1
|
Cohesion of Sister Chromosome Termini during the Early Stages of Sporulation in Bacillus subtilis. J Bacteriol 2020; 202:JB.00296-20. [PMID: 32778559 PMCID: PMC7515245 DOI: 10.1128/jb.00296-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/31/2020] [Indexed: 11/28/2022] Open
Abstract
During sporulation of Bacillus subtilis, the cell cycle is reorganized to generate separated prespore and mother cell compartments, each containing a single fully replicated chromosome. The process begins with reorganization of the nucleoid to form an elongated structure, the axial filament, in which the two chromosome origins are attached to opposite cell poles, with the remainder of the DNA stretched between these sites. When the cell then divides asymmetrically, the division septum closes around the chromosome destined for the smaller prespore, trapping the origin-proximal third of the chromosome in the prespore. A translocation pore is assembled through which a DNA transporter, SpoIIIE/FtsK, transfers the bulk of the chromosome to complete the segregation process. Although the mechanisms involved in attaching origin regions to the cell poles are quite well understood, little is known about other aspects of axial filament morphology. We have studied the behavior of the terminus region of the chromosome during sporulation using time-lapse imaging of wild-type and mutant cells. The results suggest that the elongated structure involves cohesion of the terminus regions of the sister chromosomes and that this cohesion is resolved when the termini reach the asymmetric septum or translocation pore. Possible mechanisms and roles of cohesion and resolution are discussed.IMPORTANCE Endospore formation in Firmicutes bacteria provides one of the most highly resistant life forms on earth. During the early stages of endospore formation, the cell cycle is reorganized so that exactly two fully replicated chromosomes are generated, before the cell divides asymmetrically to generate the prespore and mother cell compartments that are critical for the developmental process. Decades ago, it was discovered that just prior to asymmetrical division the two chromosomes enter an unusual elongated configuration called the axial filament. This paper provides new insights into the nature of the axial filament structure and suggests that cohesion of the normally separated sister chromosome termini plays an important role in axial filament formation.
Collapse
|
2
|
Lopez-Garrido J, Ojkic N, Khanna K, Wagner FR, Villa E, Endres RG, Pogliano K. Chromosome Translocation Inflates Bacillus Forespores and Impacts Cellular Morphology. Cell 2019; 172:758-770.e14. [PMID: 29425492 DOI: 10.1016/j.cell.2018.01.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/16/2017] [Accepted: 01/18/2018] [Indexed: 01/14/2023]
Abstract
The means by which the physicochemical properties of different cellular components together determine bacterial cell shape remain poorly understood. Here, we investigate a programmed cell-shape change during Bacillus subtilis sporulation, when a rod-shaped vegetative cell is transformed to an ovoid spore. Asymmetric cell division generates a bigger mother cell and a smaller, hemispherical forespore. The septum traps the forespore chromosome, which is translocated to the forespore by SpoIIIE. Simultaneously, forespore size increases as it is reshaped into an ovoid. Using genetics, timelapse microscopy, cryo-electron tomography, and mathematical modeling, we demonstrate that forespore growth relies on membrane synthesis and SpoIIIE-mediated chromosome translocation, but not on peptidoglycan or protein synthesis. Our data suggest that the hydrated nucleoid swells and inflates the forespore, displacing ribosomes to the cell periphery, stretching septal peptidoglycan, and reshaping the forespore. Our results illustrate how simple biophysical interactions between core cellular components contribute to cellular morphology.
Collapse
Affiliation(s)
- Javier Lopez-Garrido
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nikola Ojkic
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK; Centre for Integrative Systems Biology and Bioinformatics, London SW7 2AZ, UK
| | - Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Felix R Wagner
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert G Endres
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK; Centre for Integrative Systems Biology and Bioinformatics, London SW7 2AZ, UK.
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Slager J, Veening JW. Hard-Wired Control of Bacterial Processes by Chromosomal Gene Location. Trends Microbiol 2016; 24:788-800. [PMID: 27364121 PMCID: PMC5034851 DOI: 10.1016/j.tim.2016.06.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/31/2016] [Accepted: 06/08/2016] [Indexed: 12/23/2022]
Abstract
Bacterial processes, such as stress responses and cell differentiation, are controlled at many different levels. While some factors, such as transcriptional regulation, are well appreciated, the importance of chromosomal gene location is often underestimated or even completely neglected. A combination of environmental parameters and the chromosomal location of a gene determine how many copies of its DNA are present at a given time during the cell cycle. Here, we review bacterial processes that rely, completely or partially, on the chromosomal location of involved genes and their fluctuating copy numbers. Special attention will be given to the several different ways in which these copy-number fluctuations can be used for bacterial cell fate determination or coordination of interdependent processes in a bacterial cell.
Collapse
Affiliation(s)
- Jelle Slager
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
4
|
Bose B, Reed SE, Besprozvannaya M, Burton BM. Missense Mutations Allow a Sequence-Blind Mutant of SpoIIIE to Successfully Translocate Chromosomes during Sporulation. PLoS One 2016; 11:e0148365. [PMID: 26849443 PMCID: PMC4744071 DOI: 10.1371/journal.pone.0148365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/19/2016] [Indexed: 11/18/2022] Open
Abstract
SpoIIIE directionally pumps DNA across membranes during Bacillus subtilis sporulation and vegetative growth. The sequence-reading domain (γ domain) is required for directional DNA transport, and its deletion severely impairs sporulation. We selected suppressors of the spoIIIEΔγ sporulation defect. Unexpectedly, many suppressors were intragenic missense mutants, and some restore sporulation to near-wild-type levels. The mutant proteins are likely not more abundant, faster at translocating DNA, or sequence-sensitive, and rescue does not involve the SpoIIIE homolog SftA. Some mutants behave differently when co-expressed with spoIIIEΔγ, consistent with the idea that some, but not all, variants may form mixed oligomers. In full-length spoIIIE, these mutations do not affect sporulation, and yet the corresponding residues are rarely found in other SpoIIIE/FtsK family members. The suppressors do not rescue chromosome translocation defects during vegetative growth, indicating that the role of the γ domain cannot be fully replaced by these mutations. We present two models consistent with our findings: that the suppressors commit to transport in one arbitrarily-determined direction or delay spore development. It is surprising that missense mutations somehow rescue loss of an entire domain with a complex function, and this raises new questions about the mechanism by which SpoIIIE pumps DNA and the roles SpoIIIE plays in vivo.
Collapse
Affiliation(s)
- Baundauna Bose
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Sydney E. Reed
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Marina Besprozvannaya
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Briana M. Burton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Abstract
Non-essential extra-chromosomal DNA elements such as plasmids are responsible for their own propagation in dividing host cells, and one means to ensure this is to carry a miniature active segregation system reminiscent of the mitotic spindle. Plasmids that are maintained at low numbers in prokaryotic cells have developed a range of such active partitioning systems, which are characterized by an impressive simplicity and efficiency and which are united by the use of dynamic, nucleotide-driven filaments to separate and position DNA molecules. A comparison of different plasmid segregation systems reveals (i) how unrelated filament-forming and DNA-binding proteins have been adopted and modified to create a range of simple DNA segregating complexes and (ii) how subtle changes in the few components of these DNA segregation machines has led to a remarkable diversity in the molecular mechanisms of closely related segregation systems. Here, our current understanding of plasmid segregation systems is reviewed and compared with other DNA segregation systems, and this is extended by a discussion of basic principles of plasmid segregation systems, evolutionary implications and the relationship between an autonomous DNA element and its host cell.
Collapse
Affiliation(s)
- Jeanne Salje
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
6
|
Sequence-directed DNA export guides chromosome translocation during sporulation in Bacillus subtilis. Nat Struct Mol Biol 2008; 15:485-93. [PMID: 18391964 DOI: 10.1038/nsmb.1412] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 02/22/2008] [Indexed: 11/08/2022]
Abstract
In prokaryotes, the transfer of DNA between cellular compartments is essential for the segregation and exchange of genetic material. SpoIIIE and FtsK are AAA+ ATPases responsible for intercompartmental chromosome translocation in bacteria. Despite functional and sequence similarities, these motors were proposed to use drastically different mechanisms: SpoIIIE was suggested to be a unidirectional DNA transporter that exports DNA from the compartment in which it assembles, whereas FtsK was shown to establish translocation directionality by interacting with highly skewed chromosomal sequences. Here we use a combination of single-molecule, bioinformatics and in vivo fluorescence methodologies to study the properties of DNA translocation by SpoIIIE in vitro and in vivo. These data allow us to propose a sequence-directed DNA exporter model that reconciles previously proposed models for SpoIIIE and FtsK, constituting a unified model for directional DNA transport by the SpoIIIE/FtsK family of AAA+ ring ATPases.
Collapse
|
7
|
Becker EC, Pogliano K. Cell-specific SpoIIIE assembly and DNA translocation polarity are dictated by chromosome orientation. Mol Microbiol 2008; 66:1066-79. [PMID: 18001347 DOI: 10.1111/j.1365-2958.2007.05992.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SpoIIIE and FtsK are related proteins that translocate chromosomes across septa. Previous results suggested that SpoIIIE exports DNA and that translocation polarity is governed by the cell-specific regulation of its assembly, but that FtsK is a reversible motor for which translocation polarity is governed by its DNA substrate. Seeking to reconcile these conclusions, we used cell-specific GFP tagging to demonstrate that SpoIIIE assembles a complex only in the mother cell, from which DNA is exported, but that DNA translocation-defective SpoIIIE proteins assemble in both cells. Altering chromosome architecture by soj-spo0J and racA soj-spo0J mutations allowed wild-type SpoIIIE to assemble in the forespore and export the forespore chromosome. Combining LacI-CFP tagging of oriC with time-lapse microscopy, we demonstrate that the chromosome is exported from the forespore when oriC fails to be trapped in the forespore. Thus, the position of oriC after septation determines which cell will receive the chromosome and which will assemble SpoIIIE.
Collapse
Affiliation(s)
- Eric C Becker
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive La Jolla, CA 92093-0377, USA
| | | |
Collapse
|
8
|
Lorca GL, Barabote RD, Zlotopolski V, Tran C, Winnen B, Hvorup RN, Stonestrom AJ, Nguyen E, Huang LW, Kim DS, Saier MH. Transport capabilities of eleven gram-positive bacteria: comparative genomic analyses. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1342-66. [PMID: 17490609 PMCID: PMC2592090 DOI: 10.1016/j.bbamem.2007.02.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 12/29/2006] [Accepted: 02/07/2007] [Indexed: 11/29/2022]
Abstract
The genomes of eleven Gram-positive bacteria that are important for human health and the food industry, nine low G+C lactic acid bacteria and two high G+C Gram-positive organisms, were analyzed for their complement of genes encoding transport proteins. Thirteen to 18% of their genes encode transport proteins, larger percentages than observed for most other bacteria. All of these bacteria possess channel proteins, some of which probably function to relieve osmotic stress. Amino acid uptake systems predominate over sugar and peptide cation symporters, and of the sugar uptake porters, those specific for oligosaccharides and glycosides often outnumber those for free sugars. About 10% of the total transport proteins are constituents of putative multidrug efflux pumps with Major Facilitator Superfamily (MFS)-type pumps (55%) being more prevalent than ATP-binding cassette (ABC)-type pumps (33%), which, however, usually greatly outnumber all other types. An exception to this generalization is Streptococcus thermophilus with 54% of its drug efflux pumps belonging to the ABC superfamily and 23% belonging each to the Multidrug/Oligosaccharide/Polysaccharide (MOP) superfamily and the MFS. These bacteria also display peptide efflux pumps that may function in intercellular signalling, and macromolecular efflux pumps, many of predictable specificities. Most of the bacteria analyzed have no pmf-coupled or transmembrane flow electron carriers. The one exception is Brevibacterium linens, which in addition to these carriers, also has transporters of several families not represented in the other ten bacteria examined. Comparisons with the genomes of organisms from other bacterial kingdoms revealed that lactic acid bacteria possess distinctive proportions of recognized transporter types (e.g., more porters specific for glycosides than reducing sugars). Some homologues of transporters identified had previously been identified only in Gram-negative bacteria or in eukaryotes. Our studies reveal unique characteristics of the lactic acid bacteria such as the universal presence of genes encoding mechanosensitive channels, competence systems and large numbers of sugar transporters of the phosphotransferase system. The analyses lead to important physiological predictions regarding the preferred signalling and metabolic activities of these industrially important bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Milton H. Saier
- *Corresponding author: Phone: 858-534-4084, Fax: 858-534-7108, E-mail:
| |
Collapse
|
9
|
Kodama T, Endo K, Ara K, Ozaki K, Kakeshita H, Yamane K, Sekiguchi J. Effect of Bacillus subtilis spo0A mutation on cell wall lytic enzymes and extracellular proteases, and prevention of cell lysis. J Biosci Bioeng 2007; 103:13-21. [PMID: 17298895 DOI: 10.1263/jbb.103.13] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 10/02/2006] [Indexed: 11/17/2022]
Abstract
The Bacillus subtilis spo0A mutant is an adequate host for extracellular protein production (e.g., alpha-amylase). However the mutant was prone to cell lysis. SDS-PAGE and zymography of cell wall lytic proteins indicated that the spo0A mutant contained high amounts of two major autolysins (LytC [CwlB] and LytD [CwlG]) and two minor cell wall lytic enzymes (LytE [CwlF] and LytF [CwlE]). On the other hand, the expression of eight extracellular protease genes was very poor or absent in the spo0A mutant. An eight-extracellular-protease-deficient mutant (Dpr8 strain) was constructed and the strain also exhibited cell lysis. The autolysins from the spo0A mutant were degraded by the supernatant of the wild type but not degraded by that of the Dpr8 mutant. These results suggest that the extensive cell lysis of the spo0A mutant was partially caused by the stability of autolysins via the decrease of the extracellular proteases. The introduction of a major autolysin and/or SigD mutations into the spo0A mutant was effective for preventing cell lysis.
Collapse
Affiliation(s)
- Takeko Kodama
- Tochigi Research Laboratories of Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Becker E, Herrera NC, Gunderson FQ, Derman AI, Dance AL, Sims J, Larsen RA, Pogliano J. DNA segregation by the bacterial actin AlfA during Bacillus subtilis growth and development. EMBO J 2006; 25:5919-31. [PMID: 17139259 PMCID: PMC1698890 DOI: 10.1038/sj.emboj.7601443] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 10/23/2006] [Indexed: 11/09/2022] Open
Abstract
We here identify a protein (AlfA; actin like filament) that defines a new family of actins that are only distantly related to MreB and ParM. AlfA is required for segregation of Bacillus subtilis plasmid pBET131 (a mini pLS32-derivative) during growth and sporulation. A 3-kb DNA fragment encoding alfA and a downstream gene (alfB) is necessary and sufficient for plasmid stability. AlfA-GFP assembles dynamic cytoskeletal filaments that rapidly turn over (t(1/2)< approximately 45 s) in fluorescence recovery after photobleaching experiments. A point mutation (alfA D168A) that completely inhibits AlfA subunit exchange in vivo is strongly defective for plasmid segregation, demonstrating that dynamic polymerization of AlfA is necessary for function. During sporulation, plasmid segregation occurs before septation and independently of the DNA translocase SpoIIIE and the chromosomal Par proteins Soj and Spo0J. The absence of the RacA chromosome anchoring protein reduces the efficiency of plasmid segregation (by about two-fold), suggesting that it might contribute to anchoring the plasmid at the pole during sporulation. Our results suggest that the dynamic polymerization of AlfA mediates plasmid separation during both growth and sporulation.
Collapse
Affiliation(s)
- Eric Becker
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Nick C Herrera
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Felizza Q Gunderson
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Alan I Derman
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amber L Dance
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jennifer Sims
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Rachel A Larsen
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA. Tel.: +1 858 822 4074; Fax: +1 858 822 1431; E-mail:
| |
Collapse
|
11
|
Bejerano-Sagie M, Oppenheimer-Shaanan Y, Berlatzky I, Rouvinski A, Meyerovich M, Ben-Yehuda S. A Checkpoint Protein That Scans the Chromosome for Damage at the Start of Sporulation in Bacillus subtilis. Cell 2006; 125:679-90. [PMID: 16713562 DOI: 10.1016/j.cell.2006.03.039] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 01/13/2006] [Accepted: 03/11/2006] [Indexed: 12/14/2022]
Abstract
In response to DNA damage, cells activate checkpoint signaling cascades to control cell-cycle progression and elicit DNA repair in order to maintain genomic integrity. The sensing and repair of lesions is critical for Bacillus subtilis cells entering the developmental process of sporulation as damaged DNA may prevent the cells from completing spore morphogenesis. We report the identification of the protein DisA (DNA integrity scanning protein, annotated YacK), which is required to delay the initiation of sporulation in response to chromosomal damage. DisA is a nonspecific DNA binding protein that forms a single focus, which moves rapidly within the bacterial cell, pausing at sites of DNA damage. We propose that the DisA focus scans along the chromosomes searching for lesions. Upon encountering a lesion, DisA delays entry into sporulation until the damage is repaired.
Collapse
Affiliation(s)
- Michal Bejerano-Sagie
- Department of Molecular Biology, Faculty of Medicine, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Bacterial plasmids encode partitioning (par) loci that ensure ordered plasmid segregation prior to cell division. par loci come in two types: those that encode actin-like ATPases and those that encode deviant Walker-type ATPases. ParM, the actin-like ATPase of plasmid R1, forms dynamic filaments that segregate plasmids paired at mid-cell to daughter cells. Like microtubules, ParM filaments exhibit dynamic instability (i.e., catastrophic decay) whose regulation is an important component of the DNA segregation process. The Walker box ParA ATPases are related to MinD and form highly dynamic, oscillating filaments that are required for the subcellular movement and positioning of plasmids. The role of the observed ATPase oscillation is not yet understood. However, we propose a simple model that couples plasmid segregation to ParA oscillation. The model is consistent with the observed movement and localization patterns of plasmid foci and does not require the involvement of plasmid-specific host-encoded factors.
Collapse
Affiliation(s)
- Gitte Ebersbach
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | |
Collapse
|
13
|
McBride SM, Rubio A, Wang L, Haldenwang WG. Contributions of protein structure and gene position to the compartmentalization of the regulatory proteins sigma(E) and SpoIIE in sporulating Bacillus subtilis. Mol Microbiol 2005; 57:434-51. [PMID: 15978076 DOI: 10.1111/j.1365-2958.2005.04712.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At an early stage in endospore formation Bacillus subtilis partitions itself into two dissimilar compartments with unique developmental fates. Transcription appropriate to each compartment is initiated by the activation of compartment-specific RNA polymerase sigma subunits, sigma(E) in the mother cell and sigma(F) in the forespore. Among the possible factors contributing to the compartment specificity of sigma(E) and sigma(F) is the selective accumulation of the sigma(E) protein in the mother cell and that of SpoIIE, a regulatory phosphatase essential to the activation of sigma(F), in the forespore. In the current work, fluorescent microscopy is used to investigate the contributions of sigma(E) and SpoIIE's protein structures, expression and the genetic asymmetry that develops during chromosome translocation into the forespore on their abundance in each compartment. Time of entry of the spoIIE and sigE genes into the forespore was found to have a significant effect on the enrichment of their products in one or the other compartment. In contrast, the structures of the proteins themselves do not appear to promote their transfer to a particular compartment, but nonetheless contribute to compartmentalization by facilitating degradation in the compartment where each protein's activity would be inappropriate.
Collapse
Affiliation(s)
- Shonna M McBride
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
14
|
Errington J, Murray H, Wu LJ. Diversity and redundancy in bacterial chromosome segregation mechanisms. Philos Trans R Soc Lond B Biol Sci 2005; 360:497-505. [PMID: 15897175 PMCID: PMC1569464 DOI: 10.1098/rstb.2004.1605] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial cells are much smaller and have a much simpler overall structure and organization than eukaryotes. Several prominent differences in cell organization are relevant to the mechanisms of chromosome segregation, particularly the lack of an overt chromosome condensation/decondensation cycle and the lack of a microtubule-based spindle. Although bacterial chromosomes have a rather dispersed appearance, they nevertheless have an underlying high level of spatial organization. During the DNA replication cycle, early replicated (oriC) regions are localized towards the cell poles, whereas the late replicated terminus (terC) region is medially located. This spatial organization is thought to be driven by an active segregation mechanism that separates the sister chromosomes continuously as replication proceeds. Comparisons of various well-characterized bacteria suggest that the mechanisms of chromosome segregation are likely to be diverse, and that in many bacteria, multiple overlapping mechanisms may contribute to efficient segregation. One system in which the molecular mechanisms of chromosome segregation are beginning to be elucidated is that of sporulating cells of Bacillus subtilis. The key components of this system have been identified, and their functions are understood, in outline. Although this system appears to be specialized, most of the functions are conserved widely throughout the bacteria.
Collapse
Affiliation(s)
- Jeff Errington
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | | | | |
Collapse
|
15
|
Real G, Autret S, Harry EJ, Errington J, Henriques AO. Cell division protein DivIB influences the Spo0J/Soj system of chromosome segregation in Bacillus subtilis. Mol Microbiol 2005; 55:349-67. [PMID: 15659156 DOI: 10.1111/j.1365-2958.2004.04399.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The initiation of the developmental process of sporulation in the rod-shaped bacterium Bacillus subtilis involves the activation of the Spo0A response regulator. Spo0A then drives the switch in the site of division septum formation from midcell to a polar position. Activated Spo0A is required for the transcription of key sporulation loci such as spoIIG, which are negatively regulated by the Soj protein. The transcriptional repressing activity of Soj is antagonized by Spo0J, and both proteins belong to the well-conserved Par family of partitioning proteins. Soj has been shown to jump from nucleoid to nucleoid via the cell pole. The dynamic behaviour of Soj is somehow controlled by Spo0J, which prevents the static association of Soj with the nucleoid, and presumably its transcriptional repression activity. Soj in turn is required for the proper condensation of Spo0J foci around the oriC region. The asymmetric partitioning of the sporangial cell requires DivIB and other proteins involved in vegetative (medial) division. We describe an allele of the cell division gene divIB (divIB80) that reduces the cellular levels of DivIB, and affects nucleoid structure and segregation in growing cells, yet has no major impact on cell division. In divIB80 cells Spo0J foci are not correctly condensed and Soj associates statically with the nucleoid. The divIB80 allele prevents transcription of spoIIG, and arrests sporulation prior to the formation of the asymmetric division septum. The defect in Spo0A-dependent gene expression, and the Spo- phenotype can be suppressed by expression of divIB in trans or by deletion of the soj-spo0J locus. However, deletion of the spo0J-soj region does not restore the normal cellular levels of DivIB. Therefore, the reduced levels of DivIB in the divIB80 mutant are sufficient for efficient cell division, but not to sustain a second, earlier function of DivIB related to the activity of the Spo0J/Soj system of chromosome segregation.
Collapse
Affiliation(s)
- Gonçalo Real
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Apartado 127, 2781-901 Oeiras Codex, Portugal
| | | | | | | | | |
Collapse
|
16
|
Abstract
In bacteria, chromosome segregation and DNA replication occur concurrently and there is no clear equivalent of a eukaryote mitotic spindle. Chromosome segregation can be viewed as a two-step process. As the first step, the origin of replication regions are segregated actively, probably by a mechanism involving an as yet unidentified motor protein or proteins, and held in position. The second step is the separation and migration of the rest of the chromosome probably driven by forces generated from various cellular processes such as DNA replication, transcription and transertion.
Collapse
Affiliation(s)
- Ling Juan Wu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
17
|
Rubio A, Pogliano K. Septal localization of forespore membrane proteins during engulfment in Bacillus subtilis. EMBO J 2004; 23:1636-46. [PMID: 15044948 PMCID: PMC391076 DOI: 10.1038/sj.emboj.7600171] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 02/19/2004] [Indexed: 11/08/2022] Open
Abstract
In Bacillus subtilis, many membrane proteins localize to the sporulation septum, where they play key roles in spore morphogenesis and cell-specific gene expression, but the mechanism for septal targeting is not well understood. SpoIIQ, a forespore-expressed protein, is involved in engulfment and forespore-specific gene expression. We find that SpoIIQ dynamically localizes to the sporulation septum, tracks the engulfing mother cell membrane, assembles into helical arcs around the forespore and is finally degraded. Retention of SpoIIQ in the septum requires one or more mother cell-expressed proteins. We also observed that any forespore-expressed membrane protein initially localizes to the septum and later spreads throughout the forespore membrane, suggesting that membrane protein insertion occurs at the forespore septal region. This possibility provides an attractive mechanism for how activation of mother cell-specific gene expression is restricted to adjacent sister cells, since direct insertion of the signaling protein SpoIIR into the septum would spatially restrict its activity. In keeping with this hypothesis, we find that SpoIIR localizes to the septum and is transiently expressed.
Collapse
Affiliation(s)
- Aileen Rubio
- Division of Biological Sciences, University of California-San Diego, La Jolla, CA, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California-San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA. Tel.: +1 858 822 1314; Fax: +1 858 822 1431; E-mail:
| |
Collapse
|
18
|
Molle V, Fujita M, Jensen ST, Eichenberger P, González-Pastor JE, Liu JS, Losick R. The Spo0A regulon of Bacillus subtilis. Mol Microbiol 2004; 50:1683-701. [PMID: 14651647 DOI: 10.1046/j.1365-2958.2003.03818.x] [Citation(s) in RCA: 410] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The master regulator for entry into sporulation in Bacillus subtilis is the DNA-binding protein Spo0A, which has been found to influence, directly or indirectly, the expression of over 500 genes during the early stages of development. To search on a genome-wide basis for genes under the direct control of Spo0A, we used chromatin immunoprecipitation in combination with gene microarray analysis to identify regions of the chromosome at which an activated form of Spo0A binds in vivo. This information in combination with transcriptional profiling using gene microarrays, gel electrophoretic mobility shift assays, using the DNA-binding domain of Spo0A, and bioinformatics enabled us to assign 103 genes to the Spo0A regulon in addition to 18 previously known members. Thus, in total, 121 genes, which are organized as 30 single-gene units and 24 operons, are likely to be under the direct control of Spo0A. Forty of these genes are under the positive control of Spo0A, and 81 are under its negative control. Among newly identified members of the regulon with transcription that was stimulated by Spo0A are genes for metabolic enzymes and genes for efflux pumps. Among members with transcription that was in-hibited by Spo0A are genes encoding components of the DNA replication machinery and genes that govern flagellum biosynthesis and chemotaxis. Also in-cluded in the regulon are many (25) genes with products that are direct or indirect regulators of gene transcription. Spo0A is a master regulator for sporulation, but many of its effects on the global pattern of gene transcription are likely to be mediated indirectly by regulatory genes under its control.
Collapse
Affiliation(s)
- Virginie Molle
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
It is now clear that bacterial chromosomes rapidly separate in a manner independent of cell elongation, suggesting the existence of a mitotic apparatus in bacteria. Recent studies of bacterial cells reveal filamentous structures similar to the eukaryotic cytoskeleton, proteins that mediate polar chromosome anchoring during Bacillus subtilis sporulation, and SMC interacting proteins that are involved in chromosome condensation. A picture is thereby developing of how bacterial chromosomes are organized within the cell, how they are separated following duplication, and how these processes are coordinated with the cell cycle.
Collapse
Affiliation(s)
- Kit Pogliano
- Division of Biological Sciences, 9500 Gilman Drive, University of California-San Diego, La Jolla, CA 92093-0349, USA.
| | | | | |
Collapse
|
20
|
Abstract
Epulopiscium spp. are the largest heterotrophic bacteria yet described. A distinguishing feature of the Epulopiscium group is their viviparous production of multiple, internal offspring as a means of cellular reproduction. Based on their phylogenetic position, among low G + C Gram-positive endospore-forming bacteria, and the remarkable morphological similarity between developing endospores and Epulopiscium offspring, we hypothesized that intracellular offspring production in Epulopiscium evolved from endospore formation. These observations also raise the possibility that a cell with the capacity to form multiple intracellular offspring was the ancestor of all contemporary endospore-forming bacteria. In an effort to characterize mechanisms common to both processes, we describe the earliest stages of offspring formation in Epulopiscium. First, in anticipation of polar division, some of the mother cell DNA coalesces at the cell poles. FtsZ then localizes in a bipolar pattern and the cell divides. A portion of the pole-associated DNA is trapped within the small cells formed by division at both poles. As development progresses, more pole-associated DNA is apparently packaged into the offspring primordia. These results illustrate three mechanisms, the reorganization of cellular DNA, asymmetric division and DNA packaging, that are common to both endospore formation in Bacillus subtilis and the production of active, intracellular offspring in Epulopiscium. Unlike most endospore formers, Epulopiscium partitions only a small proportion of mother cell DNA into the developing offspring.
Collapse
Affiliation(s)
- Esther R Angert
- Department of Microbiology, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
21
|
Abstract
Spore formation in bacteria poses a number of biological problems of fundamental significance. Asymmetric cell division at the onset of sporulation is a powerful model for studying basic cell-cycle problems, including chromosome segregation and septum formation. Sporulation is one of the best understood examples of cellular development and differentiation. Fascinating problems posed by sporulation include the temporal and spatial control of gene expression, intercellular communication and various aspects of cell morphogenesis.
Collapse
Affiliation(s)
- Jeff Errington
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
22
|
Wu LJ, Errington J. RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol Microbiol 2003; 49:1463-75. [PMID: 12950914 DOI: 10.1046/j.1365-2958.2003.03643.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sporulating cells of Bacillus subtilis undergo a highly polarized cell division and possess a specialized mechanism to move the oriC region of the chromosome close to the cell pole before septation. DivIVA protein, which localizes to the cell pole, and the Soj and Spo0J proteins, which associate with the chromosome, are part of the mechanism that delivers the chromosome to the cell pole. A sporulation-specific protein, RacA, encodes a third DNA-binding protein, which acts in conjunction with Soj and Spo0J to effect efficient polar chromosome segregation. divIVA mutants and soj racA double mutants have an unexpected phenotype in which specific markers to the left and right of oriC can be captured in the prespore compartment but the central oriC region is efficiently excluded. This 'residual' trapping requires Spo0J protein. We suggest that the Soj RacA DivIVA system is required to extract the oriC region from its position determined by the vegetative chromosome segregation machinery and anchor it to the cell pole.
Collapse
Affiliation(s)
- Ling Juan Wu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | |
Collapse
|
23
|
Fujita M, Losick R. The master regulator for entry into sporulation in Bacillus subtilis becomes a cell-specific transcription factor after asymmetric division. Genes Dev 2003; 17:1166-74. [PMID: 12730135 PMCID: PMC196045 DOI: 10.1101/gad.1078303] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gene transcription at the onset of sporulation in Bacillus subtilis is governed by Spo0A, a member of the response regulator family of transcription factors. Spo0A is traditionally viewed as the master regulator for entry into development. We now report that Spo0A continues to function after the initiation phase of sporulation and that it becomes a cell-specific transcription factor when the sporangium is divided into a mother cell and forespore. We observed that (1) Spo0A and Spo0A-directed gene transcription reached high levels in the mother cell; (2) an activated form of Spo0A impaired sporulation when produced in the forespore but not when produced in the mother cell; and (3) an inhibitor of Spo0A called Spo0A-N impaired sporulation and Spo0A-directed transcription when produced in the mother cell but not when produced in the forespore. Spo0A-N, which corresponds to the NH(2)-terminal domain of Spo0A, was shown to compete with the full-length response regulator for phosphorylation by the phosphorelay protein Spo0B. We propose that Spo0A is the earliest-acting transcription factor in the mother-cell line of gene expression and that in terms of abundance and transcriptional activity Spo0A may function predominantly as a cell-specific regulatory protein.
Collapse
Affiliation(s)
- Masaya Fujita
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
24
|
Abstract
During Bacillus subtilis sporulation, the SpoIIIE DNA translocase moves a trapped chromosome across the sporulation septum into the forespore. The direction of DNA translocation is controlled by the specific assembly of SpoIIIE in the mother cell and subsequent export of DNA into the forespore. We present evidence that the MinCD heterodimer, which spatially regulates cell division during vegetative growth, serves as a forespore-specific inhibitor of SpoIIIE assembly. The deletion of minCD increases the ability of forespore-expressed SpoIIIE to assemble and translocate DNA, and causes otherwise wild-type cells to reverse the direction of DNA transfer, producing anucleate forespores. We propose that two distinct mechanisms ensure the specific assembly of SpoIIIE in the mother cell, the partitioning of more SpoIIIE molecules into the larger mother cell by asymmetric cell division and the MinCD-dependent repression of SpoIIIE assembly in the forespore. Our results suggest that the ability of MinCD to sense positional information is utilized during sporulation to regulate protein assembly differentially on the two faces of the sporulation septum.
Collapse
Affiliation(s)
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA
Corresponding author e-mail:
| |
Collapse
|