1
|
Holmes EC, Bleem AC, Johnson CW, Beckham GT. Adaptive laboratory evolution and metabolic engineering of Cupriavidus necator for improved catabolism of volatile fatty acids. Metab Eng 2024; 86:S1096-7176(24)00139-3. [PMID: 39490669 DOI: 10.1016/j.ymben.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Bioconversion of high-volume waste streams into value-added products will be an integral component of the growing bioeconomy. Volatile fatty acids (VFAs) (e.g., butyrate, valerate, and hexanoate) are an emerging and promising waste-derived feedstock for microbial carbon upcycling. Cupriavidus necator H16 is a favorable host for conversion of VFAs into various bioproducts due to its diverse carbon metabolism, ease of metabolic engineering, and use at industrial scales. Here, we report that a common strategy to improve product titers in C. necator, deletion of the polyhydroxybutyrate (PHB) biosynthetic operon, results in a significant growth defect on VFA substrates. Using adaptive laboratory evolution, we identify mutations to the regulator gene phaR, the two-component response regulator-histidine kinase pair encoded by H16_A1372/H16_A1373, and the tripartite transporter assembly encoded by H16_A2296-A2298 as causative for improved growth on VFA substrates. Deletion of phaR and H16_A1373 led to significantly reduced NADH abundance accompanied by large changes to expression of genes involved in carbon metabolism, balance of electron carriers, and oxidative stress tolerance that may be responsible for improved growth of these engineered strains. These results provide insight into the role of PHB biosynthesis in carbon and energy metabolism and highlight a key role for the regulator PhaR in global regulatory networks. By combining mutations, we generated platform strains with significant growth improvements on VFAs, which can enable improved conversion of waste-derived VFA substrates to target bioproducts.
Collapse
Affiliation(s)
- Eric C Holmes
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Alissa C Bleem
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
2
|
Ranaivoarisoa TO, Bai W, Karthikeyan R, Steele H, Silberman M, Olabode J, Conners E, Gallagher B, Bose A. Overexpression of RuBisCO form I and II genes in Rhodopseudomonas palustris TIE-1 augments polyhydroxyalkanoate production heterotrophically and autotrophically. Appl Environ Microbiol 2024; 90:e0143824. [PMID: 39162566 PMCID: PMC11409669 DOI: 10.1128/aem.01438-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
With the rising demand for sustainable renewable resources, microorganisms capable of producing bioproducts such as bioplastics are attractive. While many bioproduction systems are well-studied in model organisms, investigating non-model organisms is essential to expand the field and utilize metabolically versatile strains. This investigation centers on Rhodopseudomonas palustris TIE-1, a purple non-sulfur bacterium capable of producing bioplastics. To increase bioplastic production, genes encoding the putative regulatory protein PhaR and the depolymerase PhaZ of the polyhydroxyalkanoate (PHA) biosynthesis pathway were deleted. Genes associated with pathways that might compete with PHA production, specifically those linked to glycogen production and nitrogen fixation, were deleted. Additionally, RuBisCO form I and II genes were integrated into TIE-1's genome by a phage integration system, developed in this study. Our results show that deletion of phaR increases PHA production when TIE-1 is grown photoheterotrophically with butyrate and ammonium chloride (NH4Cl). Mutants unable to produce glycogen or fix nitrogen show increased PHA production under photoautotrophic growth with hydrogen and NH4Cl. The most significant increase in PHA production was observed when RuBisCO form I and form I & II genes were overexpressed, five times under photoheterotrophy with butyrate, two times with hydrogen and NH4Cl, and two times under photoelectrotrophic growth with N2 . In summary, inserting copies of RuBisCO genes into the TIE-1 genome is a more effective strategy than deleting competing pathways to increase PHA production in TIE-1. The successful use of the phage integration system opens numerous opportunities for synthetic biology in TIE-1.IMPORTANCEOur planet has been burdened by pollution resulting from the extensive use of petroleum-derived plastics for the last few decades. Since the discovery of biodegradable plastic alternatives, concerted efforts have been made to enhance their bioproduction. The versatile microorganism Rhodopseudomonas palustris TIE-1 (TIE-1) stands out as a promising candidate for bioplastic synthesis, owing to its ability to use multiple electron sources, fix the greenhouse gas CO2, and use light as an energy source. Two categories of strains were meticulously designed from the TIE-1 wild-type to augment the production of polyhydroxyalkanoate (PHA), one such bioplastic produced. The first group includes mutants carrying a deletion of the phaR or phaZ genes in the PHA pathway, and those lacking potential competitive carbon and energy sinks to the PHA pathway (namely, glycogen biosynthesis and nitrogen fixation). The second group comprises TIE-1 strains that overexpress RuBisCO form I or form I & II genes inserted via a phage integration system. By studying numerous metabolic mutants and overexpression strains, we conclude that genetic modifications in the environmental microbe TIE-1 can improve PHA production. When combined with other approaches (such as reactor design, use of microbial consortia, and different feedstocks), genetic and metabolic manipulations of purple nonsulfur bacteria like TIE-1 are essential for replacing petroleum-derived plastics with biodegradable plastics like PHA.
Collapse
Affiliation(s)
| | - Wei Bai
- LifeFoundry, San Jose, California, USA
| | | | - Hope Steele
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Miriam Silberman
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jennifer Olabode
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Eric Conners
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Brian Gallagher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Arpita Bose
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Lee Y, Kang M, Jang WD, Choi SY, Yang JE, Lee SY. Microbial production of an aromatic homopolyester. Trends Biotechnol 2024:S0167-7799(24)00148-3. [PMID: 39174388 DOI: 10.1016/j.tibtech.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 08/24/2024]
Abstract
We report the development of a metabolically engineered bacterium for the fermentative production of polyesters containing aromatic side chains, serving as sustainable alternatives to petroleum-based plastics. A metabolic pathway was constructed in an Escherichia coli strain to produce poly[d-phenyllactate(PhLA)], followed by three strategies to enhance polymer production. First, polyhydroxyalkanoate (PHA) granule-associated proteins (phasins) were introduced to increase the polymer accumulation. Next, metabolic engineering was performed to redirect the metabolic flux toward PhLA. Furthermore, PHA synthase was engineered based on in silico simulation results to enhance the polymerization of PhLA. The final strain was capable of producing 12.3 g/l of poly(PhLA), marking it the first bio-based process for producing an aromatic homopolyester. Additional heterologous gene introductions led to the high level production of poly(3-hydroxybutyrate-co-11.7 mol% PhLA) copolymer (61.4 g/l). The strategies described here will be useful for the bio-based production of aromatic polyesters from renewable resources.
Collapse
Affiliation(s)
- Youngjoon Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Minju Kang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Woo Dae Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Jung Eun Yang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Engineering Biology, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
4
|
Conners EM, Rengasamy K, Ranaivoarisoa T, Bose A. The phototrophic purple non-sulfur bacteria Rhodomicrobium spp. are novel chassis for bioplastic production. Microb Biotechnol 2024; 17:e14552. [PMID: 39163151 PMCID: PMC11334908 DOI: 10.1111/1751-7915.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Petroleum-based plastics levy significant environmental and economic costs that can be alleviated with sustainably sourced, biodegradable, and bio-based polymers such as polyhydroxyalkanoates (PHAs). However, industrial-scale production of PHAs faces barriers stemming from insufficient product yields and high costs. To address these challenges, we must look beyond the current suite of microbes for PHA production and investigate non-model organisms with versatile metabolisms. In that vein, we assessed PHA production by the photosynthetic purple non-sulfur bacteria (PNSB) Rhodomicrobium vannielii and Rhodomicrobium udaipurense. We show that both species accumulate PHA across photo-heterotrophic, photo-hydrogenotrophic, photo-ferrotrophic, and photo-electrotrophic growth conditions, with either ammonium chloride (NH4Cl) or dinitrogen gas (N2) as nitrogen sources. Our data indicate that nitrogen source plays a significant role in dictating PHA synthesis, with N2 fixation promoting PHA production during photoheterotrophy and photoelectrotrophy but inhibiting production during photohydrogenotrophy and photoferrotrophy. We observed the highest PHA titres (up to 44.08 mg/L, or 43.61% cell dry weight) when cells were grown photoheterotrophically on sodium butyrate with N2, while production was at its lowest during photoelectrotrophy (as low as 0.04 mg/L, or 0.16% cell dry weight). We also find that photohydrogenotrophically grown cells supplemented with NH4Cl exhibit the highest electron yields - up to 58.89% - while photoheterotrophy demonstrated the lowest (0.27%-1.39%). Finally, we highlight superior electron conversion and PHA production compared to a related PNSB, Rhodopseudomonas palustris TIE-1. This study illustrates the value of studying non-model organisms like Rhodomicrobium for sustainable PHA production and indicates future directions for exploring PNSB metabolisms.
Collapse
Affiliation(s)
- Eric M. Conners
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
| | | | | | - Arpita Bose
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
5
|
Santolin L, Eichenroth RSJ, Cornehl P, Wortmann H, Forbrig C, Schulze A, Haq IU, Brantl S, Rappsilber J, Riedel SL, Neubauer P, Gimpel M. Elucidating regulation of polyhydroxyalkanoate metabolism in Ralstonia eutropha: Identification of transcriptional regulators from phasin and depolymerase genes. J Biol Chem 2024; 300:107523. [PMID: 38969063 PMCID: PMC11332829 DOI: 10.1016/j.jbc.2024.107523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024] Open
Abstract
Despite the ever-growing research interest in polyhydroxyalkanoates (PHAs) as green plastic alternatives, our understanding of the regulatory mechanisms governing PHA synthesis, storage, and degradation in the model organism Ralstonia eutropha remains limited. Given its importance for central carbon metabolism, PHA homeostasis is probably controlled by a complex network of transcriptional regulators. Understanding this fine-tuning is the key for developing improved PHA production strains thereby boosting the application of PHAs. We conducted promoter pull-down assays with crude protein extracts from R. eutropha Re2058/pCB113, followed by liquid chromatography with tandem mass spectrometry, to identify putative transcriptional regulators involved in the expression control of PHA metabolism, specifically targeting phasin phaP1 and depolymerase phaZ3 and phaZ5 genes. The impact on promoter activity was studied in vivo using β-galactosidase assays and the most promising candidates were heterologously produced in Escherichia coli, and their interaction with the promoters investigated in vitro by electrophoretic mobility shift assays. We could show that R. eutropha DNA-binding xenobiotic response element-family-like protein H16_B1672, specifically binds the phaP1 promoter in vitro with a KD of 175 nM and represses gene expression from this promoter in vivo. Protein H16_B1672 also showed interaction with both depolymerase promoters in vivo and in vitro suggesting a broader role in the regulation of PHA metabolism. Furthermore, in vivo assays revealed that the H-NS-like DNA-binding protein H16_B0227 and the peptidyl-prolyl cis-trans isomerase PpiB, strongly repress gene expression from PphaP1 and PphaZ3, respectively. In summary, this study provides new insights into the regulation of PHA metabolism in R. eutropha, uncovering specific interactions of novel transcriptional regulators.
Collapse
Affiliation(s)
- Lara Santolin
- Technische Universität Berlin, Chair of Bioprocess Engineering, Berlin, Germany
| | | | - Paul Cornehl
- Technische Universität Berlin, Chair of Bioprocess Engineering, Berlin, Germany
| | - Henrike Wortmann
- Technische Universität Berlin, Chair of Bioprocess Engineering, Berlin, Germany
| | - Christian Forbrig
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | - Anne Schulze
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | - Inam Ul Haq
- Matthias-Schleiden-Institut für Genetik, Bioinformatik und Molekulare Botanik, AG Bakteriengenetik, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Sabine Brantl
- Matthias-Schleiden-Institut für Genetik, Bioinformatik und Molekulare Botanik, AG Bakteriengenetik, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Juri Rappsilber
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | - Sebastian Lothar Riedel
- Technische Universität Berlin, Chair of Bioprocess Engineering, Berlin, Germany; Berliner Hochschule für Technik, Environmental and Bioprocess Engineering Laboratory, Berlin, Germany
| | - Peter Neubauer
- Technische Universität Berlin, Chair of Bioprocess Engineering, Berlin, Germany
| | - Matthias Gimpel
- Technische Universität Berlin, Chair of Bioprocess Engineering, Berlin, Germany.
| |
Collapse
|
6
|
Amabile C, Abate T, Muñoz R, Chianese S, Musmarra D. Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from methane and volatile fatty acids: properties, metabolic routes and current trend. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172138. [PMID: 38582106 DOI: 10.1016/j.scitotenv.2024.172138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are biobased and biodegradable polymers that could effectively replace fossil-based and non-biodegradable plastics. However, their production is currently limited by the high production costs, mainly due to the costly carbon sources used, low productivity and quality of the materials produced. A potential solution lies in utilizing cheap and renewable carbon sources as the primary feedstock during the biological production of PHAs, paving the way for a completely sustainable and economically viable process. In this review, the opportunities and challenges related to the production of polyhydroxyalkanoates using methane and volatile fatty acids (VFAs) as substrates were explored, with a focus on poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). The discussion reports the current knowledge about promising Type II methanotrophs, the impact of process parameters such as limiting nutrients, CH4:O2 ratio and temperature, the type of co-substrate and its concentration. Additionally, the strategies developed until now to enhance PHA production yields were also discussed.
Collapse
Affiliation(s)
- Claudia Amabile
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Teresa Abate
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Raul Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Simeone Chianese
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy.
| | - Dino Musmarra
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| |
Collapse
|
7
|
Sander K, Abel AJ, Friedline S, Sharpless W, Skerker J, Deutschbauer A, Clark DS, Arkin AP. Eliminating genes for a two-component system increases PHB productivity in Cupriavidus basilensis 4G11 under PHB suppressing, nonstress conditions. Biotechnol Bioeng 2024; 121:139-156. [PMID: 37638652 DOI: 10.1002/bit.28532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
Species of bacteria from the genus Cupriavidus are known, in part, for their ability to produce high amounts of poly-hydroxybutyrate (PHB) making them attractive candidates for bioplastic production. The native synthesis of PHB occurs during periods of metabolic stress, and the process regulating the initiation of PHB accumulation in these organisms is not fully understood. Screening an RB-TnSeq transposon library of Cupriavidus basilensis 4G11 allowed us to identify two genes of an apparent, uncharacterized two-component system, which when omitted from the genome enable increased PHB productivity in balanced, nonstress growth conditions. We observe average increases in PHB productivity of 56% and 41% relative to the wildtype parent strain upon deleting each gene individually from the genome. The increased PHB phenotype disappears, however, in nitrogen-free unbalanced growth conditions suggesting the phenotype is specific to fast-growing, replete, nonstress growth. Bioproduction modeling suggests this phenotype could be due to a decreased reliance on metabolic stress induced by nitrogen limitation to initiate PHB production in the mutant strains. Due to uncertainty in the two-component system's input signal and regulon, the mechanism by which these genes impart this phenotype remains unclear. Such strains may allow for the use of single-stage, continuous bioreactor systems, which are far simpler than many PHB bioproduction schemes used previously, given a similar product yield to batch systems in such a configuration. Bioproductivity modeling suggests that omitting this regulation in the cells may increase PHB productivity up to 24% relative to the wildtype organism when using single-stage continuous systems. This work expands our understanding of the regulation of PHB accumulation in Cupriavidus, in particular the initiation of this process upon transition into unbalanced growth regimes.
Collapse
Affiliation(s)
- Kyle Sander
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Anthony J Abel
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Skyler Friedline
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - William Sharpless
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
| | - Jeffrey Skerker
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Douglas S Clark
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Adam P Arkin
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
8
|
de Koning EA, Panjalingam M, Tran J, Eckhart MR, Dahlberg PD, Shapiro L. The PHB Granule Biogenesis Pathway in Caulobacter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548030. [PMID: 37461544 PMCID: PMC10350054 DOI: 10.1101/2023.07.06.548030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
PHB granules are bacterial organelles that store excess carbohydrates in the form of water-insoluble polyhydroxybutyrate (PHB). The PHB polymerase, phasin (a small amphipathic protein), and active PHB synthesis are essential for the formation of mature PHB granules in Caulobacter crescentus. Granule formation was found to be initiated by the condensation of self-associating PHB polymerase-GFP into foci, closely followed by the recruitment and condensation of phasin-mCherry. Following the active synthesis of PHB and granule maturation, the polymerase dissociates from mature granules and the PHB depolymerase is recruited to the granule. The polymerase directly binds phasin in vitro through its intrinsically disordered N-terminal domain. Thus, granule biogenesis is initiated and controlled by the action of a PHB polymerase and an associated helper protein, phasin, that together synthesize the hydrophobic granule's content while forming the granules protein boundary.
Collapse
|
9
|
Aghaali Z, Naghavi MR. Biotechnological Approaches for Enhancing Polyhydroxyalkanoates (PHAs) Production: Current and Future Perspectives. Curr Microbiol 2023; 80:345. [PMID: 37731015 DOI: 10.1007/s00284-023-03452-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/19/2023] [Indexed: 09/22/2023]
Abstract
The benefits of biotechnology are not limited to genetic engineering, but it also displays its great impact on industrial uses of crops (e.g., biodegradable plastics). Polyhydroxyalkanoates (PHAs) make a diverse class of bio-based and biodegradable polymers naturally synthesized by numerous microorganisms. However, several C3 and C4 plants have also been genetically engineered to produce PHAs. The highest production yield of PHAs was obtained with a well-known C3 plant, Arabidopsis thaliana, upto 40% of the dry weight of the leaf. This review summarizes all biotechnological mechanisms that have been adopted with the goal of increasing PHAs production in bacteria and plant species alike. Moreover, the possibility of using some methods that have not been applied in bioplastic science are discussed with special attention to plants. These include producing PHAs in transgenic hairy roots and cell suspension cultures, making transformed bacteria and plants via transposons, constructing an engineered metabolon, and overexpressing of phaP and the ABC operon concurrently. Taken together, that biotechnology will be highly beneficial for reducing plastic pollution through the implementation of biotechnological strategies is taken for granted.
Collapse
Affiliation(s)
- Zahra Aghaali
- Department of Genetic and Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
10
|
Ranaivoarisoa TO, Bai W, Rengasamy K, Steele H, Silberman M, Olabode J, Bose A. Improving bioplastic production by Rhodopseudomonas palustris TIE-1 using synthetic biology and metabolic engineering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541174. [PMID: 37292853 PMCID: PMC10245724 DOI: 10.1101/2023.05.17.541174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the increasing demand for sustainably produced renewable resources, it is important to look towards microorganisms capable of producing bioproducts such as biofuels and bioplastics. Though many systems for bioproduct production are well documented and tested in model organisms, it is essential to look beyond to non-model organisms to expand the field and take advantage of metabolically versatile strains. This investigation centers on Rhodopseudomonas palustris TIE-1, a purple, non-sulfur autotrophic, and anaerobic bacterium capable of producing bioproducts that are comparable to their petroleum-based counterparts. To induce bioplastic overproduction, genes that might have a potential role in the PHB biosynthesis such as the regulator, phaR, and phaZ known for its ability to degrade PHB granules were deleted using markerless deletion. Mutants in pathways that might compete with polyhydroxybutyrate (PHB) production such as glycogen and nitrogen fixation previously created to increase n -butanol production by TIE-1 were also tested. In addition, a phage integration system was developed to insert RuBisCO (RuBisCO form I and II genes) driven by a constitutive promoter P aphII into TIE- 1 genome. Our results show that deletion of the phaR gene of the PHB pathway increases PHB productivity when TIE-1 was grown photoheterotrophically with butyrate and ammonium chloride (NH 4 Cl). Mutants unable to make glycogen or fix dinitrogen gas show an increase in PHB productivity under photoautotrophic growth conditions with hydrogen. In addition, the engineered TIE-1 overexpressing RuBisCO form I and form II produces significantly more polyhydroxybutyrate than the wild type under photoheterotrophy with butyrate and photoautotrophy with hydrogen. Inserting RuBisCO genes into TIE-1 genome is a more effective strategy than deleting competitive pathways to increase PHB production in TIE-1. The phage integration system developed for TIE-1 thus creates numerous opportunities for synthetic biology in TIE-1.
Collapse
|
11
|
Construction of a Rhodobacter sphaeroides Strain That Efficiently Produces Hydrogen Gas from Acetate without Poly(β-Hydroxybutyrate) Accumulation: Insight into the Role of PhaR in Acetate Metabolism. Appl Environ Microbiol 2022; 88:e0050722. [PMID: 35670584 DOI: 10.1128/aem.00507-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purple nonsulfur phototrophic bacterium Rhodobacter sphaeroides produces hydrogen gas (H2) from acetate. An approach to improve the H2 production is preventing accumulation of an intracellular energy storage molecule known as poly(β-hydroxybutyrate) (PHB), which competes with H2 production for reducing power. However, disruption of PHB biosynthesis has been reported to severely impair the acetate assimilation depending on the genetic backgrounds and/or culture conditions. To solve this problem, we analyzed the relationship between PHB accumulation and acetate metabolism in R. sphaeroides. Gene deletion analyses based on the wild-type strain revealed that among the two polyhydroxyalkanoate synthase genes in the genome, phaC1, but not phaC2, is essential for PHB accumulation, and the phaC1 deletion mutant exhibited slow growth with acetate. On the other hand, a strain with the deletion of phaC1 together with phaR, which encodes a transcriptional regulator capable of sensing PHB accumulation, exhibited growth comparable to that of the wild-type strain despite no accumulation of PHB. These results suggest that PHB accumulation is required for normal growth with acetate by altering the expression of genes under the control of phaR. This hypothesis was supported by a transcriptome sequencing (RNA-seq) analysis revealing that phaR is involved in the regulation of the ethylmalonyl coenzyme A pathway for acetate assimilation. Consistent with these findings, deletion of phaC1 in a genetically engineered H2-producing strain resulted in lower H2 production from acetate due to growth defects, whereas deletion of phaR together with phaC1 restored growth with acetate and increased H2 production from acetate without PHB accumulation. IMPORTANCE This study provides a novel approach for increasing the yield of photofermentative H2 production from acetate by purple nonsulfur phototrophic bacteria. This study further suggests that polyhydroxyalkanoate is not only a storage substance for carbon and energy in bacteria, but may also act as a signaling molecule that mediates bacterial metabolic adaptations to specific environments. This notion will be helpful for understanding the physiology of polyhydroxyalkanoate-producing bacteria, as well as for their metabolic engineering via synthetic biology.
Collapse
|
12
|
The over-expression of phasin and regulator genes promoting the synthesis of polyhydroxybutyrate in Cupriavidus necator H16 under non-stress conditions. Appl Environ Microbiol 2021; 88:e0145821. [PMID: 34731058 DOI: 10.1128/aem.01458-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cupriavidus necator H16 is an ideal strain for polyhydroxybutyrate (PHB) production from CO2. Low-oxygen-stress can induce PHB synthesis in C. necator H16 while reducing bacterial growth under chemoautotrophic culture. The optimum growth and PHB synthesis of C. necator H16 cannot be achieved simultaneously, which restricts PHB production. The present study was initiated to address the issue through comparative transcriptome and gene function analysis. Firstly, the comparative transcriptome of C. necator H16 chemoautotrophically cultured under low-oxygen-stress and non-stress conditions was studied. Three types of transcription different genes were discovered: PHB enzymatic synthesis, PHB granulation, and regulators. Under low-oxygen-stress condition, acetoacetyl-CoA reductase gene phaB2, PHB synthase gene phaC2, phasins genes phaP1 and phaP2, regulators genes uspA and rpoN were up-regulated 3.0, 2.5, 1.8, 2.7, 3.5, 1.6 folds, respectively. Secondly, the functions of up-regulated genes and their applications in PHB synthesis were further studied. It was found that the over-expression of phaP1, phaP2, uspA, and rpoN can induce PHB synthesis under non-stress condition, while phaB2 and phaC2 have no significant effect. Under the optimum condition, PHB percentage content in C. necator H16 was respectively increased by 37.2%, 28.4%, 15.8%, and 41.0% with the over-expression of phaP1, phaP2, uspA, and rpoN, and the corresponding PHB production increased by 49.8%, 42.9%, 47.0%, and 77.5% under non-stress chemoautotrophic conditions. Similar promotion by phaP1, phaP2, uspA, and rpoN was observed in heterotrophically cultured C. necator H16. The PHB percentage content and PHB production were respectively increased by 54.4% and 103.1% with the over-expression of rpoN under non-stress heterotrophic conditions. Importance Microbial fixation of CO2 is an effective way to reduce greenhouse gases. Some microbes such as C. necator H16 usually accumulate PHB when they grow under stress. Low-oxygen-stress can induce PHB synthesis when C. necator H16 is autotrophically cultured with CO2, H2, and O2, while under stress, growth is restricted and total PHB yield is reduced. Achieving the optimal bacterial growth and PHB synthesis at the same time is an ideal condition for transforming CO2 into PHB by C. necator H16. The present study was initiated to clarify the molecular basis of low-oxygen-stress promoting PHB accumulation and to realize the optimal PHB production by C. necator H16. Genes up-regulated under non-stress conditions were identified through comparative transcriptome analysis and over-expression of phasin and regulator genes were demonstrated to promote PHB synthesis in C. necator H16.
Collapse
|
13
|
Subagyo DCH, Shimizu R, Orita I, Fukui T. Isopropanol production with reutilization of glucose-derived CO 2 by engineered Ralstonia eutropha. J Biosci Bioeng 2021; 132:479-486. [PMID: 34507913 DOI: 10.1016/j.jbiosc.2021.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022]
Abstract
Chemolithoautotrophic bacterium Ralstonia eutropha is a versatile host for production of various useful compounds including polyhydroxyalkanoates (PHAs) under both heterotrophic and autotrophic conditions. In this bacterium, Calvin-Benson-Bassham (CBB) cycle is functional even under heterotrophic conditions on sugars and reutilizes CO2 emitted through sugar metabolisms into PHA, leading to increase in yield of the storage polyester. This study focused on isopropanol production from glucose by engineered strains of R. eutropha. The isopropanol-producing strains were constructed by introduction of codon-optimized genes of acetoacetate decarboxylase (adc) and primary-secondary alcohol dehydrogenase (adh) from clostridia into glucose-utilizing and PHA-negative (ΔphaC1) strain of R. eutropha. Several genetic modifications showed that high expression of the isopropanol synthesis genes by using a strong synthetic promoter and deletion of NAD+-dependent (S)-3-hydroxybutyryl-CoA dehydrogenase genes (paaH1 and had) in addition to NADPH-dependent acetoacetyl-CoA reductase genes (phaB1 and phaB3) were effective for improving isopropanol production with low by-production of acetone. Isopropanol titer of 4.13 g/L was achieved by two-stage cultivation of the strain IP-007/pBj5c2-adh-adc, corresponding to overall yield of 0.6 mol mol-glucose-1. The fixation of sugar-derived CO2 during isopropanol synthesis was evaluated by 13C-labelling of the isopropanol produced from [1-13C]-glucose. The 13C-abundance in isopropanol synthesized by the engineered strain was significantly increased up to 4.8%, demonstrating actual reassimilation of CO2 emitted from glucose moiety by decarboxylation and potential contribution towards increase in the carbon yield of isopropanol on glucose.
Collapse
Affiliation(s)
- Dyah Candra Hapsari Subagyo
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Rie Shimizu
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Izumi Orita
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
14
|
Mitra R, Xu T, Chen GQ, Xiang H, Han J. An updated overview on the regulatory circuits of polyhydroxyalkanoates synthesis. Microb Biotechnol 2021; 15:1446-1470. [PMID: 34473895 PMCID: PMC9049629 DOI: 10.1111/1751-7915.13915] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are a promising and sustainable alternative to the petroleum‐based synthetic plastics. Regulation of PHA synthesis is receiving considerable importance as engineering the regulatory factors might help developing strains with improved PHA‐producing abilities. PHA synthesis is dedicatedly regulated by a number of regulatory networks. They tightly control the PHA content, granule size and their distribution in cells. Most PHA‐accumulating microorganisms have multiple regulatory networks that impart a combined effect on PHA metabolism. Among them, several factors ranging from global to specific regulators, have been identified and characterized till now. This review is an attempt to categorically summarize the diverse regulatory circuits that operate in some important PHA‐producing microorganisms. However, in several organisms, the detailed mechanisms involved in the regulation of PHA synthesis is not well‐explored and hence further research is needed. The information presented in this review might help researcher to identify the prevailing research gaps in PHA regulation.
Collapse
Affiliation(s)
- Ruchira Mitra
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,International College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Koch M, Forchhammer K. Polyhydroxybutyrate: A Useful Product of Chlorotic Cyanobacteria. Microb Physiol 2021; 31:67-77. [PMID: 33979794 DOI: 10.1159/000515617] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/02/2021] [Indexed: 11/19/2022]
Abstract
Polyhydroxybutyrate (PHB) is a carbon polymer with diverse functions, varying greatly on the organism producing it. This microreview describes the current knowledge about PHB metabolism, structure, and different physiological roles with a special focus on cyanobacteria. Despite the physiological function of PHB in the cyanobacterial phylum still being unknown, these organisms provide the unique opportunity to directly convert atmospheric CO2 into bioplastic using a solar-based process. Recent research on PHB metabolism in the cyanobacterial model organism Synechocystis revealed a sophisticated control of PHB granule formation. Novel insights about the metabolic background of PHB synthesis resulted in the engineering of the first cyanobacterial superproducer strain.
Collapse
Affiliation(s)
- Moritz Koch
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Müller-Santos M, Koskimäki JJ, Alves LPS, de Souza EM, Jendrossek D, Pirttilä AM. The protective role of PHB and its degradation products against stress situations in bacteria. FEMS Microbiol Rev 2021; 45:fuaa058. [PMID: 33118006 DOI: 10.1093/femsre/fuaa058] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Many bacteria produce storage biopolymers that are mobilized under conditions of metabolic adaptation, for example, low nutrient availability and cellular stress. Polyhydroxyalkanoates are often found as carbon storage in Bacteria or Archaea, and of these polyhydroxybutyrate (PHB) is the most frequently occurring PHA type. Bacteria usually produce PHB upon availability of a carbon source and limitation of another essential nutrient. Therefore, it is widely believed that the function of PHB is to serve as a mobilizable carbon repository when bacteria face carbon limitation, supporting their survival. However, recent findings indicate that bacteria switch from PHB synthesis to mobilization under stress conditions such as thermal and oxidative shock. The mobilization products, 3-hydroxybutyrate and its oligomers, show a protective effect against protein aggregation and cellular damage caused by reactive oxygen species and heat shock. Thus, bacteria should have an environmental monitoring mechanism directly connected to the regulation of the PHB metabolism. Here, we review the current knowledge on PHB physiology together with a summary of recent findings on novel functions of PHB in stress resistance. Potential applications of these new functions are also presented.
Collapse
Affiliation(s)
- Marcelo Müller-Santos
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Janne J Koskimäki
- Ecology and Genetics Research Unit, University of Oulu, Pentti Kaiteran katu 1, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Luis Paulo Silveira Alves
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Anna Maria Pirttilä
- Ecology and Genetics Research Unit, University of Oulu, Pentti Kaiteran katu 1, P.O. Box 3000, FI-90014 Oulu, Finland
| |
Collapse
|
17
|
Panich J, Fong B, Singer SW. Metabolic Engineering of Cupriavidus necator H16 for Sustainable Biofuels from CO 2. Trends Biotechnol 2021; 39:412-424. [PMID: 33518389 DOI: 10.1016/j.tibtech.2021.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
Decelerating global warming is one of the predominant challenges of our time and will require conversion of CO2 to usable products and commodity chemicals. Of particular interest is the production of fuels, because the transportation sector is a major source of CO2 emissions. Here, we review recent technological advances in metabolic engineering of the hydrogen-oxidizing bacterium Cupriavidus necator H16, a chemolithotroph that naturally consumes CO2 to generate biomass. We discuss recent successes in biofuel production using this organism, and the implementation of electrolysis/artificial photosynthesis approaches that enable growth of C. necator using renewable electricity and CO2. Last, we discuss prospects of improving the nonoptimal growth of C. necator in ambient concentrations of CO2.
Collapse
Affiliation(s)
- Justin Panich
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Bonnie Fong
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Steven W Singer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
18
|
Choi SY, Cho IJ, Lee Y, Kim YJ, Kim KJ, Lee SY. Microbial Polyhydroxyalkanoates and Nonnatural Polyesters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907138. [PMID: 32249983 DOI: 10.1002/adma.201907138] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/20/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms produce diverse polymers for various purposes such as storing genetic information, energy, and reducing power, and serving as structural materials and scaffolds. Among these polymers, polyhydroxyalkanoates (PHAs) are microbial polyesters synthesized and accumulated intracellularly as a storage material of carbon, energy, and reducing power under unfavorable growth conditions in the presence of excess carbon source. PHAs have attracted considerable attention for their wide range of applications in industrial and medical fields. Since the first discovery of PHA accumulating bacteria about 100 years ago, remarkable advances have been made in the understanding of PHA biosynthesis and metabolic engineering of microorganisms toward developing efficient PHA producers. Recently, nonnatural polyesters have also been synthesized by metabolically engineered microorganisms, which opened a new avenue toward sustainable production of more diverse plastics. Herein, the current state of PHAs and nonnatural polyesters is reviewed, covering mechanisms of microbial polyester biosynthesis, metabolic pathways, and enzymes involved in biosynthesis of short-chain-length PHAs, medium-chain-length PHAs, and nonnatural polyesters, especially 2-hydroxyacid-containing polyesters, metabolic engineering strategies to produce novel polymers and enhance production capabilities and fermentation, and downstream processing strategies for cost-effective production of these microbial polyesters. In addition, the applications of PHAs and prospects are discussed.
Collapse
Affiliation(s)
- So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - In Jin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Youngjoon Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeo-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
19
|
Tarazona NA, Hernández-Arriaga AM, Kniewel R, Prieto MA. Phasin interactome reveals the interplay of PhaF with the polyhydroxyalkanoate transcriptional regulatory protein PhaD in Pseudomonas putida. Environ Microbiol 2020; 22:3922-3936. [PMID: 32705785 PMCID: PMC7590123 DOI: 10.1111/1462-2920.15175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 01/12/2023]
Abstract
Phasin PhaF, a multifunctional protein associated with the surface of polyhydroxyalkanoate (PHA) granules that also interacts with the nucleoid, contributes significantly to PHA biogenesis in pseudomonads. As a protein present on the surface of PHA granules, PhaF participates in granule stabilization and segregation, whereas its deletion has a notable impact on overall transcriptome, PHA accumulation and cell physiology, suggesting more extensive functions besides solely being a granule structural protein. Here, we followed a systematic approach to detect potential interactions of PhaF with other components of the cell, which could pinpoint unexplored functions of PhaF in the regulation of PHA production. We determined the PhaF interactome in Pseudomonas putida KT2440 via pull‐down‐mass spectrometry (PD‐MS) experiments. PhaF complexed with PHA‐related proteins, phasin PhaI and the transcriptional regulator PhaD, interactions that were verified to be direct using in vivo two‐hybrid analysis. The determination of the PHA granule proteome showed that PhaI and three other potential PhaF interacting partners, but not PhaD, were granule‐associated proteins. Analysis of the interaction of PhaF and PhaD with the phaI promoter by EMSA suggested a new role for PhaF in interacting with PhaD and raises new questions on the regulatory system controlling pha gene expression.
Collapse
Affiliation(s)
- Natalia A Tarazona
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, 28040, Spain
| | - Ana M Hernández-Arriaga
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, 28040, Spain.,Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Spain
| | - Ryan Kniewel
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, 28040, Spain.,Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Spain
| | - M Auxiliadora Prieto
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, 28040, Spain.,Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Spain
| |
Collapse
|
20
|
Novel unexpected functions of PHA granules. Appl Microbiol Biotechnol 2020; 104:4795-4810. [PMID: 32303817 DOI: 10.1007/s00253-020-10568-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/10/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
Polyhydroxyalkanoates (PHA), polyesters accumulated by numerous prokaryotes in the form of intracellular granules, have been for decades considered being predominantly storage molecules. However, numerous recent discoveries revealed and emphasized their complex biological role for microbial cells. Most of all, it was repeatedly reported and confirmed that the presence of PHA granules in prokaryotic cells enhances stress resistance and robustness of microbes against various environmental stress factors such as high or low temperature, freezing, oxidative, and osmotic pressure. It seems that protective mechanisms of PHA granules are associated with their extraordinary architecture and biophysical properties as well as with the complex and deeply interconnected nature of PHA metabolism. Therefore, this review aims at describing novel and unexpected properties of PHA granules with respect to their contribution to stress tolerance of various prokaryotes including common mesophilic heterotrophic bacteria, but also extremophiles or photo-autotrophic cyanobacteria. KEY POINTS: • PHA granules present in bacterial cells reveal unique properties and functions. • PHA enhances stress robustness of bacterial cells.
Collapse
|
21
|
Velázquez-Sánchez C, Espín G, Peña C, Segura D. The Modification of Regulatory Circuits Involved in the Control of Polyhydroxyalkanoates Metabolism to Improve Their Production. Front Bioeng Biotechnol 2020; 8:386. [PMID: 32426348 PMCID: PMC7204398 DOI: 10.3389/fbioe.2020.00386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Poly-(3-hydroxyalkanoates) (PHAs) are bacterial carbon and energy storage compounds. These polymers are synthesized under conditions of nutritional imbalance, where a nutrient is growth-limiting while there is still enough carbon source in the medium. On the other side, the accumulated polymer is mobilized under conditions of nutrient accessibility or by limitation of the carbon source. Thus, it is well known that the accumulation of PHAs is affected by the availability of nutritional resources and this knowledge has been used to establish culture conditions favoring high productivities. In addition to this effect of the metabolic status on PHAs accumulation, several genetic regulatory networks have been shown to drive PHAs metabolism, so the expression of the PHAs genes is under the influence of global or specific regulators. These regulators are thought to coordinate PHAs synthesis and mobilization with the rest of bacterial physiology. While the metabolic and biochemical knowledge related to the biosynthesis of these polymers has led to the development of processes in bioreactors for high-level production and also to the establishment of strategies for metabolic engineering for the synthesis of modified biopolymers, the use of knowledge related to the regulatory circuits controlling PHAs metabolism for strain improvement is scarce. A better understanding of the genetic control systems involved could serve as the foundation for new strategies for strain modification in order to increase PHAs production or to adjust the chemical structure of these biopolymers. In this review, the regulatory systems involved in the control of PHAs metabolism are examined, with emphasis on those acting at the level of expression of the enzymes involved and their potential modification for strain improvement, both for higher titers, or manipulation of polymer properties. The case of the PHAs producer Azotobacter vinelandii is taken as an example of the complexity and variety of systems controlling the accumulation of these interesting polymers in response to diverse situations, many of which could be engineered to improve PHAs production.
Collapse
Affiliation(s)
- Claudia Velázquez-Sánchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Carlos Peña
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Daniel Segura
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
22
|
Evolutionary relationships between the transcriptional repressors of the polyhydroxyalkanoate reserve storage system in prokaryotes: Conserved but phylogenetically heterogeneous. Gene 2020; 735:144397. [PMID: 31991161 DOI: 10.1016/j.gene.2020.144397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/19/2019] [Accepted: 01/23/2020] [Indexed: 11/23/2022]
Abstract
Bacteria and archaea accumulate cytoplasmic polyhydroxyalkanoate (PHA) granules under nutrient-limited conditions with excess carbon. The transcriptional regulatory (TR) proteins found on the surface of PHA granules act as repressors as well as activators for the expression of major surface proteins called phasins. Until now, detailed information on the evolutionary relationships between these transcription regulators has not been available. Here, we conducted homology searches and analyzed information available for the domains and protein families of the TR proteins through phylogenetic studies. A total of 282 TR proteins were identified and further classified into four distinct subfamilies based upon the presence of conserved motifs: PHB_acc, TetR-like, AbrB-like, and PadR-like. Depending upon the particular family, the DNA-binding domains were located at either the N- or C-terminus. Our results indicated that TR proteins containing the PHB_acc domain are highly conserved within the bacteria, while other TR proteins are present only within archaea (AbrB-like), gram positive bacteria (PadR-like), or the Pseudomonas genera (TetR-like). The repression domains are charged, hydrophobic, and rich in leucine or glutamine. In phylogenetic analyses, many groups of TR proteins were clustered together according to identical domain architectures showing the independent origins of the TR proteins in the PHA reserve storage system. Further analyses revealed that the TR proteins have experienced multiple gene duplications across prokaryotes. Thus, this study investigated the evolutionary framework of TR proteins and has provided a comprehensive catalog of TR proteins for ongoing studies to characterize the functions of these proteins within diverse organisms.
Collapse
|
23
|
Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng 2020; 58:47-81. [DOI: 10.1016/j.ymben.2019.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/04/2019] [Accepted: 05/26/2019] [Indexed: 11/16/2022]
|
24
|
|
25
|
Moreno S, Castellanos M, Bedoya-Pérez LP, Canales-Herrerías P, Espín G, Muriel-Millán LF. Outer membrane protein I is associated with poly-β-hydroxybutyrate granules and is necessary for optimal polymer accumulation in Azotobacter vinelandii on solid medium. Microbiology (Reading) 2019; 165:1107-1116. [DOI: 10.1099/mic.0.000837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Soledad Moreno
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, México
| | - Mildred Castellanos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, México
- Present address: Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Leidy Patricia Bedoya-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, México
- Present address: Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Pablo Canales-Herrerías
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, México
- Present address: Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, México
| | - Luis Felipe Muriel-Millán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, México
| |
Collapse
|
26
|
Martínez-Martínez MDLA, González-Pedrajo B, Dreyfus G, Soto-Urzúa L, Martínez-Morales LJ. Phasin PhaP1 is involved in polyhydroxybutyrate granules morphology and in controlling early biopolymer accumulation in Azospirillum brasilense Sp7. AMB Express 2019; 9:155. [PMID: 31555910 PMCID: PMC6761214 DOI: 10.1186/s13568-019-0876-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/09/2019] [Indexed: 11/10/2022] Open
Abstract
Phasins are amphiphilic proteins involved in the regulation of the number and size of polyhydroxybutyrate (PHB) granules. The plant growth promoting bacterium Azospirillum brasilense Sp7 accumulates high quantities of bioplastic PHB as carbon and energy source. By analyzing the genome, we identified six genes that code for proteins with a Phasin_2 domain. To understand the role of A. brasilense Sp7 PhaP1 (PhaP1Abs) on PHB synthesis, the phaP1 gene (AMK58_RS17065) was deleted. The morphology of the PHB granules was analyzed by transmission electron microscopy (TEM) and the PHB produced was quantified under three different C:N ratios in cultures subjected to null or low-oxygen transfer. The results showed that PhaP1Abs is involved in PHB granules morphology and in controlling early biopolymer accumulation. Using RT-PCR it was found that phasin genes, except phaP4, are transcribed in accordance with the C:N ratio used for the growth of A. brasilense. phaP1, phaP2 and phaP3 genes were able to respond to the growth conditions tested. This study reports the first analysis of a phasin protein in A. brasilense Sp7.
Collapse
|
27
|
Wu YW, Yang SH, Hwangbo M, Chu KH. Analysis of Zobellella denitrificans ZD1 draft genome: Genes and gene clusters responsible for high polyhydroxybutyrate (PHB) production from glycerol under saline conditions and its CRISPR-Cas system. PLoS One 2019; 14:e0222143. [PMID: 31513626 PMCID: PMC6742469 DOI: 10.1371/journal.pone.0222143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/22/2019] [Indexed: 01/25/2023] Open
Abstract
Polyhydroxybutyrate (PHB) is biodegradable and renewable and thus considered as a promising alternative to petroleum-based plastics. However, PHB production is costly due to expensive carbon sources for culturing PHB-accumulating microorganisms under sterile conditions. We discovered a hyper PHB-accumulating denitrifying bacterium, Zobellella denitrificans ZD1 (referred as strain ZD1 hereafter) capable of using non-sterile crude glycerol (a waste from biodiesel production) and nitrate to produce high PHB yield under saline conditions. Nevertheless, the underlying genetic mechanisms of PHB production in strain ZD1 have not been elucidated. In this study, we discovered a complete pathway of glycerol conversion to PHB, a novel PHB synthesis gene cluster, a salt-tolerant gene cluster, denitrifying genes, and an assimilatory nitrate reduction gene cluster in the ZD1 genome. Interestingly, the novel PHB synthesis gene cluster was found to be conserved among marine Gammaproteobacteria. Higher levels of PHB accumulation were linked to higher expression levels of the PHB synthesis gene cluster in ZD1 grown with glycerol and nitrate under saline conditions. Additionally, a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas type-I-E antiviral system was found in the ZD1 genome along with a long spacer list, in which most of the spacers belong to either double-stranded DNA viruses or unknown phages. The results of the genome analysis revealed strain ZD1 used the novel PHB gene cluster to produce PHB from non-sterile crude glycerol under saline conditions.
Collapse
Affiliation(s)
- Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shih-Hung Yang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, United States of America
| | - Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, United States of America
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
28
|
Long JY, Song KL, He X, Zhang B, Cui XF, Song CF. Mutagenesis of PhaR, a Regulator Gene of Polyhydroxyalkanoate Biosynthesis of Xanthomonas oryzae pv. oryzae Caused Pleiotropic Phenotype Changes. Front Microbiol 2018; 9:3046. [PMID: 30619137 PMCID: PMC6304360 DOI: 10.3389/fmicb.2018.03046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/27/2018] [Indexed: 01/04/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are intracellular carbon and energy storage materials produced in various microorganisms under nutrient-limited conditions. PhaR is a regulatory protein involved in PHA synthesis. Xanthomonas oryzae pv. oryzae (Xoo) is one of the most important bacterial pathogens in rice and has PHA biosynthesis genes in its genome, but the biological function of phaR in Xoo is unknown. In this study, we investigated the effects of the mutagenesis of phaR gene in Xoo strain PXO99A. Compared to the wildtype, the PhaR gene knock-out mutant PXO99ΔphaR was hypermotile and showed decreased growth rates in both rich and limited nutrient media. PXO99ΔphaR also showed almost 75% decrease in extracellular polysaccharide (EPS) production. When inoculated in rice leaves by leaf-clipping method, PXO99ΔphaR displayed reduced virulence in terms of lesion length and bacterial multiplication compared with the wildtype strain. PXO99ΔphaR also showed enhanced hypersensitive response (HR) induction in the leaves of non-host Nicotiana benthamiana with elevated hpa1 gene expression. Introduction of a cosmid containing the phaR coding sequence restored the phenotypes of the mutant to those of the wildtype strain. These results suggest that PhaR gene is an important gene that affects multiple bacterial characteristics, including EPS production, growth rate, defense response induced harpin production and motility, related to its virulence in plant.
Collapse
Affiliation(s)
| | | | | | | | | | - Cong-Feng Song
- Department of Plant Pathology, College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
29
|
Nishihata S, Kondo T, Tanaka K, Ishikawa S, Takenaka S, Kang CM, Yoshida KI. Bradyrhizobium diazoefficiens USDA110 PhaR functions for pleiotropic regulation of cellular processes besides PHB accumulation. BMC Microbiol 2018; 18:156. [PMID: 30355296 PMCID: PMC6201568 DOI: 10.1186/s12866-018-1317-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/15/2018] [Indexed: 11/17/2022] Open
Abstract
Background Bradyrhizobium diazoefficiens USDA110 nodulates soybeans for nitrogen fixation. It accumulates poly-3-hydroxybutyrate (PHB), which is of physiological importance as a carbon/energy source for survival during starvation, infection, and nitrogen fixation conditions. PHB accumulation is orchestrated by not only the enzymes for PHB synthesis but also PHB-binding phasin proteins (PhaPs) stabilizing the PHB granules. The transcription factor PhaR controls the phaP genes. Results Inactivation of phaR led to decreases in PHB accumulation, less cell yield, increases in exopolysaccharide (EPS) production, some improvement in heat stress tolerance, and slightly better growth under microaerobic conditions. Changes in the transcriptome upon phaR inactivation were analyzed. PhaR appeared to be involved in the repression of various target genes, including some PHB-degrading enzymes and others involved in EPS production. Furthermore, in vitro gel shift analysis demonstrated that PhaR bound to the promoter regions of representative targets. For the phaP1 and phaP4 promoter regions, PhaR-binding sites were determined by DNase I footprinting, allowing us to deduce a consensus sequence for PhaR-binding as TGCRNYGCASMA (R: A or G, Y: C or T, S: C or G, M: A or C). We searched for additional genes associated with a PhaR-binding sequence and found that some genes involved in central carbon metabolism, such as pdhA for pyruvate dehydrogenase and pckA for phosphoenolpyruvate carboxykinase, may be regulated positively and directly by PhaR. Conclusions These results suggest that PhaR could regulate various genes not only negatively but also positively to coordinate metabolism holistically in response to PHB accumulation. Electronic supplementary material The online version of this article (10.1186/s12866-018-1317-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shogo Nishihata
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501, Japan
| | - Takahiko Kondo
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501, Japan
| | - Kosei Tanaka
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501, Japan
| | - Shu Ishikawa
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501, Japan
| | - Shinji Takenaka
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501, Japan
| | - Choong-Min Kang
- Department of Biological Science, California State University, Stanislaus, Turlock, CA, 95382, USA
| | - Ken-Ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501, Japan.
| |
Collapse
|
30
|
Juengert JR, Patterson C, Jendrossek D. Poly(3-Hydroxybutyrate) (PHB) Polymerase PhaC1 and PHB Depolymerase PhaZa1 of Ralstonia eutropha Are Phosphorylated In Vivo. Appl Environ Microbiol 2018; 84:e00604-18. [PMID: 29678915 PMCID: PMC6007124 DOI: 10.1128/aem.00604-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/15/2018] [Indexed: 01/02/2023] Open
Abstract
In this study, we screened poly(3-hydroxybutyrate) (PHB) synthase PhaC1 and PHB depolymerase PhaZa1 of Ralstonia eutropha for the presence of phosphorylated residues during the PHB accumulation and PHB degradation phases. Thr373 of PHB synthase PhaC1 was phosphorylated during the stationary growth phase but was not modified during the exponential and PHB accumulation phases. Ser35 of PHB depolymerase PhaZa1 was identified in the phosphorylated form during both the exponential and stationary growth phases. Additional phosphosites were identified for both proteins in sample-dependent forms. Site-directed mutagenesis of the codon for Thr373 and other phosphosites of PhaC1 revealed a strong negative impact on PHB synthase activity. Modifications of Thr26 and Ser35 of PhaZa1 reduced the ability of R. eutropha to mobilize PHB in the stationary growth phase. Our results show that phosphorylation of PhaC1 and PhaZa1 can be important for the modulation of the activities of PHB synthase and PHB depolymerase.IMPORTANCE Poly(3-hydroxybutyrate) (PHB) and related polyhydroxyalkanoates (PHAs) are important intracellular carbon and energy storage compounds in many prokaryotes. The accumulation of PHB or PHAs increases the fitness of cells during periods of starvation and under other stress conditions. The simultaneous presence of PHB synthase (PhaC1) and PHB depolymerase (PhaZa1) on synthesized PHB granules in Ralstonia eutropha (alternative designation, Cupriavidus necator) was previously shown in several laboratories. These findings imply that the activities of PHB synthase and PHB depolymerase should be regulated to avoid a futile cycle of simultaneous synthesis and degradation of PHB. Here, we addressed this question by identifying the phosphorylation sites on PhaC1 and PhaZa1 and by site-directed mutagenesis of the identified residues. Furthermore, we conducted in vitro and in vivo analyses of PHB synthase activity and PHB contents.
Collapse
Affiliation(s)
- Janina R Juengert
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| | - Cameron Patterson
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
- Western University, London, Ontario, Canada
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
31
|
Sabapathy PC, Devaraj S, Parthiban A, Kathirvel P. Bioprocess optimization of PHB homopolymer and copolymer P3 (HB-co-HV) by Acinetobacter junii BP25 utilizing rice mill effluent as sustainable substrate. ENVIRONMENTAL TECHNOLOGY 2018; 39:1430-1441. [PMID: 28511586 DOI: 10.1080/09593330.2017.1330902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
The potential use of parboiled rice mill effluent as a cheap substrate for the production of homopolymer and copolymer of Polyhydroxyalkanoates (PHAs) by Acinetobacter junii BP 25 was investigated for the first time. Process optimization by one factor at a time led to homopolymer polyhydroxybutyrate (PHB) production of 2.64 ± 0.18 g/l with 94.28% PHB content using a two-stage batch cultivation mode. BP 25 furthermore produced polyhydroxybutyrate-co-hydroxyvalerate (P3 (HB-co-HV)), with the addition of valeric acid as an additive to the substrate, yielding (2.56 ± 0.12 g/l dry biomass, 2.20 ± 0.15 g/l PHA) a copolymer content of 85.93%. Thus, rice mill effluent can be an effective and relatively low-cost alternative for the production of PHA, replacing the pure substrates.
Collapse
Affiliation(s)
| | - Sabarinathan Devaraj
- a Department of Microbial Biotechnology , Bharathiar University , Coimbatore , India
| | - Anburajan Parthiban
- b Department of Civil Engineering, Sustainable Environmental Process Research Institute , Daegu University , Gyeongsan , South Korea
| | - Preethi Kathirvel
- a Department of Microbial Biotechnology , Bharathiar University , Coimbatore , India
| |
Collapse
|
32
|
Kutralam-Muniasamy G, Peréz-Guevara F. Genome characteristics dictate poly-R-(3)-hydroxyalkanoate production in Cupriavidus necator H16. World J Microbiol Biotechnol 2018; 34:79. [DOI: 10.1007/s11274-018-2460-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/19/2018] [Indexed: 11/28/2022]
|
33
|
Mechanistic studies of DepR in regulating FK228 biosynthesis in Chromobacterium violaceum no. 968. PLoS One 2018; 13:e0196173. [PMID: 29672625 PMCID: PMC5908139 DOI: 10.1371/journal.pone.0196173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022] Open
Abstract
DepR, a LysR-type transcriptional regulator encoded by the last gene of the putative min operon (orf21-20-19-depR) located at the downstream region of the anticancer agent FK228 biosynthetic gene cluster in Chromobacterium violaceum No. 968, positively regulates the biosynthesis of FK228. In this work, the mechanism underlining this positive regulation was probed by multiple approaches. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay (DIFA) identified a conserved 35-nt DNA segment in the orf21-orf22 intergenic region where the purified recombinant DepR binds to. Quantitative reverse transcription PCR (RT-qPCR) and green fluorescent protein (GFP) promoter probe assays established that transcription of phasin gene orf22 increases in the depR deletion mutant of C. violaceum (CvΔdepR) compared to the wild-type strain. FK228 production in the orf22-overexpressed strain C. violaceum was reduced compared with the wild-type strain. DepR has two conserved cysteine residues C199 and C208 presumed to form a disulfide bridge upon sensing oxidative stress. C199X point mutations that locked DepR in a reduced conformation decreased the DNA-binding affinity of DepR; T232A or R278A mutation also had a negative impact on DNA binding of DepR. Complementation of CvΔdepR with any of those versions of depR carrying a single codon mutation was not able to restore FK228 production to the level of wild-type strain. All evidences collectively suggested that DepR positively regulates the biosynthesis of FK228 through indirect metabolic networking.
Collapse
|
34
|
Kutralam-Muniasamy G, Corona-Hernandez J, Narayanasamy RK, Marsch R, Pérez-Guevara F. Phylogenetic diversification and developmental implications of poly-(R)-3-hydroxyalkanoate gene cluster assembly in prokaryotes. FEMS Microbiol Lett 2018; 364:3888817. [PMID: 28655209 DOI: 10.1093/femsle/fnx135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/23/2017] [Indexed: 11/13/2022] Open
Abstract
Many polyhydroxyalkanoates (PHAs) system genes, such as phaC, phaA, phaB, phaR, phaP and phaZ, are often found to be organised in the form of operon-like clusters. In this study, a genome survey was performed to identify such clustered PHA systems among 256 prokaryotic organisms. These data were then used to generate a comprehensive 16S rRNA species tree depicting the phylogenetic distribution of the observed clusters with diverse gene arrangements. In addition, the gene occurrences and physical linkages between PHA system genes were quantitatively estimated. From this, we identified a centrally connected hub gene, i.e. the phaC gene of PHA. Furthermore, a comparative investigation was performed between the clusters of PHA and glycogen, which decoded the role of the hub gene in the cluster organisation of both systems. Together, these findings suggest that the highly connected hub gene might contribute substantively towards the organisation and maintenance of the gene network connectivity in the clusters, particularly in the storage reserve systems.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D.F. 07360, México
| | - Juan Corona-Hernandez
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D.F. 07360, México
| | - Ravi-Kumar Narayanasamy
- Department of Infectomics y Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D.F. 07360, México
| | - Rodolfo Marsch
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D.F. 07360, México
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D.F. 07360, México.,Nanoscience and Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D.F. 07360, México
| |
Collapse
|
35
|
Maestro B, Sanz JM. Polyhydroxyalkanoate-associated phasins as phylogenetically heterogeneous, multipurpose proteins. Microb Biotechnol 2017; 10:1323-1337. [PMID: 28425176 PMCID: PMC5658603 DOI: 10.1111/1751-7915.12718] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 01/01/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are natural polyesters of increasing biotechnological importance that are synthesized by many prokaryotic organisms as carbon and energy storage compounds in limiting growth conditions. PHAs accumulate intracellularly in form of inclusion bodies that are covered with a proteinaceous surface layer (granule-associated proteins or GAPs) conforming a network-like surface of structural, metabolic and regulatory polypeptides, and configuring the PHA granules as complex and well-organized subcellular structures that have been designated as 'carbonosomes'. GAPs include several enzymes related to PHA metabolism (synthases, depolymerases and hydroxylases) together with the so-called phasins, an heterogeneous group of small-size proteins that cover most of the PHA granule and that are devoid of catalytic functions but nevertheless play an essential role in granule structure and PHA metabolism. Structurally, phasins are amphiphilic proteins that shield the hydrophobic polymer from the cytoplasm. Here, we summarize the characteristics of the different phasins identified so far from PHA producer organisms and highlight the diverse opportunities that they offer in the Biotechnology field.
Collapse
Affiliation(s)
- Beatriz Maestro
- Instituto de Biología Molecular y CelularUniversidad Miguel HernándezAv. Universidad s/nElche03202Spain
| | - Jesús M. Sanz
- Instituto de Biología Molecular y CelularUniversidad Miguel HernándezAv. Universidad s/nElche03202Spain
| |
Collapse
|
36
|
Chen GQ, Zhang J. Microbial polyhydroxyalkanoates as medical implant biomaterials. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1-18. [DOI: 10.1080/21691401.2017.1371185] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing, China
- Department of Chemical Engineering, MOE Key Lab of Industrial Biocatalysis, Tsinghua University, Beijing, China
| | - Junyu Zhang
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
37
|
PhaR, a Negative Regulator of PhaP, Modulates the Colonization of a Burkholderia Gut Symbiont in the Midgut of the Host Insect, Riptortus pedestris. Appl Environ Microbiol 2017; 83:AEM.00459-17. [PMID: 28341680 DOI: 10.1128/aem.00459-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Five genes encoding PhaP family proteins and one phaR gene have been identified in the genome of Burkholderia symbiont strain RPE75. PhaP proteins function as the surface proteins of polyhydroxyalkanoate (PHA) granules, and the PhaR protein acts as a negative regulator of PhaP biosynthesis. Recently, we characterized one phaP gene to understand the molecular cross talk between Riptortus insects and Burkholderia gut symbionts. In this study, we constructed four other phaP gene-depleted mutants (ΔphaP1, ΔphaP2, ΔphaP3, and ΔphaP4 mutants), one phaR gene-depleted mutant, and a phaR-complemented mutant (ΔphaR/phaR mutant). To address the biological roles of four phaP family genes and the phaR gene during insect-gut symbiont interaction, these Burkholderia mutants were fed to the second-instar nymphs, and colonization ability and fitness parameters were examined. In vitro, the ΔphaP3 and ΔphaR mutants cannot make a PHA granule normally in a stressful environment. Furthermore, the ΔphaR mutation decreased the colonization ability in the host midgut and negatively affected the host insect's fitness compared with wild-type Burkholderia-infected insects. However, other phaP family gene-depleted mutants colonized well in the midgut of the fifth-instar nymph insects. However, in the case of females, the colonization rate of the ΔphaP3 mutant was decreased and the host's fitness parameters were decreased compared with the wild-type-infected host, suggesting that the environment of the female midgut may be more hostile than that of the male midgut. These results demonstrate that PhaR plays an important role in the biosynthesis of PHA granules and that it is significantly related to the colonization of the Burkholderia gut symbiont in the host insects' midgut.IMPORTANCE Bacterial polyhydroxyalkanoate (PHA) biosynthesis is a complex process requiring several enzymes. The biological roles of PHA granule synthesis enzymes and the surface proteins of PHA granules during host-gut symbiont interactions are not fully understood. Here, we report the effects on colonization ability in the host midguts and the fitness of host insects after feeding Burkholderia mutant cells (four phaP-depleted mutants and one phaR-depleted mutant) to the host insects. Analyses of both synthesized PHA granule amounts and CFU numbers suggest that the phaR gene is closely related to synthesis of the PHA granule and the colonization of the Burkholderia gut symbiont in the host insect's midgut. Like our previous report, this study also supports the idea that the environment of the host midgut may not be favorable to symbiotic Burkholderia cells and that PHA granules may be required to adapt in the host midgut.
Collapse
|
38
|
Vadlja D, Koller M, Novak M, Braunegg G, Horvat P. Footprint area analysis of binary imaged Cupriavidus necator cells to study PHB production at balanced, transient, and limited growth conditions in a cascade process. Appl Microbiol Biotechnol 2016; 100:10065-10080. [PMID: 27695913 PMCID: PMC5102984 DOI: 10.1007/s00253-016-7844-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/21/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022]
Abstract
Statistical distribution of cell and poly[3-(R)-hydroxybutyrate] (PHB) granule size and number of granules per cell are investigated for PHB production in a five-stage cascade (5CSTR). Electron microscopic pictures of cells from individual cascade stages (R1-R5) were converted to binary pictures to visualize footprint areas for polyhydroxyalkanoate (PHA) and non-PHA biomass. Results for each stage were correlated to the corresponding experimentally determined kinetics (specific growth rate μ and specific productivity π). Log-normal distribution describes PHA granule size dissimilarity, whereas for R1 and R4, gamma distribution best reflects the situation. R1, devoted to balanced biomass synthesis, predominately contains cells with rather small granules, whereas with increasing residence time τ, maximum and average granule sizes by trend increase, approaching an upper limit determined by the cell's geometry. Generally, an increase of intracellular PHA content and ratio of granule to cell area slow down along the cascade. Further, the number of granules per cell decreases with increasing τ. Data for μ and π obtained by binary picture analysis correlate well with the experimental results. The work describes long-term continuous PHA production under balanced, transient, and nutrient-deficient conditions, as well as their reflection on the granules size, granule number, and cell structure on the microscopic level.
Collapse
Affiliation(s)
- Denis Vadlja
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Martin Koller
- Office of Research Management and Service, c/o Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/III, 8010, Graz, Austria. .,ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 8010, Graz, Austria.
| | - Mario Novak
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Gerhart Braunegg
- ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 8010, Graz, Austria
| | - Predrag Horvat
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| |
Collapse
|
39
|
|
40
|
Parlane NA, Gupta SK, Rubio-Reyes P, Chen S, Gonzalez-Miro M, Wedlock DN, Rehm BHA. Self-Assembled Protein-Coated Polyhydroxyalkanoate Beads: Properties and Biomedical Applications. ACS Biomater Sci Eng 2016; 3:3043-3057. [PMID: 33445349 DOI: 10.1021/acsbiomaterials.6b00355] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biological polyesters that can be naturally produced by a range of bacteria as water-insoluble inclusions composed of a PHA core coated with PHA synthesis, structural, and regulatory proteins. These naturally self-assembling shell-core particles have been recently conceived as biomaterials that can be bioengineered as biologically active beads for medical applications. Protein engineering of PHA-associated proteins enabled the production of PHA-protein assemblies exhibiting biologically active protein-based functions relevant for applications as vaccines or diagnostics. Here we provide an overview of the recent advances in bioengineering of PHA particles toward the display of biomedically relevant protein functions such as selected disease-specific antigens as diagnostic tools or for the design of particulate subunit vaccines against infectious diseases such as tuberculosis, meningitis, pneumonia, and hepatitis C.
Collapse
Affiliation(s)
- Natalie A Parlane
- AgResearch, Hopkirk Research Institute, Palmerston North 4442, New Zealand
| | - Sandeep K Gupta
- AgResearch, Hopkirk Research Institute, Palmerston North 4442, New Zealand
| | - Patricia Rubio-Reyes
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Shuxiong Chen
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Majela Gonzalez-Miro
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - D Neil Wedlock
- AgResearch, Hopkirk Research Institute, Palmerston North 4442, New Zealand
| | - Bernd H A Rehm
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Kelburn Parade, Wellington 6140, New Zealand
| |
Collapse
|
41
|
Phasins, Multifaceted Polyhydroxyalkanoate Granule-Associated Proteins. Appl Environ Microbiol 2016; 82:5060-7. [PMID: 27287326 DOI: 10.1128/aem.01161-16] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Phasins are the major polyhydroxyalkanoate (PHA) granule-associated proteins. They promote bacterial growth and PHA synthesis and affect the number, size, and distribution of the granules. These proteins can be classified in 4 families with distinctive characteristics. Low-resolution structural studies and in silico predictions were performed in order to elucidate the structure of different phasins. Most of these proteins share some common structural features, such as a preponderant α-helix composition, the presence of disordered regions that provide flexibility to the protein, and coiled-coil interacting regions that form oligomerization domains. Due to their amphiphilic nature, these proteins play an important structural function, forming an interphase between the hydrophobic content of PHA granules and the hydrophilic cytoplasm content. Phasins have been observed to affect both PHA accumulation and utilization. Apart from their role as granule structural proteins, phasins have a remarkable variety of additional functions. Different phasins have been determined to (i) activate PHA depolymerization, (ii) increase the expression and activity of PHA synthases, (iii) participate in PHA granule segregation, and (iv) have both in vivo and in vitro chaperone activities. These properties suggest that phasins might play an active role in PHA-related stress protection and fitness enhancement. Due to their granule binding capacity and structural flexibility, several biotechnological applications have been developed using different phasins, increasing the interest in the study of these remarkable proteins.
Collapse
|
42
|
Regulation of Polyhydroxybutyrate Synthesis in the Soil Bacterium Bradyrhizobium diazoefficiens. Appl Environ Microbiol 2016; 82:4299-4308. [PMID: 27208130 DOI: 10.1128/aem.00757-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/02/2016] [Indexed: 02/06/2023] Open
Abstract
Polyhydroxybutyrate (PHB) is a carbon and energy reserve polymer in various prokaryotic species. We determined that, when grown with mannitol as the sole carbon source, Bradyrhizobium diazoefficiens produces a homopolymer composed only of 3-hydroxybutyrate units (PHB). Conditions of oxygen limitation (such as microoxia, oxic stationary phase, and bacteroids inside legume nodules) were permissive for the synthesis of PHB, which was observed as cytoplasmic granules. To study the regulation of PHB synthesis, we generated mutations in the regulator gene phaR and the phasin genes phaP1 and phaP4 Under permissive conditions, mutation of phaR impaired PHB accumulation, and a phaP1 phaP4 double mutant produced more PHB than the wild type, which was accumulated in a single, large cytoplasmic granule. Moreover, PhaR negatively regulated the expression of phaP1 and phaP4 as well as the expression of phaA1 and phaA2 (encoding a 3-ketoacyl coenzyme A [CoA] thiolases), phaC1 and phaC2 (encoding PHB synthases), and fixK2 (encoding a cyclic AMP receptor protein [CRP]/fumarate and nitrate reductase regulator [FNR]-type transcription factor of genes for microoxic lifestyle). In addition to the depressed PHB cycling, phaR mutants accumulated more extracellular polysaccharides and promoted higher plant shoot dry weight and competitiveness for nodulation than the wild type, in contrast to the phaC1 mutant strain, which is defective in PHB synthesis. These results suggest that phaR not only regulates PHB granule formation by controlling the expression of phasins and biosynthetic enzymes but also acts as a global regulator of excess carbon allocation and symbiosis by controlling fixK2 IMPORTANCE: In this work, we investigated the regulation of polyhydroxybutyrate synthesis in the soybean-nodulating bacterium Bradyrhizobium diazoefficiens and its influence in bacterial free-living and symbiotic lifestyles. We uncovered a new interplay between the synthesis of this carbon reserve polymer and the network responsible for microoxic metabolism through the interaction between the gene regulators phaR and fixK2 These results contribute to the understanding of the physiological conditions required for polyhydroxybutyrate biosynthesis. The interaction between these two main metabolic pathways is also reflected in the symbiotic phenotypes of soybeans inoculated with phaR mutants, which were more competitive for nodulation and enhanced dry matter production by the plants. Therefore, this knowledge may be applied to the development of superior strains to be used as improved inoculants for soybean crops.
Collapse
|
43
|
Bresan S, Sznajder A, Hauf W, Forchhammer K, Pfeiffer D, Jendrossek D. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids. Sci Rep 2016; 6:26612. [PMID: 27222167 PMCID: PMC4879537 DOI: 10.1038/srep26612] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/05/2016] [Indexed: 12/11/2022] Open
Abstract
Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only.
Collapse
Affiliation(s)
| | - Anna Sznajder
- Institute of Microbiology, University Stuttgart, Germany
| | - Waldemar Hauf
- Department of Organismic Interactions, Eberhard Karls Universität Tübingen, Germany
| | - Karl Forchhammer
- Department of Organismic Interactions, Eberhard Karls Universität Tübingen, Germany
| | | | | |
Collapse
|
44
|
Alves LPS, Teixeira CS, Tirapelle EF, Donatti L, Tadra-Sfeir MZ, Steffens MBR, de Souza EM, de Oliveira Pedrosa F, Chubatsu LS, Müller-Santos M. Backup Expression of the PhaP2 Phasin Compensates for phaP1 Deletion in Herbaspirillum seropedicae, Maintaining Fitness and PHB Accumulation. Front Microbiol 2016; 7:739. [PMID: 27242754 PMCID: PMC4873508 DOI: 10.3389/fmicb.2016.00739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/03/2016] [Indexed: 11/30/2022] Open
Abstract
Phasins are important proteins controlling poly-3-hydroxybutyrate (PHB) granules formation, their number into the cell and stability. The genome sequencing of the endophytic and diazotrophic bacterium Herbaspirillum seropedicae SmR1 revealed two homologous phasin genes. To verify the role of the phasins on PHB accumulation in the parental strain H. seropedicae SmR1, isogenic strains defective in the expression of phaP1, phaP2 or both genes were obtained by gene deletion and characterized in this work. Despite of the high sequence similarity between PhaP1 and PhaP2, PhaP1 is the major phasin in H. seropedicae, since its deletion reduced PHB accumulation by ≈50% in comparison to the parental and ΔphaP2. Upon deletion of phaP1, the expression of phaP2 was sixfold enhanced in the ΔphaP1 strain. The responsive backup expression of phaP2 partially rescued the ΔphaP1 mutant, maintaining about 50% of the parental PHB level. The double mutant ΔphaP1.2 did not accumulate PHB in any growth stage and showed a severe reduction of growth when glucose was the carbon source, a clear demonstration of negative impact in the fitness. The co-occurrence of phaP1 and phaP2 homologous in bacteria relatives of H. seropedicae, including other endophytes, indicates that the mechanism of phasin compensation by phaP2 expression may be operating in other organisms, showing that PHB metabolism is a key factor to adaptation and efficiency of endophytic bacteria.
Collapse
Affiliation(s)
- Luis P S Alves
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná Curitiba, Brazil
| | - Cícero S Teixeira
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná Curitiba, Brazil
| | - Evandro F Tirapelle
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná Curitiba, Brazil
| | - Lucélia Donatti
- Functional Morphology and Comparative Ecophysiology Laboratory, Cell Biology Department, Federal University of Paraná Curitiba, Brazil
| | - Michelle Z Tadra-Sfeir
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná Curitiba, Brazil
| | - Maria B R Steffens
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná Curitiba, Brazil
| | - Emanuel M de Souza
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná Curitiba, Brazil
| | - Fabio de Oliveira Pedrosa
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná Curitiba, Brazil
| | - Leda S Chubatsu
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná Curitiba, Brazil
| | - Marcelo Müller-Santos
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná Curitiba, Brazil
| |
Collapse
|
45
|
Strong PJ, Laycock B, Mahamud SNS, Jensen PD, Lant PA, Tyson G, Pratt S. The Opportunity for High-Performance Biomaterials from Methane. Microorganisms 2016; 4:E11. [PMID: 27681905 PMCID: PMC5029516 DOI: 10.3390/microorganisms4010011] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 01/18/2023] Open
Abstract
Polyhydroxyalkanoate (PHA) biopolymers are widely recognised as outstanding candidates to replace conventional petroleum-derived polymers. Their mechanical properties are good and can be tailored through copolymer composition, they are biodegradable, and unlike many alternatives, they do not rely on oil-based feedstocks. Further, they are the only commodity polymer that can be synthesised intracellularly, ensuring stereoregularity and high molecular weight. However, despite offering enormous potential for many years, they are still not making a significant impact. This is broadly because commercial uptake has been limited by variable performance (inconsistent polymer properties) and high production costs of the raw polymer. Additionally, the main type of PHA produced naturally is poly-3-hydroxybutyrate (PHB), which has limited scope due to its brittle nature and low thermal stability, as well as its tendency to embrittle over time. Production cost is strongly impacted by the type of the feedstock used. In this article we consider: the production of PHAs from methanotrophs using methane as a cost-effective substrate; the use of mixed cultures, as opposed to pure strains; and strategies to generate a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer (PHBV), which has more desirable qualities such as toughness and elasticity.
Collapse
Affiliation(s)
- Peter James Strong
- Centre for Solid Waste Bioprocessing, School of Civil Engineering and School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Bronwyn Laycock
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| | | | - Paul Douglas Jensen
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Paul Andrew Lant
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| | - Gene Tyson
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Steven Pratt
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
46
|
Proteomic Analyses of Chlorhexidine Tolerance Mechanisms in Delftia acidovorans Biofilms. mSphere 2016; 1:mSphere00017-15. [PMID: 27303691 PMCID: PMC4863599 DOI: 10.1128/msphere.00017-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/04/2015] [Indexed: 01/02/2023] Open
Abstract
Protein expression and fatty acid profiles of biofilm cells of chlorhexidine-tolerant Delftia acidovorans (MIC = 15 µg/ml) and its chlorhexidine-susceptible mutant (MIC = 1 µg/ml) were investigated. The chlorhexidine-susceptible mutant (MT51) was derived from the parental strain (WT15) using Tn5 transposon mutagenesis. The disrupted gene was identified as tolQ, a component of the tolQRAB gene cluster known to be involved in outer membrane stability. Proteomic responses of biofilm cells were compared by differential in-gel electrophoresis following exposure to chlorhexidine at sub-MIC (10 µg/ml) and above-MIC (30 µg/ml) concentrations. Numerous changes in protein abundance were observed in biofilm cells following chlorhexidine exposure, suggesting that molecular changes occurred during adaptation to chlorhexidine. Forty proteins showing significant differences (≥1.5-fold; P < 0.05) were identified by mass spectrometry and were associated with various functions, including amino acid and lipid biosynthesis, protein translation, energy metabolism, and stress-related functions (e.g., GroEL, aspartyl/glutamyl-tRNA amidotransferase, elongation factor Tu, Clp protease, and hydroxymyristoyl-ACP dehydratase). Several proteins involved in fatty acid synthesis were affected by chlorhexidine, in agreement with fatty acid analysis, wherein chlorhexidine-induced shifts in the fatty acid profile were observed in the chlorhexidine-tolerant cells, primarily the cyclic fatty acids. Transmission electron microscopy revealed more prominent changes in the cell envelope of chlorhexidine-susceptible MT51 cells. This study suggests that multiple mechanisms involving both the cell envelope (and likely TolQ) and panmetabolic regulation play roles in chlorhexidine tolerance in D. acidovorans. IMPORTANCE Delftia acidovorans has been associated with a number of serious infections, including bacteremia, empyema, bacterial endocarditis, and ocular and urinary tract infections. It has also been linked with a variety of surface-associated nosocomial infections. Biofilm-forming antimicrobial-resistant D. acidovorans strains have also been isolated, including ones displaying resistance to the common broad-spectrum agent chlorhexidine. The mechanisms of chlorhexidine resistance in D. acidovorans are not known; hence, a chlorhexidine-susceptible mutant of the tolerant wild-type strain was obtained using transposon mutagenesis, and the proteome and ultrastructural changes of both strains were compared under chlorhexidine challenge.
Collapse
|
47
|
Characterization of binding preference of polyhydroxyalkanoate biosynthesis-related multifunctional protein PhaM from Ralstonia eutropha. Appl Microbiol Biotechnol 2016; 100:4413-21. [DOI: 10.1007/s00253-015-7225-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/02/2015] [Accepted: 12/05/2015] [Indexed: 10/22/2022]
|
48
|
Photoautotrophic Polyhydroxybutyrate Granule Formation Is Regulated by Cyanobacterial Phasin PhaP in Synechocystis sp. Strain PCC 6803. Appl Environ Microbiol 2015; 81:4411-22. [PMID: 25911471 DOI: 10.1128/aem.00604-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/16/2015] [Indexed: 12/11/2022] Open
Abstract
Cyanobacteria are photoautotrophic microorganisms which fix atmospheric carbon dioxide via the Calvin-Benson cycle to produce carbon backbones for primary metabolism. Fixed carbon can also be stored as intracellular glycogen, and in some cyanobacterial species like Synechocystis sp. strain PCC 6803, polyhydroxybutyrate (PHB) accumulates when major nutrients like phosphorus or nitrogen are absent. So far only three enzymes which participate in PHB metabolism have been identified in this organism, namely, PhaA, PhaB, and the heterodimeric PHB synthase PhaEC. In this work, we describe the cyanobacterial PHA surface-coating protein (phasin), which we term PhaP, encoded by ssl2501. Translational fusion of Ssl2501 with enhanced green fluorescent protein (eGFP) showed a clear colocalization to PHB granules. A deletion of ssl2501 reduced the number of PHB granules per cell, whereas the mean PHB granule size increased as expected for a typical phasin. Although deletion of ssl2501 had almost no effect on the amount of PHB, the biosynthetic activity of PHB synthase was negatively affected. Secondary-structure prediction and circular dichroism (CD) spectroscopy of PhaP revealed that the protein consists of two α-helices, both of them associating with PHB granules. Purified PhaP forms oligomeric structures in solution, and both α-helices of PhaP contribute to oligomerization. Together, these results support the idea that Ssl2501 encodes a cyanobacterial phasin, PhaP, which regulates the surface-to-volume ratio of PHB granules.
Collapse
|
49
|
Li H, Liao JC. A synthetic anhydrotetracycline-controllable gene expression system in Ralstonia eutropha H16. ACS Synth Biol 2015; 4:101-6. [PMID: 24702232 DOI: 10.1021/sb4001189] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Controllable gene expression systems that are orthogonal to the host's native gene regulation network are invaluable tools for synthetic biology. In Ralstonia eutropha H16, such systems are extremely limited despite the importance of this organism in microbiological research and biotechnological application. Here we developed an anhydrotetracycline (aTc)-inducible gene expression system, which is composed of a synthetic promoter containing the operator tetO, the repressor TetR, and the inducer aTc. Using a reporter-activity based promoter library screen, we first identified the active hybrids between the tetO operators and the R. eutropha native rrsC promoter (PrrsC). Next, we showed that the hybrid promoters are repressable by TetR. To optimize the dynamic range of the system, a high-throughput screening of 300 mutants of R. eutropha phaC1 promoter was conducted to identify suitable promoters to tune the tetR expression level. The final controllable expression system contains the modified PrrsC with two copies of the tetO1 operator integrated and the tetR driven by the mutated PphaC1. The system has decreased basal expression level and can be tuned by different aTc concentrations with greater than 10-fold dynamic range. The system was used to alleviate cellular toxicity caused by AlsS overexpression, which impeded our metabolic engineering work on isobutanol and 3-methyl-1-butanol production in R. eutropha H16.
Collapse
Affiliation(s)
- Han Li
- Department of Chemical and Biomolecular Engineering, ‡The Molecular Biology Institute, §Department of Chemistry & Biochemistry, ∥Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095, United States
| | - James C. Liao
- Department of Chemical and Biomolecular Engineering, ‡The Molecular Biology Institute, §Department of Chemistry & Biochemistry, ∥Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
50
|
López NI, Pettinari MJ, Nikel PI, Méndez BS. Polyhydroxyalkanoates: Much More than Biodegradable Plastics. ADVANCES IN APPLIED MICROBIOLOGY 2015; 93:73-106. [PMID: 26505689 DOI: 10.1016/bs.aambs.2015.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacterial polyhydroxyalkanoates (PHAs) are isotactic polymers that play a critical role in central metabolism, as they act as dynamic reservoirs of carbon and reducing equivalents. These polymers have a number of technical applications since they exhibit thermoplastic and elastomeric properties, making them attractive as a replacement of oil-derived materials. PHAs are accumulated under conditions of nutritional imbalance (usually an excess of carbon source with respect to a limiting nutrient, such as nitrogen or phosphorus). The cycle of PHA synthesis and degradation has been recognized as an important physiological feature when these biochemical pathways were originally described, yet its role in bacterial processes as diverse as global regulation and cell survival is just starting to be appreciated in full. In the present revision, the complex regulation of PHA synthesis and degradation at the transcriptional, translational, and metabolic levels are explored by analyzing examples in natural producer bacteria, such as Pseudomonas species, as well as in recombinant Escherichia coli strains. The ecological role of PHAs, together with the interrelations with other polymers and extracellular substances, is also discussed, along with their importance in cell survival, resistance to several types of environmental stress, and planktonic-versus-biofilm lifestyle. Finally, bioremediation and plant growth promotion are presented as examples of environmental applications in which PHA accumulation has successfully been exploited.
Collapse
|