer membrane proteins, leukotoxin (Lkt), lipopolysaccharide (LPS), lipoproteins, neuraminidase, sialoglycoprotease and transferrin-binding proteins. Of these, Lkt is pivotal in induction of pneumonia. Lkt-mediated infiltration and destruction of neutrophils and other leukocytes impairs bacterial clearance and contributes to development of fibrinous pneumonia. LPS may act synergistically with Lkt, enhancing its effects and contributing endotoxic activity. Antibiotics are employed extensively in the feedlot industry, both prophylactically and therapeutically, but their efficacy varies because of inconsistencies in diagnosis and treatment regimes and development of antibiotic resistance. Vaccines have been used for many decades, even though traditional bacterins failed to demonstrate protection and their use often enhanced disease in vaccinated animals. Modern vaccines use culture supernatants containing Lkt and other soluble antigens, or bacterial extracts, alone or combined with bacterins. These vaccines have 50-70% efficacy in prevention of M. haemolytica pneumonia. Effective control of M. haemolytica pneumonia is likely to require a combination of more definitive diagnosis, efficacious vaccines, therapeutic intervention and improved management practices.
Collapse
|
35
|
Larsen J, Pedersen AG, Christensen H, Bisgaard M, Angen Ø, Ahrens P, Olsen JE. Evidence for Vertical Inheritance and Loss of the Leukotoxin Operon in Genus Mannheimia. J Mol Evol 2007; 64:423-37. [PMID: 17437147 DOI: 10.1007/s00239-006-0065-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2006] [Accepted: 01/30/2007] [Indexed: 11/29/2022]
Abstract
The Mannheimia subclades belong to the same bacterial genus but have taken divergent paths toward their distinct lifestyles. M. haemolytica + M. glucosida are potential pathogens of the respiratory tract in the mammalian suborder Ruminantia, whereas M. ruminalis, the supposed sister group, lives as a commensal in the ovine rumen. We have tested the hypothesis that horizontal gene transfer of the leukotoxin operon has catalyzed pathogenic adaptation and speciation of M. haemolytica + M. glucosida, or other major subclades, by using a strategy that combines compositional and phylogenetic methods. We show that it has been vertically inherited from the last common ancestor of the diverging Mannheimia subclades, although several strains belonging to M. ruminalis have lost the operon. Our analyses support that divergence within M. ruminalis following colonization of the ovine rumen was very rapid and that functional decay of most of the leukotoxin operons occurred early when the adaptation to the rumen was fastest, suggesting that antagonistic pleiotropy was the main contributor to losses in the radiating lineages of M. ruminalis. To sum up, the scenario derived from these analyses reflects two aspects. On one hand, it opposes the hypothesis of horizontal gene transfer as a catalyst of pathogenic adaptation and speciation. On the other hand, it indicates that losses of the leukotoxin operons in the radiating lineages of M. ruminalis have catalyzed their adaptation to a commensal environment and reproductive isolation (speciation).
Collapse
Affiliation(s)
- Jesper Larsen
- Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen, Frederiksberg C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
36
|
Kelley ST, Cassirer EF, Weiser GC, Safaee S. Phylogenetic diversity of Pasteurellaceae and horizontal gene transfer of leukotoxin in wild and domestic sheep. INFECTION GENETICS AND EVOLUTION 2007; 7:13-23. [PMID: 16635591 DOI: 10.1016/j.meegid.2006.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/28/2005] [Revised: 03/13/2006] [Accepted: 03/14/2006] [Indexed: 11/25/2022]
Abstract
Wild and domestic animal populations are known to be sources and reservoirs of emerging diseases. There is also a growing recognition that horizontal genetic transfer (HGT) plays an important role in bacterial pathogenesis. We used molecular phylogenetic methods to assess diversity and cross-transmission rates of Pasteurellaceae bacteria in populations of bighorn sheep, Dall's sheep, domestic sheep and domestic goats. Members of the Pasteurellaceae cause an array of deadly illnesses including bacterial pneumonia known as "pasteurellosis", a particularly devastating disease for bighorn sheep. A phylogenetic analysis of a combined dataset of two RNA genes (16S ribosomal RNA and RNAse P RNA) revealed remarkable evolutionary diversity among Pasteurella trehalosi and Mannheimia (Pasteurella) haemolytica bacteria isolated from sheep and goats. Several phylotypes appeared to associate with particular host species, though we found numerous instances of apparent cross-transmission among species and populations. Statistical analyses revealed that host species, geographic locale and biovariant classification, but not virulence, correlated strongly with Pasteurellaceae phylogeny. Sheep host species correlated with P. trehalosi isolates phylogeny (PTP test; P=0.002), but not with the phylogeny of M. haemolytica isolates, suggesting that P. trehalosi bacteria may be more host specific. With regards to populations within species, we also discovered a strong correlation between geographic locale and isolate phylogeny in the Rocky Mountain bighorn sheep (PTP test; P=0.001). We also investigated the potential for HGT of the leukotoxin A (lktA) gene, which produces a toxin that plays an integral role in causing disease. Comparative analysis of the combined RNA gene phylogeny and the lktA phylogenies revealed considerable incongruence between the phylogenies, suggestive of HGT. Furthermore, we found identical lktA alleles in unrelated bacterial species, some of which had been isolated from sheep in distantly removed populations. For example, lktA sequences from P. trehalosi isolated from remote Alaskan Dall's sheep were 100% identical over a 900-nucleotide stretch to sequences determined from M. haemolytica isolated from domestic sheep in the UK. This extremely high degree of sequence similarity of lktA sequences among distinct bacterial species suggests that HGT has played a role in the evolution of lktA in wild hosts.
Collapse
Affiliation(s)
- Scott T Kelley
- Department of Biology, 5500 Campanile Drive, San Diego State University, San Diego, CA 92182, United States.
| | | | | | | |
Collapse
|
37
|
Davies RL, Lee I. Diversity of temperate bacteriophages induced in bovine and ovine Mannheimia haemolytica isolates and identification of a new P2-like phage. FEMS Microbiol Lett 2006; 260:162-70. [PMID: 16842340 DOI: 10.1111/j.1574-6968.2006.00314.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022] Open
Abstract
The diversity of temperate bacteriophages was examined in 32 Mannheimia haemolytica, six Mannheimia glucosida and four Pasteurella trehalosi isolates. Phage particles were induced and identified by electron microscopy in 24 (75%) M. haemolytica isolates, but in only one (17%) M. glucosida and one (25%) P. trehalosi isolate. The M. haemolytica phages were relatively diverse as seven Siphoviridae, 15 Myoviridae and two Podoviridae-like phages were identified; the Myoviridae-type phages also exhibited structural variation of their tails. The bacteriophages induced in M. glucosida and P. trehalosi were of the Myoviridae type. Restriction endonuclease (RE) analysis identified nine distinct RE types among the M. haemolytica bacteriophages, providing further evidence of their relative diversity. A limited number of phages caused plaques on indicator strains and the phages exhibited a narrow host range. A subgroup of 11 bovine serotype A1 and A6 isolates contained Myoviridae-type phages of the same RE type (type A), but these differed in their abilities to infect and form plaques on the same panel of indicator strains. A P2-like phage (phiPHL213.1), representative of the RE type A phages, was identified from the incomplete M. haemolytica genome sequence. The phiPHL213.1 genome contains previously unidentified genes and represents a new member of the P2 phage family.
Collapse
Affiliation(s)
- Robert L Davies
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK.
| | | |
Collapse
|
38
|
Davies RL, Lee I. Sequence diversity and molecular evolution of the heat-modifiable outer membrane protein gene (ompA) of Mannheimia(Pasteurella) haemolytica, Mannheimia glucosida, and Pasteurella trehalosi. J Bacteriol 2004; 186:5741-52. [PMID: 15317779 PMCID: PMC516818 DOI: 10.1128/jb.186.17.5741-5752.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The OmpA (or heat-modifiable) protein is a major structural component of the outer membranes of gram-negative bacteria. The protein contains eight membrane-traversing beta-strands and four surface-exposed loops. The genetic diversity and molecular evolution of OmpA were investigated in 31 Mannheimia (Pasteurella) haemolytica, 6 Mannheimia glucosida, and 4 Pasteurella trehalosi strains by comparative nucleotide sequence analysis. The OmpA proteins of M. haemolytica and M. glucosida contain four hypervariable domains located at the distal ends of the surface-exposed loops. The hypervariable domains of OmpA proteins from bovine and ovine M. haemolytica isolates are very different but are highly conserved among strains from each of these two host species. Fourteen different alleles representing four distinct phylogenetic classes, classes I to IV, were identified in M. haemolytica and M. glucosida. Class I, II, and IV alleles were associated with bovine M. haemolytica, ovine M. haemolytica, and M. glucosida strains, respectively, whereas class III alleles were present in certain M. haemolytica and M. glucosida isolates. Class I and II alleles were associated with divergent lineages of bovine and ovine M. haemolytica strains, respectively, indicating a history of horizontal DNA transfer and assortative (entire gene) recombination. Class III alleles have mosaic structures and were derived by horizontal DNA transfer and intragenic recombination. Our findings suggest that OmpA is under strong selective pressure from the host species and that it plays an important role in host adaptation. It is proposed that the OmpA protein of M. haemolytica acts as a ligand and is involved in binding to specific host cell receptor molecules in cattle and sheep. P. trehalosi expresses two OmpA homologs that are encoded by different tandemly arranged ompA genes. The P. trehalosi ompA genes are highly diverged from those of M. haemolytica and M. glucosida, and evidence is presented to suggest that at least one of these genes was acquired by horizontal DNA transfer.
Collapse
Affiliation(s)
- Robert L Davies
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | | |
Collapse
|
39
|
Sisay T, Zerihun A. Diversity of Mannheimia haemolytica and pasteurella trehalosi serotypes from apparently healthy sheep and abattoir specimens in the highlands of Wollo, North East Ethiopia. Vet Res Commun 2003; 27:3-14. [PMID: 12625399 DOI: 10.1023/a:1022088005887] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Abstract
The prevalence and serotypic diversity of Mannheimia [Pasteurella] haemolytica and Pasteurella trehalosi from nasal swabs, sera and abattoir specimens from sheep in the highlands of Wollo, North East Ethiopia was investigated. Prevalence rates of 83% and 75% of these microorganisms were found in the serum samples and nasal swabs, respectively, from apparently healthy sheep. In a local abattoir, 205 lungs were investigated, 34% of which showed pneumonia, from which samples were collected from 51 lungs and the same number of corresponding tonsils. Mannheimia and Pasteurella species were isolated from 59% of these pneumonic lungs and 69% of the respective tonsils. M. haemolytica serotypes accounted for 41 (59%) and P. trehalosi for 11 (32%) of the isolates from the abattoir specimens. The majority (67%) of isolates from nasal swabs were P. trehalosi, M. haemolytica being isolated f rom 4 (13%) of the swabs. M. glucosida was isolated only from the tonsils. The predominant serotypes of the isolates from both the nasal swabs and the abattoir specimens were M. haemolytica A1 (17%) and P. trehalosi T4 (16%) and T3 (13%). P. trehalosi T15 was less commonly encountered, while M. haemolytica A9 and A13 were not isolated. Studies on sera from 100 sheep indicated that antibodies against M. haemolytica serotype A1 (14%) were most common, followed by A5 and A8 (each 10%) and A9 and P. trehalosi T3 (each 9%) and T4 (8%). Antibodies against M. glucosida or serotype All occurred in 2% of the sera. Multiple serotypes were common in all types of samples. The importance of including in vaccines the most prevalent serotypes involved in the pneumonia of sheep in the area is discussed.
Collapse
Affiliation(s)
- T Sisay
- Department of Microbiology, Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, Addis Ababa University, Debre Zeit, Ethiopia
| | | |
Collapse
|
40
|
Jeyaseelan S, Sreevatsan S, Maheswaran SK. Role of Mannheimia haemolytica leukotoxin in the pathogenesis of bovine pneumonic pasteurellosis. Anim Health Res Rev 2002; 3:69-82. [PMID: 12665107 DOI: 10.1079/ahrr200242] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
Bovine pneumonic pasteurellosis continues to be a major respiratory disease in feedlot cattle despite the recent advances in our understanding of the underlying complexities of causation. The etiological agent, Mannheimia haemolytica, possesses several virulence factors, including capsule, outer membrane proteins, adhesins, neuraminidase, endotoxin and exotoxic leukotoxin. Accumulating scientific evidence implicates leukotoxin as the primary factor contributing to clinical presentation and lung injury associated with this disease. Unlike other virulence factors, leukotoxin shows cell-type- and species-specific effects on bovine leukocytes. Recent investigations have delineated the mechanisms underlying the target-cell-specificity of leukotoxin and how this contributes to the pathogenesis of lung damage. This review summarizes current understanding of the secretion, regulation, mechanisms of action and evolutionary diversity of leukotoxin of M. haemolytica. Understanding the precise molecular mechanisms of leukotoxin is critical for the development of more effective prophylactic and therapeutic strategies to control this complex disease.
Collapse
Affiliation(s)
- Samithamby Jeyaseelan
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA.
| | | | | |
Collapse
|
41
|
Abstract
RTX toxins (repeats in the structural toxin) are pore-forming protein toxins produced by a broad range of pathogenic Gram-negative bacteria. In vitro, RTX toxins mostly exhibit a cytotoxic and often also a hemolytic activity. They are particularly widespread in species of the family Pasteurellaceae which cause infectious diseases, most frequently in animals but also in humans. Most RTX toxins are proteins with a molecular mass of 100-200 kDa and are post-translationally activated by acylation via a specific activator protein. The repeated structure of RTX toxins, which gave them their name, is composed of iterative glycine-rich nonapeptides binding Ca2+ on the C-terminal half of the protein. Genetic analysis of RTX toxins of various species of Pasteurellaceae and of a few other Gram-negative bacteria gave evidence of horizontal transfer of genes encoding RTX toxins and led to speculations that RTX toxins might have originated from Pasteurellaceae. The toxic activities of RTX toxins in host cells may lead to necrosis and apoptosis and the underlying detailed mechanisms are currently under investigation. The impact of RTX toxins in pathogenicity and the immune responses of the host were described for several species of Pasteurellaceae. Neutralizing antibodies were shown to significantly reduce the cytotoxic activity of RTX toxins. They constitute a valuable strategy in the development of immuno-prophylactics against several animal diseases caused by pathogenic species of Pasteurellaceae. Although many RTX toxins possess cytotoxic and hemolytic activities toward a broad range of cells and erythrocytes, respectively, a few RTX toxins were shown to have cytotoxic activity only against cells of specific hosts and/or show cell-type specificity. Further evidence exists that RTX toxins play a potential role in host specificity of certain pathogens.
Collapse
Affiliation(s)
- Joachim Frey
- Institute for Veterinary Bacteriology, University of Bern, Switzerland.
| | | |
Collapse
|
42
|
Davies RL, Campbell S, Whittam TS. Mosaic structure and molecular evolution of the leukotoxin operon (lktCABD) in Mannheimia (Pasteurella) haemolytica, Mannheimia glucosida, and Pasteurella trehalosi. J Bacteriol 2002; 184:266-77. [PMID: 11741868 PMCID: PMC134752 DOI: 10.1128/jb.184.1.266-277.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The mosaic structure and molecular evolution of the leukotoxin operon (lktCABD) was investigated by nucleotide sequence comparison of the lktC, lktB, and lktD genes in 23 Mannheimia (Pasteurella) haemolytica, 6 Mannheimia glucosida, and 4 Pasteurella trehalosi strains. Sequence variation in the lktA gene has been described previously (R. L. Davies et al., J. Bacteriol. 183:1394-1404, 2001). The leukotoxin operon of M. haemolytica has a complex mosaic structure and has been derived by extensive inter- and intraspecies horizontal DNA transfer and intragenic recombination events. However, the pattern of recombination varies throughout the operon and among the different evolutionary lineages of M. haemolytica. The lktA and lktB genes have the most complex mosaic structures with segments derived from up to four different sources, including M. glucosida and P. trehalosi. In contrast, the lktD gene is highly conserved in M. haemolytica. The lktC, lktA, and lktB genes of strains representing the major ovine lineages contain recombinant segments derived from bovine or bovine-like serotype A2 strains. These findings support the previous conclusion that host switching of bovine A2 strains from cattle to sheep has played a major role in the evolution of the leukotoxin operon in ovine strains of M. haemolytica. Homologous segments of donor and recipient alleles are identical, or nearly identical, indicating that the recombinational exchanges occurred relatively recent in evolutionary terms. The 5' and 3' ends of the operon are highly conserved in M. haemolytica, which suggests that multiple horizontal exchanges of the complete operon have occurred by a common mechanism such as transduction. Although the lktA and lktB genes both have complex mosaic structures and high nucleotide substitution rates, the amino acid diversity of LktB is significantly lower than that of LktA due to a higher degree of evolutionary constraint against amino acid replacement. The recombinational exchanges within the leukotoxin operon have had greatest effect on LktA and probably provide an adaptive advantage against the host antibody response by generating novel antigenic variation at surface-exposed sites.
Collapse
Affiliation(s)
- Robert L Davies
- Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8QQ, Scotland.
| | | | | |
Collapse
|