1
|
Bacon EE, Tran JS, Nadig N, Peters JM. Modular, inducible, and titratable expression systems for Escherichia coli and Acinetobacter baumannii. Microbiol Spectr 2024; 12:e0130624. [PMID: 39302127 PMCID: PMC11536989 DOI: 10.1128/spectrum.01306-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/24/2024] [Indexed: 09/22/2024] Open
Abstract
Gene expression systems that transcend species barriers are needed for cross-species analysis of gene function. In particular, expression systems that can be utilized in both model and pathogenic bacteria underpin comparative functional approaches that inform conserved and variable features of bacterial physiology. In this study, we develop replicative and integrative vectors alongside a novel, IPTG-inducible promoter that can be used in the model bacterium Escherichia coli K-12 as well as strains of the antibiotic-resistant pathogen, Acinetobacter baumannii. We generate modular vectors that transfer by conjugation at high efficiency and either replicate or integrate into the genome, depending on design. Embedded in these vectors, we also developed a synthetic, IPTG-inducible promoter, PabstBR, that induces to a high level but is less leaky than the commonly used trc promoter. We show that PabstBR is titratable at both the population and single-cell levels, regardless of species, highlighting the utility of our expression systems for cross-species functional studies. Finally, as a proof of principle, we use our integrating vector to develop a reporter for the E. coli envelope stress σ factor, RpoE, and deploy the reporter in E. coli and A. baumannii, finding that A. baumannii does not recognize RpoE-dependent promoters unless RpoE is heterologously expressed. We envision that these vector and promoter tools will be valuable for the community of researchers who study the fundamental biology of E. coli and A. baumannii.IMPORTANCEAcinetobacter baumannii is a multidrug-resistant, hospital-acquired pathogen with the ability to cause severe infections. Understanding the unique biology of this non-model bacterium may lead to the discovery of new weaknesses that can be targeted to treat antibiotic-resistant infections. In this study, we provide expression tools that can be used to study the gene function in A. baumannii, including in drug-resistant clinical isolates. These tools are also compatible with the model bacterium, Escherichia coli, enabling cross-species comparisons of gene function. We anticipate that the use of these tools by the scientific community will accelerate our understanding of Acinetobacter biology.
Collapse
Affiliation(s)
- Emily E. Bacon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jennifer S. Tran
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nischala Nadig
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Bacon EE, Myers KS, Iruegas-López R, Banta AB, Place M, Ebersberger I, Peters JM. Physiological Roles of an Acinetobacter-specific σ Factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602572. [PMID: 39026751 PMCID: PMC11257525 DOI: 10.1101/2024.07.08.602572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The Gram-negative pathogen Acinetobacter baumannii is considered an "urgent threat" to human health due to its propensity to become antibiotic resistant. Understanding the distinct regulatory paradigms used by A. baumannii to mitigate cellular stresses may uncover new therapeutic targets. Many γ-proteobacteria use the extracytoplasmic function (ECF) σ factor, RpoE, to invoke envelope homeostasis networks in response to stress. Acinetobacter species contain the poorly characterized ECF "SigAb;" however, it is unclear if SigAb has the same physiological role as RpoE. Here, we show that SigAb is a metal stress-responsive ECF that appears unique to Acinetobacter species and distinct from RpoE. We combine promoter mutagenesis, motif scanning, and ChIP-seq to define the direct SigAb regulon, which consists of sigAb itself, the stringent response mediator, relA, and the uncharacterized small RNA, "sabS." However, RNA-seq of strains overexpressing SigAb revealed a large, indirect regulon containing hundreds of genes. Metal resistance genes are key elements of the indirect regulon, as CRISPRi knockdown of sigAb or sabS resulted in increased copper sensitivity and excess copper induced SigAb-dependent transcription. Further, we found that two uncharacterized genes in the sigAb operon, "aabA" and "aabB", have anti-SigAb activity. Finally, employing a targeted Tn-seq approach that uses CRISPR-associated transposons, we show that sigAb, aabA, and aabB are important for fitness even during optimal growth conditions. Our work reveals new physiological roles for SigAb and SabS, provides a novel approach for assessing gene fitness, and highlights the distinct regulatory architecture of A. baumannii.
Collapse
Affiliation(s)
- Emily E. Bacon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Rubén Iruegas-López
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Germany
| | - Amy B. Banta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ingo Ebersberger
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIKF), Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, Germany
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Bacon EE, Tran JS, Nadig N, Peters JM. Modular, inducible, and titratable expression systems for Escherichia coli and Acinetobacter baumannii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596346. [PMID: 38853957 PMCID: PMC11160707 DOI: 10.1101/2024.05.28.596346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Gene expression systems that transcend species barriers are needed for cross-species analysis of gene function. In particular, expression systems that can be utilized in both model and pathogenic bacteria underpin comparative functional approaches that inform conserved and variable features of bacterial physiology. Here, we develop replicative and integrative vectors alongside a novel, IPTG-inducible promoter that can be used in the model bacterium Escherichia coli K-12 as well as strains of the antibiotic-resistant pathogen, Acinetobacter baumannii. We generate modular vectors that transfer by conjugation at high efficiency and either replicate or integrate into the genome, depending on design. Embedded in these vectors, we also developed a synthetic, IPTG-inducible promoter, P abstBR , that induces to a high level, but is less leaky than the commonly used trc promoter. We show that P abstBR is titratable at both the population and single cell level, regardless of species, highlighting the utility of our expression systems for cross-species functional studies. Finally, as a proof of principle, we use our integrating vector to develop a reporter for the E. coli envelope stress σ factor, RpoE, and deploy the reporter in E. coli and A. baumannii, finding that A. baumannii does not recognize RpoE-dependent promoters unless RpoE is heterologously expressed. We envision that these vector and promoter tools will be valuable for the community of researchers that study fundamental biology of E. coli and A. baumannii.
Collapse
Affiliation(s)
- Emily E Bacon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Jennifer S Tran
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Nischala Nadig
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Jason M Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
4
|
Chowdhury-Paul S, Martínez-Ortíz IC, Pando-Robles V, Moreno S, Espín G, Merino E, Núñez C. The Azotobacter vinelandii AlgU regulon during vegetative growth and encysting conditions: A proteomic approach. PLoS One 2023; 18:e0286440. [PMID: 37967103 PMCID: PMC10651043 DOI: 10.1371/journal.pone.0286440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
In the Pseduomonadacea family, the extracytoplasmic function sigma factor AlgU is crucial to withstand adverse conditions. Azotobacter vinelandii, a closed relative of Pseudomonas aeruginosa, has been a model for cellular differentiation in Gram-negative bacteria since it forms desiccation-resistant cysts. Previous work demonstrated the essential role of AlgU to withstand oxidative stress and on A. vinelandii differentiation, particularly for the positive control of alginate production. In this study, the AlgU regulon was dissected by a proteomic approach under vegetative growing conditions and upon encystment induction. Our results revealed several molecular targets that explained the requirement of this sigma factor during oxidative stress and extended its role in alginate production. Furthermore, we demonstrate that AlgU was necessary to produce alkyl resorcinols, a type of aromatic lipids that conform the cell membrane of the differentiated cell. AlgU was also found to positively regulate stress resistance proteins such as OsmC, LEA-1, or proteins involved in trehalose synthesis. A position-specific scoring-matrix (PSSM) was generated based on the consensus sequence recognized by AlgU in P. aeruginosa, which allowed the identification of direct AlgU targets in the A. vinelandii genome. This work further expands our knowledge about the function of the ECF sigma factor AlgU in A. vinelandii and contributes to explains its key regulatory role under adverse conditions.
Collapse
Affiliation(s)
- Sangita Chowdhury-Paul
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Iliana C. Martínez-Ortíz
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Victoria Pando-Robles
- Instituto Nacional de Salud Pública, Centro de Investigación Sobre Enfermedades Infecciosas, Cuernavaca, Morelos, México
| | - Soledad Moreno
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| |
Collapse
|
5
|
Sivakumar R, Gunasekaran P, Rajendhran J. Extracytoplasmic sigma factor AlgU contributes to fitness of Pseudomonas aeruginosa PGPR2 during corn root colonization. Mol Genet Genomics 2022; 297:1537-1552. [PMID: 35980488 DOI: 10.1007/s00438-022-01938-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 07/29/2022] [Indexed: 11/28/2022]
Abstract
In bacteria, sigma factors are crucial in determining the plasticity of core RNA polymerase (RNAP) while promoter recognition during transcription initiation. This process is modulated through an intricate regulatory network in response to environmental cues. Previously, an extracytoplasmic function (ECF) sigma factor, AlgU, was identified to positively influence the fitness of Pseudomonas aeruginosa PGPR2 during corn root colonization. In this study, we report that the inactivation of the algU gene encoded by PGPR2_23995 hampers the root colonization ability of PGPR2. An insertion mutant in the algU gene was constructed by allele exchange mutagenesis. The mutant strains displayed threefold decreased root colonization efficiency compared with the wild-type strain when inoculated individually and in the competition assay. The mutant strain was more sensitive to osmotic and antibiotic stresses and showed higher resistance to oxidative stress. On the other hand, the mutant strain showed increased biofilm formation on the abiotic surface, and the expression of the pelB and pslA genes involved in the biofilm matrix formation were up-regulated. In contrast, the expression of algD, responsible for alginate production, was significantly down-regulated in the mutant strain, which is directly regulated by the AlgU sigma factor. The mutant strain also displayed altered motility. The expression of RNA binding protein RsmA was also impeded in the mutant strain. Further, the transcript levels of genes associated with the type III secretion system (T3SS) were analyzed, which revealed a significant down-regulation in the mutant strain. These results collectively provide evidence for the regulatory role of the AlgU sigma factor in modulating gene expression during root colonization.
Collapse
Affiliation(s)
- Ramamoorthy Sivakumar
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
6
|
Shao Y, Yin C, Lv F, Jiang S, Wu S, Han Y, Xue W, Ma Y, Zheng J, Zhan Y, Ke X, Lu W, Lin M, Shang L, Yan Y. The Sigma Factor AlgU Regulates Exopolysaccharide Production and Nitrogen-Fixing Biofilm Formation by Directly Activating the Transcription of pslA in Pseudomonas stutzeri A1501. Genes (Basel) 2022; 13:genes13050867. [PMID: 35627252 PMCID: PMC9141998 DOI: 10.3390/genes13050867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas stutzeri A1501, a plant-associated diazotrophic bacterium, prefers to conform to a nitrogen-fixing biofilm state under nitrogen-deficient conditions. The extracytoplasmic function (ECF) sigma factor AlgU is reported to play key roles in exopolysaccharide (EPS) production and biofilm formation in the Pseudomonas genus; however, the function of AlgU in P. stutzeri A1501 is still unclear. In this work, we mainly investigated the role of algU in EPS production, biofilm formation and nitrogenase activity in A1501. The algU mutant ΔalgU showed a dramatic decrease both in the EPS production and the biofilm formation capabilities. In addition, the biofilm-based nitrogenase activity was reduced by 81.4% in the ΔalgU mutant. The transcriptional level of pslA, a key Psl-like (a major EPS in A1501) synthesis-related gene, was almost completely inhibited in the algU mutant and was upregulated by 2.8-fold in the algU-overexpressing strain. A predicted AlgU-binding site was identified in the promoter region of pslA. The DNase I footprinting assays indicated that AlgU could directly bind to the pslA promoter, and β-galactosidase activity analysis further revealed mutations of the AlgU-binding boxes drastically reduced the transcriptional activity of the pslA promoter; moreover, we also demonstrated that AlgU was positively regulated by RpoN at the transcriptional level and negatively regulated by the RNA-binding protein RsmA at the posttranscriptional level. Taken together, these data suggest that AlgU promotes EPS production and nitrogen-fixing biofilm formation by directly activating the transcription of pslA, and the expression of AlgU is controlled by RpoN and RsmA at different regulatory levels.
Collapse
Affiliation(s)
- Yahui Shao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.S.); (C.Y.); (F.L.); (S.J.); (S.W.); (Y.H.); (W.X.); (Y.M.); (J.Z.); (Y.Z.); (X.K.); (W.L.); (M.L.)
| | - Changyan Yin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.S.); (C.Y.); (F.L.); (S.J.); (S.W.); (Y.H.); (W.X.); (Y.M.); (J.Z.); (Y.Z.); (X.K.); (W.L.); (M.L.)
| | - Fanyang Lv
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.S.); (C.Y.); (F.L.); (S.J.); (S.W.); (Y.H.); (W.X.); (Y.M.); (J.Z.); (Y.Z.); (X.K.); (W.L.); (M.L.)
| | - Shanshan Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.S.); (C.Y.); (F.L.); (S.J.); (S.W.); (Y.H.); (W.X.); (Y.M.); (J.Z.); (Y.Z.); (X.K.); (W.L.); (M.L.)
| | - Shaoyu Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.S.); (C.Y.); (F.L.); (S.J.); (S.W.); (Y.H.); (W.X.); (Y.M.); (J.Z.); (Y.Z.); (X.K.); (W.L.); (M.L.)
| | - Yueyue Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.S.); (C.Y.); (F.L.); (S.J.); (S.W.); (Y.H.); (W.X.); (Y.M.); (J.Z.); (Y.Z.); (X.K.); (W.L.); (M.L.)
| | - Wei Xue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.S.); (C.Y.); (F.L.); (S.J.); (S.W.); (Y.H.); (W.X.); (Y.M.); (J.Z.); (Y.Z.); (X.K.); (W.L.); (M.L.)
| | - Yiyuan Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.S.); (C.Y.); (F.L.); (S.J.); (S.W.); (Y.H.); (W.X.); (Y.M.); (J.Z.); (Y.Z.); (X.K.); (W.L.); (M.L.)
| | - Juan Zheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.S.); (C.Y.); (F.L.); (S.J.); (S.W.); (Y.H.); (W.X.); (Y.M.); (J.Z.); (Y.Z.); (X.K.); (W.L.); (M.L.)
| | - Yuhua Zhan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.S.); (C.Y.); (F.L.); (S.J.); (S.W.); (Y.H.); (W.X.); (Y.M.); (J.Z.); (Y.Z.); (X.K.); (W.L.); (M.L.)
| | - Xiubin Ke
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.S.); (C.Y.); (F.L.); (S.J.); (S.W.); (Y.H.); (W.X.); (Y.M.); (J.Z.); (Y.Z.); (X.K.); (W.L.); (M.L.)
| | - Wei Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.S.); (C.Y.); (F.L.); (S.J.); (S.W.); (Y.H.); (W.X.); (Y.M.); (J.Z.); (Y.Z.); (X.K.); (W.L.); (M.L.)
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.S.); (C.Y.); (F.L.); (S.J.); (S.W.); (Y.H.); (W.X.); (Y.M.); (J.Z.); (Y.Z.); (X.K.); (W.L.); (M.L.)
| | - Liguo Shang
- School of Basic Medicine, GuangXi University of Chinese Medicine, Nanning 530200, China
- Correspondence: (L.S.); (Y.Y.)
| | - Yongliang Yan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.S.); (C.Y.); (F.L.); (S.J.); (S.W.); (Y.H.); (W.X.); (Y.M.); (J.Z.); (Y.Z.); (X.K.); (W.L.); (M.L.)
- Correspondence: (L.S.); (Y.Y.)
| |
Collapse
|
7
|
Bacterial Extracellular Polymers: A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prokaryotic microbial cells especially bacteria are highly emphases for their exopolysaccharides (EPS) production. EPS are the higher molecular weight natural extracellular compounds observe at the surface of the bacterial cells. Nowadays bacterial EPS represent rapidly emerging as new and industrially important biomaterials because it having tremendous physical and chemical properties with novel functionality. Due to its industrial demand as well as research studies the different extraction processes have been discovered to remove the EPS from the microbial biofilm. The novelties of EPS are also based on the microbial habitat conditions such as higher temperature, lower temperature, acidic, alkaliphilic, saline, etc. Based on its chemical structure they can be homopolysaccharide or heteropolysaccharide. EPSs have a wide range of applications in various industries such as food, textile, pharmaceutical, heavy metal recovery, agriculture, etc. So, this review focus on the understanding of the structure, different extraction processes, biosynthesis and genetic engineering of EPS as well as their desirable biotechnological applications.
Collapse
|
8
|
Chávez-Jacobo VM, Hernández-Ramírez KC, Silva-Sánchez J, Garza-Ramos U, Barrios-Camacho H, Ortiz-Alvarado R, Cervantes C, Meza-Carmen V, Ramírez-Díaz MI. Prevalence of the crpP gene conferring decreased ciprofloxacin susceptibility in enterobacterial clinical isolates from Mexican hospitals. J Antimicrob Chemother 2021; 74:1253-1259. [PMID: 30753471 DOI: 10.1093/jac/dky562] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES This study investigated the presence of the crpP gene, which encodes an enzymatic mechanism of antibiotic phosphorylation that decreases ciprofloxacin susceptibility, in ESBL-producing clinical isolates and its effect in transconjugants. METHODS A collection of 77 ESBL-producing clinical isolates of Enterobacteriaceae and 68 ESBL-producing transconjugants that had acquired plasmids from clinical isolates from hospitals in Mexico obtained from 1988 to 2012 was employed. The crpP homologue genes were identified by dot-blot and PCR assays; five of them were sequenced and an in silico analysis was conducted. Expression of CrpP proteins was determined by western blot assays using antibodies against CrpP from plasmid pUM505. Three crpP homologue genes were cloned and transferred to Escherichia coli J53-3 as recipient strain. RESULTS The crpP gene was identified in four (5.19%) ESBL-producing isolates and five (7.35%) ESBL-producing transconjugants with plasmids from clinical isolates. Analysis of the deduced amino acid (aa) sequence of the CrpP protein homologues revealed that they all corresponded to small proteins (63-70 aa) with an identity of 10.1%-43.7% with respect to the pUM505 CrpP sequence. In addition, all crpP-positive transconjugants expressed a CrpP protein. Finally, transfer of crpP homologues conferred lower ciprofloxacin susceptibility to E. coli. CONCLUSIONS These findings indicate the presence of crpP genes among ESBL-producing isolates from Mexican hospitals and point to widespread crpP-type genes in old Enterobacteriaceae clinical isolates (from 1994). CrpP probably confers resistance by means of the phosphorylation of ciprofloxacin.
Collapse
Affiliation(s)
- Víctor M Chávez-Jacobo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Karen C Hernández-Ramírez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Jesus Silva-Sánchez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Ulises Garza-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Humberto Barrios-Camacho
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Rafael Ortiz-Alvarado
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Carlos Cervantes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Martha I Ramírez-Díaz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| |
Collapse
|
9
|
Yang B, Liu C, Pan X, Fu W, Fan Z, Jin Y, Bai F, Cheng Z, Wu W. Identification of Novel PhoP-PhoQ Regulated Genes That Contribute to Polymyxin B Tolerance in Pseudomonas aeruginosa. Microorganisms 2021; 9:microorganisms9020344. [PMID: 33572426 PMCID: PMC7916210 DOI: 10.3390/microorganisms9020344] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Polymyxin B and E (colistin) are the last resorts to treat multidrug-resistant Gram-negative pathogens. Pseudomonas aeruginosa is intrinsically resistant to a variety of antibiotics. The PhoP-PhoQ two-component regulatory system contributes to the resistance to polymyxins by regulating an arnBCADTEF-pmrE operon that encodes lipopolysaccharide modification enzymes. To identify additional PhoP-regulated genes that contribute to the tolerance to polymyxin B, we performed a chromatin immunoprecipitation sequencing (ChIP-Seq) assay and found novel PhoP binding sites on the chromosome. We further verified that PhoP directly controls the expression of PA14_46900, PA14_50740 and PA14_52340, and the operons of PA14_11970-PA14_11960 and PA14_52350-PA14_52370. Our results demonstrated that mutation of PA14_46900 increased the bacterial binding and susceptibility to polymyxin B. Meanwhile, mutation of PA14_11960 (papP), PA14_11970 (mpl), PA14_50740 (slyB), PA14_52350 (ppgS), and PA14_52370 (ppgH) reduced the bacterial survival rates and increased ethidium bromide influx under polymyxin B or Sodium dodecyl sulfate (SDS) treatment, indicating roles of these genes in maintaining membrane integrity in response to the stresses. By 1-N-phenylnaphthylamine (NPN) and propidium iodide (PI) staining assay, we found that papP and slyB are involved in maintaining outer membrane integrity, and mpl and ppgS-ppgH are involved in maintaining inner membrane integrity. Overall, our results reveal novel PhoP-PhoQ regulated genes that contribute to polymyxin B tolerance.
Collapse
|
10
|
Activation of the Cell Wall Stress Response in Pseudomonas aeruginosa Infected by a Pf4 Phage Variant. Microorganisms 2020; 8:microorganisms8111700. [PMID: 33143386 PMCID: PMC7693463 DOI: 10.3390/microorganisms8111700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa PAO1 has an integrated Pf4 prophage in its genome, encoding a relatively well-characterized filamentous phage, which contributes to the bacterial biofilm organization and maturation. Pf4 variants are considered as superinfectives when they can re-infect and kill the prophage-carrying host. Herein, the response of P. aeruginosa H103 to Pf4 variant infection was investigated. This phage variant caused partial lysis of the bacterial population and modulated H103 physiology. We show by confocal laser scanning microscopy that a Pf4 variant-infection altered P. aeruginosa H103 biofilm architecture either in static or dynamic conditions. Interestingly, in the latter condition, numerous cells displayed a filamentous morphology, suggesting a link between this phenotype and flow-related forces. In addition, Pf4 variant-infection resulted in cell envelope stress response, mostly mediated by the AlgU and SigX extracytoplasmic function sigma factors (ECFσ). AlgU and SigX involvement may account, at least partly, for the enhanced expression level of genes involved in the biosynthesis pathways of two matrix exopolysaccharides (Pel and alginates) and bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) metabolism.
Collapse
|
11
|
Bouffartigues E, Si Hadj Mohand I, Maillot O, Tortuel D, Omnes J, David A, Tahrioui A, Duchesne R, Azuama CO, Nusser M, Brenner-Weiss G, Bazire A, Connil N, Orange N, Feuilloley MGJ, Lesouhaitier O, Dufour A, Cornelis P, Chevalier S. The Temperature-Regulation of Pseudomonas aeruginosa cmaX-cfrX-cmpX Operon Reveals an Intriguing Molecular Network Involving the Sigma Factors AlgU and SigX. Front Microbiol 2020; 11:579495. [PMID: 33193206 PMCID: PMC7641640 DOI: 10.3389/fmicb.2020.579495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable Gram-negative opportunistic pathogen, notably due to its large number of transcription regulators. The extracytoplasmic sigma factor (ECFσ) AlgU, responsible for alginate biosynthesis, is also involved in responses to cell wall stress and heat shock via the RpoH alternative σ factor. The SigX ECFσ emerged as a major regulator involved in the envelope stress response via membrane remodeling, virulence and biofilm formation. However, their functional interactions to coordinate the envelope homeostasis in response to environmental variations remain to be determined. The regulation of the putative cmaX-cfrX-cmpX operon located directly upstream sigX was investigated by applying sudden temperature shifts from 37°C. We identified a SigX- and an AlgU- dependent promoter region upstream of cfrX and cmaX, respectively. We show that cmaX expression is increased upon heat shock through an AlgU-dependent but RpoH independent mechanism. In addition, the ECFσ SigX is activated in response to valinomycin, an agent altering the membrane structure, and up-regulates cfrX-cmpX transcription in response to cold shock. Altogether, these data provide new insights into the regulation exerted by SigX and networks that are involved in maintaining envelope homeostasis.
Collapse
Affiliation(s)
- Emeline Bouffartigues
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Ishac Si Hadj Mohand
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Damien Tortuel
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Jordane Omnes
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Audrey David
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Ali Tahrioui
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Rachel Duchesne
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Cecil Onyedikachi Azuama
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Michael Nusser
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gerald Brenner-Weiss
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines (LBCM) EA3884, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Nicole Orange
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Marc G J Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines (LBCM) EA3884, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Pierre Cornelis
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| |
Collapse
|
12
|
Vilaplana L, Marco MP. Phenazines as potential biomarkers of Pseudomonas aeruginosa infections: synthesis regulation, pathogenesis and analytical methods for their detection. Anal Bioanal Chem 2020; 412:5897-5912. [PMID: 32462363 DOI: 10.1007/s00216-020-02696-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Infectious diseases are still a worldwide important problem. This fact has led to the characterization of new biomarkers that would allow an early, fast and reliable diagnostic and targeted therapy. In this context, Pseudomonas aeruginosa can be considered one of the most threatening pathogens since it causes a wide range of infections, mainly in patients that suffer other diseases. Antibiotic treatment is not trivial given the incidence of resistance processes and the fewer new antibiotics that are placed on the market. With this scenario, relevant quorum sensing (QS) molecules that regulate the secretion of virulence factors and biofilm formation can play an important role in diagnostic and therapeutic issues. In this review, we have focused our attention on phenazines, as possible new biomarkers. They are pigmented metabolites that are produced by diverse bacteria, characterized for presenting unique redox properties. Phenazines are involved in virulence, competitive fitness and are an essential component of the bacterial QS system. Here we describe their role in bacterial pathogenesis and we revise phenazine production regulation systems. We also discuss phenazine levels previously reported in bacterial isolates and in clinical samples to evaluate them as putative good candidates to be used as P. aeruginosa infection biomarkers. Moreover we deeply go through all analytical techniques that have been used for their detection and also new approaches are discussed from a critical point. Graphical abstract.
Collapse
Affiliation(s)
- Lluïsa Vilaplana
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona, 18-26, 08034, Barcelona, Spain.
| | - M-Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona, 18-26, 08034, Barcelona, Spain
| |
Collapse
|
13
|
Pseudomonas syringae AlgU Downregulates Flagellin Gene Expression, Helping Evade Plant Immunity. J Bacteriol 2020; 202:JB.00418-19. [PMID: 31740494 DOI: 10.1128/jb.00418-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Flagella power bacterial movement through liquids and over surfaces to access or avoid certain environmental conditions, ultimately increasing a cell's probability of survival and reproduction. In some cases, flagella and chemotaxis are key virulence factors enabling pathogens to gain entry and attach to suitable host tissues. However, flagella are not always beneficial; both plant and animal immune systems have evolved receptors to sense the proteins that make up flagellar filaments as signatures of bacterial infection. Microbes poorly adapted to avoid or counteract these immune functions are unlikely to be successful in host environments, and this selective pressure has driven the evolution of diverse and often redundant pathogen compensatory mechanisms. We tested the role of AlgU, the Pseudomonas extracytoplasmic function sigma factor σE/σ22 ortholog, in regulating flagellar expression in the context of Pseudomonas syringae-plant interactions. We found that AlgU is necessary for downregulating bacterial flagellin expression in planta and that this results in a corresponding reduction in plant immune elicitation. This AlgU-dependent regulation of flagellin gene expression is beneficial to bacterial growth in the course of plant infection, and eliminating the plant's ability to detect flagellin makes this AlgU-dependent function irrelevant for bacteria growing in the apoplast. Together, these results add support to an emerging model in which P. syringae AlgU functions at a key control point that serves to optimize the expression of bacterial functions during host interactions, including minimizing the expression of immune elicitors and concomitantly upregulating beneficial virulence functions.IMPORTANCE Foliar plant pathogens, like Pseudomonas syringae, adjust their physiology and behavior to facilitate host colonization and disease, but the full extent of these adaptations is not known. Plant immune systems are triggered by bacterial molecules, such as the proteins that make up flagellar filaments. In this study, we found that during plant infection, AlgU, a gene expression regulator that is responsive to external stimuli, downregulates expression of fliC, which encodes the flagellin protein, a strong elicitor of plant immune systems. This change in gene expression and resultant change in behavior correlate with reduced plant immune activation and improved P. syringae plant colonization. The results of this study demonstrate the proximate and ultimate causes of flagellar regulation in a plant-pathogen interaction.
Collapse
|
14
|
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa possesses multiple quorum sensing systems that regulate and coordinate production of virulence factors and adaptation to different environments. Despite extensive research, the regulatory elements that play a role in this complex network are still not fully understood. By using several RNA sequencing techniques, we were able to identify a small regulatory RNA we named RhlS. RhlS increases translation of RhlI, a key enzyme in the quorum sensing pathway, and represses the fpvA mRNA encoding one of the siderophore pyoverdine receptors. Our results highlight a new regulatory layer of P. aeruginosa quorum sensing and contribute to the growing understanding of the role regulatory RNAs play in bacterial physiology. N-Acyl homoserine lactone (AHL) quorum sensing (QS) controls expression of over 200 genes in Pseudomonas aeruginosa. There are two AHL regulatory systems: the LasR-LasI circuit and the RhlR-RhlI system. We mapped transcription termination sites affected by AHL QS in P. aeruginosa, and in doing so we identified AHL-regulated small RNAs (sRNAs). Of interest, we noted that one particular sRNA was located within the rhlI locus. We found that rhlI, which encodes the enzyme that produces the AHL N-butanoyl-homoserine lactone (C4-HSL), is controlled by a 5′ untranslated region (UTR)-derived sRNA we name RhlS. We also identified an antisense RNA encoded opposite the beginning of the rhlI open reading frame, which we name asRhlS. RhlS accumulates as wild-type cells enter stationary phase and is required for the production of normal levels of C4-HSL through activation of rhlI translation. RhlS also directly posttranscriptionally regulates at least one other unlinked gene, fpvA. The asRhlS appears to be expressed at maximal levels during logarithmic growth, and we suggest RhlS may act antagonistically to the asRhlS to regulate rhlI translation. The rhlI-encoded sRNAs represent a novel aspect of RNA-mediated tuning of P. aeruginosa QS.
Collapse
|
15
|
Medeiros Filho F, do Nascimento APB, dos Santos MT, Carvalho-Assef APD, da Silva FAB. Gene regulatory network inference and analysis of multidrug-resistant Pseudomonas aeruginosa. Mem Inst Oswaldo Cruz 2019; 114:e190105. [PMID: 31389522 PMCID: PMC6684008 DOI: 10.1590/0074-02760190105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/26/2019] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Healthcare-associated infections caused by bacteria such as
Pseudomonas aeruginosa are a major public health
problem worldwide. Gene regulatory networks (GRN) computationally represent
interactions among regulatory genes and their targets. They are an important
approach to help understand bacterial behaviour and to provide novel ways of
overcoming scientific challenges, including the identification of potential
therapeutic targets and the development of new drugs. OBJECTIVES The goal of this study was to reconstruct the multidrug-resistant (MDR)
P. aeruginosa GRN and to analyse its topological
properties. METHODS The methodology used in this study was based on gene orthology inference
using the reciprocal best hit method. We used the genome of P.
aeruginosa CCBH4851 as the basis of the reconstruction process.
This MDR strain is representative of the sequence type 277, which was
involved in an endemic outbreak in Brazil. FINDINGS We obtained a network with a larger number of regulatory genes, target genes
and interactions as compared to the previously reported network. Topological
analysis results are in accordance with the complex network representation
of biological processes. MAIN CONCLUSIONS The properties of the network were consistent with the biological features
of P. aeruginosa. To the best of our knowledge, the
P. aeruginosa GRN presented here is the most complete
version available to date.
Collapse
|
16
|
Chevalier S, Bouffartigues E, Bazire A, Tahrioui A, Duchesne R, Tortuel D, Maillot O, Clamens T, Orange N, Feuilloley MGJ, Lesouhaitier O, Dufour A, Cornelis P. Extracytoplasmic function sigma factors in Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:706-721. [PMID: 29729420 DOI: 10.1016/j.bbagrm.2018.04.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/06/2018] [Accepted: 04/30/2018] [Indexed: 01/26/2023]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa, like all members of the genus Pseudomonas, has the capacity to thrive in very different environments, ranging from water, plant roots, to animals, including humans to whom it can cause severe infections. This remarkable adaptability is reflected in the number of transcriptional regulators, including sigma factors in this bacterium. Among those, the 19 to 21 extracytoplasmic sigma factors (ECFσ) are endowed with different regulons and functions, including the iron starvation σ (PvdS, FpvI, HasI, FecI, FecI2 and others), the cell wall stress ECFσ AlgU, SigX and SbrI, and the unorthodox σVreI involved in the expression of virulence. Recently published data show that these ECFσ have separate regulons although presenting some cross-talk. We will present evidence that these different ECFσ are involved in the expression of different phenotypes, ranging from cell-wall stress response, production of extracellular polysaccharides, formation of biofilms, to iron acquisition.
Collapse
Affiliation(s)
- Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France.
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Alexis Bazire
- IUEM, Université de Bretagne-Sud (UBL), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Ali Tahrioui
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Rachel Duchesne
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Damien Tortuel
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Thomas Clamens
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Nicole Orange
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Alain Dufour
- IUEM, Université de Bretagne-Sud (UBL), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| |
Collapse
|
17
|
Gill EE, Chan LS, Winsor GL, Dobson N, Lo R, Ho Sui SJ, Dhillon BK, Taylor PK, Shrestha R, Spencer C, Hancock REW, Unrau PJ, Brinkman FSL. High-throughput detection of RNA processing in bacteria. BMC Genomics 2018; 19:223. [PMID: 29587634 PMCID: PMC5870498 DOI: 10.1186/s12864-018-4538-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/12/2018] [Indexed: 01/19/2023] Open
Abstract
Background Understanding the RNA processing of an organism’s transcriptome is an essential but challenging step in understanding its biology. Here we investigate with unprecedented detail the transcriptome of Pseudomonas aeruginosa PAO1, a medically important and innately multi-drug resistant bacterium. We systematically mapped RNA cleavage and dephosphorylation sites that result in 5′-monophosphate terminated RNA (pRNA) using monophosphate RNA-Seq (pRNA-Seq). Transcriptional start sites (TSS) were also mapped using differential RNA-Seq (dRNA-Seq) and both datasets were compared to conventional RNA-Seq performed in a variety of growth conditions. Results The pRNA-Seq library revealed known tRNA, rRNA and transfer-messenger RNA (tmRNA) processing sites, together with previously uncharacterized RNA cleavage events that were found disproportionately near the 5′ ends of transcripts associated with basic bacterial functions such as oxidative phosphorylation and purine metabolism. The majority (97%) of the processed mRNAs were cleaved at precise codon positions within defined sequence motifs indicative of distinct endonucleolytic activities. The most abundant of these motifs corresponded closely to an E. coli RNase E site previously established in vitro. Using the dRNA-Seq library, we performed an operon analysis and predicted 3159 potential TSS. A correlation analysis uncovered 105 antiparallel pairs of TSS that were separated by 18 bp from each other and were centered on single palindromic TAT(A/T)ATA motifs (likely − 10 promoter elements), suggesting that, consistent with previous in vitro experimentation, these sites can initiate transcription bi-directionally and may thus provide a novel form of transcriptional regulation. TSS and RNA-Seq analysis allowed us to confirm expression of small non-coding RNAs (ncRNAs), many of which are differentially expressed in swarming and biofilm formation conditions. Conclusions This study uses pRNA-Seq, a method that provides a genome-wide survey of RNA processing, to study the bacterium Pseudomonas aeruginosa and discover extensive transcript processing not previously appreciated. We have also gained novel insight into RNA maturation and turnover as well as a potential novel form of transcription regulation. NOTE: All sequence data has been submitted to the NCBI sequence read archive. Accession numbers are as follows: [NCBI sequence read archive: SRX156386, SRX157659, SRX157660, SRX157661, SRX157683 and SRX158075]. The sequence data is viewable using Jbrowse on www.pseudomonas.com. Electronic supplementary material The online version of this article (10.1186/s12864-018-4538-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erin E Gill
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Luisa S Chan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Geoffrey L Winsor
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Neil Dobson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Raymond Lo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Shannan J Ho Sui
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Bhavjinder K Dhillon
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Patrick K Taylor
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Raunak Shrestha
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Cory Spencer
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | - Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
18
|
Chevalier S, Bouffartigues E, Bodilis J, Maillot O, Lesouhaitier O, Feuilloley MGJ, Orange N, Dufour A, Cornelis P. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol Rev 2017; 41:698-722. [PMID: 28981745 DOI: 10.1093/femsre/fux020] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/24/2017] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium belonging to the γ-proteobacteria. Like other members of the Pseudomonas genus, it is known for its metabolic versatility and its ability to colonize a wide range of ecological niches, such as rhizosphere, water environments and animal hosts, including humans where it can cause severe infections. Another particularity of P. aeruginosa is its high intrinsic resistance to antiseptics and antibiotics, which is partly due to its low outer membrane permeability. In contrast to Enterobacteria, pseudomonads do not possess general diffusion porins in their outer membrane, but rather express specific channel proteins for the uptake of different nutrients. The major outer membrane 'porin', OprF, has been extensively investigated, and displays structural, adhesion and signaling functions while its role in the diffusion of nutrients is still under discussion. Other porins include OprB and OprB2 for the diffusion of glucose, the two small outer membrane proteins OprG and OprH, and the two porins involved in phosphate/pyrophosphate uptake, OprP and OprO. The remaining nineteen porins belong to the so-called OprD (Occ) family, which is further split into two subfamilies termed OccD (8 members) and OccK (11 members). In the past years, a large amount of information concerning the structure, function and regulation of these porins has been published, justifying why an updated review is timely.
Collapse
Affiliation(s)
- Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Josselin Bodilis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Nicole Orange
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Alain Dufour
- IUEM, Laboratoire de Biotechnologie et Chimie Marines EA 3884, Université de Bretagne-Sud (UEB), 56321 Lorient, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| |
Collapse
|
19
|
The Pseudomonas aeruginosa Two-Component Regulator AlgR Directly Activates rsmA Expression in a Phosphorylation-Independent Manner. J Bacteriol 2017; 199:JB.00048-17. [PMID: 28320883 DOI: 10.1128/jb.00048-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is an important pathogen of the immunocompromised, causing both acute and chronic infections. In cystic fibrosis (CF) patients, P. aeruginosa causes chronic disease. The impressive sensory network of P. aeruginosa allows the bacterium to sense and respond to a variety of stimuli found in diverse environments. Transcriptional regulators, including alternative sigma factors and response regulators, integrate signals changing gene expression, allowing P. aeruginosa to cause infection. The two-component transcriptional regulator AlgR is important in P. aeruginosa pathogenesis in both acute and chronic infections. In chronic infections, AlgR and the alternative sigma factor AlgU activate the genes responsible for alginate production. Previous work demonstrated that AlgU controls rsmA expression. RsmA is a posttranscriptional regulator that is antagonized by two small RNAs, RsmY and RsmZ. In this work, we demonstrate that AlgR directly activates rsmA expression from the same promoter as AlgU. In addition, phosphorylation was not necessary for AlgR activation of rsmA using algR and algZ mutant strains. AlgU and AlgR appear to affect the antagonizing small RNAs rsmY and rsmZ indirectly. RsmA was active in a mucA22 mutant strain using leader fusions of two RsmA targets, tssA1 and hcnA AlgU and AlgR were necessary for posttranscriptional regulation of tssA1 and hcnA Altogether, our work demonstrates that the alginate regulators AlgU and AlgR are important in the control of the RsmA posttranscriptional regulatory system. These findings suggest that RsmA plays an unknown role in mucoid strains due to AlgU and AlgR activities.IMPORTANCE P. aeruginosa infections are difficult to treat and frequently cause significant mortality in CF patients. Understanding the mechanisms of persistence is important. Our work has demonstrated that the alginate regulatory system also significantly impacts the posttranscriptional regulator system RsmA/Y/Z. We demonstrate that AlgR directly activates rsmA expression, and this impacts the RsmA regulon. This leads to the possibility that the RsmA/Y/Z system plays a role in helping P. aeruginosa persist during chronic infection. In addition, this furthers our understanding of the reach of the alginate regulators AlgU and AlgR.
Collapse
|
20
|
Woods EC, McBride SM. Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors. Microbes Infect 2017; 19:238-248. [PMID: 28153747 DOI: 10.1016/j.micinf.2017.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 11/27/2022]
Abstract
Extracytoplasmic function (ECF) sigma factors are a subfamily of σ70 sigma factors that activate genes involved in stress-response functions. In many bacteria, ECF sigma factors regulate resistance to antimicrobial compounds. This review will summarize the ECF sigma factors that regulate antimicrobial resistance in model organisms and clinically relevant pathogens.
Collapse
Affiliation(s)
- Emily C Woods
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
21
|
AlgU Controls Expression of Virulence Genes in Pseudomonas syringae pv. tomato DC3000. J Bacteriol 2016; 198:2330-44. [PMID: 27325679 DOI: 10.1128/jb.00276-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/14/2016] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Plant-pathogenic bacteria are able to integrate information about their environment and adjust gene expression to provide adaptive functions. AlgU, an extracytoplasmic function (ECF) sigma factor encoded by Pseudomonas syringae, controls expression of genes for alginate biosynthesis and genes involved with resisting osmotic and oxidative stress. AlgU is active while these bacteria are associated with plants, where its presence supports bacterial growth and disease symptoms. We found that AlgU is an important virulence factor for P. syringae pv. tomato DC3000 but that alginate production is dispensable for disease in host plants. This implies that AlgU regulates additional genes that facilitate bacterial pathogenesis. We used transcriptome sequencing (RNA-seq) to characterize the AlgU regulon and chromatin immunoprecipitation sequencing (ChIP-seq) to identify AlgU-regulated promoters associated with genes directly controlled by this sigma factor. We found that in addition to genes involved with alginate and osmotic and oxidative stress responses, AlgU regulates genes with known virulence functions, including components of the Hrp type III secretion system, virulence effectors, and the hrpL and hrpRS transcription regulators. These data suggest that P. syringae pv. tomato DC3000 has adapted to use signals that activate AlgU to induce expression of important virulence functions that facilitate survival and disease in plants. IMPORTANCE Plant immune systems produce antimicrobial and bacteriostatic conditions in response to bacterial infection. Plant-pathogenic bacteria are adapted to suppress and/or tolerate these conditions; however, the mechanisms controlling these bacterial systems are largely uncharacterized. The work presented here provides a mechanistic explanation for how P. syringae pv. tomato DC3000 coordinates expression of multiple genetic systems, including those dedicated to pathogenicity, in response to environmental conditions. This work demonstrates the scope of AlgU regulation in P. syringae pv. tomato DC3000 and characterizes the promoter sequence regulated by AlgU in these bacteria.
Collapse
|
22
|
Pseudomonas aeruginosa AlgU Contributes to Posttranscriptional Activity by Increasing rsmA Expression in a mucA22 Strain. J Bacteriol 2016; 198:1812-1826. [PMID: 27091153 DOI: 10.1128/jb.00133-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/12/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Pseudomonas aeruginosa thrives in multiple environments and is capable of causing life-threatening infections in immunocompromised patients. RsmA is a posttranscriptional regulator that controls virulence factor production and biofilm formation. In this study, we investigated the expression and activity of rsmA and the protein that it encodes, RsmA, in P. aeruginosa mucA mutant strains, which are common in chronic infections. We determined that AlgU regulates a previously unknown rsmA promoter in P. aeruginosa Western blot analysis confirmed that AlgU controls rsmA expression in both a laboratory strain and a clinical isolate. RNase protection assays confirmed the presence of two rsmA transcripts and suggest that RpoS and AlgU regulate rsmA expression. Due to the increased amounts of RsmA in mucA mutant strains, a translational leader fusion of the RsmA target, tssA1, was constructed and tested in mucA, algU, retS, gacA, and rsmA mutant backgrounds to examine posttranscriptional activity. From these studies, we determined that RsmA is active in mucA22 mutants, suggesting a role for RsmA in mucA mutant strains. Taken together, we have demonstrated that AlgU controls rsmA transcription and is responsible for RsmA activity in mucA mutant strains. We propose that RsmA is active in P. aeruginosa mucA mutant strains and that RsmA also plays a role in chronic infections. IMPORTANCE P. aeruginosa causes severe infections in immunocompromised patients. The posttranscriptional regulator RsmA is known to control virulence and biofilm formation. We identify a new rsmA promoter and determine that AlgU is important in the control of rsmA expression. Mutant mucA strains that are considered mucoid were used to confirm increased rsmA expression from the AlgU promoter. We demonstrate, for the first time, that there is RsmA activity in mucoid P. aeruginosa strains. Our work suggests that RsmA may play a role during chronic infections as well as acute infections.
Collapse
|
23
|
Bouffartigues E, Moscoso JA, Duchesne R, Rosay T, Fito-Boncompte L, Gicquel G, Maillot O, Bénard M, Bazire A, Brenner-Weiss G, Lesouhaitier O, Lerouge P, Dufour A, Orange N, Feuilloley MGJ, Overhage J, Filloux A, Chevalier S. The absence of the Pseudomonas aeruginosa OprF protein leads to increased biofilm formation through variation in c-di-GMP level. Front Microbiol 2015; 6:630. [PMID: 26157434 PMCID: PMC4477172 DOI: 10.3389/fmicb.2015.00630] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/09/2015] [Indexed: 11/13/2022] Open
Abstract
OprF is the major outer membrane porin in bacteria belonging to the Pseudomonas genus. In previous studies, we have shown that OprF is required for full virulence expression of the opportunistic pathogen Pseudomonas aeruginosa. Here, we describe molecular insights on the nature of this relationship and report that the absence of OprF leads to increased biofilm formation and production of the Pel exopolysaccharide. Accordingly, the level of c-di-GMP, a key second messenger in biofilm control, is elevated in an oprF mutant. By decreasing c-di-GMP levels in this mutant, both biofilm formation and pel gene expression phenotypes were restored to wild-type levels. We further investigated the impact on two small RNAs, which are associated with the biofilm lifestyle, and found that expression of rsmZ but not of rsmY was increased in the oprF mutant and this occurs in a c-di-GMP-dependent manner. Finally, the extracytoplasmic function (ECF) sigma factors AlgU and SigX displayed higher activity levels in the oprF mutant. Two genes of the SigX regulon involved in c-di-GMP metabolism, PA1181 and adcA (PA4843), were up-regulated in the oprF mutant, partly explaining the increased c-di-GMP level. We hypothesized that the absence of OprF leads to a cell envelope stress that activates SigX and results in a c-di-GMP elevated level due to higher expression of adcA and PA1181. The c-di-GMP level can in turn stimulate Pel synthesis via increased rsmZ sRNA levels and pel mRNA, thus affecting Pel-dependent phenotypes such as cell aggregation and biofilm formation. This work highlights the connection between OprF and c-di-GMP regulatory networks, likely via SigX (ECF), on the regulation of biofilm phenotypes.
Collapse
Affiliation(s)
- Emeline Bouffartigues
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Joana A Moscoso
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London London, UK
| | - Rachel Duchesne
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Thibaut Rosay
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Laurène Fito-Boncompte
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Gwendoline Gicquel
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Olivier Maillot
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Magalie Bénard
- Cell Imaging Platform of Normandy (PRIMACEN), Institute for Research and Innovation in Biomedicine, University of Rouen Mont-Saint-Aignan, France
| | - Alexis Bazire
- EA 3884-Laboratoire de Biotechnologie et Chimie Marines, Institut Universitaire Européen de la Mer, Université de Bretagne-Sud Lorient, France
| | - Gerald Brenner-Weiss
- Institute of Functional Interfaces, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Olivier Lesouhaitier
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Patrice Lerouge
- Glyco-MeV Laboratory, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Alain Dufour
- EA 3884-Laboratoire de Biotechnologie et Chimie Marines, Institut Universitaire Européen de la Mer, Université de Bretagne-Sud Lorient, France
| | - Nicole Orange
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Marc G J Feuilloley
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Joerg Overhage
- Institute of Functional Interfaces, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London London, UK
| | - Sylvie Chevalier
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| |
Collapse
|
24
|
Schmid J, Sieber V, Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 2015; 6:496. [PMID: 26074894 PMCID: PMC4443731 DOI: 10.3389/fmicb.2015.00496] [Citation(s) in RCA: 325] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022] Open
Abstract
Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is critical toward genetic, metabolic and protein-engineering approaches to produce tailor-made polymers. These designer polymers will exhibit superior material properties targeting medical and industrial applications. Exploiting the natural design space for production of a variety of biopolymer will open up a range of new applications. Here, we summarize the key aspects of microbial exopolysaccharide biosynthesis and highlight the latest engineering approaches toward the production of tailor-made variants with the potential to be used as valuable renewable and high-performance products for medical and industrial applications.
Collapse
Affiliation(s)
- Jochen Schmid
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Bernd Rehm
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and NanotechnologyPalmerston North, New Zealand
| |
Collapse
|
25
|
Expression analysis of the Pseudomonas aeruginosa AlgZR two-component regulatory system. J Bacteriol 2014; 197:736-48. [PMID: 25488298 DOI: 10.1128/jb.02290-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa virulence components are subject to complex regulatory control primarily through two-component regulatory systems that allow for sensing and responding to environmental stimuli. In this study, the expression and regulation of the P. aeruginosa AlgZR two-component regulatory system were examined. Primer extension and S1 nuclease protection assays were used to identify two transcriptional initiation sites for algR within the algZ coding region, and two additional start sites were identified upstream of the algZ coding region. The two algR transcriptional start sites, RT1 and RT2, are directly regulated by AlgU, consistent with previous reports of increased algR expression in mucoid backgrounds, and RpoS additionally plays a role in algR transcription. The expression of the first algZ promoter, ZT1, is entirely dependent upon Vfr for expression, whereas Vfr, RpoS, or AlgU does not regulate the second algZ promoter, ZT2. Western blot, real-time quantitative PCR (RT-qPCR), and transcriptional fusion analyses show that algZR expression is Vfr dependent. The algZ and algR genes also are cotranscribed in both nonmucoid and mucoid backgrounds. Furthermore, algZR was found to be cotranscribed with hemCD by RT-PCR. RT-qPCR confirmed that hemC transcription in the PAO1 ΔalgZ mutant was 40% of the level of the wild-type strain. Taken together, these results indicate that algZR transcription involves multiple factors at multiple start sites that control individual gene expression as well as coexpression of this two-component system with heme biosynthetic genes.
Collapse
|
26
|
Wood LF, Ohman DE. Cell wall stress activates expression of a novel stress response facilitator (SrfA) under σ22 (AlgT/U) control in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2014; 161:30-40. [PMID: 25336469 DOI: 10.1099/mic.0.081182-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ECF (extracytoplasmic function) alternative sigma factor, σ(22) (AlgT/U), is required for expression of the algD promoter of the operon for alginate biosynthesis in Pseudomonas aeruginosa. Alginate production promotes chronic pulmonary infections by this opportunistic pathogen in patients with cystic fibrosis and chronic obstructive pulmonary disease. σ(22) is normally sequestered, but its deregulation and activation occur either by mutation in mucA (encoding an anti-sigma factor) or in response to envelope stress, such as inhibition of peptidoglycan synthesis. The σ(22) stress response system includes many genes in addition to those for alginate. In the present study, we characterized an intergenic region between ORFs PA2559 and PA2560 in PAO1 for a σ(22)-dependent, stress-responsive transcript, described here as PA2559.1. Northern analysis and transcript end-mapping indicated the PA2559.1 transcript was ~310 nt in length. Examination of the DNA sequence upstream of +1 revealed a σ(22) core promoter motif, GAATTT-N16-TCTGT, and site-directed mutagenesis confirmed this to be a σ(22)-dependent promoter that was highly activated during cell wall stress. PA2559.1 also contained an ORF that demonstrated increased translational activity upon cell wall stress. As determined by mutant analysis, the protein encoded by PA2559.1 was shown to play a positive role in the σ(22)-dependent activation of the algD promoter under stress in both sessile (i.e. biofilm) and planktonic conditions. Thus, it appeared to act as a stress response facilitator and so was named SrfA. The sequence of SrfA was found to be novel in nature and extremely well conserved only in P. aeruginosa, suggesting that it is of high evolutionary importance in this species.
Collapse
Affiliation(s)
- Lynn F Wood
- McGuire Veterans Affairs Medical Center, Richmond, VA 23249, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Dennis E Ohman
- McGuire Veterans Affairs Medical Center, Richmond, VA 23249, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| |
Collapse
|
27
|
Ferrara S, Carloni S, Fulco R, Falcone M, Macchi R, Bertoni G. Post-transcriptional regulation of the virulence-associated enzyme AlgC by the σ(22) -dependent small RNA ErsA of Pseudomonas aeruginosa. Environ Microbiol 2014; 17:199-214. [PMID: 25186153 DOI: 10.1111/1462-2920.12590] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/29/2014] [Indexed: 11/30/2022]
Abstract
The small RNA ErsA of Pseudomonas aeruginosa, transcribed from the same genomic context of the well-known Escherichia coli Spot 42, has been characterized. We show that, different from Spot 42, ErsA is under the transcriptional control of the envelope stress response, which is known to impact the pathogenesis of P. aeruginosa through the activity of the alternative sigma factor σ(22) . The transcriptional responsiveness of ErsA RNA also spans infection-relevant cues that P. aeruginosa can experience in mammalian hosts, such as limited iron availability, temperature shifts from environmental to body temperature and reduced oxygen conditions. Another difference between Spot 42 and ErsA is that ErsA does not seem to be involved in the regulation of carbon source catabolism. Instead, our results suggest that ErsA is linked to anabolic functions for the synthesis of exoproducts from sugar precursors. We show that ErsA directly operates in the negative post-transcriptional regulation of the algC gene that encodes the virulence-associated enzyme AlgC, which provides sugar precursors for the synthesis of several P. aeruginosa polysaccharides. Like ErsA, the activation of algC expression is also dependent on σ(22) . Altogether, our results suggest that ErsA and σ(22) combine in an incoherent feed-forward loop to fine-tune AlgC enzyme expression.
Collapse
Affiliation(s)
- Silvia Ferrara
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Sewell A, Dunmire J, Wehmann M, Rowe T, Bouhenni R. Proteomic analysis of keratitis-associated Pseudomonas aeruginosa. Mol Vis 2014; 20:1182-91. [PMID: 25221424 PMCID: PMC4153424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 08/27/2014] [Indexed: 11/17/2022] Open
Abstract
PURPOSE To compare the proteomic profile of a clinical isolate of Pseudomonas aeruginosa (P. aeruginosa) obtained from an infected cornea of a contact lens wearer and the laboratory strain P. aeruginosa ATCC 10145. METHODS Antibiotic sensitivity, motility, biofilm formation, and virulence tests were performed using standard methods. Whole protein lysates were analyzed with liquid chromatography/ tandem mass spectrometry (LC-MS/MS) in triplicate, and relative protein abundances were determined with spectral counting. The G test followed by a post hoc Holm-Sidak adjustment was used for the statistical analyses to determine significance in the differential expression of proteins between the two strains. RESULTS A total of 687 proteins were detected. One-hundred thirty-three (133) proteins were significantly different between the two strains. Among these, 13 were upregulated, and 16 were downregulated in the clinical strain compared to ATCC 10145, whereas 57 were detected only in the clinical strain. The upregulated proteins are associated with virulence and pathogenicity. CONCLUSIONS Proteins detected at higher levels in the clinical strain of P. aeruginosa were proteins known to be virulence factors. These results confirm that the keratitis-associated P. aeruginosa strain is pathogenic and expresses a higher number of virulence factors compared to the laboratory strain ATCC 10145. Identification of the protein profile of the corneal strain of P. aeruginosa in this study will aid in elucidating novel intervention strategies for reducing the burden of P. aeruginosa infection in keratitis.
Collapse
|
29
|
Okkotsu Y, Little AS, Schurr MJ. The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes. Front Cell Infect Microbiol 2014; 4:82. [PMID: 24999454 PMCID: PMC4064291 DOI: 10.3389/fcimb.2014.00082] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/02/2014] [Indexed: 01/28/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes a multitude of infections. These infections can occur at almost any site in the body and are usually associated with a breach of the innate immune system. One of the prominent sites where P. aeruginosa causes chronic infections is within the lungs of cystic fibrosis patients. P. aeruginosa uses two-component systems that sense environmental changes to differentially express virulence factors that cause both acute and chronic infections. The P. aeruginosa AlgZR two component system is one of its global regulatory systems that affects the organism's fitness in a broad manner. This two-component system is absolutely required for two P. aeruginosa phenotypes: twitching motility and alginate production, indicating its importance in both chronic and acute infections. Additionally, global transcriptome analyses indicate that it regulates the expression of many different genes, including those associated with quorum sensing, type IV pili, type III secretion system, anaerobic metabolism, cyanide and rhamnolipid production. This review examines the complex AlgZR regulatory network, what is known about the structure and function of each protein, and how it relates to the organism's ability to cause infections.
Collapse
Affiliation(s)
- Yuta Okkotsu
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| | - Alexander S Little
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| | - Michael J Schurr
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| |
Collapse
|
30
|
Bazire A, Dufour A. The Pseudomonas aeruginosa rhlG and rhlAB genes are inversely regulated and RhlG is not required for rhamnolipid synthesis. BMC Microbiol 2014; 14:160. [PMID: 24943492 PMCID: PMC4074388 DOI: 10.1186/1471-2180-14-160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa produces rhamnolipid biosurfactants involved in numerous phenomena including virulence. The transcriptional study of the rhlAB operon encoding two key enzymes for rhamnolipid synthesis led to the discovery of the quorum sensing system RhlRI. The latter positively controls the transcription of rhlAB, as well as of rhlC, which is required for di-rhamnolipid synthesis. The rhlG gene encodes an NADPH-dependent β-ketoacyl reductase. Although it was reported to be required for the biosynthesis of the fatty acid part of rhamnolipids, its function in rhamnolipid synthesis was later questioned. The rhlG transcription and its role in rhamnolipid production were investigated here. RESULTS Using 5'-RACE PCR, a luxCDABE-based transcriptional fusion, and quantitative reverse transcription-PCR, we confirmed two previously identified σ70- and σ54-dependent promoters and we identified a third promoter recognized by the extra-cytoplasmic function sigma factor AlgU. rhlG was inversely regulated compared to rhlAB and rhlC: the rhlG transcription was down-regulated in response to N-butyryl-l-homoserine lactone, the communication molecule of the RhlRI system, and was induced by hyperosmotic stress in an AlgU-dependent manner. Consistently with this transcriptional pattern, the single or double deletions of rhlG and PA3388, which forms an operon with rhlG, did not dramatically impair rhamnolipid synthesis. CONCLUSION This first detailed study of rhlG transcription reveals a complex regulation involving three sigma factors and N-butyryl-l-homoserine lactone. We furthermore present evidences that RhlG does not play a key role in rhamnolipid synthesis.
Collapse
Affiliation(s)
- Alexis Bazire
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France.
| | | |
Collapse
|
31
|
Ryall B, Carrara M, Zlosnik JEA, Behrends V, Lee X, Wong Z, Lougheed KE, Williams HD. The mucoid switch in Pseudomonas aeruginosa represses quorum sensing systems and leads to complex changes to stationary phase virulence factor regulation. PLoS One 2014; 9:e96166. [PMID: 24852379 PMCID: PMC4031085 DOI: 10.1371/journal.pone.0096166] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/03/2014] [Indexed: 01/04/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa chronically infects the airways of Cystic Fibrosis (CF) patients during which it adapts and undergoes clonal expansion within the lung. It commonly acquires inactivating mutations of the anti-sigma factor MucA leading to a mucoid phenotype, caused by excessive production of the extracellular polysaccharide alginate that is associated with a decline in lung function. Alginate production is believed to be the key benefit of mucA mutations to the bacterium in the CF lung. A phenotypic and gene expression characterisation of the stationary phase physiology of mucA22 mutants demonstrated complex and subtle changes in virulence factor production, including cyanide and pyocyanin, that results in their down-regulation upon entry into stationary phase but, (and in contrast to wildtype strains) continued production in prolonged stationary phase. These findings may have consequences for chronic infection if mucoid P. aeruginosa were to continue to make virulence factors under non-growing conditions during infection. These changes resulted in part from a severe down-regulation of both AHL-and AQ (PQS)-dependent quorum sensing systems. In trans expression of the cAMP-dependent transcription factor Vfr restored both quorum sensing defects and virulence factor production in early stationary phase. Our findings have implications for understanding the evolution of P. aeruginosa during CF lung infection and it demonstrates that mucA22 mutation provides a second mechanism, in addition to the commonly occurring lasR mutations, of down-regulating quorum sensing during chronic infection this may provide a selection pressure for the mucoid switch in the CF lung.
Collapse
Affiliation(s)
- Ben Ryall
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - Marta Carrara
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - James E. A. Zlosnik
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - Volker Behrends
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - Xiaoyun Lee
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - Zhen Wong
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - Kathryn E. Lougheed
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - Huw D. Williams
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Martínez-Granero F, Redondo-Nieto M, Vesga P, Martín M, Rivilla R. AmrZ is a global transcriptional regulator implicated in iron uptake and environmental adaption in P. fluorescens F113. BMC Genomics 2014; 15:237. [PMID: 24670089 PMCID: PMC3986905 DOI: 10.1186/1471-2164-15-237] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 03/21/2014] [Indexed: 12/04/2022] Open
Abstract
Background AmrZ, a RHH transcriptional regulator, regulates motility and alginate production in pseudomonads. Expression of amrZ depends on the environmental stress sigma factor AlgU. amrZ and algU mutants have been shown to be impaired in environmental fitness in different pseudomonads with different lifestyles. Considering the importance of AmrZ for the ecological fitness of pseudomonads and taking advantage of the full sequencing and annotation of the Pseudomonas fluorescens F113 genome, we have carried out a ChIP-seq analysis from a pool of eight independent ChIP assays in order to determine the AmrZ binding sites and its implication in the regulation of genes involved in environmental adaption. Results 154 enriched regions (AmrZ binding sites) were detected in this analysis, being 76% of them located in putative promoter regions. 18 of these peaks were validated in an independent ChIP assay by qPCR. The 154 peaks were assigned to genes involved in several functional classes such as motility and chemotaxis, iron homeostasis, and signal transduction and transcriptional regulators, including genes encoding proteins implicated in the turn-over of c-diGMP. A putative AmrZ binding site was also observed by aligning the 154 regions with the MEME software. This motif was present in 75% of the peaks and was similar to that described in the amrZ and algD promoters in P. aeruginosa. We have analyzed the role of AmrZ in the regulation of iron uptake genes, to find that AmrZ represses their expression under iron limiting conditions. Conclusions The results presented here show that AmrZ is an important global transcriptional regulator involved in environmental sensing and adaption. It is also a new partner in the complex iron homeostasis regulation.
Collapse
Affiliation(s)
| | | | | | | | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, C/Darwin, 2, 28049 Madrid Spain.
| |
Collapse
|
33
|
Park SH, Bao Z, Butcher BG, D'Amico K, Xu Y, Stodghill P, Schneider DJ, Cartinhour S, Filiatrault MJ. Analysis of the small RNA spf in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000. MICROBIOLOGY-SGM 2014; 160:941-953. [PMID: 24600027 DOI: 10.1099/mic.0.076497-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacteria contain small non-coding RNAs (ncRNAs) that are typically responsible for altering transcription, translation or mRNA stability. ncRNAs are important because they often regulate virulence factors and susceptibility to various stresses. Here, the regulation of a recently described ncRNA of Pseudomonas syringae DC3000, spot 42 (now referred to as spf), was investigated. A putative RpoE binding site was identified upstream of spf in strain DC3000. RpoE is shown to regulate the expression of spf. Also, deletion of spf results in increased sensitivity to hydrogen peroxide compared with the wild-type strain, suggesting that spf plays a role in susceptibility to oxidative stress. Furthermore, expression of alg8 is shown to be influenced by spf, suggesting that this ncRNA plays a role in alginate biosynthesis. Structural and comparative genomic analyses show this ncRNA is well conserved among the pseudomonads. The findings provide new information on the regulation and role of this ncRNA in P. syringae.
Collapse
Affiliation(s)
- So Hae Park
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Zhongmeng Bao
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Bronwyn G Butcher
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Katherine D'Amico
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yun Xu
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Paul Stodghill
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA
| | - David J Schneider
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Samuel Cartinhour
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - M J Filiatrault
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
34
|
Hay ID, Wang Y, Moradali MF, Rehman ZU, Rehm BHA. Genetics and regulation of bacterial alginate production. Environ Microbiol 2014; 16:2997-3011. [DOI: 10.1111/1462-2920.12389] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 12/18/2013] [Accepted: 12/22/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Iain D. Hay
- Institute of Fundamental Sciences; Massey University; Palmerston North 4442 New Zealand
| | - Yajie Wang
- Institute of Fundamental Sciences; Massey University; Palmerston North 4442 New Zealand
| | - Mohammed F. Moradali
- Institute of Fundamental Sciences; Massey University; Palmerston North 4442 New Zealand
| | - Zahid U. Rehman
- Institute of Fundamental Sciences; Massey University; Palmerston North 4442 New Zealand
| | - Bernd H. A. Rehm
- Institute of Fundamental Sciences; Massey University; Palmerston North 4442 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology; Massey University; Palmerston North 4442 New Zealand
| |
Collapse
|
35
|
Gupta N, Gupta A, Kumar S, Mishra R, Singh C, Tripathi AK. Cross-talk between cognate and noncognate RpoE sigma factors and Zn(2+)-binding anti-sigma factors regulates photooxidative stress response in Azospirillum brasilense. Antioxid Redox Signal 2014; 20:42-59. [PMID: 23725220 DOI: 10.1089/ars.2013.5314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Azospirillum brasilense harbors two redox-sensitive Zinc-binding anti-sigma (ZAS) factors (ChrR1 and ChrR2), which negatively regulate the activity of their cognate extra-cytoplasmic function (ECF) σ factors (RpoE1 and RpoE2) by occluding their binding to the core enzyme. Both pairs of RpoE-ChrR control responses to photooxidative stress. The aim of this study was to investigate whether the two RpoE-ChrR pairs cross-talk while responding to the stress. RESULTS In silico analysis showed a high sequence similarity between ChrR1 and ChrR2 proteins, but differences in redox sensitivity. Using in silico and in vitro methods of protein-protein interaction, we have shown that both ChrR1 and ChrR2 proteins physically bind to their noncognate RpoE proteins. Restoration of the phenotypes of chrR1::Tn5 and chrR2::Km mutants related to carotenoid biosynthesis and photooxidative stress tolerance by expressing chrR1 or chrR2 provided in vivo evidence for the cross-talk. In addition, up- or down-regulation of several identical proteins by expressing chrR1 or chrR2 in the chrR1::Tn5 mutant provided another in vivo evidence for the cross-talk. INNOVATION Although multiple redox-sensitive ZAS anti-σ factors occur in some Gram-positive bacteria, no cross-talk is reported among them. We report here, for the first time, that the two ZAS anti-σ factors of A. brasilense also interact with their noncognate σ factors and affect gene expression. CONCLUSION The two redox-sensitive ZAS anti-σ factors in A. brasilense may interact with their cognate as well as noncognate ECF σ factors to play an important role in redox homeostasis by facilitating recovery from the oxidative stress.
Collapse
Affiliation(s)
- Namrata Gupta
- Faculty of Science, School of Biotechnology, Banaras Hindu University , Varanasi, India
| | | | | | | | | | | |
Collapse
|
36
|
Yin Y, Damron FH, Withers TR, Pritchett CL, Wang X, Schurr MJ, Yu HD. Expression of mucoid induction factor MucE is dependent upon the alternate sigma factor AlgU in Pseudomonas aeruginosa. BMC Microbiol 2013; 13:232. [PMID: 24138584 PMCID: PMC3819740 DOI: 10.1186/1471-2180-13-232] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alginate overproduction in P. aeruginosa, also referred to as mucoidy, is a poor prognostic marker for patients with cystic fibrosis (CF). We previously reported the construction of a unique mucoid strain which overexpresses a small envelope protein MucE leading to activation of the protease AlgW. AlgW then degrades the anti-sigma factor MucA thus releasing the alternative sigma factor AlgU/T (σ(22)) to initiate transcription of the alginate biosynthetic operon. RESULTS In the current study, we mapped the mucE transcriptional start site, and determined that P(mucE) activity was dependent on AlgU. Additionally, the presence of triclosan and sodium dodecyl sulfate was shown to cause an increase in P(mucE) activity. It was observed that mucE-mediated mucoidy in CF isolates was dependent on both the size of MucA and the genotype of algU. We also performed shotgun proteomic analysis with cell lysates from the strains PAO1, VE2 (PAO1 with constitutive expression of mucE) and VE2ΔalgU (VE2 with in-frame deletion of algU). As a result, we identified nine algU-dependent and two algU-independent proteins that were affected by overexpression of MucE. CONCLUSIONS Our data indicates there is a positive feedback regulation between MucE and AlgU. Furthermore, it seems likely that MucE may be part of the signal transduction system that senses certain types of cell wall stress to P. aeruginosa.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongwei D Yu
- Department of Biochemistry and Microbiology, Joan C, Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
37
|
Hay ID, Ur Rehman Z, Moradali MF, Wang Y, Rehm BHA. Microbial alginate production, modification and its applications. Microb Biotechnol 2013; 6:637-50. [PMID: 24034361 PMCID: PMC3815931 DOI: 10.1111/1751-7915.12076] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/25/2013] [Accepted: 07/06/2013] [Indexed: 11/29/2022] Open
Abstract
Alginate is an important polysaccharide used widely in the food, textile, printing and pharmaceutical industries for its viscosifying, and gelling properties. All commercially produced alginates are isolated from farmed brown seaweeds. These algal alginates suffer from heterogeneity in composition and material properties. Here, we will discuss alginates produced by bacteria; the molecular mechanisms involved in their biosynthesis; and the potential to utilize these bacterially produced or modified alginates for high-value applications where defined material properties are required.
Collapse
Affiliation(s)
- Iain D Hay
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
38
|
Genes required for and effects of alginate overproduction induced by growth of Pseudomonas aeruginosa on Pseudomonas isolation agar supplemented with ammonium metavanadate. J Bacteriol 2013; 195:4020-36. [PMID: 23794622 DOI: 10.1128/jb.00534-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can adapt to changing environments and can secrete an exopolysaccharide known as alginate as a protection response, resulting in a colony morphology and phenotype referred to as mucoid. However, how P. aeruginosa senses its environment and activates alginate overproduction is not fully understood. Previously, we showed that Pseudomonas isolation agar supplemented with ammonium metavanadate (PIAAMV) induces P. aeruginosa to overproduce alginate. Vanadate is a phosphate mimic and causes protein misfolding by disruption of disulfide bonds. Here we used PIAAMV to characterize the pathways involved in inducible alginate production and tested the global effects of P. aeruginosa growth on PIAAMV by a mutant library screen, by transcriptomics, and in a murine acute virulence model. The PA14 nonredundant mutant library was screened on PIAAMV to identify new genes that are required for the inducible alginate stress response. A functionally diverse set of genes encoding products involved in cell envelope biogenesis, peptidoglycan remodeling, uptake of phosphate and iron, phenazine biosynthesis, and other processes were identified as positive regulators of the mucoid phenotype on PIAAMV. Transcriptome analysis of P. aeruginosa cultures growing in the presence of vanadate showed differential expression of genes involved in virulence, envelope biogenesis, and cell stress pathways. In this study, it was observed that growth on PIAAMV attenuates P. aeruginosa in a mouse pneumonia model. Induction of alginate overproduction occurs as a stress response to protect P. aeruginosa, but it may be possible to modulate and inhibit these pathways based on the new genes identified in this study.
Collapse
|
39
|
Thakur PB, Vaughn-Diaz VL, Greenwald JW, Gross DC. Characterization of five ECF sigma factors in the genome of Pseudomonas syringae pv. syringae B728a. PLoS One 2013; 8:e58846. [PMID: 23516563 PMCID: PMC3597554 DOI: 10.1371/journal.pone.0058846] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/07/2013] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas syringae pv. syringae B728a, a bacterial pathogen of bean, utilizes large surface populations and extracellular signaling to initiate a fundamental change from an epiphytic to a pathogenic lifestyle. Extracytoplasmic function (ECF) sigma (σ) factors serve as important regulatory factors in responding to various environmental signals. Bioinformatic analysis of the B728a genome revealed 10 ECF sigma factors. This study analyzed deletion mutants of five previously uncharacterized ECF sigma factor genes in B728a, including three FecI-type ECF sigma factors (ECF5, ECF6, and ECF7) and two ECF sigma factors placed in groups ECF11 and ECF18. Transcriptional profiling by qRT-PCR analysis of ECF sigma factor mutants was used to measure expression of their associated anti-sigma and outer membrane receptor proteins, and expression of genes associated with production of extracellular polysaccharides, fimbriae, glycine betaine and syringomycin. Notably, the B728aΔecf7 mutant displayed reduced swarming and had decreased expression of CupC fimbrial genes. Growth and pathogenicity assays, using a susceptible bean host, revealed that none of the tested sigma factor genes are required for in planta growth and lesion formation.
Collapse
Affiliation(s)
- Poulami Basu Thakur
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Vanessa L. Vaughn-Diaz
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Jessica W. Greenwald
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Dennis C. Gross
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
- * E-mail: .
| |
Collapse
|
40
|
Gupta N, Kumar S, Mishra MN, Tripathi AK. A constitutively expressed pair of rpoE2–chrR2 in Azospirillum brasilense Sp7 is required for survival under antibiotic and oxidative stress. Microbiology (Reading) 2013; 159:205-218. [DOI: 10.1099/mic.0.061937-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Namrata Gupta
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| | - Santosh Kumar
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| | - Mukti Nath Mishra
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| | - Anil Kumar Tripathi
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
41
|
Hayashi N, Matsukawa M, Horinishi Y, Nakai K, Shoji A, Yoneko Y, Yoshida N, Minagawa S, Gotoh N. Interplay of flagellar motility and mucin degradation stimulates the uassociation of Pseudomonas aeruginosa with human epithelial colorectal adenocarcinoma (Caco-2) cells. J Infect Chemother 2013; 19:305-15. [DOI: 10.1007/s10156-013-0554-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/07/2013] [Indexed: 01/02/2023]
|
42
|
Transcription of the oprF gene of Pseudomonas aeruginosa is dependent mainly on the SigX sigma factor and is sucrose induced. J Bacteriol 2012; 194:4301-11. [PMID: 22685281 DOI: 10.1128/jb.00509-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The OprF porin is the major outer membrane protein of Pseudomonas aeruginosa. OprF is involved in several crucial functions, including cell structure, outer membrane permeability, environmental sensing, and virulence. The oprF gene is preceded by the sigX gene, which encodes the poorly studied extracytoplasmic function (ECF) sigma factor SigX. Three oprF promoters were previously identified. Two intertwined promoters dependent on σ(70) and SigX are located in the sigX-oprF intergenic region, whereas a promoter dependent on the ECF AlgU lies within the sigX gene. An additional promoter was found in the cmpX-sigX intergenic region. In this study, we dissected the contribution of each promoter region and of each sigma factor to oprF transcription using transcriptional fusions. In Luria-Bertani (LB) medium, the oprF-proximal region (sigX-oprF intergenic region) accounted for about 80% of the oprF transcription, whereas the AlgU-dependent promoter had marginal activity. Using the sigX mutant PAOSX, we observed that the SigX-dependent promoter was largely predominant over the σ(70)-dependent promoter. oprF transcription was increased in response to low NaCl or high sucrose concentrations, and this induced transcription was strongly impaired in the absence of SigX. The lack of OprF itself increased oprF transcription. Since these conditions led to cell wall alterations, oprF transcription could be activated by signals triggered by perturbation of the cell envelope.
Collapse
|
43
|
Identification of genes in the σ²² regulon of Pseudomonas aeruginosa required for cell envelope homeostasis in either the planktonic or the sessile mode of growth. mBio 2012; 3:mBio.00094-12. [PMID: 22589289 PMCID: PMC3372973 DOI: 10.1128/mbio.00094-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Pseudomonas aeruginosa extracytoplasmic functioning (ECF) sigma factor σ22 is encoded by algT/algU and is inhibited by anti-sigma factor MucA. σ22 was originally discovered for its essential role in the expression of the exopolysaccharide alginate by mucoid strains associated with chronic pulmonary infection. However, σ22 is now known to also have a large regulon associated with the response to cell wall stress. Our recent transcriptome analysis identified 293 open reading frames (ORFs) in the σ22 stress stimulon that include genes for outer envelope biogenesis and remodeling, although most of the genes have undefined functions. To better understand the σ22-dependent stress response, mutants affected in 27 genes of the σ22 stimulon were examined and expression was studied with lacZ fusions. Mutants constructed in the 27 genes showed no major change in response to cell wall-acting antibiotics or growth at elevated temperatures nor in alginate production. The mutants were examined for their effects on the expression of the σ22-dependent promoter of the alginate biosynthetic operon (PalgD) as a measure of σ22 derepression from MucA. By testing PalgD expression under both planktonic and sessile growth conditions, 11 genes were found to play a role in the stress response that activates σ22. Some mutations caused an increase or a decrease in the response to cell wall stress. Interestingly, mutations in 7 of the 11 genes caused constitutive PalgD expression under nonstressed conditions and thus showed that these genes are involved in maintaining envelope homeostasis. Mutations in PA0062 and PA1324 showed constitutive PalgD expression during both the planktonic and the sessile modes of growth. However, the PA5178 mutation caused constitutive PalgD expression only during planktonic growth. In contrast, mutations in PA2717, PA0567, PA3040, and PA0920 caused constitutive PalgD expression only in the sessile/biofilm mode of growth. This provides evidence that the σ22 stimulon for cell envelope homeostasis overlaps with biofilm control mechanisms. During chronic lung infections, such as in cystic fibrosis patients, Pseudomonas aeruginosa produces the exopolysaccharide alginate and forms biofilms that shield the organisms from the immune response and increase resistance to antibiotics. Activation of alginate genes is under the control of an extracytoplasmic stress response system that releases an alternative sigma factor (σ22) in response to cell wall stress and then activates expression of a large regulon. In this study, a mutant analysis of 27 members of the regulon showed that 11 play a role in envelope homeostasis and affect the stress response system itself. Interestingly, some genes demonstrate effects only in either the planktonic (free-swimming) or the sessile (biofilm) mode of growth, which leads to persistence and antibiotic tolerance. The studies presented here provide an important initial step in dissecting the mechanisms that regulate a critical signal transduction pathway that impacts P. aeruginosa pathogenesis.
Collapse
|
44
|
Damron FH, Goldberg JB. Proteolytic regulation of alginate overproduction in Pseudomonas aeruginosa. Mol Microbiol 2012; 84:595-607. [PMID: 22497280 DOI: 10.1111/j.1365-2958.2012.08049.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium, is a significant opportunistic pathogen associated with skin and soft tissue infections, nosocomial pneumonia and sepsis. In addition, it can chronically colonize the lungs of cystic fibrosis (CF) patients. Overproduction of the exopolysaccharide called alginate provides P. aeruginosa with a selective advantage and facilitates survival in the CF lung. The in vitro phenotype of alginate overproduction observed on solid culture media is referred to as mucoid. Expression of the alginate machinery and biosynthetic enzymes are controlled by the extracytoplasmic sigma factor, σ(22) (AlgU/T). The key negative regulator of both σ(22) activity and the mucoid phenotype is the cognate anti-sigma factor MucA. MucA sequesters σ(22) to the inner membrane inhibiting the sigma factor's transcriptional activity. The well-studied mechanism for transition to the mucoid phenotype is mutation of mucA, leading to loss of MucA function and therefore activation of σ(22) . Recently, regulated intramembrane proteolysis (RIP) has been recognized as a mechanism whereby proteolysis of the anti-sigma factor MucA leads to active σ(22) allowing P. aeruginosa to respond to environmental stress conditions by overproduction of alginate. The goal of this review is to illuminate the pathways leading to RIP that have been identified and proposed.
Collapse
Affiliation(s)
- F Heath Damron
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | | |
Collapse
|
45
|
Mann EE, Wozniak DJ. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 2012; 36:893-916. [PMID: 22212072 DOI: 10.1111/j.1574-6976.2011.00322.x] [Citation(s) in RCA: 392] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 11/27/2022] Open
Abstract
Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure-function relationships, regulation, and the role of individual matrix molecules in niche biology.
Collapse
Affiliation(s)
- Ethan E Mann
- Department of Microbial Infection and Immunity, Department of Microbiology, Center for Microbial Interface Biology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | | |
Collapse
|
46
|
Analysis of the Pseudomonas aeruginosa regulon controlled by the sensor kinase KinB and sigma factor RpoN. J Bacteriol 2011; 194:1317-30. [PMID: 22210761 DOI: 10.1128/jb.06105-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alginate overproduction by Pseudomonas aeruginosa, also known as mucoidy, is associated with chronic endobronchial infections in cystic fibrosis. Alginate biosynthesis is initiated by the extracytoplasmic function sigma factor (σ(22); AlgU/AlgT). In the wild-type (wt) nonmucoid strains, such as PAO1, AlgU is sequestered to the cytoplasmic membrane by the anti-sigma factor MucA that inhibits alginate production. One mechanism underlying the conversion to mucoidy is mutation of mucA. However, the mucoid conversion can occur in wt mucA strains via the degradation of MucA by activated intramembrane proteases AlgW and/or MucP. Previously, we reported that the deletion of the sensor kinase KinB in PAO1 induces an AlgW-dependent proteolysis of MucA, resulting in alginate overproduction. This type of mucoid induction requires the alternate sigma factor RpoN (σ(54)). To determine the RpoN-dependent KinB regulon, microarray and proteomic analyses were performed on a mucoid kinB mutant and an isogenic nonmucoid kinB rpoN double mutant. In the kinB mutant of PAO1, RpoN controlled the expression of approximately 20% of the genome. In addition to alginate biosynthetic and regulatory genes, KinB and RpoN also control a large number of genes including those involved in carbohydrate metabolism, quorum sensing, iron regulation, rhamnolipid production, and motility. In an acute pneumonia murine infection model, BALB/c mice exhibited increased survival when challenged with the kinB mutant relative to survival with PAO1 challenge. Together, these data strongly suggest that KinB regulates virulence factors important for the development of acute pneumonia and conversion to mucoidy.
Collapse
|
47
|
Filiatrault MJ, Stodghill PV, Myers CR, Bronstein PA, Butcher BG, Lam H, Grills G, Schweitzer P, Wang W, Schneider DJ, Cartinhour SW. Genome-wide identification of transcriptional start sites in the plant pathogen Pseudomonas syringae pv. tomato str. DC3000. PLoS One 2011; 6:e29335. [PMID: 22216251 PMCID: PMC3247240 DOI: 10.1371/journal.pone.0029335] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 11/25/2011] [Indexed: 12/28/2022] Open
Abstract
RNA-Seq has provided valuable insights into global gene expression in a wide variety of organisms. Using a modified RNA-Seq approach and Illumina's high-throughput sequencing technology, we globally identified 5'-ends of transcripts for the plant pathogen Pseudomonas syringae pv. tomato str. DC3000. A substantial fraction of 5'-ends obtained by this method were consistent with results obtained using global RNA-Seq and 5'RACE. As expected, many 5'-ends were positioned a short distance upstream of annotated genes. We also captured 5'-ends within intergenic regions, providing evidence for the expression of un-annotated genes and non-coding RNAs, and detected numerous examples of antisense transcription, suggesting additional levels of complexity in gene regulation in DC3000. Importantly, targeted searches for sequence patterns in the vicinity of 5'-ends revealed over 1200 putative promoters and other regulatory motifs, establishing a broad foundation for future investigations of regulation at the genomic and single gene levels.
Collapse
Affiliation(s)
- Melanie J Filiatrault
- lant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, New York, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Rao J, Damron FH, Basler M, Digiandomenico A, Sherman NE, Fox JW, Mekalanos JJ, Goldberg JB. Comparisons of Two Proteomic Analyses of Non-Mucoid and Mucoid Pseudomonas aeruginosa Clinical Isolates from a Cystic Fibrosis Patient. Front Microbiol 2011; 2:162. [PMID: 21863142 PMCID: PMC3149151 DOI: 10.3389/fmicb.2011.00162] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/14/2011] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa chronically infects the lungs of cystic fibrosis (CF) patients. The conditions in the CF lung appear to select for P. aeruginosa with advantageous phenotypes for chronic infection. However, the mechanisms that allow the establishment of this chronic infection have not been fully characterized. We have previously reported the transcriptional analysis of two CF isolates strains 383 and 2192. Strain 2192 is a mucoid, alginate overproducing strain whereas strain 383 is non-mucoid. Mucoid strains are associated with chronic infection of the CF lung and non-mucoid strains are the typical initially infecting isolates. To elucidate novel differences between these two strains, we employed two methods of shotgun proteomics: isobaric tags for relative and absolute quantitation (iTRAQ) and two-dimensional gel electrophoresis (2-DE). iTRAQ compares the amount of protein between samples and relies on protein abundance, while 2-DE gel electrophoresis depends on selection of separated protein spots. For both these methods, mass spectrometry was then used to identify proteins differentially expressed between the two strains. The compilation of these two proteomic methods along with Western blot analysis revealed proteins of the HSI-I operon of the type 6 secretion system, showed increased expression in 383 compared to 2192, confirming the our previous transcriptional analysis. Proteomic analysis of other proteins did not fully correlate with the transcriptome but other differentially expressed proteins are discussed. Also, differences were noted between the results obtained for the two proteomic techniques. These shotgun proteomic analyses identified proteins that had been predicted only through gene identification; we now refer to these as "proteins of unknown functions" since their existence has now been established however their functional characterization remains to be elucidated.
Collapse
Affiliation(s)
- Jayasimha Rao
- Department of Microbiology, University of Virginia Health Sciences Center Charlottesville, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Damron FH, Davis MR, Withers TR, Ernst RK, Goldberg JB, Yu G, Yu HD. Vanadate and triclosan synergistically induce alginate production by Pseudomonas aeruginosa strain PAO1. Mol Microbiol 2011; 81:554-70. [PMID: 21631603 DOI: 10.1111/j.1365-2958.2011.07715.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alginate overproduction by P. aeruginosa strains, also known as mucoidy, is associated with chronic lung infections in cystic fibrosis (CF). It is not clear how alginate induction occurs in the wild-type (wt) mucA strains. When grown on Pseudomonas isolation agar (PIA), P. aeruginosa strains PAO1 and PA14 are non-mucoid, producing minimal amounts of alginate. Here we report the addition of ammonium metavanadate (AMV), a phosphatase inhibitor, to PIA (PIA-AMV) induced mucoidy in both these laboratory strains and early lung colonizing non-mucoid isolates with a wt mucA. This phenotypic switch was reversible depending on the availability of vanadate salts and triclosan, a component of PIA. Alginate induction in PAO1 on PIA-AMV was correlated with increased proteolytic degradation of MucA, and required envelope proteases AlgW or MucP, and a two-component phosphate regulator, PhoP. Other changes included the addition of palmitate to lipid A, a phenotype also observed in chronic CF isolates. Proteomic analysis revealed the upregulation of stress chaperones, which was confirmed by increased expression of the chaperone/protease MucD. Altogether, these findings suggest a model of alginate induction and the PIA-AMV medium may be suitable for examining early lung colonization phenotypes in CF before the selection of the mucA mutants.
Collapse
Affiliation(s)
- F Heath Damron
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755-9320, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Williams HD, Behrends V, Bundy JG, Ryall B, Zlosnik JEA. Hypertonic Saline Therapy in Cystic Fibrosis: Do Population Shifts Caused by the Osmotic Sensitivity of Infecting Bacteria Explain the Effectiveness of this Treatment? Front Microbiol 2010; 1:120. [PMID: 21687721 PMCID: PMC3109665 DOI: 10.3389/fmicb.2010.00120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/11/2010] [Indexed: 01/22/2023] Open
Abstract
Cystic fibrosis (CF) is caused by a defect in the CF transmembrane regulator that leads to depletion and dehydration of the airway surface liquid (ASL) of the lung epithelium, providing an environment that can be infected by bacteria leading to increased morbidity and mortality. Pseudomonas aeruginosa chronically infects more than 80% of CF patients and one hallmark of infection is the emergence of a mucoid phenotype associated with a worsening prognosis and more rapid decline in lung function. Hypertonic saline (HS) is a clinically proven treatment that improves mucociliary clearance through partial rehydration of the ASL of the lung. Strikingly, while HS therapy does not alter the prevalence of P. aeruginosa in the CF lung it does decrease the frequency of episodes of acute, severe illness known as infective exacerbations among CF patients. In this article, we propose a hypothesis whereby the positive clinical effects of HS treatment are explained by the osmotic sensitivity of the mucoid sub-population of P. aeruginosa in the CF lung leading to selection against this group in favor of the osmotically resistant non-mucoid variants.
Collapse
Affiliation(s)
- Huw D. Williams
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondon, UK
| | - Volker Behrends
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondon, UK
- Section of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College LondonLondon, UK
| | - Jacob G. Bundy
- Section of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College LondonLondon, UK
| | - Ben Ryall
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondon, UK
| | - James E. A. Zlosnik
- Centre for the Understanding and Prevention of Infection in Children/Division of Infectious and Immunological Diseases, Department of Pediatrics, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|