1
|
Goh KJ, Altuvia Y, Argaman L, Raz Y, Bar A, Lithgow T, Margalit H, Gan YH. RIL-seq reveals extensive involvement of small RNAs in virulence and capsule regulation in hypervirulent Klebsiella pneumoniae. Nucleic Acids Res 2024; 52:9119-9138. [PMID: 38804271 PMCID: PMC11347178 DOI: 10.1093/nar/gkae440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) can infect healthy individuals, in contrast to classical strains that commonly cause nosocomial infections. The recent convergence of hypervirulence with carbapenem-resistance in K. pneumoniae can potentially create 'superbugs' that are challenging to treat. Understanding virulence regulation of hvKp is thus critical. Accumulating evidence suggest that posttranscriptional regulation by small RNAs (sRNAs) plays a role in bacterial virulence, but it has hardly been studied in K. pneumoniae. We applied RIL-seq to a prototypical clinical isolate of hvKp to unravel the Hfq-dependent RNA-RNA interaction (RRI) network. The RRI network is dominated by sRNAs, including predicted novel sRNAs, three of which we validated experimentally. We constructed a stringent subnetwork composed of RRIs that involve at least one hvKp virulence-associated gene and identified the capsule gene loci as a hub target where multiple sRNAs interact. We found that the sRNA OmrB suppressed both capsule production and hypermucoviscosity when overexpressed. Furthermore, OmrB base-pairs within kvrA coding region and partially suppresses translation of the capsule regulator KvrA. This agrees with current understanding of capsule as a major virulence and fitness factor. It emphasizes the intricate regulatory control of bacterial phenotypes by sRNAs, particularly of genes critical to bacterial physiology and virulence.
Collapse
Affiliation(s)
- Kwok Jian Goh
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Yael Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Liron Argaman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yair Raz
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Amir Bar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yunn-Hwen Gan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
2
|
Yin Y, Tong Y, Yang H, Feng S. EpsR Ac is a copper-sensing MarR family transcriptional repressor from Acidithiobacillus caldus. Appl Microbiol Biotechnol 2022; 106:3679-3689. [PMID: 35583698 DOI: 10.1007/s00253-022-11971-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/25/2022] [Accepted: 05/07/2022] [Indexed: 11/26/2022]
Abstract
The MarR family, as multiple antibiotic resistance regulators, is associated with the resistance of organisms to unfavorable conditions. MarR family extracellular polymeric substances (EPS)-associated transcriptional regulator (EpsRAc) was closely associated with copper resistance in Acidithiobacillus caldus (A. caldus). Transcriptional analysis showed high activity of the epsR promoter (PI) in Escherichia coli and differential response to metal ions. The copper content and UV absorption spectrum of the co-purified protein did not increase, but a stoichiometry of 0.667 mol Cu(I) per EpsRAc monomer was observed in vitro in copper titration experiments, suggesting that Cu(II) acts with low affinity in binding to the EpsRAc protein. Electrophoretic mobility shift assays (EMSA) demonstrated that EpsRAc could bind to its own promoter in vitro, and the binding region was the palindrome sequence TGTTCATCGTGTGTGAGCACACA. EpsRAc negatively regulated its own gene expression, whereas Cu(II) mitigates this negative effect. EpsRAc did not bind to other neighboring gene promoters. Finally, we developed a working model to illustrate the regulatory mechanism of A. caldus in response to extreme copper stress. KEY POINTS: • Identification of a MarR family EPS-associated transcriptional regulator, named EpsRAc. • Cu(I) can bind to the EpsRAc protein with low affinity. • EpsRAc negatively regulates the expression of epsR, and Cu(II) can alleviate this negative regulation.
Collapse
Affiliation(s)
- Yijun Yin
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
| | - Hailin Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
| | - Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.
| |
Collapse
|
3
|
Regulatory Evolution of the phoH Ancestral Gene in Salmonella enterica Serovar Typhimurium. J Bacteriol 2022; 204:e0058521. [PMID: 35404111 DOI: 10.1128/jb.00585-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One important event for the divergence of Salmonella from Escherichia coli was the acquisition by horizontal transfer of the Salmonella pathogenicity island 1 (SPI-1), containing genes required for the invasion of host cells by Salmonella. HilD is an AraC-like transcriptional regulator in SPI-1 that induces the expression of the SPI-1 and many other acquired virulence genes located in other genomic regions of Salmonella. Additionally, HilD has been shown to positively control the expression of some ancestral genes (also present in E. coli and other bacteria), including phoH. In this study, we determined that both the gain of HilD and cis-regulatory evolution led to the integration of the phoH gene into the HilD regulon. Our results indicate that a HilD-binding sequence was generated in the regulatory region of the S. enterica serovar Typhimurium phoH gene, which mediates the activation of promoter 1 of this gene under SPI-1-inducing conditions. Furthermore, we found that repression by H-NS, a histone-like protein, was also adapted on the S. Typhimurium phoH gene and that HilD activates the expression of this gene in part by antagonizing H-NS. Additionally, our results revealed that the expression of the S. Typhmurium phoH gene is also activated in response to low phosphate but independently of the PhoB/R two-component system, known to regulate the E. coli phoH gene in response to low phosphate. Thus, our results indicate that cis-regulatory evolution has played a role in the expansion of the HilD regulon and illustrate the phenomenon of differential regulation of ortholog genes. IMPORTANCE Two mechanisms mediating differentiation of bacteria are well known: acquisition of genes by horizontal transfer events and mutations in coding DNA sequences. In this study, we found that the phoH ancestral gene is differentially regulated between Salmonella Typhimurium and Escherichia coli, two closely related bacterial species. Our results indicate that this differential regulation was generated by mutations in the regulatory sequence of the S. Typhimurium phoH gene and by the acquisition by S. Typhimurium of foreign DNA encoding the transcriptional regulator HilD. Thus, our results, together with those from an increasing number of studies, indicate that cis-regulatory evolution can lead to the rewiring and reprogramming of transcriptional regulation, which also plays an important role in the divergence of bacteria through time.
Collapse
|
4
|
The sRNA MicC downregulates hilD translation to control the SPI1 T3SS in Salmonella enterica serovar Typhimurium. J Bacteriol 2021; 204:e0037821. [PMID: 34694902 DOI: 10.1128/jb.00378-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium invades the intestinal epithelium and induces inflammatory diarrhea using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). Expression of the SPI1 T3SS is controlled by three AraC-like regulators, HilD, HilC and RtsA, which form a feed-forward regulatory loop that leads to activation of hilA, encoding the main transcriptional regulator of the T3SS structural genes. This complex system is affected by numerous regulatory proteins and environmental signals, many of which act at the level of hilD mRNA translation or HilD protein function. Here, we show that the sRNA MicC blocks translation of the hilD mRNA by base pairing near the ribosome binding site. MicC does not induce degradation of the hilD message. Our data indicate that micC is transcriptionally activated by SlyA, and SlyA feeds into the SPI1 regulatory network solely through MicC. Transcription of micC is negatively regulated by the OmpR/EnvZ two-component system, but this regulation is dependent on SlyA. OmpR/EnvZ control SPI1 expression partially through MicC, but also affect expression through other pathways, including an EnvZ-dependent, OmpR-independent mechanism. MicC-mediated regulation plays a role during infection, as evidenced by a SPI1 T3SS-dependent increase in Salmonella fitness in the intestine in the micC deletion mutant. These results further elucidate the complex regulatory network controlling SPI1 expression and add to the list of sRNAs that control this primary virulence factor. IMPORTANCE The Salmonella SPI1 T3SS is the primary virulence factor required for causing intestinal disease and initiating systemic infection. The system is regulated in response to a large variety of environmental and physiological factors such that the T3SS is expressed at only the appropriate time and place in the host during infection. Here we show how the sRNA MicC affects expression of the system. This work adds to our detailed mechanistic studies aimed at a complete understanding of the regulatory circuit.
Collapse
|
5
|
Li Z, Zhang L, Song Q, Wang G, Yang W, Tang H, Srinivasan R, Lin L, Lin X. Proteomics Analysis Reveals Bacterial Antibiotics Resistance Mechanism Mediated by ahslyA Against Enoxacin in Aeromonas hydrophila. Front Microbiol 2021; 12:699415. [PMID: 34168639 PMCID: PMC8217646 DOI: 10.3389/fmicb.2021.699415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
Bacterial antibiotic resistance is a serious global problem; the underlying regulatory mechanisms are largely elusive. The earlier reports states that the vital role of transcriptional regulators (TRs) in bacterial antibiotic resistance. Therefore, we have investigated the role of TRs on enoxacin (ENX) resistance in Aeromonas hydrophila in this study. A label-free quantitative proteomics method was utilized to compare the protein profiles of the ahslyA knockout and wild-type A. hydrophila strains under ENX stress. Bioinformatics analysis showed that the deletion of ahslyA triggers the up-regulated expression of some vital antibiotic resistance proteins in A. hydrophila upon ENX stress and thereby reduce the pressure by preventing the activation of SOS repair system. Moreover, ahslyA directly or indirectly induced at least 11 TRs, which indicates a complicated regulatory network under ENX stress. We also deleted six selected genes in A. hydrophila that altered in proteomics data in order to evaluate their roles in ENX stress. Our results showed that genes such as AHA_0655, narQ, AHA_3721, AHA_2114, and AHA_1239 are regulated by ahslyA and may be involved in ENX resistance. Overall, our data demonstrated the important role of ahslyA in ENX resistance and provided novel insights into the effects of transcriptional regulation on antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Zhen Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Zhangzhou Health Vocational College, Zhangzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Qingli Song
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Guibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Wenxiao Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Huamei Tang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Ling Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Li Z, Zhang L, Sun L, Wang Y, Chen J, Tang H, Lin L, Lin X. Proteomics analysis reveals the importance of transcriptional regulator slyA in regulation of several physiological functions in Aeromonas hydrophila. J Proteomics 2021; 244:104275. [PMID: 34044167 DOI: 10.1016/j.jprot.2021.104275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
SlyA is a well-known transcription factor that plays important roles in the regulation of diverse physiological functions including virulence and stress response in various bacterial species. The biological effects of slyA have species-specific characteristics. In this study, a phenotype assay showed that slyA gene deletion in Aeromonas hydrophila (ahslyA) decreased biofilm formation capability but did not affect bacterial hemolytic activity or acid stress response. The differentially expressed proteins between ΔahslyA and wild-type strains were compared by label-free quantitative proteomics to further understand the effects of AhSlyA on biological functions. Bioinformatics assays showed that ΔahslyA may be involved in the regulation of several intracellular metabolic pathways such as galactose metabolism, arginine biosynthesis, and sulfur metabolism. A further phenotypic assay confirmed that AhSlyA plays an important role in the regulation of sulfur and phosphate metabolism. Moreover, ahslyA also directly or indirectly regulated at least eight outer membrane proteins involved in the maintenance of cell permeability. Overall, the results provide insights into the functions of ahslyA and demonstrate its importance in A. hydrophila. BIOLOGICAL SIGNIFICANCE: In this study, we compared the DEPs between the transcriptional regulator slyA-deleted and the wild-type A. hydrophila strains using a label-free quantitative proteomics method. The bioinformatics analysis showed that slyA may be involved in the regulation of several metabolic pathways. Subsequent phenotype and growth assays confirmed that ΔahslyA affected sulfur and phosphate metabolism, and OM permeability. Finally, a ChIP-PCR assay further confirmed that AhSlyA directly binds to the promoters of several candidate genes, including sulfur metabolism-related genes. These results indicated that slyA plays an important regulatory role in pleiotropic physiological functions of A. hydrophila, and these functions may be different from those identified in previous reports from other bacterial species.
Collapse
Affiliation(s)
- Zhen Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Zhangzhou Health Vocational College, 363000 Zhangzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Lina Sun
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Jiazhen Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Huamei Tang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Ling Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, PR China.
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
7
|
Multidrug Resistance Regulators MarA, SoxS, Rob, and RamA Repress Flagellar Gene Expression and Motility in Salmonella enterica Serovar Typhimurium. J Bacteriol 2019; 201:JB.00385-19. [PMID: 31501286 DOI: 10.1128/jb.00385-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
Production of flagella is costly and subject to global multilayered regulation, which is reflected in the hierarchical control of flagellar production in many bacterial species. For Salmonella enterica serovar Typhimurium and its relatives, global regulation of flagellar production primarily occurs through the control of flhDC transcription and mRNA translation. In this study, the roles of the homologous multidrug resistance regulators MarA, SoxS, Rob, and RamA (constituting the mar-sox-rob regulon in S Typhimurium) in regulating flagellar gene expression were explored. Each of these regulators was found to inhibit flagellar gene expression, production of flagella, and motility. To different degrees, repression via these transcription factors occurred through direct interactions with the flhDC promoter, particularly for MarA and Rob. Additionally, SoxS repressed flagellar gene expression via a posttranscriptional pathway, reducing flhDC translation. The roles of these transcription factors in reducing motility in the presence of salicylic acid were also elucidated, adding a genetic regulatory element to the response of S Typhimurium to this well-characterized chemorepellent. Integration of flagellar gene expression into the mar-sox-rob regulon in S Typhimurium contrasts with findings for closely related species such as Escherichia coli, providing an example of plasticity in the mar-sox-rob regulon throughout the Enterobacteriaceae family.IMPORTANCE The mar-sox-rob regulon is a large and highly conserved stress response network in the Enterobacteriaceae family. Although it is well characterized in E. coli, the extent of this regulon in related species is unclear. Here, the control of costly flagellar gene expression is connected to the mar-sox-rob regulon of S Typhimurium, contrasting with the E. coli regulon model. These findings demonstrate the flexibility of the mar-sox-rob regulon to accommodate novel regulatory targets, and they provide evidence for its broader regulatory role within this family of diverse bacteria.
Collapse
|
8
|
Hünnefeld M, Persicke M, Kalinowski J, Frunzke J. The MarR-Type Regulator MalR Is Involved in Stress-Responsive Cell Envelope Remodeling in Corynebacterium glutamicum. Front Microbiol 2019; 10:1039. [PMID: 31164873 PMCID: PMC6536590 DOI: 10.3389/fmicb.2019.01039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/25/2019] [Indexed: 12/03/2022] Open
Abstract
It is the enormous adaptive capacity of microorganisms, which is key to their competitive success in nature, but also challenges antibiotic treatment of human diseases. To deal with a diverse set of stresses, bacteria are able to reprogram gene expression using a wide variety of transcription factors. Here, we focused on the MarR-type regulator MalR conserved in the Corynebacterineae, including the prominent pathogens Corynebacterium diphtheriae and Mycobacterium tuberculosis. In several corynebacterial species, the malR gene forms an operon with a gene encoding a universal stress protein (uspA). Chromatin affinity purification and sequencing (ChAP-Seq) analysis revealed that MalR binds more than 60 target promoters in the C. glutamicum genome as well as in the large cryptic prophage CGP3. Overproduction of MalR caused severe growth defects and an elongated cell morphology. ChAP-Seq data combined with a global transcriptome analysis of the malR overexpression strain emphasized a central role of MalR in cell envelope remodeling in response to environmental stresses. For example, prominent MalR targets are involved in peptidoglycan biosynthesis and synthesis of branched-chain fatty acids. Phenotypic microarrays suggested an altered sensitivity of a ΔmalR mutant toward several β-lactam antibiotics. Furthermore, we revealed MalR as a repressor of several prophage genes, suggesting that MalR may be involved in the control of stress-responsive induction of the large CGP3 element. In conclusion, our results emphasize MalR as a regulator involved in stress-responsive remodeling of the cell envelope of C. glutamicum and suggest a link between cell envelope stress and the control of phage gene expression.
Collapse
Affiliation(s)
- Max Hünnefeld
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Marcus Persicke
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
9
|
Regulatory Effect of SlyA on rcsB Expression in Salmonella enterica Serovar Typhimurium. J Bacteriol 2019; 201:JB.00673-18. [PMID: 30510144 DOI: 10.1128/jb.00673-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 11/20/2022] Open
Abstract
The Salmonella enterica serovar Typhimurium RcsCDB system regulates the synthesis of colanic acid and the flagellum as well as the expression of virulence genes. We previously demonstrated that the rcsC11 mutant, which constitutively activates the RcsB regulator, attenuates Salmonella virulence in an animal model. This attenuated phenotype was also produced by deletion of the slyA gene. In this work, we investigated if this antagonistic behavior is produced by modulating the expression of both regulator-encoding genes. We demonstrated that SlyA overproduction negatively regulates rcsB transcription. A bioinformatics analysis enabled us to identify putative SlyA binding sites on both promoters, P rcsDB and P rcsB , which control rcsB transcriptional levels. We also determined that SlyA is able to recognize and bind to these predicted sites to modulate the activity of both rcsB promoters. According to these results, SlyA represses rcsB transcription by direct binding to specific sites located on the rcsB promoters, thus accounting for the attenuated/virulence antagonistic behaviors. Moreover, we showed that the opposite effect between both regulators also physiologically affects the Salmonella motility phenotype. In this sense, we observed that under SlyA overproduction, P rcsB is repressed, and consequently, bacterial motility is increased. On the basis of these results, we suggest that during infection, the different RcsB levels produced act as a switch between the virulent and attenuated forms of Salmonella Thereby, we propose that higher concentrations of RcsB tilt the balance toward the attenuated form, while absence or low concentrations resulting from SlyA overproduction tilt the balance toward the virulent form.IMPORTANCE The antagonistic behavior of RcsB and SlyA on virulence gene expression led us to hypothesize that there is interplay between both regulators in a regulatory network and these could be considered coordinators of this process. Here, we report that the SlyA virulence factor influences motility behavior by controlling rcsB transcription from the P rcsB promoter. We also demonstrate that SlyA negatively affects the expression of the rcsB gene by direct binding to P rcsDB and P rcsB promoters. We suggest that different levels of RcsB act as a switch between the virulent and attenuated forms of Salmonella, where high concentrations of the regulator tend to tilt the balance toward the attenuated form and low concentrations or its absence tilt it toward the virulent form.
Collapse
|
10
|
Zhang B, Ran L, Wu M, Li Z, Jiang J, Wang Z, Cheng S, Fu J, Liu X. Shigellaflexneri Regulator SlyA Controls Bacterial Acid Resistance by Directly Activating the Glutamate Decarboxylation System. Front Microbiol 2018; 9:2071. [PMID: 30233544 PMCID: PMC6128205 DOI: 10.3389/fmicb.2018.02071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/14/2018] [Indexed: 01/02/2023] Open
Abstract
Shigella flexneri is an important foodborne bacterial pathogen with infectious dose as low as 10–100 cells. SlyA, a transcriptional regulator of the MarR family, has been shown to regulate virulence in a closely related bacterial pathogen, Salmonella Typhimurium. However, the regulatory role of SlyA in S. flexneri is less understood. Here we applied unbiased proteomic profiling to define the SlyA regulon in S. flexneri. We found that the genetic ablation of slyA led to the alteration of 18 bacterial proteins among over 1400 identifications. Intriguingly, most down-regulated proteins (whose expression is SlyA-dependent) were associated with bacterial acid resistance such as the glutamate decarboxylation system. We further demonstrated that SlyA directly regulates the expression of GadA, a glutamate decarboxylase, by binding to the promotor region of its coding gene. Importantly, overexpression of GadA was able to rescue the survival defect of the ΔslyA mutant under acid stress. Therefore, our study highlights a major role of SlyA in controlling S. flexneri acid resistance and provides a molecular mechanism underlying such regulation as well.
Collapse
Affiliation(s)
- Buyu Zhang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Longhao Ran
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Mei Wu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zezhou Li
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jiezhang Jiang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhen Wang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Sen Cheng
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jiaqi Fu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
11
|
Cabezas CE, Briones AC, Aguirre C, Pardo-Esté C, Castro-Severyn J, Salinas CR, Baquedano MS, Hidalgo AA, Fuentes JA, Morales EH, Meneses CA, Castro-Nallar E, Saavedra CP. The transcription factor SlyA from Salmonella Typhimurium regulates genes in response to hydrogen peroxide and sodium hypochlorite. Res Microbiol 2018; 169:263-278. [DOI: 10.1016/j.resmic.2018.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 03/29/2018] [Accepted: 04/21/2018] [Indexed: 11/15/2022]
|
12
|
Bando SY, Iamashita P, Guth BE, dos Santos LF, Fujita A, Abe CM, Ferreira LR, Moreira-Filho CA. A hemolytic-uremic syndrome-associated strain O113:H21 Shiga toxin-producing Escherichia coli specifically expresses a transcriptional module containing dicA and is related to gene network dysregulation in Caco-2 cells. PLoS One 2017; 12:e0189613. [PMID: 29253906 PMCID: PMC5734773 DOI: 10.1371/journal.pone.0189613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023] Open
Abstract
Shiga toxin-producing (Stx) Escherichia coli (STEC) O113:H21 strains are associated with human diarrhea and some of these strains may cause hemolytic uremic syndrome (HUS). The molecular mechanism underlying this capacity and the differential host cell response to HUS-causing strains are not yet completely understood. In Brazil O113:H21 strains are commonly found in cattle but, so far, were not isolated from HUS patients. Here we conducted comparative gene co-expression network (GCN) analyses of two O113:H21 STEC strains: EH41, reference strain, isolated from HUS patient in Australia, and Ec472/01, isolated from cattle feces in Brazil. These strains were cultured in fresh or in Caco-2 cell conditioned media. GCN analyses were also accomplished for cultured Caco-2 cells exposed to EH41 or Ec472/01. Differential transcriptome profiles for EH41 and Ec472/01 were not significantly changed by exposure to fresh or Caco-2 conditioned media. Conversely, global gene expression comparison of both strains cultured in conditioned medium revealed a gene set exclusively expressed in EH41, which includes the dicA putative virulence factor regulator. Network analysis showed that this set of genes constitutes an EH41 specific transcriptional module. PCR analysis in Ec472/01 and in other 10 Brazilian cattle-isolated STEC strains revealed absence of dicA in all these strains. The GCNs of Caco-2 cells exposed to EH41 or to Ec472/01 presented a major transcriptional module containing many hubs related to inflammatory response that was not found in the GCN of control cells. Moreover, EH41 seems to cause gene network dysregulation in Caco-2 as evidenced by the large number of genes with high positive and negative covariance interactions. EH41 grows slowly than Ec472/01 when cultured in Caco-2 conditioned medium and fitness-related genes are hypoexpressed in that strain. Therefore, EH41 virulence may be derived from its capacity for dysregulating enterocyte genome functioning and its enhanced enteric survival due to slow growth.
Collapse
Affiliation(s)
- Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Priscila Iamashita
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Beatriz E. Guth
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Luis F. dos Santos
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - André Fujita
- Department of Computer Science, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cecilia M. Abe
- Laboratory of Bacteriology, Butantan Institute, São Paulo, SP, Brazil
| | - Leandro R. Ferreira
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Carlos Alberto Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
13
|
Calero P, Jensen SI, Bojanovič K, Lennen RM, Koza A, Nielsen AT. Genome-wide identification of tolerance mechanisms toward p-coumaric acid in Pseudomonas putida. Biotechnol Bioeng 2017; 115:762-774. [PMID: 29131301 PMCID: PMC5814926 DOI: 10.1002/bit.26495] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/16/2017] [Accepted: 11/08/2017] [Indexed: 01/12/2023]
Abstract
The soil bacterium Pseudomonas putida KT2440 has gained increasing biotechnological interest due to its ability to tolerate different types of stress. Here, the tolerance of P. putida KT2440 toward eleven toxic chemical compounds was investigated. P. putida was found to be significantly more tolerant toward three of the eleven compounds when compared to Escherichia coli. Increased tolerance was for example found toward p‐coumaric acid, an interesting precursor for polymerization with a significant industrial relevance. The tolerance mechanism was therefore investigated using the genome‐wide approach, Tn‐seq. Libraries containing a large number of miniTn5‐Km transposon insertion mutants were grown in the presence and absence of p‐coumaric acid, and the enrichment or depletion of mutants was quantified by high‐throughput sequencing. Several genes, including the ABC transporter Ttg2ABC and the cytochrome c maturation system (ccm), were identified to play an important role in the tolerance toward p‐coumaric acid of this bacterium. Most of the identified genes were involved in membrane stability, suggesting that tolerance toward p‐coumaric acid is related to transport and membrane integrity.
Collapse
Affiliation(s)
- Patricia Calero
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Lyngby, Denmark
| | - Sheila I Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Lyngby, Denmark
| | - Klara Bojanovič
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Lyngby, Denmark
| | - Rebecca M Lennen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Lyngby, Denmark
| | - Anna Koza
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Lyngby, Denmark
| | - Alex T Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Lyngby, Denmark
| |
Collapse
|
14
|
Vollmer AC, Bark SJ. Twenty-Five Years of Investigating the Universal Stress Protein: Function, Structure, and Applications. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:1-36. [PMID: 29680123 DOI: 10.1016/bs.aambs.2017.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since the initial discovery of universal stress protein A (UspA) 25 years ago, remarkable advances in molecular and biochemical technologies have revolutionized our understanding of biology. Many studies using these technologies have focused on characterization of the uspA gene and Usp-type proteins. These studies have identified the conservation of Usp-like proteins across bacteria, archaea, plants, and even some invertebrate animals. Regulation of these proteins under diverse stresses has been associated with different stress-response genes including spoT and relA in the stringent response and the dosR two-component signaling pathways. These and other foundational studies suggest Usps serve regulatory and protective roles to enable adaptation and survival under external stresses. Despite these foundational studies, many bacterial species have multiple paralogs of genes encoding these proteins and ablation of the genes does not provide a distinct phenotype. This outcome has limited our understanding of the biochemical functions of these proteins. Here, we summarize the current knowledge of Usps in general and UspA in particular across different genera as well as conclusions about their functions from seminal studies in diverse organisms. Our objective has been to organize the foundational studies in this field to identify the significant impediments to further understanding of Usp functions at the molecular level. We propose ideas and experimental approaches that may overcome these impediments and drive future development of molecular approaches to understand and target Usps as central regulators of stress adaptation and survival. Despite the fact that the full functions of Usps are still not known, creative many applications have already been proposed, tested, and used. The complementary approaches of basic research and applications, along with new technology and analytic tools, may yield the elusive yet critical functions of universal stress proteins in diverse systems.
Collapse
|
15
|
Curran TD, Abacha F, Hibberd SP, Rolfe MD, Lacey MM, Green J. Identification of new members of the Escherichia coli K-12 MG1655 SlyA regulon. MICROBIOLOGY-SGM 2017; 163:400-409. [PMID: 28073397 PMCID: PMC5797941 DOI: 10.1099/mic.0.000423] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
SlyA is a member of the MarR family of bacterial transcriptional regulators. Previously, SlyA has been shown to directly regulate only two operons in Escherichia coli K-12 MG1655, fimB and hlyE (clyA). In both cases, SlyA activates gene expression by antagonizing repression by the nucleoid-associated protein H-NS. Here, the transcript profiles of aerobic glucose-limited steady-state chemostat cultures of E. coli K-12 MG1655, slyA mutant and slyA over-expression strains are reported. The transcript profile of the slyA mutant was not significantly different from that of the parent; however, that of the slyA expression strain was significantly different from that of the vector control. Transcripts representing 27 operons were increased in abundance, whereas 3 were decreased. Of the 30 differentially regulated operons, 24 have previously been associated with sites of H-NS binding, suggesting that antagonism of H-NS repression is a common feature of SlyA-mediated transcription regulation. Direct binding of SlyA to DNA located upstream of a selection of these targets permitted the identification of new operons likely to be directly regulated by SlyA. Transcripts of four operons coding for cryptic adhesins exhibited enhanced expression, and this was consistent with enhanced biofilm formation associated with the SlyA over-producing strain.
Collapse
Affiliation(s)
- Thomas D Curran
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Fatima Abacha
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Stephen P Hibberd
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Matthew D Rolfe
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Melissa M Lacey
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
16
|
Clayton AL, Enomoto S, Su Y, Dale C. The regulation of antimicrobial peptide resistance in the transition to insect symbiosis. Mol Microbiol 2017; 103:958-972. [PMID: 27987256 DOI: 10.1111/mmi.13598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 01/02/2023]
Abstract
Many bacteria utilize two-component systems consisting of a sensor kinase and a transcriptional response regulator to detect environmental signals and modulate gene expression for adaptation. The response regulator PhoP and its cognate sensor kinase PhoQ compose a two-component system known for its role in responding to low levels of Mg2+ , Ca2+ , pH and to the presence of antimicrobial peptides and activating the expression of genes involved in adaptation to host association. Compared with their free-living relatives, mutualistic insect symbiotic bacteria inhabit a static environment where the requirement for sensory functions is expected to be relaxed. The insect symbiont, Sodalis glossinidius, requires PhoP to resist killing by host derived antimicrobial peptides. However, the S. glossinidius PhoQ was found to be insensitive to Mg2+ , Ca2+ and pH. Here they show that Sodalis praecaptivus, a close non host-associated relative of S. glossinidius, utilizes a magnesium sensing PhoP-PhoQ and an uncharacterized MarR-like transcriptional regulator (Sant_4061) to control antimicrobial peptide resistance in vitro. While the inactivation of phoP, phoQ or Sant_4061 completely retards the growth of S. praecaptivus in the presence of an antimicrobial peptide in vitro, inactivation of both phoP and Sant_4061 is necessary to abrogate growth of this bacterium in an insect host.
Collapse
Affiliation(s)
- Adam L Clayton
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | | | - Yinghua Su
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Colin Dale
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
17
|
Ribaudo N, Li X, Davis B, Wood TK, Huang ZJ. A Genome-Scale Modeling Approach to Quantify Biofilm Component Growth of Salmonella Typhimurium. J Food Sci 2016; 82:154-166. [PMID: 27992644 DOI: 10.1111/1750-3841.13565] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
Salmonella typhimurium (S. typhimurium) is an extremely dangerous foodborne bacterium that infects both animal and human subjects, causing fatal diseases around the world. Salmonella's robust virulence, antibiotic-resistant nature, and capacity to survive under harsh conditions are largely due to its ability to form resilient biofilms. Multiple genome-scale metabolic models have been developed to study the complex and diverse nature of this organism's metabolism; however, none of these models fully integrated the reactions and mechanisms required to study the influence of biofilm formation. This work developed a systems-level approach to study the adjustment of intracellular metabolism of S. typhimurium during biofilm formation. The most advanced metabolic reconstruction currently available, STM_v1.0, was 1st extended to include the formation of the extracellular biofilm matrix. Flux balance analysis was then employed to study the influence of biofilm formation on cellular growth rate and the production rates of biofilm components. With biofilm formation present, biomass growth was examined under nutrient rich and nutrient deficient conditions, resulting in overall growth rates of 0.8675 and 0.6238 h-1 respectively. Investigation of intracellular flux variation during biofilm formation resulted in the elucidation of 32 crucial reactions, and associated genes, whose fluxes most significantly adapt during the physiological response. Experimental data were found in the literature to validate the importance of these genes for the biofilm formation of S. typhimurium. This preliminary investigation on the adjustment of intracellular metabolism of S. typhimurium during biofilm formation will serve as a platform to generate hypotheses for further experimental study on the biofilm formation of this virulent bacterium.
Collapse
Affiliation(s)
- Nicholas Ribaudo
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| | - Xianhua Li
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| | - Brett Davis
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| | - Thomas K Wood
- Depts. of Chemical Engineering and Biochemistry and Molecular Biology, Pennsylvania State Univ, Univ. Park, 16802, PA, U.S.A
| | - Zuyi Jacky Huang
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| |
Collapse
|
18
|
Transposon-Sequencing Analysis Unveils Novel Genes Involved in the Generation of Persister Cells in Uropathogenic Escherichia coli. Antimicrob Agents Chemother 2016; 60:6907-6910. [PMID: 27550350 DOI: 10.1128/aac.01617-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/17/2016] [Indexed: 01/08/2023] Open
Abstract
Persister cells are highly tolerant to different antibiotics and are associated with relapsing infections. In order to understand this phenomenon further, we exposed a transposon library to a lethal concentration of ampicillin, and mutants that survived were identified by transposon sequencing (Tn-Seq). We determined that mutations related to carbon metabolism, cell envelope (cell wall generation and membrane proteins), and stress response have a role in persister cell generation.
Collapse
|
19
|
Roy A, Reddi R, Sawhney B, Ghosh DK, Addlagatta A, Ranjan A. Expression, Functional Characterization and X-ray Analysis of HosA, A Member of MarR Family of Transcription Regulator from Uropathogenic Escherichia coli. Protein J 2016; 35:269-82. [DOI: 10.1007/s10930-016-9670-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Kim Y, Joachimiak G, Bigelow L, Babnigg G, Joachimiak A. How Aromatic Compounds Block DNA Binding of HcaR Catabolite Regulator. J Biol Chem 2016; 291:13243-56. [PMID: 27129205 DOI: 10.1074/jbc.m115.712067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 11/06/2022] Open
Abstract
Bacterial catabolism of aromatic compounds from various sources including phenylpropanoids and flavonoids that are abundant in soil plays an important role in the recycling of carbon in the ecosystem. We have determined the crystal structures of apo-HcaR from Acinetobacter sp. ADP1, a MarR/SlyA transcription factor, in complexes with hydroxycinnamates and a specific DNA operator. The protein regulates the expression of the hca catabolic operon in Acinetobacter and related bacterial strains, allowing utilization of hydroxycinnamates as sole sources of carbon. HcaR binds multiple ligands, and as a result the transcription of genes encoding several catabolic enzymes is increased. The 1.9-2.4 Å resolution structures presented here explain how HcaR recognizes four ligands (ferulate, 3,4-dihydroxybenzoate, p-coumarate, and vanillin) using the same binding site. The ligand promiscuity appears to be an adaptation to match a broad specificity of hydroxycinnamate catabolic enzymes while responding to toxic thioester intermediates. Structures of apo-HcaR and in complex with a specific DNA hca operator when combined with binding studies of hydroxycinnamates show how aromatic ligands render HcaR unproductive in recognizing a specific DNA target. The current study contributes to a better understanding of the hca catabolic operon regulation mechanism by the transcription factor HcaR.
Collapse
Affiliation(s)
- Youngchang Kim
- From the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439
| | | | | | - Gyorgy Babnigg
- From the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439
| | - Andrzej Joachimiak
- From the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439
| |
Collapse
|
21
|
Characterization of SlyA in Shigella flexneri Identifies a Novel Role in Virulence. Infect Immun 2016; 84:1073-1082. [PMID: 26831468 DOI: 10.1128/iai.00806-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/23/2016] [Indexed: 12/18/2022] Open
Abstract
The SlyA transcriptional regulator has important roles in the virulence and pathogenesis of several members of the Enterobacteriaceae family, including Salmonella enterica serovar Typhimurium and Escherichia coli. Despite the identification of the slyA gene in Shigella flexneri nearly 2 decades ago, as well as the significant conservation of SlyA among enteric bacteria, the role of SlyA in Shigella remains unknown. The genes regulated by SlyA in closely related organisms often are absent from or mutated inS. flexneri, and consequently many described SlyA-dependent phenotypes are not present. By characterizing the expression of slyA and determining its ultimate effect in this highly virulent organism, we postulated that novel SlyA-regulated virulence phenotypes would be identified. In this study, we report the first analysis of SlyA in Shigella and show that (i) the slyA gene is transcribed and ultimately translated into protein, (ii) slyA promoter activity is maximal during stationary phase and is negatively autoregulated and positively regulated by the PhoP response regulator, (iii) the exogenous expression of slyA rescues transcription and virulence-associated deficiencies during virulence-repressed conditions, and (iv) the absence of slyA significantly decreases acid resistance, demonstrating a novel and important role in Shigella virulence. Cumulatively, our study illustrates unexpected parallels between the less conserved S. flexneri and S Typhimurium slyA promoters as well as a unique role for SlyA in Shigella virulence that has not been described previously in any closely related organism.
Collapse
|
22
|
Ryan D, Pati NB, Ojha UK, Padhi C, Ray S, Jaiswal S, Singh GP, Mannala GK, Schultze T, Chakraborty T, Suar M. Global transcriptome and mutagenic analyses of the acid tolerance response of Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 2015; 81:8054-65. [PMID: 26386064 PMCID: PMC4651094 DOI: 10.1128/aem.02172-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/01/2015] [Indexed: 01/18/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the leading causative agents of food-borne bacterial gastroenteritis. Swift invasion through the intestinal tract and successful establishment in systemic organs are associated with the adaptability of S. Typhimurium to different stress environments. Low-pH stress serves as one of the first lines of defense in mammalian hosts, which S. Typhimurium must efficiently overcome to establish an infection. Therefore, a better understanding of the molecular mechanisms underlying the adaptability of S. Typhimurium to acid stress is highly relevant. In this study, we have performed a transcriptome analysis of S. Typhimurium under the acid tolerance response (ATR) and found a large number of genes (∼47%) to be differentially expressed (more than 1.5-fold or less than -1.5-fold; P < 0.01). Functional annotation revealed differentially expressed genes to be associated with regulation, metabolism, transport and binding, pathogenesis, and motility. Additionally, our knockout analysis of a subset of differentially regulated genes facilitated the identification of proteins that contribute to S. Typhimurium ATR and virulence. Mutants lacking genes encoding the K(+) binding and transport protein KdpA, hypothetical protein YciG, the flagellar hook cap protein FlgD, and the nitrate reductase subunit NarZ were significantly deficient in their ATRs and displayed varied in vitro virulence characteristics. This study offers greater insight into the transcriptome changes of S. Typhimurium under the ATR and provides a framework for further research on the subject.
Collapse
Affiliation(s)
- Daniel Ryan
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Niladri Bhusan Pati
- Institute of Medical Microbiology, German Centre of Infection Research, Site Giessen-Marburg-Langen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Urmesh K Ojha
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | | | - Shilpa Ray
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Sangeeta Jaiswal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Gajinder P Singh
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Gopala K Mannala
- Institute of Medical Microbiology, German Centre of Infection Research, Site Giessen-Marburg-Langen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tilman Schultze
- Institute of Medical Microbiology, German Centre of Infection Research, Site Giessen-Marburg-Langen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, German Centre of Infection Research, Site Giessen-Marburg-Langen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| |
Collapse
|
23
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
24
|
Abstract
This review provides a brief review of the current understanding of the structure-function relationship of the Escherichia coli nucleoid developed after the overview by Pettijohn focusing on the physical properties of nucleoids. Isolation of nucleoids requires suppression of DNA expansion by various procedures. The ability to control the expansion of nucleoids in vitro has led to purification of nucleoids for chemical and physical analyses and for high-resolution imaging. Isolated E. coli genomes display a number of individually intertwined supercoiled loops emanating from a central core. Metabolic processes of the DNA double helix lead to three types of topological constraints that all cells must resolve to survive: linking number, catenates, and knots. The major species of nucleoid core protein share functional properties with eukaryotic histones forming chromatin; even the structures are different from histones. Eukaryotic histones play dynamic roles in the remodeling of eukaryotic chromatin, thereby controlling the access of RNA polymerase and transcription factors to promoters. The E. coli genome is tightly packed into the nucleoid, but, at each cell division, the genome must be faithfully replicated, divided, and segregated. Nucleoid activities such as transcription, replication, recombination, and repair are all affected by the structural properties and the special conformations of nucleoid. While it is apparent that much has been learned about the nucleoid, it is also evident that the fundamental interactions organizing the structure of DNA in the nucleoid still need to be clearly defined.
Collapse
|
25
|
Deditius JA, Felgner S, Spöring I, Kühne C, Frahm M, Rohde M, Weiß S, Erhardt M. Characterization of Novel Factors Involved in Swimming and Swarming Motility in Salmonella enterica Serovar Typhimurium. PLoS One 2015; 10:e0135351. [PMID: 26267246 PMCID: PMC4534456 DOI: 10.1371/journal.pone.0135351] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/21/2015] [Indexed: 12/16/2022] Open
Abstract
Salmonella enterica utilizes flagellar motility to swim through liquid environments and on surfaces. The biosynthesis of the flagellum is regulated on various levels, including transcriptional and posttranscriptional mechanisms. Here, we investigated the motility phenotype of 24 selected single gene deletions that were previously described to display swimming and swarming motility effects. Mutations in flgE, fliH, ydiV, rfaG, yjcC, STM1267 and STM3363 showed an altered motility phenotype. Deletions of flgE and fliH displayed a non-motile phenotype in both swimming and swarming motility assays as expected. The deletions of STM1267, STM3363, ydiV, rfaG and yjcC were further analyzed in detail for flagellar and fimbrial gene expression and filament formation. A ΔydiV mutant showed increased swimming motility, but a decrease in swarming motility, which coincided with derepression of curli fimbriae. A deletion of yjcC, encoding for an EAL domain-containing protein, increased swimming motility independent on flagellar gene expression. A ΔSTM1267 mutant displayed a hypermotile phenotype on swarm agar plates and was found to have increased numbers of flagella. In contrast, a knockout of STM3363 did also display an increase in swarming motility, but did not alter flagella numbers. Finally, a deletion of the LPS biosynthesis-related protein RfaG reduced swimming and swarming motility, associated with a decrease in transcription from flagellar class II and class III promoters and a lack of flagellar filaments.
Collapse
Affiliation(s)
- Julia Andrea Deditius
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Sebastian Felgner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Imke Spöring
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Caroline Kühne
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Michael Frahm
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Siegfried Weiß
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Marc Erhardt
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- * E-mail:
| |
Collapse
|
26
|
Stewart MK, Cookson BT. Mutually repressing repressor functions and multi-layered cellular heterogeneity regulate the bistable Salmonella fliC census. Mol Microbiol 2014; 94:1272-84. [PMID: 25315056 DOI: 10.1111/mmi.12828] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2014] [Indexed: 12/22/2022]
Abstract
Bistable flagellar and virulence gene expression generates specialized Salmonella subpopulations with distinct functions. Repressing flagellar genes allows Salmonella to evade caspase-1 mediated host defenses and enhances systemic colonization. By definition, bistability arises when intermediate states of gene expression are rendered unstable by the underlying genetic circuitry. We demonstrate sustained bistable fliC expression in virulent Salmonella 14028 and document dynamic control of the distribution, or single-cell census, of flagellar gene expression by the mutually repressing repressors YdiV and FliZ. YdiV partitions cells into the fliC-OFF subpopulation, while FliZ partitions cells into the fliC-HIGH subpopulation at late time points during growth. Bistability of ΔfliZ populations and ydiV-independent FliZ control of flagellar gene expression provide evidence that the YdiV-FliZ mutually repressing repressor circuit is not required for bistability. Repression and activation by YdiV and FliZ (respectively) can shape the census of fliC expression independently, and bistability collapses into a predominantly intermediate population in the absence of both regulators. Metered expression of YdiV and FliZ reveals variable sensitivity to these regulators and defines conditions where expression of FliZ enhances fliC expression and where FliZ does not alter the fliC census. Thus, this evolved genetic circuitry coordinates multiple layers of regulatory heterogeneity into a binary response.
Collapse
Affiliation(s)
- Mary K Stewart
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | | |
Collapse
|
27
|
Wu Q, Yang A, Zou W, Duan Z, Liu J, Chen J, Liu L. Transcriptional engineering ofEscherichia coliK4 for fructosylated chondroitin production. Biotechnol Prog 2013; 29:1140-9. [DOI: 10.1002/btpr.1777] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/01/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Qiulin Wu
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
- Key Laboratory of Industrial Biotechnology; Ministry of Education, Jiangnan University; Wuxi Jiangsu 214122 China
- Laboratory of Food Microbial-Manufacturing Engineering; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Aihua Yang
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Wei Zou
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Zuoying Duan
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Jie Liu
- Jiangsu Jiangshan Pharmaceutical Co., Ltd.; Jingjiang Jiangsu 214500 China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology; Ministry of Education, Jiangnan University; Wuxi Jiangsu 214122 China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
- Key Laboratory of Industrial Biotechnology; Ministry of Education, Jiangnan University; Wuxi Jiangsu 214122 China
- Laboratory of Food Microbial-Manufacturing Engineering; Jiangnan University; Wuxi Jiangsu 214122 China
| |
Collapse
|
28
|
Cooper LA, Simmons LA, Mobley HLT. Involvement of mismatch repair in the reciprocal control of motility and adherence of uropathogenic Escherichia coli. Infect Immun 2012; 80:1969-79. [PMID: 22473602 PMCID: PMC3370570 DOI: 10.1128/iai.00043-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/22/2012] [Indexed: 11/20/2022] Open
Abstract
Type 1 fimbriae and flagella, two surface organelles critical for colonization of the urinary tract by uropathogenic Escherichia coli (UPEC), mediate opposing virulence objectives. Type 1 fimbriae facilitate adhesion to mucosal cells and promote bacterial persistence in the urinary tract, while flagella propel bacteria through urine and along mucous layers during ascension to the upper urinary tract. Using a transposon screen of the E. coli CFT073 fim locked-ON (L-ON) mutant, a construct that constitutively expresses type 1 fimbriae and represses motility, we identified six mutants that exhibited a partial restoration of motility. Among these six mutated genes was mutS, which encodes a component of the methyl-directed mismatch repair (MMR) system. When complemented with mutS in trans, motility was again repressed. To determine whether the MMR system, in general, is involved in this reciprocal control, we characterized the effects of gene deletions of other MMR components on UPEC motility. Isogenic deletions of mutS, mutH, and mutL were constructed in both wild-type CFT073 and fim L-ON backgrounds. All MMR mutants showed an increase in motility in the wild-type background, and ΔmutH and ΔmutS mutations increased motility in the fim L-ON background. Cochallenge of the wild-type strain with an MMR-defective strain showed a subtle but significant competitive advantage in the bladder and spleen for the MMR mutant using the murine model of ascending urinary tract infection after 48 h. Our findings demonstrate that the MMR system generally affects the reciprocal regulation of motility and adherence and thus could contribute to UPEC pathogenesis during urinary tract infections.
Collapse
Affiliation(s)
- Lauren A. Cooper
- Department of Epidemiology, University of Michigan School of Public Health
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
29
|
López FE, de las Mercedes Pescaretti M, Morero R, Delgado MA. Salmonella Typhimurium general virulence factors: A battle of David against Goliath? Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Martínez-Peñafiel E, Fernández-Ramírez F, Ishida C, Reyes-Cortés R, Sepúlveda-Robles O, Guarneros-Peña G, Bermúdez-Cruz RM, Kameyama L. Overexpression of Ipe protein from the coliphage mEp021 induces pleiotropic effects involving haemolysis by HlyE-containing vesicles and cell death. Biochimie 2012; 94:1262-73. [PMID: 22365985 DOI: 10.1016/j.biochi.2012.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/02/2012] [Indexed: 12/21/2022]
Abstract
Lysogenic Escherichia coli K-12 harbouring the prophage mEp021 displays haemolytic activity. From a genomic library of mEp021, we identified an open reading frame (ORF 4) that was responsible for the haemolytic activity. However, the ORF 4 sequence contains four initiation codons in the same frame: ORF 4.1-ORF 4.4, coding for 83-a.a., 82-a.a., 77-a.a. and 72-a.a. products, respectively. The expression of the cloned ORF 4.3, or inducer of pleiotropic effects (ipe), reproduced the haemolytic phenotype in a native strain carrying the gene hlyE(+), but not in the mutant hlyE(-) strain. The overexpression of Ipe induced several pleiotropic effects, such as the inhibition of cell growth and the deregulation of cell division, which resulted in a mixture of normal and desiccated-like cells: normal-filamentous, desiccated-like-filamentous bacilli, minicells etc. Other effects included abnormalities of the cell membrane, the production of vesicles containing HlyE, and finally, cell death. These events were analysed at the molecular level by microarray assays. The global transcription profile of E. coli K-12 strain MC4100, which expressed Ipe after 4 h, revealed differential expression of various genes, most of which were related either to cell membrane and murein biosynthesis or to cell division. The up-regulation of some of these transcripts was confirmed by qRT-PCR. Additional research is needed to determine whether these effects are directly related to Ipe activity or are consequences of the cellular responses to putative structural damage induced by Ipe.
Collapse
Affiliation(s)
- Eva Martínez-Peñafiel
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P. 07360, México D.F., Mexico
| | | | | | | | | | | | | | | |
Collapse
|
31
|
McVicker G, Sun L, Sohanpal BK, Gashi K, Williamson RA, Plumbridge J, Blomfield IC. SlyA protein activates fimB gene expression and type 1 fimbriation in Escherichia coli K-12. J Biol Chem 2011; 286:32026-35. [PMID: 21768111 PMCID: PMC3173223 DOI: 10.1074/jbc.m111.266619] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/13/2011] [Indexed: 01/23/2023] Open
Abstract
We have demonstrated that SlyA activates fimB expression and hence type 1 fimbriation, a virulence factor in Escherichia coli. SlyA is shown to bind to two operator sites (O(SA1) and O(SA2)), situated between 194 and 167 base pairs upstream of the fimB transcriptional start site. fimB expression is derepressed in an hns mutant and diminished by a slyA mutation in the presence of H-NS only. H-NS binds to multiple sites in the promoter region, including two sites (H-NS2 and H-NS3) that overlap O(SA1) and O(SA2), respectively. Mutations that disrupt either O(SA1) or O(SA2) eliminate or reduce the activating effect of SlyA but have different effects on the level of expression. We interpret these results as reflecting the relative competition between SlyA and H-NS binding. Moreover we show that SlyA is capable of displacing H-NS from its binding sites in vitro. We suggest SlyA binding prevents H-NS binding to H-NS2 and H-NS3 and the subsequent oligomerization of H-NS necessary for full inhibition of fimB expression. In addition, we show that SlyA activates fimB expression independently of two other known regulators of fimB expression, NanR and NagC. It is demonstrated that the rarely used UUG initiation codon limits slyA expression and that low SlyA levels limit fimB expression. Furthermore, Western blot analysis shows that cells grown in rich-defined medium contain ~1000 SlyA dimers per cell whereas those grown in minimal medium contain >20% more SlyA. This study extends our understanding of the role that SlyA plays in the host-bacterial relationship.
Collapse
Affiliation(s)
- Gareth McVicker
- From the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom and
| | - Lei Sun
- From the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom and
| | - Baljinder K. Sohanpal
- From the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom and
| | - Krishna Gashi
- From the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom and
| | - Richard A. Williamson
- From the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom and
| | - Jacqueline Plumbridge
- the Institut de Biologie Physico-Chimique (Unité Propre de Recherche 9073, Centre National de la Recherche Scientifique), 13 Rue Pierre et Marrie Curie, 75005 Paris, France
| | - Ian C. Blomfield
- From the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom and
| |
Collapse
|
32
|
Haneda T, Okada N, Kikuchi Y, Takagi M, Kurotaki T, Miki T, Arai S, Danbara H. Evaluation of Salmonella enterica serovar Typhimurium and Choleraesuis slyA mutant strains for use in live attenuated oral vaccines. Comp Immunol Microbiol Infect Dis 2011; 34:399-409. [DOI: 10.1016/j.cimid.2011.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 07/05/2011] [Accepted: 07/19/2011] [Indexed: 01/19/2023]
|
33
|
Van Parys A, Boyen F, Leyman B, Verbrugghe E, Haesebrouck F, Pasmans F. Tissue-specific Salmonella Typhimurium gene expression during persistence in pigs. PLoS One 2011; 6:e24120. [PMID: 21887378 PMCID: PMC3161100 DOI: 10.1371/journal.pone.0024120] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 08/05/2011] [Indexed: 01/08/2023] Open
Abstract
Salmonellosis caused by Salmonella Typhimurium is one of the most important bacterial zoonotic diseases. The bacterium persists in pigs resulting in asymptomatic 'carrier pigs', generating a major source for Salmonella contamination of pork. Until now, very little is known concerning the mechanisms used by Salmonella Typhimurium during persistence in pigs. Using in vivo expression technology (IVET), a promoter-trap method based on ΔpurA attenuation of the parent strain, we identified 37 Salmonella Typhimurium genes that were expressed 3 weeks post oral inoculation in the tonsils, ileum and ileocaecal lymph nodes of pigs. Several genes were expressed in all three analyzed organs, while other genes were only expressed in one or two organs. Subsequently, the identified IVET transformants were pooled and reintroduced in pigs to detect tissue-specific gene expression patterns. We found that efp and rpoZ were specifically expressed in the ileocaecal lymph nodes during Salmonella peristence in pigs. Furthermore, we compared the persistence ability of substitution mutants for the IVET-identified genes sifB and STM4067 to that of the wild type in a mixed infection model. The ΔSTM4067::kanR was significantly attenuated in the ileum contents, caecum and caecum contents and faeces of pigs 3 weeks post inoculation, while deletion of the SPI-2 effector gene sifB did not affect Salmonella Typhimurium persistence. Although our list of identified genes is not exhaustive, we found that efp and rpoZ were specifically expressed in the ileocaecal lymph nodes of pigs and we identified STM4067 as a factor involved in Salmonella persistence in pigs. To our knowledge, our study is the first to identify Salmonella Typhimurium genes expressed during persistence in pigs.
Collapse
Affiliation(s)
- Alexander Van Parys
- Ghent University, Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Avian Diseases, Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
34
|
Zheng J, Tian F, Cui S, Song J, Zhao S, Brown EW, Meng J. Differential gene expression by RamA in ciprofloxacin-resistant Salmonella Typhimurium. PLoS One 2011; 6:e22161. [PMID: 21811569 PMCID: PMC3139621 DOI: 10.1371/journal.pone.0022161] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/16/2011] [Indexed: 11/22/2022] Open
Abstract
Overexpression of ramA has been implicated in resistance to multiple drugs in several enterobacterial pathogens. In the present study, Salmonella Typhimurium strain LTL with constitutive expression of ramA was compared to its ramA-deletion mutant by employing both DNA microarrays and phenotype microarrays (PM). The mutant strain with the disruption of ramA showed differential expression of at least 33 genes involved in 11 functional groups. The study confirmed at the transcriptional level that the constitutive expression of ramA was directly associated with increased expression of multidrug efflux pump AcrAB-TolC and decreased expression of porin protein OmpF, thereby conferring multiple drug resistance phenotype. Compared to the parent strain constitutively expressing ramA, the ramA mutant had increased susceptibility to over 70 antimicrobials and toxic compounds. The PM analysis also uncovered that the ramA mutant was better in utilization of 10 carbon sources and 5 phosphorus sources. This study suggested that the constitutive expression of ramA locus regulate not only multidrug efflux pump and accessory genes but also genes involved in carbon metabolic pathways.
Collapse
Affiliation(s)
- Jie Zheng
- Joint Institute for Food Safety and Applied Nutrition, and Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States of America
- Center for Food Safety & Applied Nutrition, U.S. Food & Drug Administration, Maryland, University of Maryland, College Park, Maryland, United States of America
| | - Fei Tian
- Department of Animal and Avian Science, University of Maryland, College Park, Maryland, United States of America
| | - Shenghui Cui
- State Food and Drug Administration, Beijing, China
| | - Jiuzhou Song
- Department of Animal and Avian Science, University of Maryland, College Park, Maryland, United States of America
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Maryland, University of Maryland, College Park, Maryland, United States of America
| | - Eric W. Brown
- Center for Food Safety & Applied Nutrition, U.S. Food & Drug Administration, Maryland, University of Maryland, College Park, Maryland, United States of America
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, and Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
SlyA is a transcriptional regulator involved in the virulence of Enterococcus faecalis. Infect Immun 2011; 79:2638-45. [PMID: 21536798 DOI: 10.1128/iai.01132-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Phylogenetic analysis of the crystal structure of the Enterococcus faecalis SlyA (EF_3002) transcriptional factor places it between the SlyA and MarR regulator subfamilies. Proteins of these families are often involved in the regulation of genes important for bacterial virulence and stress response. To gather evidence for the role of this putative regulator in E. faecalis biology, we dissected the genetic organization of the slyA-EF_3001 locus and constructed a slyA deletion mutant as well as complemented strains. Interestingly, compared to the wild-type parent, the ΔslyA mutant is more virulent in an insect infection model (Galleria mellonella), exhibits increased persistence in mouse kidneys and liver, and survives better inside peritoneal macrophages. In order to identify a possible SlyA regulon, global microarray transcriptional analysis was performed. This study revealed that the slyA-EF_3001 locus appears to be autoregulated and that 117 genes were differentially regulated in the ΔslyA mutant. In the mutant strain, 111 were underexpressed and 6 overexpressed, indicating that SlyA functions mainly as an activator of transcription.
Collapse
|
36
|
Dilmaghani M, Ahmadi M, Zahraei Salehi T, Talebi A. The analysis of groEL gene in Salmonella enterica subspecies enterica serovar Typhimurium isolated from avians by PCR-Restriction Fragment Length Polymorphism method. Vet Res Commun 2011; 35:133-43. [PMID: 21312060 DOI: 10.1007/s11259-011-9460-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2011] [Indexed: 01/21/2023]
Abstract
Salmonella enterica subspecies enterica serovar Typhimurium causes food-borne outbreaks and systemic diseases in humans and animals. groEL gene (also known as mopA gene in S. Typhimurium), possessing conserved sequence, plays an important role in invasion of bacteria. The purpose of present study was to identify the polymorphism of groEL gene among different avians in different regions by PCR-RFLP method. Fifty two S. Typhimurium isolates (Broiler (n = 13), Layer (n = 12), Duck (n = 5), Goose (n = 5), Sparrow (n = 8), Canary (n = 3), Pigeon (n = 5) and Casco parrot (n = 1). were identified using serotyping as well as multiplex-PCR. Then, amplification of groEL gene performed and amplified products subjected to restriction digestion with BsuRI enzyme. Three RFLP profiles, A, B and C, generated DNA fragments between approximately 100-1,000 bp in size, were observed. The RFLP profile A was observed in 35 (67.3%), profile B in 14 (26.9%) and profile C in 3 (5.77%) of isolates. S. Typhimurium isolates recovered from 13 broilers (two of which profile A, 9 profile B and 2 profile C) and from 8 sparrows (two of which profile A, 5 profile B and 1 profile C) showed all three profiles, but 12 layers and other avians (including Canary (n = 3), Goose (n = 5), Duck (n = 5), Pigeon (n = 5) and Casco parrot (n = 1)) showed profile A. None of these profiles was allotted for a special region. The result of present study showed that S. Typhimurium undergoes genetic mutations in groEL gene under unpleasant milieu in different regions and in different avians. Thus, genetic diversity, despite conserved nature of groEL gene in S. Typhimurium, may exist but it depends on the condition where bacteria have settled. To our knowledge, three RFLP profiles of groEL gene generated by BsuRI restriction enzyme were not reported previously.
Collapse
Affiliation(s)
- Mahdi Dilmaghani
- Department of Microbiology, Faculty of Veterinary Medicine, University of Urmia, PO Box 1177, Urmia, Iran.
| | | | | | | |
Collapse
|
37
|
Sheikh A, Charles RC, Rollins SM, Harris JB, Bhuiyan MS, Khanam F, Bukka A, Kalsy A, Porwollik S, Brooks WA, LaRocque RC, Hohmann EL, Cravioto A, Logvinenko T, Calderwood SB, McClelland M, Graham JE, Qadri F, Ryan ET. Analysis of Salmonella enterica serotype paratyphi A gene expression in the blood of bacteremic patients in Bangladesh. PLoS Negl Trop Dis 2010; 4:e908. [PMID: 21151879 PMCID: PMC2998432 DOI: 10.1371/journal.pntd.0000908] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 11/08/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Salmonella enterica serotype Paratyphi A is a human-restricted cause of paratyphoid fever, accounting for up to a fifth of all cases of enteric fever in Asia. METHODOLOGY/PRINCIPAL FINDINGS In this work, we applied an RNA analysis method, Selective Capture of Transcribed Sequences (SCOTS), and cDNA hybridization-microarray technology to identify S. Paratyphi A transcripts expressed by bacteria in the blood of three patients in Bangladesh. In total, we detected 1,798 S. Paratyphi A mRNAs expressed in the blood of infected humans (43.9% of the ORFeome). Of these, we identified 868 in at least two patients, and 315 in all three patients. S. Paratyphi A transcripts identified in at least two patients encode proteins involved in energy metabolism, nutrient and iron acquisition, vitamin biosynthesis, stress responses, oxidative stress resistance, and pathogenesis. A number of detected transcripts are expressed from PhoP and SlyA-regulated genes associated with intra-macrophage survival, genes contained within Salmonella Pathogenicity Islands (SPIs) 1-4, 6, 10, 13, and 16, as well as RpoS-regulated genes. The largest category of identified transcripts is that of encoding proteins with unknown function. When comparing levels of bacterial mRNA using in vivo samples collected from infected patients to samples from in vitro grown organisms, we found significant differences for 347, 391, and 456 S. Paratyphi A transcripts in each of three individual patients (approximately 9.7% of the ORFeome). Of these, expression of 194 transcripts (4.7% of ORFs) was concordant in two or more patients, and 41 in all patients. Genes encoding these transcripts are contained within SPI-1, 3, 6 and 10, PhoP-regulated genes, involved in energy metabolism, nutrient acquisition, drug resistance, or uncharacterized genes. Using quantitative RT-PCR, we confirmed increased gene expression in vivo for a subset of these genes. CONCLUSION/SIGNIFICANCE To our knowledge, we describe the first microarray-based transcriptional analysis of a pathogen in the blood of naturally infected humans.
Collapse
Affiliation(s)
- Alaullah Sheikh
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yang F, Ke Y, Tan Y, Bi Y, Shi Q, Yang H, Qiu J, Wang X, Guo Z, Ling H, Yang R, Du Z. Cell membrane is impaired, accompanied by enhanced type III secretion system expression in Yersinia pestis deficient in RovA regulator. PLoS One 2010; 5:e12840. [PMID: 20862262 PMCID: PMC2941471 DOI: 10.1371/journal.pone.0012840] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 08/21/2010] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND In the enteropathogenic Yersinia species, RovA regulates the expression of invasin, which is important for enteropathogenic pathogenesis but is inactivated in Yersinia pestis. Investigation of the RovA regulon in Y. pestis at 26 °C has revealed that RovA is a global regulator that contributes to virulence in part by the direct regulation of psaEFABC. However, the regulatory roles of RovA in Y. pestis at 37 °C, which allows most virulence factors in mammalian hosts to be expressed, are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS The transcriptional profile of an in-frame rovA mutant of Y. pestis biovar Microtus strain 201 was analyzed under type III secretion system (T3SS) induction conditions using microarray techniques, and it was revealed that many cell-envelope and transport/binding proteins were differentially expressed in the ΔrovA mutant. Most noticeably, many of the T3SS genes, including operons encoding the translocon, needle and Yop (Yersinia outer protein) effectors, were significantly up-regulated. Analysis of Yop proteins confirmed that YopE and YopJ were also expressed in greater amounts in the mutant. However, electrophoresis mobility shift assay results demonstrated that the His-RovA protein could not bind to the promoter sequences of the T3SS genes, suggesting that an indirect regulatory mechanism is involved. Transmission electron microscopy analysis indicated that there are small loose electron dense particle-like structures that surround the outer membrane of the mutant cells. The bacterial membrane permeability to CFSE (carboxyfluorescein diacetate succinimidyl ester) was significantly decreased in the ΔrovA mutant compared to the wild-type strain. Taken together, these results revealed the improper construction and dysfunction of the membrane in the ΔrovA mutant. CONCLUSIONS/SIGNIFICANCE We demonstrated that the RovA regulator plays critical roles in the construction and functioning of the bacterial membrane, which sheds considerable light on the regulatory functions of RovA in antibiotic resistance and environmental adaptation. The expression of T3SS was upregulated in the ΔrovA mutant through an indirect regulatory mechanism, which is possibly related to the altered membrane construction in the mutant.
Collapse
Affiliation(s)
- Fengkun Yang
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yuehua Ke
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yafang Tan
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yujing Bi
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Qinghai Shi
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Huiying Yang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Jinfu Qiu
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Xiaoyi Wang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhaobiao Guo
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Hong Ling
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ruifu Yang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zongmin Du
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
39
|
Small molecule inhibitors of LcrF, a Yersinia pseudotuberculosis transcription factor, attenuate virulence and limit infection in a murine pneumonia model. Infect Immun 2010; 78:4683-90. [PMID: 20823209 DOI: 10.1128/iai.01305-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LcrF (VirF), a transcription factor in the multiple adaptational response (MAR) family, regulates expression of the Yersinia type III secretion system (T3SS). Yersinia pseudotuberculosis lcrF-null mutants showed attenuated virulence in tissue culture and animal models of infection. Targeting of LcrF offers a novel, antivirulence strategy for preventing Yersinia infection. A small molecule library was screened for inhibition of LcrF-DNA binding in an in vitro assay. All of the compounds lacked intrinsic antibacterial activity and did not demonstrate toxicity against mammalian cells. A subset of these compounds inhibited T3SS-dependent cytotoxicity of Y. pseudotuberculosis toward macrophages in vitro. In a murine model of Y. pseudotuberculosis pneumonia, two compounds significantly reduced the bacterial burden in the lungs and afforded a dramatic survival advantage. The MAR family of transcription factors is well conserved, with members playing central roles in pathogenesis across bacterial genera; thus, the inhibitors could have broad applicability.
Collapse
|
40
|
Erhardt M, Hughes KT. C-ring requirement in flagellar type III secretion is bypassed by FlhDC upregulation. Mol Microbiol 2009; 75:376-93. [PMID: 19919668 DOI: 10.1111/j.1365-2958.2009.06973.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The cytoplasmic C-ring of the flagellum consists of FliG, FliM and FliN and acts as an affinity cup to localize secretion substrates for protein translocation via the flagellar-specific type III secretion system. Random T-POP transposon mutagenesis was employed to screen for insertion mutants that allowed flagellar type III secretion in the absence of the C-ring using the flagellar type III secretion system-specific hook-beta-lactamase reporter (Lee and Hughes, 2006). Any condition resulting in at least a twofold increase in flhDC expression was sufficient to overcome the requirement for the C-ring and the ATPase complex FliHIJ in flagellar type III secretion. Insertions in known and unknown flagellar regulatory loci were isolated as well as chromosomal duplications of the flhDC region. The twofold increased flhDC mRNA level coincided in a twofold increase in the number of hook-basal bodies per cell as analysed by fluorescent microscopy. These results indicate that the C-ring functions as a nonessential affinity cup-like structure during flagellar type III secretion to enhance the specificity and efficiency of the secretion process.
Collapse
Affiliation(s)
- Marc Erhardt
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
41
|
Charles RC, Harris JB, Chase MR, Lebrun LM, Sheikh A, LaRocque RC, Logvinenko T, Rollins SM, Tarique A, Hohmann EL, Rosenberg I, Krastins B, Sarracino DA, Qadri F, Calderwood SB, Ryan ET. Comparative proteomic analysis of the PhoP regulon in Salmonella enterica serovar Typhi versus Typhimurium. PLoS One 2009; 4:e6994. [PMID: 19746165 PMCID: PMC2736619 DOI: 10.1371/journal.pone.0006994] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 07/24/2009] [Indexed: 12/20/2022] Open
Abstract
Background S. Typhi, a human-restricted Salmonella
enterica serovar, causes a systemic intracellular infection in
humans (typhoid fever). In comparison, S. Typhimurium
causes gastroenteritis in humans, but causes a systemic typhoidal illness in
mice. The PhoP regulon is a well studied two component (PhoP/Q) coordinately
regulated network of genes whose expression is required for intracellular
survival of S. enterica. Methodology/Principal Findings Using high performance liquid chromatography mass spectrometry (HPLC-MS/MS),
we examined the protein expression profiles of three sequenced S.
enterica strains: S. Typhimurium LT2,
S. Typhi CT18, and S. Typhi Ty2 in
PhoP-inducing and non-inducing conditions in vitro and
compared these results to profiles of
phoP−/Q−
mutants derived from S. Typhimurium LT2 and
S. Typhi Ty2. Our analysis identified 53 proteins in
S. Typhimurium LT2 and 56 proteins in
S. Typhi that were regulated in a PhoP-dependent manner. As
expected, many proteins identified in S. Typhi demonstrated
concordant differential expression with a homologous protein in
S. Typhimurium. However, three proteins (HlyE, STY1499, and
CdtB) had no homolog in S. Typhimurium. HlyE is a
pore-forming toxin. STY1499 encodes a stably expressed protein of unknown
function transcribed in the same operon as HlyE. CdtB is a cytolethal
distending toxin associated with DNA damage, cell cycle arrest, and cellular
distension. Gene expression studies confirmed up-regulation of mRNA of HlyE,
STY1499, and CdtB in S. Typhi in PhoP-inducing
conditions. Conclusions/Significance This study is the first protein expression study of the PhoP virulence
associated regulon using strains of Salmonella mutant in
PhoP, has identified three Typhi-unique proteins (CdtB, HlyE and STY1499)
that are not present in the genome of the wide host-range Typhimurium, and
includes the first protein expression profiling of a live attenuated
bacterial vaccine studied in humans (Ty800).
Collapse
Affiliation(s)
- Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
T-POP array identifies EcnR and PefI-SrgD as novel regulators of flagellar gene expression. J Bacteriol 2008; 191:1498-508. [PMID: 19114490 DOI: 10.1128/jb.01177-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The T-POP transposon was employed in a general screen for tetracycline (Tet)-induced chromosomal loci that exhibited Tet-activated or Tet-repressed expression of a fliC-lac transcriptional fusion. Insertions that activated flagellar transcription were located in flagellar genes. T-POP insertions that exhibited Tet-dependent fliC-lac inhibition were isolated upstream of the ecnR, fimZ, pefI-srgD, rcsB, and ydiV genes and in the flagellar gene flgA, which is located upstream of the anti-sigma(28) factor gene flgM. When expressed from the chromosomal P(araBAD) promoter, EcnR, FimZ, PefI-SrgD, and RcsB inhibited the transcription of the flagellar class 1 flhDC operon. YdiV, which is weakly homologous to EAL domain proteins involved in cyclic-di-GMP regulation, appears to act at a step after class 1 transcription. By using a series of deletions of the regulatory genes to try to disrupt each pathway, these regulators were found to act largely independently of one another. These results identify EcnR and PefI-SrgD as additional components of the complex regulatory network controlling flagellar expression.
Collapse
|
43
|
Comparative proteomic analysis of the Haemophilus ducreyi porin-deficient mutant 35000HP::P2AB. J Bacteriol 2008; 191:2144-52. [PMID: 19103932 DOI: 10.1128/jb.01487-08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Haemophilus ducreyi is an obligate human pathogen and the causative agent of the sexually transmitted, genital ulcerative disease chancroid. The genome of strain 35000HP contains two known porin proteins, OmpP2A and OmpP2B. Loss of OmpP2A and OmpP2B expression in the mutant 35000HP::P2AB resulted in no obvious growth defect or phenotype. Comparison of outer membrane profiles indicated increased expression of the 58.5-kDa chaperone, GroEL, in the porin-deficient mutant. A proteomics-based comparison resulted in the identification of 231 proteins present in membrane-associated protein samples, of which a subset of 56 proteins was differentially expressed at a level of 1.5-fold or greater in the porin-deficient strain 35000HP::P2AB relative to that in 35000HP. Twenty of the differentially expressed proteins were selected for real-time PCR, resulting in the validation of 90% of the selected subgroup. Proteins identified in these studies suggested a decreased membrane stability phenotype, which was verified by disk diffusion assay. Loss of OmpP2A and OmpP2B resulted in global protein expression changes which appear to compensate for the absence of porin expression in 35000HP::P2AB.
Collapse
|
44
|
Díaz-Mejía JJ, Babu M, Emili A. Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome. FEMS Microbiol Rev 2008; 33:66-97. [PMID: 19054114 PMCID: PMC2704936 DOI: 10.1111/j.1574-6976.2008.00141.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The bacterial cell-envelope consists of a complex arrangement of lipids, proteins and carbohydrates that serves as the interface between a microorganism and its environment or, with pathogens, a human host. Escherichia coli has long been investigated as a leading model system to elucidate the fundamental mechanisms underlying microbial cell-envelope biology. This includes extensive descriptions of the molecular identities, biochemical activities and evolutionary trajectories of integral transmembrane proteins, many of which play critical roles in infectious disease and antibiotic resistance. Strikingly, however, only half of the c. 1200 putative cell-envelope-related proteins of E. coli currently have experimentally attributed functions, indicating an opportunity for discovery. In this review, we summarize the state of the art of computational and proteomic approaches for determining the components of the E. coli cell-envelope proteome, as well as exploring the physical and functional interactions that underlie its biogenesis and functionality. We also provide a comprehensive comparative benchmarking analysis on the performance of different bioinformatic and proteomic methods commonly used to determine the subcellular localization of bacterial proteins.
Collapse
Affiliation(s)
- Juan Javier Díaz-Mejía
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
45
|
Kouokam JC, Wai SN. OUTER MEMBRANE VESICLE-MEDIATED EXPORT OF A PORE-FORMING CYTOTOXIN FROM ESCHERICHIA COLI. TOXIN REV 2008. [DOI: 10.1080/15569540500320888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Stoebel DM, Free A, Dorman CJ. Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. Microbiology (Reading) 2008; 154:2533-2545. [PMID: 18757787 DOI: 10.1099/mic.0.2008/020693-0] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Daniel M. Stoebel
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - Andrew Free
- Institute of Evolutionary Biology, University of Edinburgh, Room 714a, Darwin Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Charles J. Dorman
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| |
Collapse
|
47
|
Multiple genes repress motility in uropathogenic Escherichia coli constitutively expressing type 1 fimbriae. J Bacteriol 2008; 190:3747-56. [PMID: 18359812 DOI: 10.1128/jb.01870-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Two surface organelles of uropathogenic Escherichia coli (UPEC), flagella and type 1 fimbriae, are critical for colonization of the urinary tract but mediate opposite actions. Flagella propel bacteria through urine and along mucus layers, while type 1 fimbriae allow bacteria to adhere to specific receptors present on uroepithelial cells. Constitutive expression of type 1 fimbriae leads to repression of motility and chemotaxis in UPEC strain CFT073, suggesting that UPEC may coordinately regulate motility and adherence. To identify genes involved in this regulation of motility by type 1 fimbriae, transposon mutagenesis was performed on a phase-locked type 1 fimbrial ON variant of strain CFT073 (CFT073 fim L-ON), followed by a screen for restoration of motility in soft agar. Functions of the genes identified included attachment, metabolism, transport, DNA mismatch repair, and transcriptional regulation, and a number of genes had hypothetical function. Isogenic deletion mutants of these genes were also constructed in CFT073 fim L-ON. Motility was partially restored in six of these mutants, including complementable mutations in four genes encoding known transcriptional regulators, lrhA, lrp, slyA, and papX; a mismatch repair gene, mutS; and one hypothetical gene, ydiV. Type 1 fimbrial expression in these mutants was unaltered, and the majority of these mutants expressed larger amounts of flagellin than the fim L-ON parental strain. Our results indicate that repression of motility in CFT073 fim L-ON is not solely due to the constitutive expression of type 1 fimbriae on the surfaces of the bacteria and that multiple genes may contribute to this repression.
Collapse
|
48
|
Ludwig A, von Rhein C, Mischke A, Brade V. Release of latent ClyA cytolysin from Escherichia coli mediated by a bacteriophage-associated putative holin (BlyA) from Borrelia burgdorferi. Int J Med Microbiol 2007; 298:473-81. [PMID: 17897882 DOI: 10.1016/j.ijmm.2007.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 06/06/2007] [Accepted: 07/13/2007] [Indexed: 11/22/2022] Open
Abstract
Introduction of the Borrelia burgdorferi blyAB locus into Escherichia coli has recently been reported to cause a hemolytic phenotype that is dependent on the E. coli clyA (hlyE, sheA) gene (a cytolysin gene present in many E. coli strains, including E. coli K-12, which is repressed under standard in vitro growth conditions). The blyA gene product has been suggested to be a prophage-encoded holin, but the processes triggered in E. coli by the expression of blyA and/or blyB, which lead to the hemolytic phenotype, remained unclear. Here we show that expression of blyA in E. coli causes damage to the E. coli cell envelope and a clyA-dependent hemolytic phenotype, regardless whether blyB is present or absent. The expression of blyB in E. coli, on the other hand, did not have obvious phenotypic effects. Transcriptional studies demonstrated that the clyA gene is not induced in E. coli cells expressing blyA. Furthermore, protein analyses suggested that the impairment of the E. coli cell envelope by BlyA is responsible for the emergence of the hemolytic activity as it allows latent intracellular ClyA protein, derived from basal-level expression of the clyA gene, to leak into the medium and to lyse erythrocytes. These findings are compatible with the presumption that BlyA functions as a membrane-active holin.
Collapse
Affiliation(s)
- Albrecht Ludwig
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
49
|
Lithgow JK, Haider F, Roberts IS, Green J. Alternate SlyA and H-NS nucleoprotein complexes control hlyE expression in Escherichia coli K-12. Mol Microbiol 2007; 66:685-98. [PMID: 17892462 PMCID: PMC2156107 DOI: 10.1111/j.1365-2958.2007.05950.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Haemolysin E is a cytolytic pore-forming toxin found in several Escherichia coli and Salmonella enterica strains. Expression of hlyE is repressed by the global regulator H-NS (histone-like nucleoid structuring protein), but can be activated by the regulator SlyA. Expression of a chromosomal hlyE–lacZ fusion in an E. coli slyA mutant was reduced to 60% of the wild-type level confirming a positive role for SlyA. DNase I footprint analysis revealed the presence of two separate SlyA binding sites, one located upstream, the other downstream of the hlyE transcriptional start site. These sites overlap AT-rich H-NS binding sites. Footprint and gel shift data showed that whereas H-NS prevented binding of RNA polymerase (RNAP) at the hlyE promoter (PhlyE), SlyA allowed binding of RNAP, but inhibited binding of H-NS. Accordingly, in vitro transcription analyses showed that addition of SlyA protein relieved H-NS-mediated repression of hlyE. Based on these observations a model for SlyA/H-NS regulation of hlyE expression is proposed in which the relative concentrations of SlyA and H-NS govern the nature of the nucleoprotein complexes formed at PhlyE. When H-NS is dominant RNAP binding is inhibited and hlyE expression is silenced; when SlyA is dominant H-NS binding is inhibited allowing RNAP access to the promoter facilitating hlyE transcription.
Collapse
Affiliation(s)
- James K Lithgow
- Department of Molecular Biology and Biotechnology, The University of SheffieldWestern Bank, Sheffield S10 2TN, UK.
| | - Fouzia Haider
- Department of Molecular Biology and Biotechnology, The University of SheffieldWestern Bank, Sheffield S10 2TN, UK.
| | - Ian S Roberts
- 1.800 Stopford Building, Faculty of Life Sciences, University of ManchesterOxford Road, Manchester M13 9PT, UK.
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, The University of SheffieldWestern Bank, Sheffield S10 2TN, UK.
- For correspondence. E-mail ; Tel. (+44) 114 222 4403; Fax (+44) 0114 222 2800
| |
Collapse
|
50
|
Corbett D, Bennett HJ, Askar H, Green J, Roberts IS. SlyA and H-NS regulate transcription of the Escherichia coli K5 capsule gene cluster, and expression of slyA in Escherichia coli is temperature-dependent, positively autoregulated, and independent of H-NS. J Biol Chem 2007; 282:33326-33335. [PMID: 17827501 DOI: 10.1074/jbc.m703465200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this paper, we present the first evidence of a role for the transcriptional regulator SlyA in the regulation of transcription of the Escherichia coli K5 capsule gene cluster and demonstrate, using a combination of reporter gene fusions, DNase I footprinting, and electrophoretic mobility shift assays, the dependence of transcription on the functional interplay between H-NS and SlyA. Both SlyA and H-NS bind to multiple overlapping sites within the promoter in vitro, but their binding is not mutually exclusive, resulting in a remodeled nucleoprotein complex. In addition, we show that expression of the E. coli slyA gene is temperature-regulated, positively autoregulated, and independent of H-NS.
Collapse
Affiliation(s)
- David Corbett
- Faculty of Life Sciences, University of Manchester, Smith Bldg., Oxford Rd., Manchester M13 9PT, United Kingdom
| | - Hayley J Bennett
- Faculty of Life Sciences, University of Manchester, Smith Bldg., Oxford Rd., Manchester M13 9PT, United Kingdom
| | - Hamdia Askar
- Faculty of Life Sciences, University of Manchester, Smith Bldg., Oxford Rd., Manchester M13 9PT, United Kingdom; Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Egypt
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Ian S Roberts
- Faculty of Life Sciences, University of Manchester, Smith Bldg., Oxford Rd., Manchester M13 9PT, United Kingdom.
| |
Collapse
|