1
|
Rey-Varela D, Balado M, Lemos ML. The Sigma Factor AsbI Is Required for the Expression of Acinetobactin Siderophore Transport Genes in Aeromonas salmonicida. Int J Mol Sci 2023; 24:ijms24119672. [PMID: 37298622 DOI: 10.3390/ijms24119672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Aeromonas salmonicida subsp. salmonicida (A. salmonicida), a Gram-negative bacterium causing furunculosis in fish, produces the siderophores acinetobactin and amonabactins in order to extract iron from its hosts. While the synthesis and transport of both systems is well understood, the regulation pathways and conditions necessary for the production of each one of these siderophores are not clear. The acinetobactin gene cluster carries a gene (asbI) encoding a putative sigma factor belonging to group 4 σ factors, or, the ExtraCytoplasmic Function (ECF) group. By generating a null asbI mutant, we demonstrate that AsbI is a key regulator that controls acinetobactin acquisition in A. salmonicida, since it directly regulates the expression of the outer membrane transporter gene and other genes necessary for Fe-acinetobactin transport. Furthermore, AsbI regulatory functions are interconnected with other iron-dependent regulators, such as the Fur protein, as well as with other sigma factors in a complex regulatory network.
Collapse
Affiliation(s)
- Diego Rey-Varela
- Departmento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Balado
- Departmento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel L Lemos
- Departmento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Woods EC, McBride SM. Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors. Microbes Infect 2017; 19:238-248. [PMID: 28153747 DOI: 10.1016/j.micinf.2017.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 11/27/2022]
Abstract
Extracytoplasmic function (ECF) sigma factors are a subfamily of σ70 sigma factors that activate genes involved in stress-response functions. In many bacteria, ECF sigma factors regulate resistance to antimicrobial compounds. This review will summarize the ECF sigma factors that regulate antimicrobial resistance in model organisms and clinically relevant pathogens.
Collapse
Affiliation(s)
- Emily C Woods
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
3
|
Quesada JM, Otero-Asman JR, Bastiaansen KC, Civantos C, Llamas MA. The Activity of the Pseudomonas aeruginosa Virulence Regulator σ(VreI) Is Modulated by the Anti-σ Factor VreR and the Transcription Factor PhoB. Front Microbiol 2016; 7:1159. [PMID: 27536271 PMCID: PMC4971064 DOI: 10.3389/fmicb.2016.01159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/12/2016] [Indexed: 11/13/2022] Open
Abstract
Gene regulation in bacteria is primarily controlled at the level of transcription initiation by modifying the affinity of the RNA polymerase (RNAP) for the promoter. This control often occurs through the substitution of the RNAP sigma (σ) subunit. Next to the primary σ factor, most bacteria contain a variable number of alternative σ factors of which the extracytoplasmic function group (σECF) is predominant. Pseudomonas aeruginosa contains nineteen σECF, including the virulence regulator σVreI. σVreI is encoded by the vreAIR operon, which also encodes a receptor-like protein (VreA) and an anti-σ factor (VreR). These three proteins form a signal transduction pathway known as PUMA3, which controls expression of P. aeruginosa virulence functions. Expression of the vreAIR operon occurs under inorganic phosphate (Pi) limitation and requires the PhoB transcription factor. Intriguingly, the genes of the σVreI regulon are also expressed in low Pi despite the fact that the σVreI repressor, the anti-σ factor VreR, is also produced in this condition. Here we show that although σVreI is partially active under Pi starvation, maximal transcription of the σVreI regulon genes requires the removal of VreR. This strongly suggests that an extra signal, probably host-derived, is required in vivo for full σVreI activation. Furthermore, we demonstrate that the activity of σVreI is modulated not only by VreR but also by the transcription factor PhoB. Presence of this regulator is an absolute requirement for σVreI to complex the DNA and initiate transcription of the PUMA3 regulon. The potential DNA binding sites of these two proteins, which include a pho box and −10 and −35 elements, are proposed.
Collapse
Affiliation(s)
- Jose M Quesada
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Joaquín R Otero-Asman
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Karlijn C Bastiaansen
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones CientíficasGranada, Spain; Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University AmsterdamAmsterdam, Netherlands
| | - Cristina Civantos
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas Granada, Spain
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas Granada, Spain
| |
Collapse
|
4
|
Bacterial Metabolism in the Host Environment: Pathogen Growth and Nutrient Assimilation in the Mammalian Upper Respiratory Tract. Microbiol Spectr 2016; 3. [PMID: 26185081 DOI: 10.1128/microbiolspec.mbp-0007-2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathogens evolve in specific host niches and microenvironments that provide the physical and nutritional requirements conducive to their growth. In addition to using the host as a source of food, bacterial pathogens must avoid the immune response to their presence. The mammalian upper respiratory tract is a site that is exposed to the external environment, and is readily colonized by bacteria that live as resident flora or as pathogens. These bacteria can remain localized, descend to the lower respiratory tract, or traverse the epithelium to disseminate throughout the body. By virtue of their successful colonization of the respiratory epithelium, these bacteria obtain the nutrients needed for growth, either directly from host resources or from other microbes. This chapter describes the upper respiratory tract environment, including its tissue and mucosal structure, prokaryotic biota, and biochemical composition that would support microbial life. Neisseria meningitidis and the Bordetella species are discussed as examples of bacteria that have no known external reservoirs but have evolved to obligately colonize the mammalian upper respiratory tract.
Collapse
|
5
|
Tanabe T, Naka A, Aso H, Nakao H, Narimatsu S, Inoue Y, Ono T, Yamamoto S. A Novel Aerobactin Utilization Cluster inVibrio vulnificuswith a Gene Involved in the Transcription Regulation of theiutAHomologue. Microbiol Immunol 2013; 49:823-34. [PMID: 16172537 DOI: 10.1111/j.1348-0421.2005.tb03671.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We demonstrated that Vibrio vulnificus M2799 utilizes aerobactin for growth as an exogenous siderophore under iron-limiting conditions, concomitant with enhanced production of the 76-kDa iron-repressible outer membrane protein. Subsequently, by applying the Fur titration assay method to the M2799 genomic libraries followed by further cloning of the regions surrounding the candidate genes, we identified the 8.4-kb aerobactin utilization gene cluster which consists of five genes arranged in three distinct transcriptional units. It was confirmed by disruption of the corresponding genes that the first unit forming a three-gene operon (vatCDB) and the third unit of a single gene (iutA) encode an ATP-binding cassette transport component and the 76-kDa ferric aerobactin receptor, respectively. The second unit of another single gene (iutR), encodes a homologue of the GntR family of transcriptional repressors. Although transcription of the first and third units was iron-regulated, the iutR gene was transcribed regardless of iron status in the growth medium. Construction of an iutR disruptant coupled with genetic complementation experiments suggested that the gene encodes a transcriptional repressor for iutA. This is the first example of a regulator gene involved in aerobactin-enhanced production of IutA.
Collapse
Affiliation(s)
- Tomotaka Tanabe
- Department of Molecular Biopharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Brickman TJ, Armstrong SK. Iron and pH-responsive FtrABCD ferrous iron utilization system of Bordetella species. Mol Microbiol 2012; 86:580-93. [PMID: 22924881 DOI: 10.1111/mmi.12003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2012] [Indexed: 12/30/2022]
Abstract
A putative operon encoding an uncharacterized ferrous iron transport (FtrABCD) system was previously identified in cDNA microarray studies. In growth studies using buffered medium at pH values ranging from pH 6.0 to 7.6, Bordetella pertussis and Bordetella bronchiseptica FtrABCD system mutants showed dramatic reductions in growth yields under iron-restricted conditions at pH 6.0, but had no growth defects at pH 7.6. Supplementation of culture medium with 2 mM ascorbate reductant was inhibitory to alcaligin siderophore-dependent growth at pH 7.6, but had a neglible effect on FtrABCD system-dependent iron assimilation at pH 6.0 consistent with its predicted specificity for ferrous iron. Unlike Bordetella siderophore-dependent and haem iron transport systems, and in agreement with its hypothesized role in transport of inorganic iron from periplasm to cytoplasm, FtrABCD system function did not require the TonB energy transduction complex. Gene fusion analysis revealed that ftrABCD promoter activity was maximal under iron-restricted growth conditions at acidic pH. The pH of human airway surface fluids ranges from pH 5.5 to 7.9, and the FtrABCD system may supply ferrous iron necessary for Bordetella growth in acidic host microenvironments in which siderophores are ineffective for iron retrieval.
Collapse
Affiliation(s)
- Timothy J Brickman
- Department of Microbiology, University of Minnesota Medical School, 925 Mayo Memorial Building, 420 Delaware Street, S.E., Minneapolis, MN 55455-0312, USA.
| | | |
Collapse
|
7
|
Armstrong SK, Brickman TJ, Suhadolc RJ. Involvement of multiple distinct Bordetella receptor proteins in the utilization of iron liberated from transferrin by host catecholamine stress hormones. Mol Microbiol 2012; 84:446-62. [PMID: 22458330 DOI: 10.1111/j.1365-2958.2012.08032.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bordetella bronchiseptica is a pathogen that can acquire iron using its native alcaligin siderophore system, but can also use the catechol xenosiderophore enterobactin via the BfeA outer membrane receptor. Transcription of bfeA is positively controlled by a regulator that requires induction by enterobactin. Catecholamine hormones also induce bfeA transcription and B. bronchiseptica can use the catecholamine noradrenaline for growth on transferrin. In this study, B. bronchiseptica was shown to use catecholamines to obtain iron from both transferrin and lactoferrin in the absence of siderophore. In the presence of siderophore, noradrenaline augmented transferrin utilization by B. bronchiseptica, as well as siderophore function in vitro. Genetic analysis identified BfrA, BfrD and BfrE as TonB-dependent outer membrane catecholamine receptors. The BfeA enterobactin receptor was found to not be involved directly in catecholamine utilization; however, the BfrA, BfrD and BfrE catecholamine receptors could serve as receptors for enterobactin and its degradation product 2,3-dihydroxybenzoic acid. Thus, there is a functional link between enterobactin-dependent and catecholamine-dependent transferrin utilization. This investigation characterizes a new B. bronchiseptica mechanism for iron uptake from transferrin that uses host stress hormones that not only deliver iron directly to catecholamine receptors, but also potentiate siderophore activity by acting as iron shuttles.
Collapse
Affiliation(s)
- Sandra K Armstrong
- Department of Microbiology, University of Minnesota Medical School, 925 Mayo Memorial Building, 420 Delaware Street, S.E., Minneapolis, MN 55455-0312, USA.
| | | | | |
Collapse
|
8
|
Transcriptional profiling of the iron starvation response in Bordetella pertussis provides new insights into siderophore utilization and virulence gene expression. J Bacteriol 2011; 193:4798-812. [PMID: 21742863 DOI: 10.1128/jb.05136-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Serological studies of patients with pertussis and the identification of antigenic Bordetella pertussis proteins support the hypothesis that B. pertussis perceives an iron starvation cue and expresses multiple iron source utilization systems in its natural human host environment. Furthermore, previous studies using a murine respiratory tract infection model showed that several of these B. pertussis iron systems are required for colonization and persistence and are differentially expressed over the course of infection. The present study examined genome-wide changes in B. pertussis gene transcript abundance in response to iron starvation in vitro. In addition to known iron source utilization genes, we identified a previously uncharacterized iron-repressed cytoplasmic membrane transporter system, fbpABC, that is required for the utilization of multiple structurally distinct siderophores including alcaligin, enterobactin, ferrichrome, and desferrioxamine B. Expression of type III secretion system genes was also found to be upregulated during iron starvation in both B. pertussis strain Tohama I and Bordetella bronchiseptica strain RB50. In a survey of type III secretion system protein production by an assortment of B. pertussis laboratory-adapted and low-passage clinical isolate strains, iron limitation increased the production and secretion of the type III secretion system-specific translocation apparatus tip protein Bsp22 in all Bvg-proficient strains. These results indicate that iron starvation in the infected host is an important environmental cue influencing not only Bordetella iron transport gene expression but also the expression of other important virulence-associated genes.
Collapse
|
9
|
Expression of BfrH, a putative siderophore receptor of Bordetella bronchiseptica, is regulated by iron, Fur1, and the extracellular function sigma factor EcfI. Infect Immun 2009; 78:1147-62. [PMID: 20008538 DOI: 10.1128/iai.00961-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron (Fe) in soluble elemental form is found in the tissues and fluids of animals at concentrations insufficient for sustaining growth of bacteria. Consequently, to promote colonization and persistence, pathogenic bacteria evolved a myriad of scavenging mechanisms to acquire Fe from the host. Bordetella bronchiseptica, the etiologic agent of upper respiratory infections in a wide range of mammalian hosts, expresses a number of proteins for acquisition of Fe. Using proteomic and genomic approaches, three Fe-regulated genes were identified in the bordetellae: bfrH, a gene encoding a putative siderophore receptor; ecfI, a gene encoding a putative extracellular function (ECF) sigma factor; and ecfR, a gene encoding a putative EcfI modulator. All three genes are highly conserved in B. pertussis, B. parapertussis, and B. avium. Genetic analysis revealed that transcription of bfrH was coregulated by ecfI, ecfR, and fur1, one of two fur homologues carried by B. bronchiseptica. Overexpression of ecfI decoupled bfrH from Fe-dependent regulation. In contrast, expression of bfrH was significantly reduced in an ecfI deletion mutant. Deletion of ecfR, however, was correlated with a significant increase in expression of bfrH, due in part to a cis-acting nucleotide sequence within ecfR which likely reduces the frequency of readthrough transcription of bfrH from the Fe-dependent ecfIR promoter. Using a murine competition infection model, bfrH was shown to be required for optimal virulence of B. bronchiseptica. These experiments revealed ecfIR-bfrH as a locus encoding a new member of the growing family of Fe and ECF sigma factor-modulated regulons in the bordetellae.
Collapse
|
10
|
Mirus O, Strauss S, Nicolaisen K, von Haeseler A, Schleiff E. TonB-dependent transporters and their occurrence in cyanobacteria. BMC Biol 2009; 7:68. [PMID: 19821963 PMCID: PMC2771747 DOI: 10.1186/1741-7007-7-68] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 10/12/2009] [Indexed: 12/22/2022] Open
Abstract
Background Different iron transport systems evolved in Gram-negative bacteria during evolution. Most of the transport systems depend on outer membrane localized TonB-dependent transporters (TBDTs), a periplasma-facing TonB protein and a plasma membrane localized machinery (ExbBD). So far, iron chelators (siderophores), oligosaccharides and polypeptides have been identified as substrates of TBDTs. For iron transport, three uptake systems are defined: the lactoferrin/transferrin binding proteins, the porphyrin-dependent transporters and the siderophore-dependent transporters. However, for cyanobacteria almost nothing is known about possible TonB-dependent uptake systems for iron or other substrates. Results We have screened all publicly available eubacterial genomes for sequences representing (putative) TBDTs. Based on sequence similarity, we identified 195 clusters, where elements of one cluster may possibly recognize similar substrates. For Anabaena sp. PCC 7120 we identified 22 genes as putative TBDTs covering almost all known TBDT subclasses. This is a high number of TBDTs compared to other cyanobacteria. The expression of the 22 putative TBDTs individually depends on the presence of iron, copper or nitrogen. Conclusion We exemplified on TBDTs the power of CLANS-based classification, which demonstrates its importance for future application in systems biology. In addition, the tentative substrate assignment based on characterized proteins will stimulate the research of TBDTs in different species. For cyanobacteria, the atypical dependence of TBDT gene expression on different nutrition points to a yet unknown regulatory mechanism. In addition, we were able to clarify a hypothesis of the absence of TonB in cyanobacteria by the identification of according sequences.
Collapse
Affiliation(s)
- Oliver Mirus
- JWGU Frankfurt am Main, Cluster of Excellence Macromolecular Complexes, Centre of Membrane Proteomics, Department of Biosciences, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| | | | | | | | | |
Collapse
|
11
|
Brickman TJ, Armstrong SK. Temporal signaling and differential expression of Bordetella iron transport systems: the role of ferrimones and positive regulators. Biometals 2009; 22:33-41. [PMID: 19130264 DOI: 10.1007/s10534-008-9189-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 12/07/2008] [Indexed: 01/16/2023]
Abstract
The bacterial respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica employ multiple alternative iron acquisition pathways to adapt to changes in the mammalian host environment during infection. The alcaligin, enterobactin, and heme utilization pathways are differentially expressed in response to the cognate iron source availability by a mechanism involving substrate-inducible positive regulators. As inducers, the iron sources function as chemical signals termed ferrimones. Ferrimone-sensing allows the pathogen to adapt and exploit early and late events in the infection process.
Collapse
Affiliation(s)
- Timothy J Brickman
- Department of Microbiology, University of Minnesota Medical School, MMC 196, Minneapolis, MN 55455-0312, USA
| | | |
Collapse
|
12
|
Norepinephrine mediates acquisition of transferrin-iron in Bordetella bronchiseptica. J Bacteriol 2008; 190:3940-7. [PMID: 18390651 DOI: 10.1128/jb.00086-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous research demonstrated that the sympathoadrenal catecholamine norepinephrine could promote the growth of Bordetella bronchiseptica in iron-restricted medium containing serum. In this study, norepinephrine was demonstrated to stimulate growth of this organism in the presence of partially iron-saturated transferrin but not lactoferrin. Although norepinephrine is known to induce transcription of the Bordetella bfeA enterobactin catechol xenosiderophore receptor gene, neither a bfeA mutant nor a bfeR regulator mutant was defective in growth responsiveness to norepinephrine. However, growth of a tonB mutant strain was not enhanced by norepinephrine, indicating that the response to this catecholamine was the result of high-affinity outer membrane transport. The B. bronchiseptica genome encodes a total of 19 known and predicted iron transport receptor genes, none of which, when mutated individually, were found to confer a defect in norepinephrine-mediated growth stimulation in the presence of transferrin. Labeling experiments demonstrated a TonB-dependent increase in cell-associated iron levels when bacteria grown in the presence of (55)Fe-transferrin were exposed to norepinephrine. In addition, TonB was required for maximum levels of cell-associated norepinephrine. Together, these results demonstrate that norepinephrine facilitates B. bronchiseptica iron acquisition from the iron carrier protein transferrin and this process may represent a mechanism by which some bacterial pathogens obtain this essential nutrient in the host environment.
Collapse
|
13
|
Brickman TJ, Armstrong SK. Impact of alcaligin siderophore utilization on in vivo growth of Bordetella pertussis. Infect Immun 2007; 75:5305-12. [PMID: 17724074 PMCID: PMC2168284 DOI: 10.1128/iai.00849-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 07/31/2007] [Accepted: 08/13/2007] [Indexed: 11/20/2022] Open
Abstract
Bordetella pertussis, the causative agent of human whooping cough, or pertussis, is an obligate human pathogen with diverse high-affinity transport systems for the assimilation of iron, a biometal that is essential for growth. Under iron starvation stress conditions, B. pertussis produces the siderophore alcaligin. The alcaligin siderophore gene cluster, consisting of the alcABCDERS and fauA genes, encodes activities required for alcaligin biosynthesis, the export of the siderophore from the cell, the uptake of the ferric alcaligin complex across the outer membrane, and the transcriptional activation of alcaligin system genes by an autogenous mechanism involving alcaligin sensing. The fauA gene encodes a 79-kDa TonB-dependent outer membrane receptor protein required for the uptake and utilization of ferric alcaligin as an iron source. In this study, using mixed-infection competition experiments in a mouse respiratory model, inactivation of the B. pertussis ferric alcaligin receptor protein was found to have a profound impact on in vivo growth and survival of a fauA mutant compared with a coinfecting wild-type strain. The attenuating effect of fauA inactivation was evident early in the course of the infection, suggesting that the contribution of ferric alcaligin transport to the ecological fitness of B. pertussis may be important for adaptation to iron-restricted host conditions that exist at the initial stages of infection. Alcaligin-mediated iron acquisition by B. pertussis may be critical for successful host colonization and establishment of infection.
Collapse
Affiliation(s)
- Timothy J Brickman
- Department of Microbiology, University of Minnesota, MMC 196, 420 Delaware Street SE, Minneapolis, MN 55455-0312, USA.
| | | |
Collapse
|
14
|
Brooks BE, Buchanan SK. Signaling mechanisms for activation of extracytoplasmic function (ECF) sigma factors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1930-45. [PMID: 17673165 PMCID: PMC2562455 DOI: 10.1016/j.bbamem.2007.06.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 05/23/2007] [Accepted: 06/06/2007] [Indexed: 11/27/2022]
Abstract
A variety of mechanisms are used to signal extracytoplasmic conditions to the cytoplasm. These mechanisms activate extracytoplasmic function (ECF) sigma factors which recruit RNA-polymerase to specific genes in order to express appropriate proteins in response to the changing environment. The two best understood ECF signaling pathways regulate sigma(E)-mediated expression of periplasmic stress response genes in Escherichia coli and FecI-mediated expression of iron-citrate transport genes in E. coli. Homologues from other Gram-negative bacteria suggest that these two signaling mechanisms and variations on these mechanisms may be the general schemes by which ECF sigma factors are regulated in Gram-negative bacteria.
Collapse
|
15
|
Brickman TJ, Anderson MT, Armstrong SK. Bordetella iron transport and virulence. Biometals 2007; 20:303-22. [PMID: 17295050 DOI: 10.1007/s10534-006-9031-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Accepted: 07/20/2006] [Indexed: 11/26/2022]
Abstract
Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica are pathogens with a complex iron starvation stress response important for adaptation to nutrient limitation and flux in the mammalian host environment. The iron starvation stress response is globally regulated by the Fur repressor using ferrous iron as the co-repressor. Expression of iron transport system genes of Bordetella is coordinated by priority regulation mechanisms that involve iron source sensing. Iron source sensing is mediated by distinct transcriptional activators that are responsive to the cognate iron source acting as the inducer.
Collapse
Affiliation(s)
- Timothy J Brickman
- Department of Microbiology, University of Minnesota Medical School, MMC 196, 420 Delaware Street S.E., Minneapolis, MN 55455-0312, USA
| | | | | |
Collapse
|
16
|
Diavatopoulos DA, Cummings CA, van der Heide HGJ, van Gent M, Liew S, Relman DA, Mooi FR. Characterization of a highly conserved island in the otherwise divergent Bordetella holmesii and Bordetella pertussis genomes. J Bacteriol 2006; 188:8385-94. [PMID: 17041054 PMCID: PMC1698220 DOI: 10.1128/jb.01081-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The recently discovered pathogen Bordetella holmesii has been isolated from the airways and blood of diseased humans. Genetic events contributing to the emergence of B. holmesii are not understood, and its phylogenetic position among the bordetellae remains unclear. To address these questions, B. holmesii strains were analyzed by comparative genomic hybridization (CGH) to a Bordetella pertussis microarray and by multilocus sequence typing. Both methods indicated substantial sequence divergence between B. pertussis and B. holmesii. However, CGH identified a putative pathogenicity island of 66 kb that is highly conserved between these species and contains several IS481 elements that may have been laterally transferred from B. pertussis to B. holmesii. This island contains, among other genes, a functional, iron-regulated locus encoding the biosynthesis, export, and uptake of the siderophore alcaligin. The acquisition of this genomic island by B. holmesii may have significantly contributed to its emergence as a human pathogen. Horizontal gene transfer between B. pertussis and B. holmesii may also explain the unusually high sequence identity of their 16S rRNA genes.
Collapse
Affiliation(s)
- D A Diavatopoulos
- Laboratory for Vaccine Preventable Diseases, National Institute of Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Sebaihia M, Preston A, Maskell DJ, Kuzmiak H, Connell TD, King ND, Orndorff PE, Miyamoto DM, Thomson NR, Harris D, Goble A, Lord A, Murphy L, Quail MA, Rutter S, Squares R, Squares S, Woodward J, Parkhill J, Temple LM. Comparison of the genome sequence of the poultry pathogen Bordetella avium with those of B. bronchiseptica, B. pertussis, and B. parapertussis reveals extensive diversity in surface structures associated with host interaction. J Bacteriol 2006; 188:6002-15. [PMID: 16885469 PMCID: PMC1540077 DOI: 10.1128/jb.01927-05] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella avium is a pathogen of poultry and is phylogenetically distinct from Bordetella bronchiseptica, Bordetella pertussis, and Bordetella parapertussis, which are other species in the Bordetella genus that infect mammals. In order to understand the evolutionary relatedness of Bordetella species and further the understanding of pathogenesis, we obtained the complete genome sequence of B. avium strain 197N, a pathogenic strain that has been extensively studied. With 3,732,255 base pairs of DNA and 3,417 predicted coding sequences, it has the smallest genome and gene complement of the sequenced bordetellae. In this study, the presence or absence of previously reported virulence factors from B. avium was confirmed, and the genetic bases for growth characteristics were elucidated. Over 1,100 genes present in B. avium but not in B. bronchiseptica were identified, and most were predicted to encode surface or secreted proteins that are likely to define an organism adapted to the avian rather than the mammalian respiratory tracts. These include genes coding for the synthesis of a polysaccharide capsule, hemagglutinins, a type I secretion system adjacent to two very large genes for secreted proteins, and unique genes for both lipopolysaccharide and fimbrial biogenesis. Three apparently complete prophages are also present. The BvgAS virulence regulatory system appears to have polymorphisms at a poly(C) tract that is involved in phase variation in other bordetellae. A number of putative iron-regulated outer membrane proteins were predicted from the sequence, and this regulation was confirmed experimentally for five of these.
Collapse
Affiliation(s)
- Mohammed Sebaihia
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mahren S, Schnell H, Braun V. Occurrence and regulation of the ferric citrate transport system in Escherichia coli B, Klebsiella pneumoniae, Enterobacter aerogenes, and Photorhabdus luminescens. Arch Microbiol 2005; 184:175-86. [PMID: 16193283 DOI: 10.1007/s00203-005-0035-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 08/24/2005] [Accepted: 08/29/2005] [Indexed: 10/25/2022]
Abstract
In Escherichia coli K-12, transcription of the ferric citrate transport genes fecABCDE is initiated by binding of diferric dicitrate to the outer membrane protein FecA which elicits a signaling cascade from the cell surface to the cytoplasm. The FecI sigma factor is only active in the presence of FecR, which transfers the signal across the cytoplasmic membrane. In other bacteria, fecIRA homologues control iron transport gene transcription by siderophores other than citrate. However, in most cases, the FecI homologues are active in the absence of the FecR homologues, which might function as anti-sigma factors. Since not all E. coli strains contain a fec system, we determined the occurrence of fec genes in selected Enterobacteriaceae and the dependence of FecI activity on FecR. Incomplete FecIRA systems were chromosomally encoded in Enterobacter aerogenes strains and plasmid-encoded in K. pneumoniae. E. coli B, Photorhabdus luminescens and one of three Klebsiella pneumoniae strains had a functional FecIRA regulatory system as in E. coli K-12. The cytoplasmic N-terminal FecR fragments caused constitutive FecI activity in the absence of ferric citrate. The PCR-generated mutant FecI(D40G) was inactive and FecI(S15P) was partially active. FecR of E. coli K-12 activated FecI of all tested strains except FecI encoded on the virulence plasmid pLVPK of K. pneumoniae, which differed from E. coli K-12 FecI by having mutations in region 4, which is important for interaction with FecR. The C-terminally truncated FecR homologue of pLVPK was inactive. pLVPK-encoded FecA contains a 38-residue sequence in front of the signal sequence that did not prevent processing and proper integration of FecA into the outer membrane of E. coli and lacks the signaling sequence required for transcription initiation of the fec transport genes, making it induction-incompetent but transport-competent. The evidence indicates that fecIRABCDE genes are acquired by horizontal DNA transfer and can undergo debilitating mutations.
Collapse
Affiliation(s)
- Susanne Mahren
- Mikrobiologie/Membranphysiologie, Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | | | |
Collapse
|
19
|
Brickman TJ, Armstrong SK. Bordetella AlcS transporter functions in alcaligin siderophore export and is central to inducer sensing in positive regulation of alcaligin system gene expression. J Bacteriol 2005; 187:3650-61. [PMID: 15901687 PMCID: PMC1112062 DOI: 10.1128/jb.187.11.3650-3661.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella pertussis and Bordetella bronchiseptica, which are respiratory mucosal pathogens of mammals, produce and utilize the siderophore alcaligin to acquire iron in response to iron starvation. A predicted permease of the major facilitator superfamily class of membrane efflux pumps, AlcS (synonyms, OrfX and Bcr), was reported to be encoded within the alcaligin gene cluster. In this study, alcS null mutants were found to be defective in growth under iron starvation conditions, in iron source utilization, and in alcaligin export. trans complementation using cloned alcS genes of B. pertussis or B. bronchiseptica restored the wild-type phenotype to the alcS mutants. Although the levels of extracellular alcaligin measured in alcS strain culture fluids were severely reduced compared with the wild-type levels, alcS mutants had elevated levels of cell-associated alcaligin, implicating AlcS in alcaligin export. Interestingly, a deltaalcA mutation that eliminated alcaligin production suppressed the growth defects of alcS mutants. This suppression and the alcaligin production defect were reversed by trans complementation of the deltaalcA mutation in the double-mutant strain, confirming that the growth-defective phenotype of alcS mutants is associated with alcaligin production. In an alcA::mini-Tn5 lacZ1 operon fusion strain background, an alcS null mutation resulted in enhanced AlcR-dependent transcriptional responsiveness to alcaligin inducer; conversely, AlcS overproduction blunted the transcriptional response to alcaligin. These transcription studies indicate that the alcaligin exporter activity of AlcS is required to maintain appropriate intracellular alcaligin levels for normal inducer sensing and responsiveness necessary for positive regulation of alcaligin system gene expression.
Collapse
Affiliation(s)
- Timothy J Brickman
- Department of Microbiology, University of Minnesota, MMC 196, 420 Delaware Street S.E., Minneapolis, Minnesota 55455-0312, USA
| | | |
Collapse
|
20
|
Bashyam MD, Hasnain SE. The extracytoplasmic function sigma factors: role in bacterial pathogenesis. INFECTION GENETICS AND EVOLUTION 2004; 4:301-8. [PMID: 15374527 DOI: 10.1016/j.meegid.2004.04.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 04/24/2004] [Accepted: 04/26/2004] [Indexed: 11/25/2022]
Abstract
Bacteria utilize a distinct subfamily of sigma factors to regulate extra cytoplasmic function (thus termed as ECF subfamily). Eubacteria appear to have evolved to incorporate extensive genetic diversity into their repertoire of ECF sigma factors (some species have more than 60 ECF sigma factors), while maintaining three major themes common to all members including: (1) they regulate and respond to extracytoplasmic functions; (2) they are themselves regulated by anti-sigma and/or anti-anti-sigma factors; and (3) most of them control a relatively small regulon. The cell wall is the first bacterial structure that comes in contact with the host during infection by pathogenic bacteria. The cell wall components are often associated with functions related to host cell invasion. It is therefore, likely that the ECF sigma factors regulate the bacterial response to host insult. Moreover, in some cases, virulence factors have been shown to be regulated directly by the ECF sigma factors. Unfortunately, this facet of the ECF sigma factors has not been an important area of study by researchers. The present review attempts to highlight the important role played by ECF sigma factors in bacterial pathogenesis and highlights several areas of future study involving the genetics of ECF sigma factors vis-à-vis bacterial pathogenesis.
Collapse
Affiliation(s)
- Murali D Bashyam
- Department of Pathology, CCSR 3240, 269 Campus Drive, Stanford University School of Medicine, Stanford, CA 94306, USA.
| | | |
Collapse
|
21
|
Anderson MT, Armstrong SK. The BfeR regulator mediates enterobactin-inducible expression of Bordetella enterobactin utilization genes. J Bacteriol 2004; 186:7302-11. [PMID: 15489442 PMCID: PMC523226 DOI: 10.1128/jb.186.21.7302-7311.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 08/10/2004] [Indexed: 11/20/2022] Open
Abstract
Utilization of the enterobactin siderophore by the respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica is dependent on the BfeA outer membrane receptor. This study determined that production of BfeA was increased significantly in iron-starved bacteria upon supplementation of cultures with enterobactin. A 1.01-kb open reading frame, designated bfeR, encoding a predicted positive transcriptional regulator of the AraC family was identified upstream and divergently oriented from bfeA. In iron-depleted cultures containing enterobactin, a Bordetella bfeR mutant exhibited markedly decreased BfeA receptor production compared to that of the wild-type strain. Additionally, B. pertussis and B. bronchiseptica bfeR mutants exhibited impaired growth with ferric enterobactin as the sole source of iron, demonstrating that effective enterobactin utilization is bfeR dependent. Transcriptional analysis using bfeA-lacZ reporter fusions in wild-type strains demonstrated that bfeA transcription was stimulated in iron-depleted conditions in the presence of enterobactin, compared to modest expression levels in cultures lacking enterobactin. In contrast, bfeA transcription in B. pertussis and B. bronchiseptica bfeR mutants was completely unresponsive to the enterobactin inducer. bfeA transcriptional analyses of a bfeA mutant demonstrated that induction by enterobactin did not require BfeA receptor-mediated uptake of the siderophore. These studies establish that bfeR encodes an enterobactin-dependent positive regulator of bfeA transcription in these Bordetella species.
Collapse
Affiliation(s)
- Mark T Anderson
- Department of Microbiology, University of Minnesota, MMC 196, 420 Delaware Street S.E., Minneapolis, MN 55455-0312, USA
| | | |
Collapse
|
22
|
Braun V, Mahren S. Transmembrane transcriptional control (surface signalling) of the Escherichia coli Fec type. FEMS Microbiol Rev 2004; 29:673-84. [PMID: 16102597 DOI: 10.1016/j.femsre.2004.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 10/06/2004] [Accepted: 10/07/2004] [Indexed: 11/27/2022] Open
Abstract
The ferric citrate transport system of Escherichia coli is the first example of a transcription initiation mechanism that starts at the cell surface. The inducer, ferric citrate, binds to an outer membrane transport protein, and without further transport elicits a signal that is transmitted across the outer membrane, the periplasm, and the cytoplasmic membrane into the cytoplasm. Signal transfer across the three subcellular compartments is mediated by the outer membrane transport protein that interacts in the periplasm with a cytoplasmic transmembrane protein. The latter is required for activation of a sigma factor which belongs to the extracytoplasmic function sigma factor family. A similar kind of transcription regulation has been demonstrated in Pseudomonas putida, P. aeruginosa, Serratia marcescens, Klebsiella pneumoniae, Aerobacter aerogenes, Bordetella pertussis, B. bronchseptica, B. avium, and Ralstonia solanacearum. The genomes of P. putida, P. aeruginosa, Nitrosomonas europaea, Bacteroides thetaiotaomicron and Caulobacter crescentus predict the existence of many more such transcriptional regulatory devices.
Collapse
Affiliation(s)
- Volkmar Braun
- Mikrobiologie/Membranphysiologie, Universität Tübingen, Germany.
| | | |
Collapse
|
23
|
Schalk IJ, Yue WW, Buchanan SK. Recognition of iron-free siderophores by TonB-dependent iron transporters. Mol Microbiol 2004; 54:14-22. [PMID: 15458401 DOI: 10.1111/j.1365-2958.2004.04241.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
TonB-dependent iron transporters reside in the outer membranes of Gram-negative bacteria, transporting ferric-complexes into the periplasm by a mechanism requiring proton motive force and an integral inner membrane complex, TonB-ExbB-ExbD. Certain TonB-dependent transporters contain an additional domain at the N-terminus, which interacts with an inner membrane regulatory protein and a cytoplasmic sigma factor to induce transcription of iron transport genes when a ferric-ligand is bound at the extracellular surface of the transporter. Transport of the ferric-ligand is apparently not necessary for transcription induction. Recent biophysical and crystallographic experiments have shown that this subclass of TonB-dependent iron transporters can bind iron-free ligands, whereas only the ferric-ligands are transported into the periplasm. This review focuses on the ligand binding properties of these transporters and includes a discussion of the biological function of the additional domain, the mechanism of transcription induction and the mechanism of ferric-ligand transport.
Collapse
Affiliation(s)
- Isabelle J Schalk
- Département des Récepteurs et Protéines Membranaires, UPR 9050, CNRS, ESBS, Bld Sébastien Brant, F-67 400 Illkirch, Strasbourg, France.
| | | | | |
Collapse
|
24
|
Passerini de Rossi BN, Friedman LE, Belzoni CB, Savino S, Aricò B, Rappuoli R, Masignani V, Franco MA. Vir90, a virulence-activated gene coding for a Bordetella pertussis iron-regulated outer membrane protein. Res Microbiol 2003; 154:443-50. [PMID: 12892851 DOI: 10.1016/s0923-2508(03)00115-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bordetella pertussis undergoes phenotypic changes modulated by the bvgAS locus, which regulates the expression of many genes related to virulence and immunogenicity. We previously reported the N-terminal sequence of a 90 kDa bvg-regulated outer membrane protein (OMP) of B. pertussis (SWISS-PROT accession No. p81549), a novel potential virulence factor that we named Vir90. The open reading frames (ORFs) which potentially code for Vir90 in B. pertussis, B. parapertussis and B. bronchiseptica were identified by computer analysis of the genomic sequences available for the three Bordetella species. Nucleotide sequence analysis of the vir90 upstream region revealed the presence of a putative promoter, a BvgA binding site and a putative Fur binding site. The B. pertussis Vir90 protein showed significant homology with ferrisiderophore receptors from Gram-negative bacteria. An antiserum raised against Vir90His recombinant protein recognized the 90-kDa protein in immunoblots of OMPs from these three virulent Bordetella species. The accumulation of the Vir90 protein increased 4-fold under low iron growth conditions. Therefore, the vir90 gene is expressed in the tested species and its expression is regulated positively by the BvgAS system and negatively under high iron concentration, likely by Fur.
Collapse
Affiliation(s)
- Beatriz N Passerini de Rossi
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Braun V, Mahren S, Ogierman M. Regulation of the FecI-type ECF sigma factor by transmembrane signalling. Curr Opin Microbiol 2003; 6:173-80. [PMID: 12732308 DOI: 10.1016/s1369-5274(03)00022-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Induction of the ferric citrate transport genes of Escherichia coli K-12 involves a signalling cascade that starts at the cell surface and proceeds to the cytoplasm. Three specific proteins are involved: FecA in the outer membrane, FecR in the cytoplasmic membrane, and FecI in the cytoplasm. The binding of dinuclear ferric citrate to FecA causes substantial structural changes in FecA, triggering the signal cascade. The amino-proximal end of FecA interacts with the carboxy-proximal end of FecR in the periplasm. FecR then transmits the signal across the cytoplasmic membrane into the cytoplasm and activates the FecI sigma factor, which binds to the RNA polymerase core enzyme and directs the RNA polymerase to the promoter upstream of the fecABCDE transport genes to initiate transcription. Transcription of the fecIR regulatory genes and the fec transport genes is repressed by the Fur protein loaded with Fe(2+). Therefore, transcription of the fec transport genes is subjected to double control: cells first detect iron deficiency and respond by synthesis of the regulatory proteins FecI and FecR, which initiate transcription of the fec transport genes, provided ferric citrate is available. FecI belongs to the extracytoplasmic function sigma factors, which are widespread among bacteria. With the recent sequencing of complete microbial genomes, it has become apparent that the FecIRA cascade is now a paradigm for the regulatory control of FecI family sigmas in Gram-negative bacteria.
Collapse
Affiliation(s)
- Volkmar Braun
- Mikrobiologie/Membranphysiologie, Universtat Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.
| | | | | |
Collapse
|
26
|
Rédly GA, Poole K. Pyoverdine-mediated regulation of FpvA synthesis in Pseudomonas aeruginosa: involvement of a probable extracytoplasmic-function sigma factor, FpvI. J Bacteriol 2003; 185:1261-5. [PMID: 12562796 PMCID: PMC142879 DOI: 10.1128/jb.185.4.1261-1265.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A search of the pvd pyoverdine biosynthesis locus of Pseudomonas aeruginosa identified an open reading frame, PA2387, whose product exhibited a sequence similar to those of a number of so-called extracytoplasmic- function sigma factors responsible for siderophore-dependent expression of iron-siderophore receptors in Escherichia coli and Pseudomonas putida. Deletion of this gene, dubbed fpvI, compromised pyoverdine-dependent FpvA ferric pyoverdine receptor production and fpvA gene expression, while the cloned gene stimulated fpvA expression. A Fur-binding site was identified immediately upstream of fpvI, consistent with the observed iron-regulated expression of fpvI and fpvA.
Collapse
Affiliation(s)
- Gyula Alan Rédly
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
27
|
Abstract
Bacterial sigma (sigma) factors are an essential component of RNA polymerase and determine promoter selectivity. The substitution of one sigma factor for another can redirect some or all of the RNA polymerase in a cell to activate the transcription of genes that would otherwise be silent. As a class, alternative sigma factors play key roles in coordinating gene transcription during various stress responses and during morphological development. The extracytoplasmic function (ECF) sigma factors are small regulatory proteins that are quite divergent in sequence relative to most other sigma factors. Many bacteria, particularly those with more complex genomes, contain multiple ECF sigma factors and these regulators often outnumber all other types of sigma factor combined. Examples include Bacillus subtilis (7 ECF sigma factors), Mycobacterium tuberculosis (10), Caulobacter crescentus (13), Pseudomonas aeruginosa (approximately 19), and Streptomyces coelicolor (approximately 50). The roles and mechanisms of regulation for these various ECF sigma factors are largely unknown, but significant progress has been made in selected systems. As a general trend, most ECF sigma factors are cotranscribed with one or more negative regulators. Often, these include a transmembrane protein functioning as an anti-sigma factor that binds, and inhibits, the cognate sigma factor. Upon receiving a stimulus from the environment, the sigma factor is released and can bind to RNA polymerase to stimulate transcription. In many ways, these anti-sigma:sigma pairs are analogous to the more familiar two-component regulatory systems consisting of a transmembrane histidine protein kinase and a DNA-binding response regulator. Both are mechanisms of coordinating a cytoplasmic transcriptional response to signals perceived by protein domains external to the cell membrane. Here, I review current knowledge of some of the better characterized ECF sigma factors, discuss the variety of experimental approaches that have proven productive in defining the roles of ECF sigma factors, and present some unifying themes that are beginning to emerge as more systems are studied.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA
| |
Collapse
|
28
|
Visca P, Leoni L, Wilson MJ, Lamont IL. Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol Microbiol 2002; 45:1177-90. [PMID: 12207687 DOI: 10.1046/j.1365-2958.2002.03088.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A variety of bacterial species secrete and take up chelating compounds that enable acquisition of iron (siderophores). It has become clear that a common feature in regulation of different iron acquisition systems is the involvement of alternative sigma factor proteins of the extracytoplasmic function (ECF) family. Two of these proteins, PvdS from Pseudomonas aeruginosa and FecI from Escherichia coli K-12, have been studied extensively. PvdS directs transcription of genes required for the biosynthesis of a siderophore, pyoverdine, and FecI causes expression of genes for uptake of ferric citrate. FecI forms part of a signalling system that responds to the presence of ferric citrate. Here, we review recent advances in understanding of PvdS and of the Fec signalling system. PvdS and FecI are part of a distinct subfamily of ECF sigma factors involved in iron acquisition and hence named the iron-starvation sigmas. Analysis of microbial genome sequences shows that Fec-like signalling systems are present in a wide range of species and many such systems may be present in a single species. The availability of tools for large-scale genome analysis is likely to lead to rapid advances in our understanding of this expanding family of proteins.
Collapse
Affiliation(s)
- Paolo Visca
- Molecular Microbiology Unit, National Institute for Infectious Diseases, Via Portuense 292, 00149 Rome, Italy
| | | | | | | |
Collapse
|
29
|
Mahren S, Enz S, Braun V. Functional interaction of region 4 of the extracytoplasmic function sigma factor FecI with the cytoplasmic portion of the FecR transmembrane protein of the Escherichia coli ferric citrate transport system. J Bacteriol 2002; 184:3704-11. [PMID: 12057967 PMCID: PMC135117 DOI: 10.1128/jb.184.13.3704-3711.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional regulation of the ferric citrate transport genes of Escherichia coli is initiated by the binding of ferric citrate to the outer membrane protein FecA. This binding elicits a signal that is transmitted by FecR across the cytoplasmic membrane into the cytoplasm, where the sigma factor FecI directs the RNA polymerase to the promoter upstream of the fecABCDE genes. An in vivo deletion analysis using a bacterial two-hybrid system assigned the interaction of the FecR and FecI proteins to the cytoplasmic portion of the FecR transmembrane protein and region 4 of FecI. Missense mutations randomly generated by PCR were localized to region 4 of FecI, and the mutants were impaired with regard to the interaction of FecR with FecI and fecB-lacZ transcription. The cloned region 4 of FecI interfered with fecB-lacZ transcription. Interaction of N-proximal regions of predicted FecR homologs with region 4 of predicted FecI homologs of Pseudomonas aeruginosa was demonstrated. The interaction was specific in that only cognate protein pairs interacted with each other; no interactions occurred between heterologous combinations of the P. aeruginosa proteins and between a P. aeruginosa FecI homolog and E. coli FecR. The results demonstrate that region 4 of FecI specifically binds FecR and that this binding is necessary for FecI to function as a sigma factor.
Collapse
Affiliation(s)
- Susanne Mahren
- Mikrobiologie/Membranphysiologie, Universität Tübingen, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
30
|
Funahashi T, Moriya K, Uemura S, Miyoshi SI, Shinoda S, Narimatsu S, Yamamoto S. Identification and characterization of pvuA, a gene encoding the ferric vibrioferrin receptor protein in Vibrio parahaemolyticus. J Bacteriol 2002; 184:936-46. [PMID: 11807053 PMCID: PMC134804 DOI: 10.1128/jb.184.4.936-946.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that Vibrio parahaemolyticus expresses two outer membrane proteins of 78 and 83 kDa concomitant with production of siderophore vibrioferrin in response to iron starvation stress and that these proteins are the ferric vibrioferrin receptor and heme receptor, respectively (S. Yamamoto, T. Akiyama, N. Okujo, S. Matsuura, and S. Shinoda, Microbiol. Immunol. 39:759-766, 1995; S. Yamamoto, Y. Hara, K. Tomochika, and S. Shinoda, FEMS Microbiol. Lett. 128:195-200, 1995). In this study, the Fur titration assay (FURTA) system was applied to isolate DNA fragments containing a potential Fur box from a genomic DNA library of V. parahaemolyticus WP1. Sequencing a 3.2-kb DNA insert in one FURTA-positive clone revealed that an amino acid sequence deduced from a partial gene, which was preceded by a full-length gene (psuA) encoding a receptor for a siderophore of unknown origin, was consistent with the N-terminal amino acid sequence of the 78-kDa ferric vibrioferrin receptor. Then, the full-length gene (pvuA) encoding the ferric vibrioferrin receptor was cloned and characterized. The deduced protein encoded by pvuA displayed the highest similarity (31% identity; 48% similarity) to RumA, a ferric rhizoferrin receptor of Morganella morganii. Primer extension and Northern blot analyses indicated that psuA and pvuA constitute an operon which is transcribed from a Fur-repressed promoter upstream of psuA. The product of the pvuA gene and its function were confirmed by generating a pvuA-disrupted mutant, coupled with genetic complementation studies. A mutant with disruption in the upstream psuA gene also displayed a phenotype impaired in the utilization of ferric vibrioferrin.
Collapse
Affiliation(s)
- Tatsuya Funahashi
- Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | | | |
Collapse
|