1
|
Wang Y, Zhou Z, Liu X. Auxin promotes chloroplast division by increasing the expression of chloroplast division genes. PLANT CELL REPORTS 2024; 44:20. [PMID: 39741196 DOI: 10.1007/s00299-024-03415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
KEY MESSAGE Auxin stimulates chloroplast division by upregulating the expression of genes involved in chloroplast division and influencing the positioning of chloroplast division rings. Chloroplasts divide by binary fission, forming a ring complex at the division site. Auxin, particularly indole acetic acid (IAA), significantly influences various aspects of plant growth. However, the impact of auxin on chloroplast division remains unclear. In this study, different concentrations of exogenous IAA were applied to wild Arabidopsis thaliana. The results showed that the number and size differences of chloroplasts in the cells of Arabidopsis thaliana treated with high concentrations of IAA increased compared to untreated plants. Further investigation revealed that high concentrations of IAA affected the expression of chloroplast division genes and the formation of division rings. In chloroplast division mutants, the effect of IAA on promoting chloroplast division is impaired. Defects of IAA synthetic gene also lead to a reduced effect of IAA on chloroplast division. Our findings demonstrate that auxin influences chloroplast division by regulating the expressions of chloroplast division genes and affecting the localization of division rings. These results are significant for further exploring the relationship between auxin and chloroplast division.
Collapse
Affiliation(s)
- Yixuan Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zhongyang Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaomin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Toda N, Inoue-Kashino N, Fujita H, Yoshida R, Nimura-Matsune K, Watanabe S, Kuroda A, Kashino Y, Hirota R. Cell morphology engineering enhances grazing resistance of Synechococcus elongatus PCC 7942 for non-sterile large-scale cultivation. J Biosci Bioeng 2024; 137:245-253. [PMID: 38336581 DOI: 10.1016/j.jbiosc.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
In the practical scale of cyanobacterial cultivation, the golden algae Poterioochromonas malhamensis is a well-known predator that causes devastating damage to the culture, referred to as pond crash. The establishment and maintenance of monoculture conditions are ideal for large-scale cultures. However, this is a difficult challenge because microbial contamination is unavoidable in practical-scale culture facilities. In the present study, we unexpectedly observed the pond crash phenomenon during the pilot-scale cultivation of Synechococcus elongatus PCC 7942 using a 100-L photobioreactor. This was due to the contamination with P. malhamensis, which probably originated from residual fouling. Interestingly, we found that S.elongatus PCC 7942 can alter its morphological structure when subjected to continuous grazing pressure from predators, resulting in cells that were more than 100 times longer than those of the wild-type strain. These hyper-elongated S.elongatus PCC 7942 cells had mutations in the genes encoding FtsZ or Ftn2 which are involved in bacterial cell division. Importantly, the elongated phenotype remained stable during cultivation, enabling S.elongatus PCC 7942 to thrive and resist grazing. The cultivation of the elongated S.elongatus PCC 7942 mutant strain in a 100-L pilot-scale photobioreactor under non-sterile conditions resulted in increased cyanobacterial biomass without encountering pond crash. This study demonstrates an efficient strategy for cyanobacterial cell culture in practical-scale bioreactors without the need for extensive decontamination or sterilization of the growth medium and culture facility, which can contribute to economically viable cultivation and bioprocessing of microalgae.
Collapse
Affiliation(s)
- Narumi Toda
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Natsuko Inoue-Kashino
- Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori, Ako-gun, Hyogo, 678-1297, Japan
| | - Hazaya Fujita
- Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori, Ako-gun, Hyogo, 678-1297, Japan
| | - Ryosuke Yoshida
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Kaori Nimura-Matsune
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Akio Kuroda
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, 2445 Mukaishima-cho, Onomichi, Hiroshima 722-0073, Japan
| | - Yasuhiro Kashino
- Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori, Ako-gun, Hyogo, 678-1297, Japan
| | - Ryuichi Hirota
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, 2445 Mukaishima-cho, Onomichi, Hiroshima 722-0073, Japan.
| |
Collapse
|
3
|
Valladares A, Picossi S, Corrales-Guerrero L, Herrero A. The role of SepF in cell division and diazotrophic growth in the multicellular cyanobacterium Anabaena sp. strain PCC 7120. Microbiol Res 2023; 277:127489. [PMID: 37716126 DOI: 10.1016/j.micres.2023.127489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
The cyanobacterium Anabaena forms filaments of cells that grow by intercalary cell division producing adjoined daughter cells connected by septal junction protein complexes that provide filament cohesion and intercellular communication, representing a genuine case of bacterial multicellularity. In spite of their diderm character, cyanobacterial genomes encode homologs of SepF, a protein normally found in Gram-positive bacteria. In Anabaena, SepF is an essential protein that localized to the cell division ring and the intercellular septa. Overexpression of sepF had detrimental effects on growth, provoking conspicuous alterations in cell morphology that resemble the phenotype of mutants impaired in cell division, and altered the localization of the division-ring. SepF interacted with FtsZ and with the essential FtsZ tether ZipN. Whereas SepF from unicellular bacteria generally induces the bundling of FtsZ filaments, Anabaena SepF inhibited FtsZ bundling, reducing the thickness of the toroidal aggregates formed by FtsZ alone and eventually preventing FtsZ polymerization. Thus, in Anabaena SepF appears to have an essential role in cell division by limiting the polymerization of FtsZ to allow the correct formation and localization of the Z-ring. Expression of sepF is downregulated during heterocyst differentiation, likely contributing to the inhibition of Z-ring formation in heterocysts. Finally, the localization of SepF in intercellular septa and its interaction with the septal-junction related proteins SepJ and SepI suggest a role of SepF in the formation or stability of the septal complexes that mediate cell-cell adhesion and communication, processes that are key for the multicellular behavior of Anabaena.
Collapse
Affiliation(s)
- A Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - S Picossi
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - L Corrales-Guerrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - A Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
4
|
Velázquez-Suárez C, Springstein BL, Nieves-Morión M, Helbig AO, Kieninger AK, Maldener I, Nürnberg DJ, Stucken K, Luque I, Dagan T, Herrero A. SepT, a novel protein specific to multicellular cyanobacteria, influences peptidoglycan growth and septal nanopore formation in Anabaena sp. PCC 7120. mBio 2023; 14:e0098323. [PMID: 37650636 PMCID: PMC10653889 DOI: 10.1128/mbio.00983-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Multicellular organization is a requirement for the development of complex organisms, and filamentous cyanobacteria such as Anabaena represent a paradigmatic case of bacterial multicellularity. The Anabaena filament can include hundreds of communicated cells that exchange nutrients and regulators and, depending on environmental conditions, can include different cell types specialized in distinct biological functions. Hence, the specific features of the Anabaena filament and how they are propagated during cell division represent outstanding biological issues. Here, we studied SepT, a novel coiled-coil-rich protein of Anabaena that is located in the intercellular septa and influences the formation of the septal specialized structures that allow communication between neighboring cells along the filament, a fundamental trait for the performance of Anabaena as a multicellular organism.
Collapse
Affiliation(s)
| | | | - Mercedes Nieves-Morión
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Andreas O. Helbig
- AG Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Ann-Katrin Kieninger
- Department of Microbiology/Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Iris Maldener
- Department of Microbiology/Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Dennis J. Nürnberg
- Institute of Experimental Physics and Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Karina Stucken
- Department of Food Engineering, Universidad de La Serena, La Serena, Chile
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| |
Collapse
|
5
|
Esch L, Ngai QY, Barclay JE, McNelly R, Hayta S, Smedley MA, Smith AM, Seung D. Increasing amyloplast size in wheat endosperm through mutation of PARC6 affects starch granule morphology. THE NEW PHYTOLOGIST 2023; 240:224-241. [PMID: 37424336 PMCID: PMC10952435 DOI: 10.1111/nph.19118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
The determination of starch granule morphology in plants is poorly understood. The amyloplasts of wheat endosperm contain large discoid A-type granules and small spherical B-type granules. To study the influence of amyloplast structure on these distinct morphological types, we isolated a mutant in durum wheat (Triticum turgidum) defective in the plastid division protein PARC6, which had giant plastids in both leaves and endosperm. Endosperm amyloplasts of the mutant contained more A- and B-type granules than those of the wild-type. The mutant had increased A- and B-type granule size in mature grains, and its A-type granules had a highly aberrant, lobed surface. This morphological defect was already evident at early stages of grain development and occurred without alterations in polymer structure and composition. Plant growth and grain size, number and starch content were not affected in the mutants despite the large plastid size. Interestingly, mutation of the PARC6 paralog, ARC6, did not increase plastid or starch granule size. We suggest TtPARC6 can complement disrupted TtARC6 function by interacting with PDV2, the outer plastid envelope protein that typically interacts with ARC6 to promote plastid division. We therefore reveal an important role of amyloplast structure in starch granule morphogenesis in wheat.
Collapse
Affiliation(s)
- Lara Esch
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Qi Yang Ngai
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | | | - Rose McNelly
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Sadiye Hayta
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | | | | | - David Seung
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
6
|
Sun W, Li X, Huang H, Wei J, Zeng F, Huang Y, Sun Q, Miao W, Tian Y, Li Y, Gao L, Li X, Gao H. Mutation of CsARC6 affects fruit color and increases fruit nutrition in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:111. [PMID: 37052704 DOI: 10.1007/s00122-023-04337-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/02/2023] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE A mutation of CsARC6 not only causes white fruit color in cucumber, but also affects plant growth and fruit quality. Fruit color of cucumber is a very important agronomic trait, but most of the genes affecting cucumber white fruit color are still unknow, and no further studies were reported on the effect of cucumber fruit quality caused by white fruit color genes. Here, we obtained a white fruit mutant em41 in cucumber by EMS mutagenesis. The mutant gene was mapped to a 548 kb region of chromosome 2. Through mutation site analysis, it was found to be a null allele of CsARC6 (CsaV3_2G029290). The Csarc6 mutant has a typical phenotype of arc6 mutant that mesophyll cells contained only one or two giant chloroplasts. ARC6 protein was not detected in em41, and the level of FtsZ1 and FtsZ2 was also reduced. In addition, FtsZ2 could not form FtsZ ring-like structures in em41. Although these are typical arc6 mutant phenotypes, some special phenotypes occur in Csarc6 mutant, such as dwarfness with shortened internodes, enlarged fruit epidermal cells, decreased carotenoid contents, smaller fruits, and increased fruit nutrient contents. This study discovered a new gene, CsARC6, which not only controls the white fruit color, but also affects plant growth and fruit quality in cucumber.
Collapse
Affiliation(s)
- Weike Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xu Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongyu Huang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Kernel Cucumber Research Institute, Tianjin, 300192, China
| | - Jingwei Wei
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Fang Zeng
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yichao Huang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qingqing Sun
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weili Miao
- State Key Laboratory of Vegetable Biobreeding, Tianjin Kernel Cucumber Research Institute, Tianjin, 300192, China
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yuhe Li
- Institute of Cucumber Research, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xin Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Hongbo Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
7
|
Sun Q, Cao X, Liu Z, An C, Hu J, Wang Y, Qiao M, Gao T, Cheng W, Zhang Y, Feng Y, Gao H. Structural and functional insights into the chloroplast division site regulators PARC6 and PDV1 in the intermembrane space. Proc Natl Acad Sci U S A 2023; 120:e2215575120. [PMID: 36696445 PMCID: PMC9945983 DOI: 10.1073/pnas.2215575120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/27/2022] [Indexed: 01/26/2023] Open
Abstract
Chloroplast division involves the coordination of protein complexes from the stroma to the cytosol. The Min system of chloroplasts includes multiple stromal proteins that regulate the positioning of the division site. The outer envelope protein PLASTID DIVISION1 (PDV1) was previously reported to recruit the cytosolic chloroplast division protein ACCUMULATION AND REPLICATION OF CHLOROPLAST5 (ARC5). However, we show here that PDV1 is also important for the stability of the inner envelope chloroplast division protein PARALOG OF ARC6 (PARC6), a component of the Min system. We solved the structure of both the C-terminal domain of PARC6 and its complex with the C terminus of PDV1. The formation of an intramolecular disulfide bond within PARC6 under oxidized conditions prevents its interaction with PDV1. Interestingly, this disulfide bond can be reduced by light in planta, thus promoting PDV1-PARC6 interaction and chloroplast division. Interaction with PDV1 can induce the dimerization of PARC6, which is important for chloroplast division. Magnesium ions, whose concentration in chloroplasts increases upon light exposure, also promote the PARC6 dimerization. This study highlights the multilayer regulation of the PDV1-PARC6 interaction as well as chloroplast division.
Collapse
Affiliation(s)
- Qingqing Sun
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing100083, China
| | - Xueli Cao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, China
| | - Chuanjing An
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing100083, China
| | - Jinglei Hu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing100083, China
| | - Yue Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, China
| | - Meiyu Qiao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing100083, China
| | - Teng Gao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, China
| | - Wenzhen Cheng
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing100083, China
| | - Yi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, China
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, China
| | - Hongbo Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing100083, China
| |
Collapse
|
8
|
Porter KJ, Cao L, Osteryoung KW. Dynamics of the Synechococcus elongatus cytoskeletal GTPase FtsZ yields mechanistic and evolutionary insight into cyanobacterial and chloroplast FtsZs. J Biol Chem 2023; 299:102917. [PMID: 36657643 PMCID: PMC9975276 DOI: 10.1016/j.jbc.2023.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
The division of cyanobacteria and their chloroplast descendants is orchestrated by filamenting temperature-sensitive Z (FtsZ), a cytoskeletal GTPase that polymerizes into protofilaments that form a "Z ring" at the division site. The Z ring has both a scaffolding function for division-complex assembly and a GTPase-dependent contractile function that drives cell or organelle constriction. A single FtsZ performs these functions in bacteria, whereas in chloroplasts, they are performed by two copolymerizing FtsZs, called AtFtsZ2 and AtFtsZ1 in Arabidopsis thaliana, which promote protofilament stability and dynamics, respectively. To probe the differences between cyanobacterial and chloroplast FtsZs, we used light scattering to characterize the in vitro protofilament dynamics of FtsZ from the cyanobacterium Synechococcus elongatus PCC 7942 (SeFtsZ) and investigate how coassembly of AtFtsZ2 or AtFtsZ1 with SeFtsZ influences overall dynamics. SeFtsZ protofilaments assembled rapidly and began disassembling before GTP depletion, whereas AtFtsZ2 protofilaments were far more stable, persisting beyond GTP depletion. Coassembled SeFtsZ-AtFtsZ2 protofilaments began disassembling before GTP depletion, similar to SeFtsZ. In contrast, AtFtsZ1 did not alter disassembly onset when coassembled with SeFtsZ, but fluorescence recovery after photobleaching analysis showed it increased the turnover of SeFtsZ subunits from SeFtsZ-AtFtsZ1 protofilaments, mirroring its effect upon coassembly with AtFtsZ2. Comparisons of our findings with previous work revealed consistent differences between cyanobacterial and chloroplast FtsZ dynamics and suggest that the scaffolding and dynamics-promoting functions were partially separated during evolution of two chloroplast FtsZs from their cyanobacterial predecessor. They also suggest that chloroplasts may have evolved a mechanism distinct from that in cyanobacteria for promoting FtsZ protofilament dynamics.
Collapse
Affiliation(s)
- Katie J Porter
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Lingyan Cao
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
9
|
The Role of Mre Factors and Cell Division in Peptidoglycan Growth in the Multicellular Cyanobacterium Anabaena. mBio 2022; 13:e0116522. [PMID: 35876506 PMCID: PMC9426583 DOI: 10.1128/mbio.01165-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacteria in general serve two main tasks: cell growth and division. Both processes include peptidoglycan extension to allow cell expansion and to form the poles of the daughter cells, respectively. The cyanobacterium Anabaena forms filaments of communicated cells in which the outer membrane and the peptidoglycan sacculus, which is engrossed in the intercellular regions between contiguous cells, are continuous along the filament. During the growth of Anabaena, peptidoglycan incorporation was weak at the cell periphery. During cell division, midcell peptidoglycan incorporation matched the localization of the divisome, and incorporation persisted in the intercellular septa, even after the division was completed. MreB, MreC, and MreD were located throughout the cell periphery and, in contrast to other bacteria, also to the divisome all along midcell peptidoglycan growth. In Anabaena mutants bearing inactivated mreB, mreC, or mreD genes, which showed conspicuous alterations in the filament morphology, consecutive septal bands of peptidoglycan growth were frequently not parallel to each other and were irregularly spaced along the filament, reproducing the disposition of the Z-ring. Both lateral and septal growth was impaired in strains down-expressing Z-ring components, and MreB and MreD appeared to directly interact with some divisome components. We propose that, in Anabaena, association with the divisome is a way for localization of MreB, MreC, and MreD at the cell poles, where they regulate lateral, midcell, and septal peptidoglycan growth with the latter being involved in localization and maintenance of the intercellular septal-junction protein structures that mediate cell-cell communication along the filament.
Collapse
|
10
|
Abstract
Bacterial cell division, with a few exceptions, is driven by FtsZ through a treadmilling mechanism to remodel and constrict the rigid peptidoglycan (PG) layer. Yet different organisms may differ in the composition of the cell division complex (divisome). In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, hetF is required for the initiation of the differentiation of heterocysts, cells specialized in N2 fixation under combined-nitrogen deprivation. In this study, we demonstrate that hetF is expressed in vegetative cells and necessary for cell division under certain conditions. Under nonpermissive conditions, cells of a ΔhetF mutant stop dividing, consistent with increased levels of HetF under similar conditions in the wild type. Furthermore, HetF is a membrane protein located at midcell and cell-cell junctions. In the absence of HetF, FtsZ rings are still present in the elongated cells; however, PG remodeling is abolished. This phenotype is similar to that observed with the inhibition of the septal PG synthase FtsI. We further reveal that HetF is recruited to or stabilized at the divisome by interacting with FtsI and that this interaction is necessary for HetF function in cell division. Our results indicate that HetF is a member of the divisome depending mainly on light intensity and reveal distinct features of the cell division machinery in cyanobacteria that are of high ecological and environmental importance.
Collapse
|
11
|
Effects of PatU3 Peptides on Cell Size and Heterocyst Frequency of Anabaena sp. Strain PCC 7120. J Bacteriol 2021; 203:e0010821. [PMID: 33846118 DOI: 10.1128/jb.00108-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
patU, one of the genes specifically found in filamentous cyanobacteria, is required for the pattern formation in heterocyst-forming species. In Anabaena sp. strain PCC 7120, patU is split into patU5 and patU3, and only patU3 is involved in heterocyst patterning. Here, we report that PatU3 is also involved in control of cell size. A patU3 deletion mutant showed remarkably smaller cell size and much higher heterocyst frequency than the wild type. Yeast two-hybrid and pulldown assays demonstrated a direct interaction between PatU3 and the cell division protein Ftn6. Without the N-terminal 16-amino-acid (aa) portion (MQERFQAVIKRRLQIH [the identified octapeptide is underlined]), PatU3 was no longer able to interact with Ftn6. This portion of PatU3 is also required for the interaction with PatN, a protein related to heterocyst differentiation/patterning. Addition of the 16-aa peptide or AVIKRRLQ-containing peptides restored the cell size and heterocyst frequency of a patU3 deletion mutant to normal or nearly wild-type levels. PatU3(1-16aa)-GFP, the N-terminal 16-aa sequence fused with green fluorescent protein (GFP), formed polar aggregates and peripheral patches in heterocysts of Anabaena sp. strain PCC 7120, whereas PatU3(1-198aa)-GFP showed a homogeneous distribution in the cytoplasm of all cells. The N-terminal AVIKRRLQ-containing sequence may function in intact PatU3, as a separate peptide, or both. IMPORTANCE PatU (or split into PatU5 and PatU3) is distributed in almost all filamentous cyanobacteria, including those that do not form heterocysts (except Pseudanabaena); however, its functions other than heterocyst differentiation/patterning have not been reported before. In this study, we found that PatU3 in Anabaena sp. strain PCC 7120 is involved in cell size determination. The N-terminal 16-aa sequence of PatU3 is required for the control of cell size and interaction with the cell division protein Ftn6, and an octapeptide (aa 7 to aa 14) within the 16-aa sequence can restore the cell size (and heterocyst frequency) of a patU3 deletion mutant to normal. Such a peptide, if generated from PatU or PatU3 in vivo, may promote intercellular coordination in filamentous cyanobacteria.
Collapse
|
12
|
Springstein BL, Nürnberg DJ, Weiss GL, Pilhofer M, Stucken K. Structural Determinants and Their Role in Cyanobacterial Morphogenesis. Life (Basel) 2020; 10:E355. [PMID: 33348886 PMCID: PMC7766704 DOI: 10.3390/life10120355] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Cells have to erect and sustain an organized and dynamically adaptable structure for an efficient mode of operation that allows drastic morphological changes during cell growth and cell division. These manifold tasks are complied by the so-called cytoskeleton and its associated proteins. In bacteria, FtsZ and MreB, the bacterial homologs to tubulin and actin, respectively, as well as coiled-coil-rich proteins of intermediate filament (IF)-like function to fulfil these tasks. Despite generally being characterized as Gram-negative, cyanobacteria have a remarkably thick peptidoglycan layer and possess Gram-positive-specific cell division proteins such as SepF and DivIVA-like proteins, besides Gram-negative and cyanobacterial-specific cell division proteins like MinE, SepI, ZipN (Ftn2) and ZipS (Ftn6). The diversity of cellular morphologies and cell growth strategies in cyanobacteria could therefore be the result of additional unidentified structural determinants such as cytoskeletal proteins. In this article, we review the current advances in the understanding of the cyanobacterial cell shape, cell division and cell growth.
Collapse
Affiliation(s)
- Benjamin L. Springstein
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dennis J. Nürnberg
- Department of Physics, Biophysics and Biochemistry of Photosynthetic Organisms, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Gregor L. Weiss
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Karina Stucken
- Department of Food Engineering, Universidad de La Serena, La Serena 1720010, Chile;
| |
Collapse
|
13
|
Chenebault C, Diaz-Santos E, Kammerscheit X, Görgen S, Ilioaia C, Streckaite S, Gall A, Robert B, Marcon E, Buisson DA, Benzerara K, Sassi JF, Cassier-Chauvat C, Chauvat F. A Genetic Toolbox for the New Model Cyanobacterium Cyanothece PCC 7425: A Case Study for the Photosynthetic Production of Limonene. Front Microbiol 2020; 11:586601. [PMID: 33042102 PMCID: PMC7530172 DOI: 10.3389/fmicb.2020.586601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Cyanobacteria, the largest phylum of prokaryotes, perform oxygenic photosynthesis and are regarded as the ancestors of the plant chloroplast and the purveyors of the oxygen and biomass that shaped the biosphere. Nowadays, cyanobacteria are attracting a growing interest in being able to use solar energy, H2O, CO2 and minerals to produce biotechnologically interesting chemicals. This often requires the introduction and expression of heterologous genes encoding the enzymes that are not present in natural cyanobacteria. However, only a handful of model strains with a well-established genetic system are being studied so far, leaving the vast biodiversity of cyanobacteria poorly understood and exploited. In this study, we focused on the robust unicellular cyanobacterium Cyanothece PCC 7425 that has many interesting attributes, such as large cell size; capacity to fix atmospheric nitrogen (under anaerobiosis) and to grow not only on nitrate but also on urea (a frequent pollutant) as the sole nitrogen source; capacity to form CO2-sequestrating intracellular calcium carbonate granules and to produce various biotechnologically interesting products. We demonstrate for the first time that RSF1010-derived plasmid vectors can be used for promoter analysis, as well as constitutive or temperature-controlled overproduction of proteins and analysis of their sub-cellular localization in Cyanothece PCC 7425. These findings are important because no gene manipulation system had been developed for Cyanothece PCC 7425, yet, handicapping its potential to serve as a model host. Furthermore, using this toolbox, we engineered Cyanothece PCC 7425 to produce the high-value terpene, limonene which has applications in biofuels, bioplastics, cosmetics, food and pharmaceutical industries. This is the first report of the engineering of a Cyanothece strain for the production of a chemical and the first demonstration that terpene can be produced by an engineered cyanobacterium growing on urea as the sole nitrogen source.
Collapse
Affiliation(s)
- Célia Chenebault
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Encarnación Diaz-Santos
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Xavier Kammerscheit
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sigrid Görgen
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.,Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Cristian Ilioaia
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Simona Streckaite
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Andrew Gall
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Bruno Robert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Elodie Marcon
- Université Paris-Saclay, Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Gif-sur-Yvette, France
| | - David-Alexandre Buisson
- Université Paris-Saclay, Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Gif-sur-Yvette, France
| | - Karim Benzerara
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Jean-François Sassi
- Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre de Cadarache, Saint-Paul-lez-Durance, France
| | - Corinne Cassier-Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Franck Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
14
|
Koksharova OA, Popova AA, Plyuta VA, Khmel IA. Four New Genes of Cyanobacterium Synechococcus elongatus PCC 7942 Are Responsible for Sensitivity to 2-Nonanone. Microorganisms 2020; 8:microorganisms8081234. [PMID: 32823644 PMCID: PMC7464499 DOI: 10.3390/microorganisms8081234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022] Open
Abstract
Microbial volatile organic compounds (VOCs) are cell metabolites that affect many physiological functions of prokaryotic and eukaryotic organisms. Earlier we have demonstrated the inhibitory effects of soil bacteria volatiles, including ketones, on cyanobacteria. Cyanobacteria are very sensitive to ketone action. To investigate the possible molecular mechanisms of the ketone 2-nonanone influence on cyanobacterium Synechococcus elongatus PCC 7942, we applied a genetic approach. After Tn5-692 transposon mutagenesis, several 2-nonanone resistant mutants have been selected. Four different mutant strains were used for identification of the impaired genes (Synpcc7942_1362, Synpcc7942_0351, Synpcc7942_0732, Synpcc7942_0726) that encode correspondingly: 1) a murein-peptide ligase Mpl that is involved in the biogenesis of cyanobacteria cell wall; 2) a putative ABC transport system substrate-binding proteins MlaD, which participates in ABC transport system that maintains lipid asymmetry in the gram-negative outer membrane by aberrantly localized phospholipids transport from outer to inner membranes of bacterial cells; 3) a conserved hypothetical protein that is encoding by gene belonging to phage gene cluster in Synechococcus elongatus PCC 7942 genome; 4) a protein containing the VRR-NUC (virus-type replication-repair nuclease) domain present in restriction-modification enzymes involved in replication and DNA repair. The obtained results demonstrated that 2-nonanone may have different targets in Synechococcus elongatus PCC 7942 cells. Among them are proteins involved in the biogenesis and functioning of the cyanobacteria cell wall (Synpcc7942_1362, Synpcc7942_0351, Synpcc7942_0732) and protein participating in stress response at DNA restriction-modification level (Synpcc7942_0726). This paper is the first report about the genes that encode protein products, which can be affected by 2-nonanone.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119992 Moscow, Russia
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia; (A.A.P.); (V.A.P.); (I.A.K.)
- Correspondence: ; Tel.: +7-917-534-7543
| | - Alexandra A. Popova
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia; (A.A.P.); (V.A.P.); (I.A.K.)
- Winogradsky Institute of Microbiology, The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Prospekt 60 let Oktyabrya, 7/2, 117312 Moscow, Russia
| | - Vladimir A. Plyuta
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia; (A.A.P.); (V.A.P.); (I.A.K.)
| | - Inessa A. Khmel
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia; (A.A.P.); (V.A.P.); (I.A.K.)
| |
Collapse
|
15
|
Zhang M, Qiao C, Luan G, Luo Q, Lu X. Systematic Identification of Target Genes for Cellular Morphology Engineering in Synechococcus elongatus PCC7942. Front Microbiol 2020; 11:1608. [PMID: 32754143 PMCID: PMC7381316 DOI: 10.3389/fmicb.2020.01608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/19/2020] [Indexed: 11/24/2022] Open
Abstract
Cyanobacteria are serving as promising microbial platforms for development of photosynthetic cell factories. For enhancing the economic competitiveness of the photosynthetic biomanufacturing technology, comprehensive improvements on industrial properties of the cyanobacteria chassis cells and engineered strains are required. Cellular morphology engineering is an up-and-coming strategy for development of microbial cell factories fitting the requirements of industrial application. In this work, we performed systematic evaluation of potential genes for cyanobacterial cellular morphology engineering. Twelve candidate genes participating in cell morphogenesis of an important model cyanobacteria strain, Synechococcus elongatus PCC7942, were knocked out/down and overexpressed, respectively, and the influences on cell sizes and cell shapes were imaged and calculated. Targeting the selected genes with potentials for cellular morphology engineering, the controllable cell lengthening machinery was also explored based on the application of sRNA approaches. The findings in this work not only provided many new targets for cellular morphology engineering in cyanobacteria, but also helped to further understand the cell division process and cell elongation process of Synechococcus elongatus PCC7942.
Collapse
Affiliation(s)
- Mingyi Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cuncun Qiao
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guodong Luan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Quan Luo
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Dalian National Laboratory for Clean Energy, Dalian, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Barriot R, Latour J, Castanié-Cornet MP, Fichant G, Genevaux P. J-Domain Proteins in Bacteria and Their Viruses. J Mol Biol 2020; 432:3771-3789. [DOI: 10.1016/j.jmb.2020.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
|
17
|
Springstein BL, Arévalo S, Helbig AO, Herrero A, Stucken K, Flores E, Dagan T. A novel septal protein of multicellular heterocystous cyanobacteria is associated with the divisome. Mol Microbiol 2020; 113:1140-1154. [DOI: 10.1111/mmi.14483] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Affiliation(s)
| | - Sergio Arévalo
- Instituto de Bioquímica Vegetal y Fotosíntesis CSIC and Universidad de Sevilla Seville Spain
| | - Andreas O. Helbig
- AG Proteomics & Bioanalytics Institute for Experimental Medicine Christian‐Albrechts‐Universität zu Kiel Kiel Germany
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis CSIC and Universidad de Sevilla Seville Spain
| | - Karina Stucken
- Department of Food Engineering Universidad de La Serena La Serena Chile
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis CSIC and Universidad de Sevilla Seville Spain
| | - Tal Dagan
- Institute of General Microbiology Christian‐Albrechts‐Universität zu Kiel Kiel Germany
| |
Collapse
|
18
|
Camargo S, Picossi S, Corrales-Guerrero L, Valladares A, Arévalo S, Herrero A. ZipN is an essential FtsZ membrane tether and contributes to the septal localization of SepJ in the filamentous cyanobacterium Anabaena. Sci Rep 2019; 9:2744. [PMID: 30808920 PMCID: PMC6391411 DOI: 10.1038/s41598-019-39336-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/23/2019] [Indexed: 11/23/2022] Open
Abstract
The organismic unit of heterocyst-forming cyanobacteria is a filament of communicating cells connected by septal junctions, proteinaceous structures bridging the cytoplasms of contiguous cells. This distinct bacterial organization is preserved during cell division. In Anabaena, deletion of the zipN gene could not be segregated. We generated strain CSL109 that expresses zipN from a synthetic regulatable promoter. Under conditions of ZipN depletion, cells progressively enlarged, reflecting restricted cell division, and showed drastic morphological alterations including cell detachment from the filaments, to finish lysing. In contrast to the wild-type localization in midcell Z-rings, FtsZ was found in delocalized aggregates in strain CSL109. Consistently, the proportion of membrane-associated to soluble FtsZ in fractionated cell extracts was lower in CSL109. Bacterial two-hybrid analysis showed that ZipN interacts with FtsZ and other cell-division proteins including cytoplasmic Ftn6 and SepF, and polytopic FtsW, FtsX, FtsQ and FtsI. Additionally, ZipN interacted with the septal protein SepJ, and in CSL109 depletion of ZipN was concomitant with a progressive loss of septal specificity of SepJ. Thus, in Anabaena ZipN represents an essential FtsZ membrane tether and an organizer of the divisome, and it contributes to the conformation of septal structures for filament integrity and intercellular communication.
Collapse
Affiliation(s)
- Sergio Camargo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| | - Silvia Picossi
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| | | | - Ana Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| | - Sergio Arévalo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain.
| |
Collapse
|
19
|
Niu TC, Lin GM, Xie LR, Wang ZQ, Xing WY, Zhang JY, Zhang CC. Expanding the Potential of CRISPR-Cpf1-Based Genome Editing Technology in the Cyanobacterium Anabaena PCC 7120. ACS Synth Biol 2019; 8:170-180. [PMID: 30525474 DOI: 10.1021/acssynbio.8b00437] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CRISPR systems, such as CRISPR-Cas9 and CRISPR-Cpf1, have been successfully used for genome editing in a variety of organisms. Although the technique of CRISPR-Cpf1 has been applied in cyanobacteria recently, its use was limited without exploiting the full potential of such a powerful genetic system. Using the cyanobacterium Anabaena PCC 7120 as a model strain, we improved the tools and designed genetic strategies based on CRISPR-Cpf1, which enabled us to realize genetic experiments that have been so far difficult to do in cyanobacteria. The development includes: (1) a "two-spacers" strategy for single genomic modification, with a success rate close to 100%; (2) rapid multiple genome editing using editing plasmids with different resistance markers; (3) using sacB, a counter-selection marker conferring sucrose sensitivity, to enable the active loss of the editing plasmids and facilitate multiple rounds of genetic modification or phenotypic analysis; (4) manipulation of essential genes by the creation of conditional mutants, using as example, polA encoding the DNA polymerase I essential for DNA replication and repair; (5) large DNA fragment deletion, up to 118 kb, from the Anabaena chromosome, corresponding to the largest bacterial chromosomal region removed with CRISPR systems so far. The genome editing vectors and the strategies developed here will expand our ability to study and engineer cyanobacteria, which are extensively used for fundamental studies, biotechnological applications including biofuel production, and synthetic biology research. The vectors developed here have a broad host range, and could be readily used for genetic modification in other microorganisms.
Collapse
Affiliation(s)
- Tian-Cai Niu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Gui-Ming Lin
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Li-Rui Xie
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Zi-Qian Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Yue Xing
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ju-Yuan Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Cheng-Cai Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei Province, China
| |
Collapse
|
20
|
Sung MW, Shaik R, TerBush AD, Osteryoung KW, Vitha S, Holzenburg A. The chloroplast division protein ARC6 acts to inhibit disassembly of GDP-bound FtsZ2. J Biol Chem 2018; 293:10692-10706. [PMID: 29769312 DOI: 10.1074/jbc.ra117.000999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/14/2018] [Indexed: 01/12/2023] Open
Abstract
Chloroplasts host photosynthesis and fulfill other metabolic functions that are essential to plant life. They have to divide by binary fission to maintain their numbers throughout cycles of cell division. Chloroplast division is achieved by a complex ring-shaped division machinery located on both the inner (stromal) and the outer (cytosolic) side of the chloroplast envelope. The inner division ring (termed the Z ring) is formed by the assembly of tubulin-like FtsZ1 and FtsZ2 proteins. ARC6 is a key chloroplast division protein that interacts with the Z ring. ARC6 spans the inner envelope membrane, is known to stabilize or maintain the Z ring, and anchors the Z ring to the inner membrane through interaction with FtsZ2. The underlying mechanism of Z ring stabilization is not well-understood. Here, biochemical and structural characterization of ARC6 was conducted using light scattering, sedimentation, and light and transmission EM. The recombinant protein was purified as a dimer. The results indicated that a truncated form of ARC6 (tARC6), representing the stromal portion of ARC6, affects FtsZ2 assembly without forming higher-order structures and exerts its effect via FtsZ2 dynamics. tARC6 prevented GDP-induced FtsZ2 disassembly and caused a significant net increase in FtsZ2 assembly when GDP was present. Single particle analysis and 3D reconstruction were performed to elucidate the structural basis of ARC6 activity. Together, the data reveal that a dimeric form of tARC6 binds to FtsZ2 filaments and does not increase FtsZ polymerization rates but rather inhibits GDP-associated FtsZ2 disassembly.
Collapse
Affiliation(s)
- Min Woo Sung
- From the Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Rahamthulla Shaik
- From the Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Allan D TerBush
- the Biochemistry and Molecular Biology Graduate Program and.,Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | | | - Stanislav Vitha
- the Microscopy and Imaging Center, Texas A&M University, College Station, Texas 77843, and
| | - Andreas Holzenburg
- From the Department of Biology, Texas A&M University, College Station, Texas 77843.,the Microscopy and Imaging Center, Texas A&M University, College Station, Texas 77843, and.,the Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Brownsville-Edinburg-Harlingen, Texas 78550
| |
Collapse
|
21
|
Kóbori TO, Uzumaki T, Kis M, Kovács L, Domonkos I, Itoh S, Krynická V, Kuppusamy SG, Zakar T, Dean J, Szilák L, Komenda J, Gombos Z, Ughy B. Phosphatidylglycerol is implicated in divisome formation and metabolic processes of cyanobacteria. JOURNAL OF PLANT PHYSIOLOGY 2018; 223:96-104. [PMID: 29558689 DOI: 10.1016/j.jplph.2018.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
Phosphatidylglycerol is an essential phospholipid for photosynthesis and other cellular processes. We investigated the role of phosphatidylglycerol in cell division and metabolism in a phophatidylglycerol-auxotrophic strain of Synechococcus PCC7942. Here we show that phosphatidylglycerol is essential for the photosynthetic electron transfer and for the oligomerisation of the photosynthetic complexes, notably, we revealed that this lipid is important for non-linear electron transport. Furthermore, we demonstrate that phosphatidylglycerol starvation elevated the expressions of proteins of nitrogen and carbon metabolism. Moreover, we show that phosphatidylglycerol-deficient cells changed the morphology, became elongated, the FtsZ ring did not assemble correctly, and subsequently the division was hindered. However, supplementation with phosphatidylglycerol restored the ring-like structure at the mid-cell region and the normal cell size, demonstrating the phosphatidylglycerol is needed for normal septum formation. Taken together, central roles of phosphatidylglycerol were revealed; it is implicated in the photosynthetic activity, the metabolism and the fission of bacteria.
Collapse
Affiliation(s)
- Tímea O Kóbori
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary; Doctoral School of Biology, University of Szeged, H-6726 Szeged, Hungary
| | - Tatsuya Uzumaki
- Center for Gene Research, Nagoya University, Furocyo, Chikusa, Nagoya 464-8607, Japan
| | - Mihály Kis
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - Ildikó Domonkos
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - Shigeru Itoh
- Center for Gene Research, Nagoya University, Furocyo, Chikusa, Nagoya 464-8607, Japan
| | - Vendula Krynická
- Institute of Microbiology, Center Algatech, Czech Academy of Sciences, Opatovický mlýn, 37981 Třeboň, Czech Republic
| | - Saravanan G Kuppusamy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - Tomas Zakar
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - Jason Dean
- Institute of Microbiology, Center Algatech, Czech Academy of Sciences, Opatovický mlýn, 37981 Třeboň, Czech Republic
| | - László Szilák
- Institute of Biology, Savaria Campus, Eötvös Lorand University, Szombathely, H-9700, Hungary
| | - Josef Komenda
- Institute of Microbiology, Center Algatech, Czech Academy of Sciences, Opatovický mlýn, 37981 Třeboň, Czech Republic
| | - Zoltán Gombos
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - Bettina Ughy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary.
| |
Collapse
|
22
|
Irieda H, Shiomi D. Bacterial Heterologous Expression System for Reconstitution of Chloroplast Inner Division Ring and Evaluation of Its Contributors. Int J Mol Sci 2018; 19:ijms19020544. [PMID: 29439474 PMCID: PMC5855766 DOI: 10.3390/ijms19020544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/23/2022] Open
Abstract
Plant chloroplasts originate from the symbiotic relationship between ancient free-living cyanobacteria and ancestral eukaryotic cells. Since the discovery of the bacterial derivative FtsZ gene—which encodes a tubulin homolog responsible for the formation of the chloroplast inner division ring (Z ring)—in the Arabidopsis genome in 1995, many components of the chloroplast division machinery were successively identified. The knowledge of these components continues to expand; however, the mode of action of the chloroplast dividing system remains unknown (compared to bacterial cell division), owing to the complexities faced in in planta analyses. To date, yeast and bacterial heterologous expression systems have been developed for the reconstitution of Z ring-like structures formed by chloroplast FtsZ. In this review, we especially focus on recent progress of our bacterial system using the model bacterium Escherichia coli to dissect and understand the chloroplast division machinery—an evolutionary hybrid structure composed of both bacterial (inner) and host-derived (outer) components.
Collapse
Affiliation(s)
- Hiroki Irieda
- Academic Assembly, Institute of Agriculture, Shinshu University, Nagano 399-4598, Japan.
| | - Daisuke Shiomi
- Department of Life Science, College of Science, Rikkyo University, Tokyo 171-8501, Japan.
| |
Collapse
|
23
|
Rohnke BA, Singh SP, Pattanaik B, Montgomery BL. RcaE-Dependent Regulation of Carboxysome Structural Proteins Has a Central Role in Environmental Determination of Carboxysome Morphology and Abundance in Fremyella diplosiphon. mSphere 2018; 3:e00617-17. [PMID: 29404416 PMCID: PMC5784247 DOI: 10.1128/msphere.00617-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 11/20/2022] Open
Abstract
Carboxysomes are central to the carbon dioxide-concentrating mechanism (CCM) and carbon fixation in cyanobacteria. Although the structure is well understood, roles of environmental cues in the synthesis, positioning, and functional tuning of carboxysomes have not been systematically studied. Fremyella diplosiphon is a model cyanobacterium for assessing impacts of environmental light cues on photosynthetic pigmentation and tuning of photosynthetic efficiency during complementary chromatic acclimation (CCA), which is controlled by the photoreceptor RcaE. Given the central role of carboxysomes in photosynthesis, we investigated roles of light-dependent RcaE signaling in carboxysome structure and function. A ΔrcaE mutant exhibits altered carboxysome size and number, ccm gene expression, and carboxysome protein accumulation relative to the wild-type (WT) strain. Several Ccm proteins, including carboxysome shell proteins and core-nucleating factors, overaccumulate in ΔrcaE cells relative to WT cells. Additionally, levels of carboxysome cargo RuBisCO in the ΔrcaE mutant are lower than or unchanged from those in the WT strain. This shift in the ratios of carboxysome shell and nucleating components to the carboxysome cargo appears to drive carboxysome morphology and abundance dynamics. Carboxysomes are also occasionally mislocalized spatially to the periphery of spherical mutants within thylakoid membranes, suggesting that carboxysome positioning is impacted by cell shape. The RcaE photoreceptor links perception of external light cues to regulating carboxysome structure and function and, thus, to the cellular capacity for carbon fixation. IMPORTANCE Carboxysomes are proteinaceous subcellular compartments, or bacterial organelles, found in cyanobacteria that consist of a protein shell surrounding a core primarily composed of the enzyme ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) that is central to the carbon dioxide-concentrating mechanism (CCM) and carbon fixation. Whereas significant insights have been gained regarding the structure and synthesis of carboxysomes, limited attention has been given to how their size, abundance, and protein composition are regulated to ensure optimal carbon fixation in dynamic environments. Given the centrality of carboxysomes in photosynthesis, we provide an analysis of the role of a photoreceptor, RcaE, which functions in matching photosynthetic pigmentation to the external environment during complementary chromatic acclimation and thereby optimizing photosynthetic efficiency, in regulating carboxysome dynamics. Our data highlight a role for RcaE in perceiving external light cues and regulating carboxysome structure and function and, thus, in the cellular capacity for carbon fixation and organismal fitness.
Collapse
Affiliation(s)
- Brandon A. Rohnke
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Shailendra P. Singh
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
| | - Bagmi Pattanaik
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
| | - Beronda L. Montgomery
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
24
|
Chen C, MacCready JS, Ducat DC, Osteryoung KW. The Molecular Machinery of Chloroplast Division. PLANT PHYSIOLOGY 2018; 176:138-151. [PMID: 29079653 PMCID: PMC5761817 DOI: 10.1104/pp.17.01272] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/09/2017] [Indexed: 05/17/2023]
Abstract
Recent studies advance understanding of the mechanisms, spatial control, and regulation of chloroplast division, but many questions remain.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Joshua S MacCready
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Daniel C Ducat
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | | |
Collapse
|
25
|
Engineering Cyanobacterial Cell Morphology for Enhanced Recovery and Processing of Biomass. Appl Environ Microbiol 2017; 83:AEM.00053-17. [PMID: 28235875 DOI: 10.1128/aem.00053-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/17/2017] [Indexed: 01/10/2023] Open
Abstract
Cyanobacteria are emerging as alternative crop species for the production of fuels, chemicals, and biomass. Yet, the success of these microbes depends on the development of cost-effective technologies that permit scaled cultivation and cell harvesting. Here, we investigate the feasibility of engineering cell morphology to improve biomass recovery and decrease energetic costs associated with lysing cyanobacterial cells. Specifically, we modify the levels of Min system proteins in Synechococcus elongatus PCC 7942. The Min system has established functions in controlling cell division by regulating the assembly of FtsZ, a tubulin-like protein required for defining the bacterial division plane. We show that altering the expression of two FtsZ-regulatory proteins, MinC and Cdv3, enables control over cell morphology by disrupting FtsZ localization and cell division without preventing continued cell growth. By varying the expression of these proteins, we can tune the lengths of cyanobacterial cells across a broad dynamic range, anywhere from an ∼20% increased length (relative to the wild type) to near-millimeter lengths. Highly elongated cells exhibit increased rates of sedimentation under low centrifugal forces or by gravity-assisted settling. Furthermore, hyperelongated cells are also more susceptible to lysis through the application of mild physical stress. Collectively, these results demonstrate a novel approach toward decreasing harvesting and processing costs associated with mass cyanobacterial cultivation by altering morphology at the cellular level.IMPORTANCE We show that the cell length of a model cyanobacterial species can be programmed by rationally manipulating the expression of protein factors that suppress cell division. In some instances, we can increase the size of these cells to near-millimeter lengths with this approach. The resulting elongated cells have favorable properties with regard to cell harvesting and lysis. Furthermore, cells treated in this manner continue to grow rapidly at time scales similar to those of uninduced controls. To our knowledge, this is the first reported example of engineering the cell morphology of cyanobacteria or algae to make them more compatible with downstream processing steps that present economic barriers to their use as alternative crop species. Therefore, our results are a promising proof-of-principle for the use of morphology engineering to increase the cost-effectiveness of the mass cultivation of cyanobacteria for various sustainability initiatives.
Collapse
|
26
|
MacCready JS, Schossau J, Osteryoung KW, Ducat DC. Robust Min-system oscillation in the presence of internal photosynthetic membranes in cyanobacteria. Mol Microbiol 2016; 103:483-503. [PMID: 27891682 DOI: 10.1111/mmi.13571] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2016] [Indexed: 11/29/2022]
Abstract
The oscillatory Min system of Escherichia coli defines the cell division plane by regulating the site of FtsZ-ring formation and represents one of the best-understood examples of emergent protein self-organization in nature. The oscillatory patterns of the Min-system proteins MinC, MinD and MinE (MinCDE) are strongly dependent on the geometry of membranes they bind. Complex internal membranes within cyanobacteria could disrupt this self-organization by sterically occluding or sequestering MinCDE from the plasma membrane. Here, it was shown that the Min system in the cyanobacterium Synechococcus elongatus PCC 7942 oscillates from pole-to-pole despite the potential spatial constraints imposed by their extensive thylakoid network. Moreover, reaction-diffusion simulations predict robust oscillations in modeled cyanobacterial cells provided that thylakoid network permeability is maintained to facilitate diffusion, and suggest that Min proteins require preferential affinity for the plasma membrane over thylakoids to correctly position the FtsZ ring. Interestingly, in addition to oscillating, MinC exhibits a midcell localization dependent on MinD and the DivIVA-like protein Cdv3, indicating that two distinct pools of MinC are coordinated in S. elongatus. Our results provide the first direct evidence for Min oscillation outside of E. coli and have broader implications for Min-system function in bacteria and organelles with internal membrane systems.
Collapse
Affiliation(s)
- Joshua S MacCready
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Jory Schossau
- Department of Computer Science, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Daniel C Ducat
- Department of Biochemistry, MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
27
|
Herrero A, Stavans J, Flores E. The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiol Rev 2016; 40:831-854. [DOI: 10.1093/femsre/fuw029] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/10/2016] [Accepted: 07/09/2016] [Indexed: 11/13/2022] Open
|
28
|
Mandakovic D, Trigo C, Andrade D, Riquelme B, Gómez-Lillo G, Soto-Liebe K, Díez B, Vásquez M. CyDiv, a Conserved and Novel Filamentous Cyanobacterial Cell Division Protein Involved in Septum Localization. Front Microbiol 2016; 7:94. [PMID: 26903973 PMCID: PMC4748335 DOI: 10.3389/fmicb.2016.00094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
Cell division in bacteria has been studied mostly in Escherichia coli and Bacillus subtilis, model organisms for Gram-negative and Gram-positive bacteria, respectively. However, cell division in filamentous cyanobacteria is poorly understood. Here, we identified a novel protein, named CyDiv (Cyanobacterial Division), encoded by the all2320 gene in Anabaena sp. PCC 7120. We show that CyDiv plays a key role during cell division. CyDiv has been previously described only as an exclusive and conserved hypothetical protein in filamentous cyanobacteria. Using polyclonal antibodies against CyDiv, we showed that it localizes at different positions depending on cell division timing: poles, septum, in both daughter cells, but also in only one of the daughter cells. The partial deletion of CyDiv gene generates partial defects in cell division, including severe membrane instability and anomalous septum localization during late division. The inability to complete knock out CyDiv strains suggests that it is an essential gene. In silico structural protein analyses and our experimental results suggest that CyDiv is an FtsB/DivIC-like protein, and could therefore, be part of an essential late divisome complex in Anabaena sp. PCC 7120.
Collapse
Affiliation(s)
- Dinka Mandakovic
- Fondap Center for Genome Regulation, Universidad de ChileSantiago, Chile; Laboratorio de Ecología Microbiana y Toxicología Ambiental, Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Carla Trigo
- Laboratorio de Ecología Microbiana y Toxicología Ambiental, Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Derly Andrade
- Laboratorio de Ecología Microbiana y Toxicología Ambiental, Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Brenda Riquelme
- Laboratorio de Ecología Microbiana y Toxicología Ambiental, Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Gabriela Gómez-Lillo
- Laboratorio de Ecología Microbiana y Toxicología Ambiental, Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Katia Soto-Liebe
- Laboratorio de Ecología Microbiana y Toxicología Ambiental, Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Beatriz Díez
- Laboratorio de Ecología Microbiana de Sistemas Extremos, Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Mónica Vásquez
- Laboratorio de Ecología Microbiana y Toxicología Ambiental, Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
29
|
Zhang M, Chen C, Froehlich JE, TerBush AD, Osteryoung KW. Roles of Arabidopsis PARC6 in Coordination of the Chloroplast Division Complex and Negative Regulation of FtsZ Assembly. PLANT PHYSIOLOGY 2016; 170:250-62. [PMID: 26527658 PMCID: PMC4704591 DOI: 10.1104/pp.15.01460] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/02/2015] [Indexed: 05/08/2023]
Abstract
Chloroplast division is driven by the simultaneous constriction of the inner FtsZ ring (Z ring) and the outer DRP5B ring. The assembly and constriction of these rings in Arabidopsis (Arabidopsis thaliana) are coordinated partly through the inner envelope membrane protein ACCUMULATION AND REPLICATION OF CHLOROPLASTS6 (ARC6). Previously, we showed that PARC6 (PARALOG OF ARC6), also in the inner envelope membrane, negatively regulates FtsZ assembly and acts downstream of ARC6 to position the outer envelope membrane protein PLASTID DIVISION1 (PDV1), which functions together with its paralog PDV2 to recruit DYNAMIN-RELATED PROTEIN 5B (DRP5B) from a cytosolic pool to the outer envelope membrane. However, whether PARC6, like ARC6, also functions in coordination of the chloroplast division contractile complexes was unknown. Here, we report a detailed topological analysis of Arabidopsis PARC6, which shows that PARC6 has a single transmembrane domain and a topology resembling that of ARC6. The newly identified stromal region of PARC6 interacts not only with ARC3, a direct inhibitor of Z-ring assembly, but also with the Z-ring protein FtsZ2. Overexpression of PARC6 inhibits FtsZ assembly in Arabidopsis but not in a heterologous yeast system (Schizosaccharomyces pombe), suggesting that the negative regulation of FtsZ assembly by PARC6 is a consequence of its interaction with ARC3. A conserved carboxyl-terminal peptide in FtsZ2 mediates FtsZ2 interaction with both PARC6 and ARC6. Consistent with its role in the positioning of PDV1, the intermembrane space regions of PARC6 and PDV1 interact. These findings provide new insights into the functions of PARC6 and suggest that PARC6 coordinates the inner Z ring and outer DRP5B ring through interaction with FtsZ2 and PDV1 during chloroplast division.
Collapse
Affiliation(s)
- Min Zhang
- Department of Plant Biology (M.Z., C.C., A.D.T., K.W.O.), Michigan State University-Department of Energy Plant Research Laboratory (J.E.F.), and Department of Biochemistry and Molecular Biology (J.E.F.), Michigan State University, East Lansing, Michigan 48824; andCollege of Life Sciences, Capital Normal University, Beijing 100048, China (M.Z.)
| | - Cheng Chen
- Department of Plant Biology (M.Z., C.C., A.D.T., K.W.O.), Michigan State University-Department of Energy Plant Research Laboratory (J.E.F.), and Department of Biochemistry and Molecular Biology (J.E.F.), Michigan State University, East Lansing, Michigan 48824; andCollege of Life Sciences, Capital Normal University, Beijing 100048, China (M.Z.)
| | - John E Froehlich
- Department of Plant Biology (M.Z., C.C., A.D.T., K.W.O.), Michigan State University-Department of Energy Plant Research Laboratory (J.E.F.), and Department of Biochemistry and Molecular Biology (J.E.F.), Michigan State University, East Lansing, Michigan 48824; andCollege of Life Sciences, Capital Normal University, Beijing 100048, China (M.Z.)
| | - Allan D TerBush
- Department of Plant Biology (M.Z., C.C., A.D.T., K.W.O.), Michigan State University-Department of Energy Plant Research Laboratory (J.E.F.), and Department of Biochemistry and Molecular Biology (J.E.F.), Michigan State University, East Lansing, Michigan 48824; andCollege of Life Sciences, Capital Normal University, Beijing 100048, China (M.Z.)
| | - Katherine W Osteryoung
- Department of Plant Biology (M.Z., C.C., A.D.T., K.W.O.), Michigan State University-Department of Energy Plant Research Laboratory (J.E.F.), and Department of Biochemistry and Molecular Biology (J.E.F.), Michigan State University, East Lansing, Michigan 48824; andCollege of Life Sciences, Capital Normal University, Beijing 100048, China (M.Z.)
| |
Collapse
|
30
|
Watabe K, Mimuro M, Tsuchiya T. Establishment of the forward genetic analysis of the chlorophyll d-dominated cyanobacterium Acaryochloris marina MBIC 11017 by applying in vivo transposon mutagenesis system. PHOTOSYNTHESIS RESEARCH 2015; 125:255-265. [PMID: 25596846 DOI: 10.1007/s11120-015-0082-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
Acaryochloris marina MBIC 11017 possesses chlorophyll (Chl) d as a major Chl, which enables this organism to utilize far-red light for photosynthesis. Thus, the adaptation mechanism of far-red light utilization, including Chl d biosynthesis, has received much attention, though a limited number of reports on this subject have been published. To identify genes responsible for Chl d biosynthesis and adaptation to far-red light, molecular genetic analysis of A. marina was required. We developed a transformation system for A. marina and introduced expression vectors into A. marina. In this study, the high-frequency in vivo transposon mutagenesis system recently established by us was applied to A. marina. As a result, we obtained mutants with the transposon in their genomic DNA at various positions. By screening transposon-tagged mutants, we isolated a mutant (Y1 mutant) that formed a yellow colony on agar medium. In the Y1 mutant, the transposon was inserted into the gene encoding molybdenum cofactor biosynthesis protein A (MoaA). The Y1 mutant was functionally complemented by introducing the moaA gene or increasing the ammonium ion in the medium. These results indicate that the mutation of the moaA gene reduced nitrate reductase activity, which requires molybdenum cofactor, in the Y1 mutant. This is the first successful forward genetic analysis of A. marina, which will lead to the identification of genes responsible for adaptation to far-red light.
Collapse
Affiliation(s)
- Kazuyuki Watabe
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | | | | |
Collapse
|
31
|
Karaushu EV, Lazebnaya IV, Kravzova TR, Vorobey NA, Lazebny OE, Kiriziy DA, Olkhovich OP, Taran NY, Kots SY, Popova AA, Omarova E, Koksharova OA. Biochemical and Molecular Phylogenetic Study of Agriculturally Useful Association of a Nitrogen-Fixing Cyanobacterium and Nodule Sinorhizobium with Medicago sativa L. BIOMED RESEARCH INTERNATIONAL 2015; 2015:202597. [PMID: 26114100 PMCID: PMC4465650 DOI: 10.1155/2015/202597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/24/2015] [Indexed: 11/17/2022]
Abstract
Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH) gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1). Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum.
Collapse
Affiliation(s)
- E. V. Karaushu
- Educational and Scientific “Institute of Biology”, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - I. V. Lazebnaya
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Street 3, Moscow 119333, Russia
| | - T. R. Kravzova
- Lomonosov Moscow State University, Biocenter, Leninskie Gory 1-12, Moscow 119991, Russia
| | - N. A. Vorobey
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, 31/17 Vasylkivska Street, Kyiv 03022, Ukraine
| | - O. E. Lazebny
- N. K. Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street 26, Moscow 119334, Russia
| | - D. A. Kiriziy
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, 31/17 Vasylkivska Street, Kyiv 03022, Ukraine
| | - O. P. Olkhovich
- Educational and Scientific “Institute of Biology”, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - N. Yu. Taran
- Educational and Scientific “Institute of Biology”, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - S. Ya. Kots
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, 31/17 Vasylkivska Street, Kyiv 03022, Ukraine
| | - A. A. Popova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - E. Omarova
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Leninskie Gory 1-40, Moscow 119992, Russia
| | - O. A. Koksharova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Leninskie Gory 1-40, Moscow 119992, Russia
| |
Collapse
|
32
|
Montgomery BL. Light-dependent governance of cell shape dimensions in cyanobacteria. Front Microbiol 2015; 6:514. [PMID: 26074902 PMCID: PMC4443024 DOI: 10.3389/fmicb.2015.00514] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/09/2015] [Indexed: 12/15/2022] Open
Abstract
The regulation of cellular dimension is important for the function and survival of cells. Cellular dimensions, such as size and shape, are regulated throughout the life cycle of bacteria and can be adapted in response to environmental changes to fine-tune cellular fitness. Cell size and shape are generally coordinated with cell growth and division. Cytoskeletal regulation of cell shape and cell wall biosynthesis and/or deposition occurs in a range of organisms. Photosynthetic organisms, such as cyanobacteria, particularly exhibit light-dependent regulation of morphogenes and generation of reactive oxygen species and other signals that can impact cellular dimensions. Environmental signals initiate adjustments of cellular dimensions, which may be vitally important for optimizing resource acquisition and utilization or for coupling the cellular dimensions with the regulation of subcellular organization to maintain optimal metabolism. Although the involvement of cytoskeletal components in the regulation of cell shape is widely accepted, the signaling factors that regulate cytoskeletal and other distinct components involved in cell shape control, particularly in response to changes in external light cues, remain to be fully elucidated. In this review, factors impacting the inter-coordination of growth and division, the relationship between the regulation of cellular dimensions and central carbon metabolism, and consideration of the effects of specific environment signals, primarily light, on cell dimensions in cyanobacteria will be discussed. Current knowledge about the molecular bases of the light-dependent regulation of cellular dimensions and cell shape in cyanobacteria will be highlighted.
Collapse
Affiliation(s)
- Beronda L. Montgomery
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
33
|
Ramos-León F, Mariscal V, Frías JE, Flores E, Herrero A. Divisome-dependent subcellular localization of cell-cell joining protein SepJ in the filamentous cyanobacterium Anabaena. Mol Microbiol 2015; 96:566-80. [PMID: 25644579 DOI: 10.1111/mmi.12956] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2015] [Indexed: 12/15/2022]
Abstract
Heterocyst-forming cyanobacteria are multicellular organisms that grow as filaments that can be hundreds of cells long. Septal junction complexes, of which SepJ is a possible component, appear to join the cells in the filament. SepJ is a cytoplasmic membrane protein that contains a long predicted periplasmic section and localizes not only to the cell poles in the intercellular septa but also to a position similar to a Z ring when cell division starts suggesting a relation with the divisome. Here, we created a mutant of Anabaena sp. strain PCC 7120 in which the essential divisome gene ftsZ is expressed from a synthetic NtcA-dependent promoter, whose activity depends on the nitrogen source. In the presence of ammonium, low levels of FtsZ were produced, and the subcellular localization of SepJ, which was investigated by immunofluorescence, was impaired. Possible interactions of SepJ with itself and with divisome proteins FtsZ, FtsQ and FtsW were investigated using the bacterial two-hybrid system. We found SepJ self-interaction and a specific interaction with FtsQ, confirmed by co-purification and involving parts of the SepJ and FtsQ periplasmic sections. Therefore, SepJ can form multimers, and in Anabaena, the divisome has a role beyond cell division, localizing a septal protein essential for multicellularity.
Collapse
Affiliation(s)
- Félix Ramos-León
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| | | | | | | | | |
Collapse
|
34
|
Watabe K, Mimuro M, Tsuchiya T. Development of a high-frequency in vivo transposon mutagenesis system for Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. ACTA ACUST UNITED AC 2014; 55:2017-26. [DOI: 10.1093/pcp/pcu128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
35
|
Abstract
Plastid division is fundamental to the biology of plant cells. Division by binary fission entails the coordinated assembly and constriction of four concentric rings, two internal and two external to the organelle. The internal FtsZ ring and external dynamin-like ARC5/DRP5B ring are connected across the two envelopes by the membrane proteins ARC6, PARC6, PDV1, and PDV2. Assembly-stimulated GTPase activity drives constriction of the FtsZ and ARC5/DRP5B rings, which together with the plastid-dividing rings pull and squeeze the envelope membranes until the two daughter plastids are formed, with the final separation requiring additional proteins. The positioning of the division machinery is controlled by the chloroplast Min system, which confines FtsZ-ring formation to the plastid midpoint. The dynamic morphology of plastids, especially nongreen plastids, is also considered here, particularly in relation to the production of stromules and plastid-derived vesicles and their possible roles in cellular communication and plastid functionality.
Collapse
|
36
|
Gorelova OA, Baulina OI, Rasmussen U, Koksharova OA. The pleiotropic effects of ftn2 and ftn6 mutations in cyanobacterium Synechococcus sp. PCC 7942: an ultrastructural study. PROTOPLASMA 2013; 250:931-942. [PMID: 23306433 DOI: 10.1007/s00709-012-0479-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/24/2012] [Indexed: 06/01/2023]
Abstract
Two cell division mutants (Ftn2 and Ftn6) of the cyanobacterium Synechococcus sp. PCC 7942 were studied using scanning electron microscopy and transmission electron microscopy methods. This included negative staining and ultrathin section analysis. Different morphological and ultrastructural features of mutant cells were identified. Ftn2 and Ftn6 mutants exhibited particularly elongated cells characterized by significantly changed shape in comparison with the wild type. There was irregular bending, curving, spiralization, and bulges as well as cell branching. Elongated mutant cells were able to initiate cytokinesis simultaneously in several division sites which were localized irregularly along the cell. Damaged rigidity of the cell wall was typical of many cells for both mutants. Thylakoids of mutants showed modified arrangement and ultrastructural organization. Carboxysome-like structures without a shell and/or without accurate polyhedral packing protein particles were often detected in the mutants. However, in the case of Ftn2 and Ftn6, the average number of carboxysomes per section was less than in the wild type by a factor of 4 and 2, respectively. These multiple morphological and ultrastructural changes in mutant cells evinced pleiotropic responses which were induced by mutations in cell division genes ftn2 and ftn6. Ultrastructural abnormalities of Ftn2 and Ftn6 mutants were consistent with differences in their proteomes. These results could support the significance of FTN2 and FTN6 proteins for both cyanobacterial cell division and cellular physiology.
Collapse
Affiliation(s)
- O A Gorelova
- Biological Faculty, Moscow State University, 119992 Moscow, Russia.
| | | | | | | |
Collapse
|
37
|
Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 2012; 8:e1003064. [PMID: 23166516 PMCID: PMC3499364 DOI: 10.1371/journal.pgen.1003064] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022] Open
Abstract
Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica-specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing academic community focused on this genus.
Collapse
|
38
|
Structure, regulation, and evolution of the plastid division machinery. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 291:115-53. [PMID: 22017975 DOI: 10.1016/b978-0-12-386035-4.00004-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plastids have evolved from a cyanobacterial endosymbiont, and their continuity is maintained by the plastid division and segregation which is regulated by the eukaryotic host cell. Plastids divide by constriction of the inner- and outer-envelope membranes. Recent studies revealed that this constriction is performed by a large protein and glucan complex at the division site that spans the two envelope membranes. The division complex has retained certain components of the cyanobacterial division complex along with components developed by the host cell. Based on the information on the division complex at the molecular level, we are beginning to understand how the division complex has evolved and how it is assembled, constricted, and regulated in the host cell. This chapter reviews the current understanding of the plastid division machinery and some of the questions that will be addressed in the near future.
Collapse
|
39
|
Taton A, Lis E, Adin DM, Dong G, Cookson S, Kay SA, Golden SS, Golden JW. Gene transfer in Leptolyngbya sp. strain BL0902, a cyanobacterium suitable for production of biomass and bioproducts. PLoS One 2012; 7:e30901. [PMID: 22292073 PMCID: PMC3265524 DOI: 10.1371/journal.pone.0030901] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/23/2011] [Indexed: 11/18/2022] Open
Abstract
Current cyanobacterial model organisms were not selected for their growth traits or potential for the production of renewable biomass, biofuels, or other products. The cyanobacterium strain BL0902 emerged from a search for strains with superior growth traits. Morphology and 16S rRNA sequence placed strain BL0902 in the genus Leptolyngbya. Leptolyngbya sp. strain BL0902 (hereafter Leptolyngbya BL0902) showed robust growth at temperatures from 22°C to 40°C and tolerated up to 0.5 M NaCl, 32 mM urea, high pH, and high solar irradiance. Its growth rate under outdoor conditions rivaled Arthrospira (“pirulina” strains. Leptolyngbya BL0902 accumulated higher lipid content and a higher proportion of monounsaturated fatty acids than Arthrospira strains. In addition to these desirable qualities, Leptolyngbya BL0902 is amenable to genetic engineering that is reliable, efficient, and stable. We demonstrated conjugal transfer from Escherichia coli of a plasmid based on RSF1010 and expression of spectinomycin/streptomycin resistance and yemGFP reporter transgenes. Conjugation efficiency was investigated in biparental and triparental matings with and without a “elper”plasmid that carries DNA methyltransferase genes, and with two different conjugal plasmids. We also showed that Leptolyngbya BL0902 is amenable to transposon mutagenesis with a Tn5 derivative. To facilitate genetic manipulation of Leptolyngbya BL0902, a conjugal plasmid vector was engineered to carry a trc promoter upstream of a Gateway recombination cassette. These growth properties and genetic tools position Leptolyngbya BL0902 as a model cyanobacterial production strain.
Collapse
Affiliation(s)
- Arnaud Taton
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ewa Lis
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Dawn M. Adin
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Guogang Dong
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Scott Cookson
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Steve A. Kay
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Susan S. Golden
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - James W. Golden
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Lopes Pinto F, Erasmie S, Blikstad C, Lindblad P, Oliveira P. FtsZ degradation in the cyanobacterium Anabaena sp. strain PCC 7120. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1934-1942. [PMID: 21794946 DOI: 10.1016/j.jplph.2011.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/23/2011] [Accepted: 05/24/2011] [Indexed: 05/31/2023]
Abstract
In prokaryotes, cell division is normally achieved by binary fission, and the key player FtsZ is considered essential for the complete process. In cyanobacteria, much remains unknown about several aspects of cell division, including the identity and mechanism of the various components involved in the division process. Here, we report results obtained from a search of the players implicated in cell division, directly associating to FtsZ in the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Histidine tag pull-downs were used to address this question. However, the main observation was that FtsZ is a target of proteolysis. Experiments using various cell-free extracts, an unrelated protein, and protein blot analyses further supported the idea that FtsZ is proteolytically cleaved in a specific manner. In addition, we show evidence that both FtsZ termini seem to be equally prone to proteolysis. Taken together, our data suggest the presence of an unknown player in cyanobacterial cell division, opening up the possibility to investigate novel mechanisms to control cell division in Anabaena PCC 7120.
Collapse
Affiliation(s)
- Fernando Lopes Pinto
- Department of Photochemistry and Molecular Science, The Ångström Laboratories, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
41
|
Goclaw-Binder H, Sendersky E, Shimoni E, Kiss V, Reich Z, Perelman A, Schwarz R. Nutrient-associated elongation and asymmetric division of the cyanobacterium Synechococcus PCC 7942. Environ Microbiol 2011; 14:680-90. [DOI: 10.1111/j.1462-2920.2011.02620.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Koksharova OA, Babykin MM. Cyanobacterial cell division: Genetics and comparative genomics of cyanobacterial cell division. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411030070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Lehner J, Zhang Y, Berendt S, Rasse TM, Forchhammer K, Maldener I. The morphogene AmiC2 is pivotal for multicellular development in the cyanobacterium Nostoc punctiforme. Mol Microbiol 2011; 79:1655-69. [DOI: 10.1111/j.1365-2958.2011.07554.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Miyagishima SY, Kabeya Y. Chloroplast division: squeezing the photosynthetic captive. Curr Opin Microbiol 2010; 13:738-46. [PMID: 21041111 DOI: 10.1016/j.mib.2010.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 09/28/2010] [Accepted: 10/06/2010] [Indexed: 10/18/2022]
Abstract
Chloroplasts have evolved from a cyanobacterial endosymbiont and have been retained in eukaryotic cells for more than one billion years via chloroplast division and inheritance by daughter cells during cell division. Recent studies revealed that chloroplast division is performed by a large protein complex at the division site, encompassing both the inside and the outside of the two envelope membranes. The division complex has retained a few components of the cyanobacterial division complex to go along with other components supplied by the host cell. On the basis of the information about the division complex, we are beginning to understand how the division complex evolved, and how eukaryotic host cells regulate chloroplast division during proliferation and differentiation.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- Initiative Research Program, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
45
|
Abstract
Plastids are vital organelles, fulfilling important metabolic functions that greatly influence plant growth and productivity. In order to both regulate and harness the metabolic output of plastids, it is vital that the process of plastid division is carefully controlled. This is essential, not only to ensure persistence in dividing plant cells and that optimal numbers of plastids are obtained in specialized cell types, but also to allow the cell to act in response to developmental signals and environmental changes. How this control is exerted by the host nucleus has remained elusive. Plastids evolved by endosymbiosis and during the establishment of a permanent endosymbiosis they retained elements of the bacterial cell-division machinery. Through evolution the photosynthetic eukaryotes have increased dramatically in complexity, from single-cell green algae to multicellular non-vascular and vascular plants. Reflected with this is an increasing complexity of the division machinery and recent findings also suggest increasing complexity in the molecular mechanisms used by the host cell to control the process of plastid division. In the present paper, we explore the current understanding of the process of plastid division at the molecular and cellular level, with particular respect to the evolution of the division machinery and levels of control exerted on the process.
Collapse
|
46
|
Marbouty M, Saguez C, Cassier-Chauvat C, Chauvat F. ZipN, an FtsA-like orchestrator of divisome assembly in the model cyanobacterium Synechocystis PCC6803. Mol Microbiol 2009; 74:409-20. [PMID: 19737354 DOI: 10.1111/j.1365-2958.2009.06873.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We pursued the characterization of the divisome of the spherical-celled cyanobacterium Synechocystis PCC6803, through deletion, site-directed mutagenesis, GFP tagging, two-hybrid and co-immunoprecipitation assays. We presently report that the DivIVA-like protein Cdv3 is essential to both cell growth and division, whereas the AmiC, AmpH, FtsE, FtsN, SpoIID, YlmD, YlmE and YlmG proteins are dispensable. With the exception of the self-interacting protein YlmD, none of these dispensable factors appeared to interact with ZipN, the crucial cytokinetic factor we previously characterized. By contrast, we found that ZipN interacts with itself and the self-interacting protein Cdv3, as well as with all other crucial cytokinetic factors we previously characterized, namely: FtsZ, FtsI, FtsQ, SepF and ZipS. We also identified ZipN amino acids selectively involved in ZipN interaction with one of its following partners, Cdv3, FtsQ or SepF. Finally, we found no direct interaction between Cdv3, SepF and ZipS. Collectively, these results indicate that ZipN is a central player of divisome assembly in cyanobacteria, similarly to the FtsA protein of E. coli that is absent in cyanobacteria and chloroplast.
Collapse
Affiliation(s)
- Martial Marbouty
- CEA, iBiTec-S, SBIGeM, LBI, Bat 142 CEA-Saclay, F-91191 Gif sur Yvette Cedex, France
| | | | | | | |
Collapse
|
47
|
Marbouty M, Saguez C, Chauvat F. The cyanobacterial cell division factor Ftn6 contains an N-terminal DnaD-like domain. BMC STRUCTURAL BIOLOGY 2009; 9:54. [PMID: 19698108 PMCID: PMC2736966 DOI: 10.1186/1472-6807-9-54] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/21/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND DNA replication and cell cycle as well as their relationship have been extensively studied in the two model organisms E. coli and B. subtilis. By contrast, little is known about these processes in cyanobacteria, even though they are crucial to the biosphere, in utilizing solar energy to renew the oxygenic atmosphere and in producing the biomass for the food chain. Recent studies have allowed the identification of several cell division factors that are specifics to cyanobacteria. Among them, Ftn6 has been proposed to function in the recruitment of the crucial FtsZ proteins to the septum or the subsequent Z-ring assembly and possibly in chromosome segregation. RESULTS In this study, we identified an as yet undescribed domain located in the conserved N-terminal region of Ftn6. This 77 amino-acids-long domain, designated here as FND (Ftn6 N-Terminal Domain), exhibits striking sequence and structural similarities with the DNA-interacting module, listed in the PFAM database as the DnaD-like domain (pfam04271). We took advantage of the sequence similarities between FND and the DnaD-like domains to construct a homology 3D-model of the Ftn6 FND domain from the model cyanobacterium Synechocystis PCC6803. Mapping of the conserved residues exposed onto the FND surface allowed us to identify a highly conserved area that could be engaged in Ftn6-specific interactions. CONCLUSION Overall, similarities between FND and DnaD-like domains as well as previously reported observations on Ftn6 suggest that FND may function as a DNA-interacting module thereby providing an as yet missing link between DNA replication and cell division in cyanobacteria. Consistently, we also showed that Ftn6 is involved in tolerance to DNA damages generated by UV rays.
Collapse
Affiliation(s)
- Martial Marbouty
- CEA, iBiTec-S, SBIGeM, LBI, Bat 142 CEA-Saclay, F-91191 Gif sur Yvette CEDEX, France.
| | | | | |
Collapse
|
48
|
Characterization of the FtsZ-interacting septal proteins SepF and Ftn6 in the spherical-celled cyanobacterium Synechocystis strain PCC 6803. J Bacteriol 2009; 191:6178-85. [PMID: 19648234 DOI: 10.1128/jb.00723-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Assembly of the tubulin-like cytoskeletal protein FtsZ into a ring structure at midcell establishes the location of the nascent division sites in prokaryotes. However, it is not yet known how the assembly and contraction of the Z ring are regulated, especially in cyanobacteria, the environmentally crucial organisms for which only one FtsZ partner protein, ZipN, has been described so far. Here, we characterized SepF and Ftn6, two novel septal proteins, in the spherical-celled strain Synechocystis PCC 6803. Both proteins were found to be indispensable to Synechocystis sp. strain PCC 6803. The depletion of both SepF and Ftn6 resulted in delayed cytokinesis and the generation of giant cells but did not prevent FtsZ polymerization, as shown by the visualization of green fluorescent protein (GFP)-tagged FtsZ polymers. These GFP-tagged Z-ring-like structures often appeared to be abnormal, because these reporter cells respond to the depletion of either SepF or Ftn6 with an increased abundance of total, natural, and GFP-tagged FtsZ proteins. In agreement with their septal localization, we found that both SepF and Ftn6 interact physically with FtsZ. Finally, we showed that SepF, but not Ftn6, stimulates the formation and/or stability of FtsZ polymers in vitro.
Collapse
|
49
|
Characterization of the Synechocystis strain PCC 6803 penicillin-binding proteins and cytokinetic proteins FtsQ and FtsW and their network of interactions with ZipN. J Bacteriol 2009; 191:5123-33. [PMID: 19542290 DOI: 10.1128/jb.00620-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Because very little is known about cell division in noncylindrical bacteria and cyanobacteria, we investigated 10 putative cytokinetic proteins in the unicellular spherical cyanobacterium Synechocystis strain PCC 6803. Concerning the eight penicillin-binding proteins (PBPs), which define three classes, we found that Synechocystis can survive in the absence of one but not two PBPs of either class A or class C, whereas the unique class B PBP (also termed FtsI) is indispensable. Furthermore, we showed that all three classes of PBPs are required for normal cell size. Similarly, the putative FtsQ and FtsW proteins appeared to be required for viability and normal cell size. We also used a suitable bacterial two-hybrid system to characterize the interaction web among the eight PBPs, FtsQ, and FtsW, as well as ZipN, the crucial FtsZ partner that occurs only in cyanobacteria and plant chloroplasts. We showed that FtsI, FtsQ, and ZipN are self-interacting proteins and that both FtsI and FtsQ interact with class A PBPs, as well as with ZipN. Collectively, these findings indicate that ZipN, in interacting with FtsZ and both FtsI and FtQ, plays a similar role to the Escherichia coli FtsA protein, which is missing in cyanobacteria and chloroplasts.
Collapse
|
50
|
Loss of topological relationships in a Pleurocapsalean cyanobacterium (Chroococcidiopsis sp.) with partially inactivatedftsZ. ANN MICROBIOL 2009. [DOI: 10.1007/bf03178322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|